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GRB 221009A is the brightest Gamma Ray Burst (GRB) ever observed. The observed extremely
high flux of high and very-high-energy photons provide a unique opportunity to probe the predicted
neutrino counterpart to the electromagnetic emission. We have used a variety of methods to search
for neutrinos in coincidence with the GRB over several time windows during the precursor, prompt
and afterglow phases of the GRB. MeV scale neutrinos are studied using photo-multiplier rate
scalers which are normally used to search for galactic core-collapse supernovae neutrinos. GeV
neutrinos are searched starting with DeepCore triggers. These events don’t have directional
localization, but instead can indicate an excess in the rate of events. 10 GeV - 1 TeV and >TeV
neutrinos are searched using traditional neutrino point source methods which take into account
the direction and time of events with DeepCore and the entire IceCube detector respectively. The
>TeV results include both a fast-response analysis conducted by IceCube in real-time with time
windows of T0 − 1 to T0 + 2 hours and T0 ± 1 day around the time of GRB 221009A, as well as
an offline analysis with 3 new time windows up to a time window of T0 − 1 to T0 + 14 days, the
longest time period we consider. The combination of observations by IceCube covers 9 orders
of magnitude in neutrino energy, from MeV to PeV, placing upper limits across the range for
predicted neutrino emission.
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1. Properties of GRB221009A

At T0=13:16:59.99 UT the Gamma-ray Burst Monitor (GBM) onboard the Fermi satellite was
triggered on an extremely bright burst: GRB221009A. In realtime, the central 90% containment
of emission (T90) was reported with a duration of 325.8 ± 6.8 s, beginning 221.1 s after T0 [1].
The burst was localized by the Swift Observatory at right ascension 𝛼 = 288.2645◦, declination
𝛿 = +19.7735◦, with a 90% containment of 0.61" [2]. The isotropic equivalent gamma-ray energy
has been measured to be ∼ 1.2 × 1055 erg by Konus-Wind [3].

2. Neutrino searches with IceCube

IceCube is a cubic-kilometre neutrino detector buried in the glacial ice at the geographic South
Pole [4]. It consists of 5160 Digital Optical Modules (DOMs), each with a photomultiplier tube
(PMT). These PMTs are able to observe the Cherenkov light emitted by relativistic charged particles
created by neutrino interactions in the ice. In the center of IceCube, eight strings containing PMTs
with a higher quantum efficiency are placed with a denser DOM and string spacing. This part of the
detector is called IceCube-DeepCore, and has a reduced energy threshold down to about 0.5 GeV.

We perform four complementary IceCube analyses to search for neutrinos using the full
energy range accessible using the IceCube detector: the Gamma-ray Follow-Up (GFU) sample
for >100 GeV neutrinos [5], the GeV Reconstructed Events with Containment for Oscillations
(GRECO) sample for 10− 1000 GeV neutrinos [6], the Extremely Low Energy (ELOWEN) sample
for 0.5 − 5 GeV neutrinos [7], and the MeV neutrino burst analysis for <1 GeV neutrinos [8]. The
full explanation of these analyses from MeV to PeV can be found in [9].

No significant deviation from the background expectation was found in any of the analyses.
Thus, we set upper limits on the neutrino flux from GRB221009A (𝐹 (𝐸) ≡ 𝑑2𝑁/𝑑𝐸/𝑑𝐴) assum-
ing fixed power law fluxes (GFU, GRECO, ELOWEN) or a generic blackbody spectrum (MeV).
Differential limits of the GFU, GRECO and ELOWEN sample can be seen in Figure 1. We also
show the time-integrated upper limits for each of these three data samples in Figure 2, as done in
[9], with updated gamma-ray observations from Fermi-GBM [10] and LHAASO [11]. The MeV
burst analysis upper limits are shown in Figure 6.

3. Model constraints

In addition to the differential limits on the neutrino flux, constraints can be placed on models
for neutrino emission from GRB 221009A in the in the relevant energy ranges for each data sample,
as described in the following sections.

3.1 TeV Neutrino Emission Models

Gamma ray bursts (GRBs) have long been thought to be a source of high energy neutrinos
and ultra-high energy cosmic rays [13]. In the fireball model, hot plasma is ejected from the GRB
source, producing a "fireball" that is initially optically thick to radiation, but expands by radiation
pressure until it becomes optically thin. The fireball engine produces internal shock collisions which
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Figure 1: Time-integrated 90% CL differential upper limits on the neutrino flux from GRB 221009A with
the ELOWEN, GRECO, and GFU samples. We assume a time-integrated flux with a power-law spectrum
𝐹 (𝐸) ∝ 𝐸−2 for the neutrino spectrum in each energy bin.
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Figure 2: Gamma-ray observations and time-integrated upper limits on the neutrino flux of GRB 221009A.
We show the gamma-ray observations reported by [11, Table S2] in the brightest period of the emission. We
show the total gamma-ray fluence observed by Fermi-GBM, as reported by [10], at 𝛾 = 2.0 for visualization
purposes. We also plot the gamma-ray observations from Fermi-LAT as reported in realtime [12], although
this flux is known to be underestimated due to saturation effects. The right axis shows the differential isotropic
equivalent energy, with 𝐸2𝐹 (𝐸) = 𝐸𝑑E𝑖𝑠𝑜/𝑑𝐸 × (1 + 𝑧)/4𝜋𝐷2

𝐿
.

accelerates baryons, producing ultra-high energy cosmic rays and neutrinos through photohadronic
interactions.

In this analysis, we investigate two different fireball models: the internal shock model [13,
14] and the Internal Collision-Induced Magnetic Reconnection and Turbulence (ICMART) model
[14, 15]. The two models use similar mechanisms, but ICMART predicts neutrino production from
magnetic reconnection at a larger radius from the source. In order to test these models, we generated
neutrino spectra using Fireballet [16] with varying baryon load and bulk Lorentz factors for the T90
time window. These spectra can be seen in Figure 3.

We assume that the proton spectrum follows a 𝐸−2 power law. We used the redshift (𝑧 = 0.151),
isotropic-equivalent luminosity (𝐿iso = 9.9 × 1053 erg/s), low-energy photon index (𝛼 = −1.583),
high-energy photon index (𝛽 = −3.77), and break energy (𝐸break = 1387 keV) from the best-fit
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Figure 3: Neutrino spectra calculated for Lorentz factors of 300 and 600, for baryonic loading equal to 1,
for the internal shock model (left) and ICMART (right) with the time-integrated 90% CL differential upper
limits on the neutrino flux from GRB221009A and 90% CL upper limit from the Fast Response Analysis
(GFU) sample in the T90 time window.

parameters in Fermi-GBM [10]. The emission radius of neutrinos from internal shocks scales with
the time variability (𝑡var) [13]. We use a time variability of 0.1 s to match the model used by GBM
[10]. For the ICMART model, we follow the procedure from [16] and assume 𝑡var = 1 s because the
ICMART model has a larger radius. For both models, the high-energy photon index, low-energy
photon index, and break energy was calculated from the lightcurve between 277 − 323 s from
GBM [10]. This time interval was chosen because Fermi-GBM did not have data issues within the
time interval and the time interval falls within the T90 time window we are testing. This flux was
then injected to the previous analysis [9] in order to calculate constraints on the internal shock and
ICMART models.

We calculated the 90% upper limits for various Lorentz factors and baryon loads for the internal
shock model and ICMART and compared to previous limits set by IceCube [16]. Our results are
summarised in Figure 4.

The previous IceCube limit stacked several hundred GRBs and assumed average GRB param-
eters while the limits presented here are specific to GRB221009A. The limits set by GRB221009A
are more constraining in all regions in the internal shock model and ICMART model, but Fermi-
GBM set a lower limit on the Lorentz factor of Γ ≥ 780 [10], with which we can exclude at a baryon
load of 60.6.

3.2 GeV Neutrino Emission Models

Independent of the production of high-energy cosmic rays, it is still possible to produce
neutrinos in the GeV range. The GRB jet is expected to contain coupled outflows of protons and
neutrons that accelerate within the jet. However, once the n-p scattering time 𝑡𝑛𝑝 ∼ 1/(𝑛𝑝𝜎𝑛𝑝𝑐)
becomes longer than the fireball’s expansion time 𝑡exp ∼ 𝑟/𝑐Γ, the neutrons and protons will begin
to decouple. The protons will continue to accelerate, but the neutrons will not, increasing their
relative velocity until inelastic n-p collisions occur. These collisions will produce pions capable of
escaping the jet and decaying to produce neutrinos [17]. Neutrino emission from GRB221009A
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Figure 4: The 90% CL on the Lorentz factor and baryon load for GRB221009A compared to previously
published [16] upper limits for the internal shock model (left) and ICMART (right). For the internal shock
model, 𝑡𝑣𝑎𝑟𝑠 = 0.1 for this work and 𝑡𝑣𝑎𝑟𝑠 = 0.01 for previous limits. The shaded regions are excluded by
their respective limits.

via this process (hereafter referred to as the quasi-thermal decoupling model) is predicted to be in
the ∼ 1 − 10 GeV range [18].

In addition to neutrinos from n-p decoupling in each outflow, neutrino production is expected
due to collisions between outflows. After decoupling, a given neutron outflow will cease acceler-
ation. However, as subsequent proton outflows continue to accelerate, they will catch up to and
collide with these free-streaming neutrons, leading to further n-p collisions and further neutrino
production [19]. Neutrino emission from GRB221009A via this process (hereafter referred to as
the quasi-thermal collision model) is predicted to be in the ∼ 10 − 100 GeV range.

In both cases, the expected neutrino energy fluence is proportional to the kinetic energy of
the proton outflow, 𝜉𝑁E iso

𝛾 , where E iso
𝛾 is the isotropic equivalent gamma-ray energy of the GRB

and 𝜉𝑁 is the nucleon loading factor. Of course, both models also depend on the Lorentz factor
Γ, which can be between 100 and 1000. Additionally, the decoupling model depends on 𝜁𝑛, the
neutron-to-proton ratio, while the collision model depends on 𝜏𝑛𝑝, the n-p optical depth [18]. As
the value of E iso

𝛾 for GRB221009A has been measured, this allows us to place constraints on 𝜁𝑛𝜉𝑁

via the decoupling model, or 𝜏𝑛𝑝𝜉𝑁 via the collision model.
To test these models, we utilized the previous upper limits set by IceCube on neutrino emission

from GRB221009A in the range between 1 - 100 GeV. For the decoupling model, we used the
ELOWEN upper limits, and for the collision model, we used the GRECO-Astronomy upper limits.

For each model, we used the neutrino flux as calculated by Murase et al [18], normalised to
𝜁𝑛𝜉𝑁 = 5 (decoupling), 𝜏𝑛𝑝𝜉𝑁 = 5 (collision), E𝑖𝑠𝑜

𝛾 = 1.2 × 1055 erg, and various choices of Γ.
By injecting neutrinos into our dataset according to this flux, we were able to determine 𝑁lim, the
number of neutrinos compatible with the previous IceCube limits. We then computed 𝑁exp, the
expected number of neutrinos from GRB221009A, by integrating this flux over the effective area
of the respective dataset at the location of this GRB. The ratio 𝑁lim

𝑁exp
then gives the fraction of the

model flux that is consistent with our non-detection of neutrinos from GRB221009A, the inverse of
which is used as the Model Rejection Factor (MRF). The MRF can be used to place constraints on
the value of 𝜁𝑛𝜉𝑁 in the decoupling model, or 𝜏𝑛𝑝𝜉𝑁 in the collision model. The expected neutrino
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Figure 5: (left) The collision and decoupling models where 𝜁𝑛𝜉𝑁 = 5 for the decoupling model and
𝜏𝑛𝑝𝜉𝑁 = 5 for the collision model. The 90% upper limits are given using the 2200 s time window. (right)
The model rejection factor (MRF) for the decoupling model calculated with the upper limits from ELOWEN
for the 1000 s time window.

flux is shown in Figure 5 on the left for a Lorentz factor of 300 and 800, and the upper limits given
by the GRECO and ELOWEN analyses. The MRF of the decoupling model as a function of 𝜁𝑛𝜉𝑁
and Γ can be seen in Figure 5 on the right.

3.3 MeV Neutrino Emission Models

In addition to high-energy and quasi-thermal neutrino production, gamma-ray bursts (GRBs)
hold promise as sites for thermal neutrino production through various mechanisms. One such
scenario occurs when the explosion follows a core-collapse supernova, leading to the arrival of a
large flux of MeV neutrinos before the shock breakout [20]. Another scenario involves the formation
of an accretion disk around a black hole, known as neutrino-dominated accretion flows (NDAF).
In NDAFs, the disk system becomes extremely hot and dense, causing photons to become trapped,
while neutrinos can escape, carrying away gravitational energy from the black hole, cooling the
system [21]. The neutrinos from NDAFs can be detected at various stages, ranging from before the
gamma-ray burst [21, 22] to the prompt gamma-ray phase [21]. The diverse processes that give rise
to these neutrinos make them intriguing messengers for probing the deeper and denser regions of
GRBs, enabling the exploration of a wide parameter space, such as the black hole spin parameter
or the accretion rate [21].

Although IceCube has the capability to detect a burst of MeV neutrinos through an increased
number of single photon hit rates, the considerable source distance (z=0.151 or ∼ 740 Mpc) poses
a challenge in placing constraints on the parameter space for this specific GRB. Consequently, it
is not currently feasible to test individual models based on the observed data. However, in this
proceeding, we present a model-independent upper limit for this GRB utilizing a Supernova Test
Routine for IceCube Analysis (ASTERIA) [23].

In contrast to the previous paper [9], which assumed a quasi-thermal spectrum with an average
neutrino energy of 𝐸̄𝜈𝑒 = 15 MeV, we adopt a different approach in this proceeding. We assume a
delta-function shape for the upper-limit total 𝜈̄𝑒 luminosity with mono-energetic bins. Using this
method (as described in [24]), we obtain model-independent upper limits (Fig. 6) on the 𝜈̄𝑒 neutrino
flux (1-100 MeV) for each time window described in [9].
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Figure 6: 90% C.L upper limits on the neutrino flux for the six time window searches used in the MeV
analysis. These flux upper limits are calculated using a delta function in the given energy bin, where all of
the energy is deposited in a single energy bin.

4. Conclusion and prospects

With the search for neutrinos from GRB 221009A, upper limits on neutrino emission can be
set in a wide energy range. We present the differential limits of the ELOWEN, GRECO and GFU
analyses. With the upper limits, constraints can be set on different models predicting neutrino
emission at varying locations and through varying processes. For the TeV neutrinos the ICMART
and internal shock model were tested, which leads to improved limits compared to previous searches.
In the GeV range, constraints can be put on the quasithermal decoupling and collision model by
ELOWEN and GRECO, for different values of Lorentz factor and baryonic loading. Finally, for
the MeV neutrinos, a model-independent upper limit for this GRB was calculated in the 6 different
time windows.

Because of the electromagnetic brightness of GRB 221009A, we are able to place strong
constraints on models of neutrino emission from this source. In addition, future improvements
to the IceCube detector in different energy regimes will improve our sensitivity to neutrinos from
GRBs. The IceCube-Upgrade will improve the detection of low-energy neutrinos, as well as the
angular resolution of these neutrinos [25]. We are also improving the sensitivity of ELOWEN
with the current detector setup [26]. Finally, the proposed extension of IceCube-Gen2 would
significantly improve the sensitivity to high-energy neutrinos, where the goal is a sensitivity 5 times
better than the current IceCube array [27]. Together, these developments will provide an important
step towards detecting neutrinos originating from GRBs.
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