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Amphibians face many challenges in their conservation, including threats from emerging infectious pathogens/
parasites and habitat degradation. In diverse amphibian communities, where multiple emerging pathogens tend
to co-occur, we know little about how the structural partitioning of host specificity impacts population main-
tenance despite disease. Here, we used field data from amphibian communities in north Florida to investigate
host-specific traits influencing the prevalence, intensity, and transmission of three emerging pathogens of am-
phibians: Batrachochytrium dendrobatidis (Bd), Perkinsea (Pr), and Ranavirus (Rv). We found that Bd exhibited
specificity for later developmental stages, and that overall infection patterns differed between ephemeral and
semi-permanent sites and across seasons. For each pathogen, we identified key hosts overwhelmingly contrib-
uting to community transmission dynamics and found evidence of pathogen interactions that may facilitate Bd-
Ry co-infections, and dilution effects of increased host diversity on Pr infection. Our findings confirmed that
declining species within the region are routinely infected with emerging pathogens. However, the probability of
infection depended on different habitat characteristics and associated host community composition. Thus, our
study emphasizes the importance of identifying key and sensitive hosts that drive or succumb to infections in
natural communities before reintroducing amphibians into the wild. This approach can help improve conser-
vation efforts in diverse host communities as successful repatriation of sensitive species can benefit from detailed
characterization of the established disease dynamics at the release site.

1. Introduction

Emerging infectious diseases increasingly threaten global biodiver-
sity with the rapid expansion of virulent multi-host pathogens across the
landscape (Daszak et al., 2000; Fisher et al., 2012; Jones et al., 2008).
Under these novel selective pressures, conservationists have a pressing
need to examine the outcomes and interactions of pathogen co-
occurrence in diverse host communities (Brunner et al., 2015; Racho-
wicz et al., 2006; Scheele, 2019). For at-risk groups such as amphibians,
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multi-host pathogens comprise one of the major drivers of global pop-
ulation declines and species extinctions (Fisher and Garner, 2020;
Luedtke et al., 2023; Mendelson et al., 2006; Stegen et al., 2017). The
main causative agents—amphibian chytrid fungus Batrachochytrium
dendrobatidis (Bd) (Scheele, 2019; Stegen et al., 2017), the protist
parasite Perkinsea (Pr) (Chambouvet et al., 2020; Isidoro-Ayza et al.,
2017), and viruses in the genus Ranavirus (Rv) (Brunner et al., 2015)—
show extensive overlap in hosts and geographic range. Despite the
wealth of literature that exists on the ecology of these pathogens, most
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research focuses on a single pathogen, leaving co-infections and multi-
pathogen interactions underexamined (Bienentreu and Lesbarreres,
2020; Herczeg et al., 2021). The presence of multiple emerging patho-
gens in natural amphibian populations can generate a suite of novel
host-pathogen-pathogen interactions that can drive infection trends and
disease at the individual (Stutz et al., 2018) and community level (Longo
et al., 2023). Identifying host and environmental factors associated to
infection not only is critical for assessing future decline risk, but also to
assign priority when developing conservation strategies in the face of
climate change and disease (Grant et al., 2018).

Predicting disease outcomes remains a major challenge in the field of
amphibian conservation because the factors influencing infection dy-
namics are often context dependent (Bienentreu and Lesbarreres, 2020;
Blaustein et al., 2012). However, disease outbreaks in amphibian pop-
ulations typically follow seasonal patterns that provide suitable abiotic
conditions for either pathogen proliferation or an abundance of sus-
ceptible hosts, or both (Becker et al., 2012; Brunner et al., 2015; Forrest
and Schlaepfer, 2011; Karwacki et al., 2018; Longo et al., 2010). In
addition, host susceptibility can vary across development, species, and
populations, resulting in infection patterns that disproportionately
impact some groups (Becker et al., 2012; Blaustein et al., 2005; Hover-
man et al., 2010; Langhammer et al., 2014; von Essen et al., 2020). This
variable susceptibility drives heterogeneities in pathogen reproduction
(Brunner et al., 2017), which are used to quantify host species contri-
butions to the overall transmission and persistence of a pathogen in
multi-host communities (Bielby et al., 2021; Fenton et al., 2015;
Streicker et al., 2013), highlighting the importance of community
composition in modulating infection risk (Longo et al., 2023; Martin
et al., 2019).

Interactions among pathogens within co-infected hosts can modify
the mechanisms of pathogenicity compared single infections (Johnson
and Hoverman, 2012; Pedersen and Fenton, 2007), generating impor-
tant consequences to host fitness, pathogen reproduction, and disease
dynamics. Direct interactions occur when pathogens compete for a
shared host resource, while indirect interactions are usually mediated by
the host immune system and can be facilitative or inhibitory (Cox,
2001). Some co-infection studies in amphibians have shown evidence of
facilitative interactions between Pr-Ry (Atkinson and Savage, 2023) and
Bd-Rv (Ramsay and Rohr, 2023; Warne et al., 2016; Whitfield et al.,
2013) while others observed no associations between pathogens (Bosch
et al., 2020; Olori et al., 2018; Thumsova et al., 2023). However, limited
sampling surveys of natural populations may not capture the entire
range of phenological or environmental conditions that drive pathogen
interactions. The global spread and range overlap of amphibian patho-
gens (Bd, Pr and Ry) stresses the need for researchers to adopt multi-
pathogen approaches that integrate co-infections to accurately investi-
gate future disease-related declines.

In North America, diseases caused by Bd, Pr, and Ry have caused
mass mortality in both frog and salamander species (Davis et al., 2007;
Green et al., 2002; Hall et al., 2018; Hartmann et al., 2022; Isidoro-Ayza
et al., 2017; Landsberg et al., 2013; Vredenburg et al., 2010) and
pathogen persistence in the environment remains a major obstacle in the
conservation of threatened species (Adams et al., 2017; Hossack et al.,
2020; Sutton et al., 2014). In the Southeast Coastal Plain of the United
States, the decline of many endemic amphibian species (Enge et al.,
2014; Farmer et al., 2017; Graham et al., 2010; Jensen and Richter,
2005; Means and Travis, 2007; Semlitsch et al., 2017) has prompted in-
and ex-situ conservation efforts to restore depleted populations in the
region (Hinkson et al., 2016; IUCN SSC Amphibian Specialist Group,
2022a, 2022b; Means et al., 2011). Some focal species of ongoing con-
servation efforts are fatally susceptible to Pr (Atkinson, 2016) and Rv
(Hartmann et al., 2022) infection, and have not met the reintroduction
success goals outlined by the IUCN Amphibian Conservation Action Plan
(IUCN SSC Amphibian Specialist Group, 2022b). The failure of pop-
ulations to re-establish and the unassessed impacts of multi-pathogen
emergence in Coastal Plain amphibian communities warrants a
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thorough examination into the drivers of infection and disease in the
region. Because transmission of Bd, Pr, and Ry is primarily waterborne,
and Pr and Ry are more prevalent in larval stages (Atkinson and Savage,
2023; Duffus et al., 2015; Hall et al., 2018; Karwacki et al., 2018), the
potential for pathogen co-occurrence is especially high in aquatic hab-
itats. Additionally, increased prevalence for all three pathogens is
associated with cooler months in the Southeastern US (Hall et al., 2018;
Horner et al., 2017; Karwacki et al., 2018), posing an acute threat to
specialist winter-breeding amphibians. The changes in habits and
morphology during amphibian life history and the broad host range of
amphibian pathogens present unique considerations when selecting
optimal conservation strategies. Understanding the host and environ-
mental traits associated with pathogen proliferation is needed to predict
infection dynamics and mitigate disease risk for extant and reintroduced
populations.

Here, we assessed the environmental and host factors associated with
infection of three emerging pathogens in diverse Coastal Plain
amphibian communities in the Florida panhandle. Sampling focused on
communities with extant populations of Striped Newts (Notophthalmus
perstriatus), a threatened salamander with compelling evidence of
pathogen-mediated declines (Farmer et al., 2017; Hartmann et al.,
2022). Leveraging survey data from a year-long study period, we sought
to (1) identify the environmental factors, host species, and life history
traits associated with Bd, Pr, and Ry infections, (2) quantify host species
contributions to community-level infection dynamics, and (3) examine
the patterns of coinfections and provide evidence of interactions among
pathogens. We hypothesized that, in addition to environmental drivers,
host life stage would be an important trait for pathogen transmission
(Table 1), because all three pathogens exhibit varying degrees of spec-
ificity across amphibian development (Chambouvet et al., 2015; Hov-
erman et al., 2011; Langhammer et al., 2014). We also expected to see
high host taxonomic specificity in Pr because infections overwhelmingly
impact Ranid frogs (Atkinson and Savage, 2023; Chambouvet et al.,
2015). Taxonomic specificity is generally broader in Bd and Rv in-
fections (Duffus et al., 2015; Fisher and Garner, 2020), however; many
studies report species-specific outcomes during infection outbreaks in
the Southeastern US (Green et al., 2002; Hartmann et al., 2022; Horner
et al., 2017; Landsberg et al., 2013). We predicted key hosts for a given
pathogen type to be those with strong asymmetries from more than one
transmission factor (Fig. 1). Finally, if pathogens are interacting within
the host, we would expect to observe differences in the rates of co-
infection and/or infection intensities in co-infected hosts compared to
those infected with a single pathogen. Our findings provide a detailed
baseline of the main drivers of infection for three pathogens impacting

Table 1

Shown are the expected development and taxonomic host factors that may
predict infection risk by each pathogen type for amphibians in Florida. Refer-
ences supporting each predictor are provided in text.

Host predictor Pathogen
Bd Pr Rv
Larvae
(Green et al.,
Post-metamorphs 2002; Hoverman
Larvae
(Basanta et al., et al., 2010)
Developmental (Chambouvet et al.,
2023; McMahon 2015)
and Rohr, 2015) . Paedomorphs
(Hartmann et al.,
2022)
Hylid frogs
4 . & Newts
(Gervasi et al., .
2017) Ranid frogs (Hartmann et al.,
(Atkinson and Savage, 2022)
Taxonomic Newts 2023; Davis et al.,
2007; Isidoro-Ayza Ranid frogs
(Hartmann et al.,
2022: Roth ) et al., 2017) (Hoverman et al.,
5 rm
; Rotherme 2011)

et al., 2016)
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Fig. 1. Conceptual framework adopted from Streicker et al., 2013, illustrating
how contributions to pathogen transmission can be quantified from the infec-
tion asymmetries among the host community. Mechanisms of transmission are
variable, and can rely on super abundant, super-shedding, or super-infected
hosts. Key hosts dominate pathogen transmission relative to other members
in the host community by having higher values in one or more asymmetries.

amphibian communities in the Florida panhandle, expanding our un-
derstanding of the interactions that will need to be targeted to improve
the fate of at-risk populations.

2. Materials and methods
2.1. Field site and focal species

We conducted our study at Livingston Place, a 3682-ha conservation
property in Jefferson County, Florida, USA (30.626995°, —83.688406°;

~49 m ASL) that is owned and managed by Tall Timbers Research
Station. Livingston Place is a working plantation that is heavily managed
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for bobwhite quail and other game species. It harbors a mosaic of upland
pine forest, planted timber stands, and agricultural plots. The understory
vegetation community is primarily “old field” due to historical cultiva-
tion. It is presently dominated by grasses and forbs and managed with
frequent prescribed fire (~2-year return interval). There are approxi-
mately 109 freshwater isolated wetlands of various sizes, hydroperiods,
and natural communities. Sampling was conducted in nine sites: two
semipermanent wetlands consisting of a large (7-ha) semi-permanent
depression marsh and a cypress dome, and eight ephemeral sites con-
sisting of smaller depression marshes (Fig. 2). The regional climate is
humid and subtropical, with seasonal patterns of precipitation and
temperature that alternate between a warm rainy season from May to
October, and a cooler dry season from November to April. (Winsberg,
2003). Average maximum temperatures can exceed 29 °C in the sum-
mer, and most of the annual precipitation occurs during the peak of the
warm rainy season (June to September).

A total of 28 amphibian species occur in Livingston Place, repre-
senting a broad taxonomic diversity that includes five salamander
families (Ambystomatidae, Amphiumidae, Plethodontidae, Salaman-
dridae. Sirenidae) and five frog families (Bufonidae, Hylidae, Micro-
hylidae, Ranidae, Scaphiopodidae). The property supports populations
of regionally declining species such as the Striped Newt (Notophthalmus
perstriatus), Ornate Chorus Frog (Pseudacris ornata) and Eastern Tiger
Salamander (Ambystoma tigrinum) (Enge et al., 2014). All these species
rely on waterbodies at some or all points in their life histories, and
several are obligately or facultatively paedomorphic (Siren lacertina,
Pseudobranchus striatus, Ambystoma spp., Notophthalmus spp.). Many
members of this amphibian community are ephemeral specialists that
depend on temporary pools to reproduce (e.g., Ambystoma spp., Hyla
gratiosa, H. femoralis, N. perstriatus, P. ornata).

2.2. Study duration

From March 2021 to March 2022, we surveyed amphibian commu-
nities in wetlands if they held water. In 2021 we sampled twice in the
cool/dry season (March, April) and twice in the warm-wet season (June
and October). In 2022 we sampled twice in the cool/dry season

Sampled Wetlands
SP= Semi-permanent

Landcover

Agriculture 5] Pasture

B oypress I Piantes Pines.
| Forest regeneration Resarvor

I +ardwoos ---.| Road

I vater =77 st

Marsh Upland Pine

[X.] Mixed pine hardwood Wetand

[Z5]) Native groundcover [l Woomana pasture
[F25] yaraipasture

Fig. 2. Location of Livingston Place, Jefferson County, Florida, USA (30.626995°, —83.688406°). Inset map shows the boundary and various landcover types of the
site. Surveyed wetlands are depicted in pink and semi-permanent sites indicated with SP. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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(February, March; Table S1). Due to the sporadic nature of their
hydroperiods, not all wetlands could be sampled during each survey,
except the semi-permanent marsh (site 48; Table S1).

2.3. Sampling protocol

Amphibians were captured opportunistically by hand or net. We
concentrated our sampling efforts in the morning (approximately 09:00)
to focus on aquatic stages. We placed each amphibian individually in an
unused plastic bag before processing. Because our sampling includes
primarily paedomorphic salamanders, we designated individuals into
one of three developmental categories (pre-, mid-, or post-metamorphic)
based on secondary sexual characteristics and external morphology (e.
g., presence of gills, skin granularity) (Duellman and Trueb, 1994;
Gosner, 1960). All obligately paedomorphic species were classified as
pre-metamorphic, while facultatively paedomorphic species and an-
urans were categorized as pre-, mid-, or post-metamorphic depending on
morphological traits. Pre-metamorphic stages were determined as frogs
between Gosner stages 25-41, or presence of gills in salamanders; mid-
metamorphic stages were determined as frogs between Gosner stages
42-46, or by the reduction of gills and increased granularity in sala-
manders; post-metamorphic stages were fully metamorphosed animals
of either frogs or salamanders (including juveniles and adults).We
swabbed the skin and oral surfaces following standard protocols for
pathogen collection (Hyatt et al., 2007; Miller et al., 2015), using a
single rayon-tipped sterile swabs (Medical Wire MW-113). Swab tips
were placed in individual sterile 2.0 mL screwcap vials and stored at
—20 °C until analyzed. Any abnormality, injury, or gross sign of disease
was noted. To eliminate cross-contamination between animals, we used
new pairs of nitrile gloves in between each animal, and to reduce
introduction of pathogens between sites we decontaminated boots and
equipment with 10 % bleach.

2.4. Pathogen quantification

We extracted DNA from swabs using Prepman Ultra (Applied Bio-
sciences), following manufacturer protocols. To detect and quantify
pathogen infection loads, we performed three individual quantitative
PCR (qPCR) reactions for each sample, following the amplification
conditions of Boyle et al., 2004 for Bd, Allender et al., 2013 for Ry, and
Karwacki et al., 2018 for Pr. All assays were run against a standard curve
of known pathogen quantities generated from serial dilutions of syn-
thetic gene fragments (Integrated DNA Technology), ranging from 10!
to 10° copies for Bd, 10% to 107 for Ry, and 10 to 10°® for Pr. Negative
controls for all assays consisted of UltraPure DNase/RNase-free water
(Invitrogen). All assays were run in duplicate on a QuantStudio 3 Real-
Time PCR System (Thermo Fisher Scientific) for 50 cycles. For Bd and Pr,
we considered a sample positive for infection if target gene copies were
greater than zero for each reaction. Because Rv detection from swabs can
be easily confounded by environmental persistence of viral particles
(Miller et al., 2015), we only considered samples Ry positive if they
amplified before the 40th cycle. If only one replicate amplified, we ran a
third reaction and used the results to make the final infection determi-
nation. Infection loads represent the average quantification values of the
replicate reactions.

2.5. Statistical analyses and modelling

We built separate binomial generalized linear models GLM (logit
link) to assess the factors influencing infection probability for each of the
pathogens using infection occurrence as the response. Each probability
model included host and environmental covariates that have been
shown to affect host pathogen dynamics. Covariates included co-
infection by non-focal pathogens (3 levels), species (10 levels) and
developmental stage of individual hosts (3 levels: pre, mid, or post-
metamorphic), wetland type (2 levels: ephemeral or semipermanent),

Biological Conservation 296 (2024) 110685

season (2 levels: cool or warm), and richness (number of species
detected during a survey). We included two-way interactions between
species and developmental stage, resulting in 79 possible combinations
for each model of Bd, Pr and Ry probability. To assess factors associated
with infection severity, we built separate Gaussian GLMs with log10
transformed pathogen copies (infection load) as the response variable.
These models consider only infected hosts, and we included the
following covariates: developmental stage, wetland type, co-infection by
a non-focal pathogen, for a total of 16 possible combinations. Because of
the smaller sample sizes, we did not include species or interaction terms
to avoid overfitting the models. We generated and ranked models using
the R package “MuMIn” (Barton and Barton, 2015), then selected the
best model based on the lowest Aikaike information criterion corrected
for small sample sizes (AICc; Burnham and Anderson, 2004). If
competing models were within AAICc <2, we retained the model with
the fewest explanatory variables. We tested the significance of cate-
gorical predictor variables of the top models using ANOVA followed by
post-hoc Tukey's HSD tests. To conduct pairwise comparisons of cate-
gorical explanatory variables, we used the “pairs” function in the
package “emmeans” (Lenth, 2021) to obtain the estimated marginal
means and generate Tukey's HSD adjusted p-values to control for mul-
tiple comparisons.

Differences in habitat characteristics, such as hydroperiods, are
important to understanding infection patterns of amphibian pathogens
(Atkinson and Savage, 2023). Given that not all individual wetlands
could be sampled each survey, we ran an additional GLM to assess
whether infection counts were different between ephemeral and semi-
permanent wetlands and used pairwise comparison to identify which
pathogen counts were different among wetlands. Significance for all
analyses was assessed at a < 0.05. All statistical analyses and visuali-
zations were performed in R version 4.1.1 (R Core Team, 2021).

2.6. Species contributions to overall infection dynamics

We estimated the contribution of each species (i) to community
transmission dynamics (z) by quantifying asymmetries of three inde-
pendent parameters (0) related to infection: relative abundance (F)A),
infection frequency (¢"), and pathogen shedding rate (¢°). Differences in
these parameters underlies infection heterogeneity among hosts in a
community. The degree of asymmetry for host species i is calculated by
dividing the observed value by the community average. For example, an
asymmetry value of 6/ = 3 represents a species with an infection fre-
quency 3x greater than the community average.(Streicker et al., 2013).
For each host species in the community, we calculated relative abun-
dance (6%) using field survey count data, the frequency of infection from
pathogen prevalence (¢}) and pathogen shedding rate (67) from qPCR
values from swabs. We used qPCR-derived infection intensity as a proxy
for shedding rates because there are positive associations between
infection loads quantified from swabs and pathogen shedding rates for
Bd (DiRenzo et al., 2014) and Rv (Brunner et al., 2019). We then
calculated the relative contribution (r;) of a host species to community
transmission by dividing the product of the three asymmetries by the

total number of species in the community: z; = HA%"S Therefore, z; is
proportional to the product of the three asymmetries, and 7;— 0.6 would
indicate a species was responsible for 60 % of transmission. We desig-
nated a host species as a “key host” for pathogen transmission if it
contributed more to the total transmission than the remaining host
community combined (i.e, where z; > 0.5)(Streicker et al., 2013).

3. Results
3.1. Sampling results

In total, we sampled 298 amphibians representing 16 species over
the study period (Table S2). Pathogen qPCR revealed 38 (12.8 %)
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samples were Bd positive, 19 (6.4 %) were Pr positive, and 14 (4.7 %)
were Ry positive (Table S2). Co-infections were rare with Bd-Rv being
the most common (n = 5; Table S2), and we did not detect any sample
infected with all three pathogens. Infection prevalence and mean loads
were higher during cooler periods for all pathogens (Fig. 3a,b), and
ephemeral and semi-permanent wetlands followed similar seasonal
infection patterns (Fig. 3c). Of the nine species with sample sizes >15,
Bd was not detected in Ambystoma talpoideum or Pseudobranchus striatus,
Pr was not detected in Acris gryllus or P. striatus, and Ry was not detected
in Lithobates grylio (Fig. 4a). We excluded infrequently encountered
species (n < 5) from analyses that included species as an explanatory
variable, retaining 292 samples across 11 species.

3.2. Model results

The top model for Bd infection probability included life stage and
season as predictors (Table S3). We found a higher probability of Bd
occurrence in the cool season (t = 2.00 P = 0.046; Table S4), consistent
with our observations of higher Bd prevalence during cooler months
(Fig. 3a). Bd infection occurrence varied significantly among
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Fig. 3. Infection dynamics over the duration of the study for Bd, Pr, and Rv. (a)
Points represent infection prevalence of each survey, colored by pathogen type,
and lines indicate 95 % confidence intervals. (b) Lighter points represent in-
dividual infections loads; boxes represent the mean infection load for each
survey with vertical lines indicating the 95 % confidence intervals. Points are
colored by pathogen type, and all infection loads have been log10-transformed.
(c) Total number of sampled amphibians by infection status and wetland type.
Point shapes represent the number of infected (by any of the three pathogens)
or uninfected amphibians for each sampling event, while colors indicate the
wetland type. The bar at the bottom shows the general seasonal trend of the
region with the cool-dry (November —-April) period in blue and the warm-wet
(May - October) in orange. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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developmental stages (F = 54.96, df = 2, P < 0.0001), where pre-
metamorphic hosts were less likely to be infected than other stages
(HSD; Pre-Mid: t = —7.84, P < 0.0001; Pre-Post: t = —6.79, P < 0.0001;
Table S4, Fig. 4b). The best model for Bd load included life stage and
wetland type as predictors, and both were significant (P < 0.05;
Table S5). Post-hoc analyses revealed higher Bd loads in post-
metamorphic stages (HSD; t = —3.45, P = 0.0043; Table S6, Fig. 4b),
and lower loads in ephemeral wetlands (t = —2.80, P = 0.0084;
Table S6).

The top model for Pr infection probability included species richness
and season as predictors (Table S3), but only richness was significant
and showed a negative association with Pr occurrence (p = —0.2913, z
= —2.957, P = 0.00311; Table S4). The top model for Pr load did not
include any predictors (Table S5).

The top model for Ry infection probability included Bd co-infection
as a positive predictor of Ry infection (B = 0.09, t = 2.680, P =
0.0078; Table S3). The top model for Ry infection loads included only Bd
co-infection, but this was not significant P = 0.076; Table S3).

Irrespective of pathogen type, amphibians sampled in the semi-
permanent site were less likely to be infected than those in ephemeral
sites (p = 0.364, z = —6.865, P < 0.0001, S.Fig, 1a), consistent with our
count observations (Fig. 3c). Pairwise comparisons for infection types
revealed a significantly higher likelihood of Pr infection in ephemeral
sites (B = 4.00, z = 2.140, P = 0.031, S.Fig. 1b).

3.3. Host contributions to infection transmission

The highest contributor to Bd transmission was Notophthalmus per-
striatus (x = 0.53, Fig. 5a), owing to the species' higher rates of zoospore
shedding and abundance. Notophthalmus viridescens contributed the
second most to Bd transmission (1 = 0.32), and though their shedding
rate was lower than N. perstriatus, they were similarly abundant and
experienced higher rates of infection. Pr transmission was dominated by
L. sphenocephalus (z = 0.52, Fig. 5b), which had high values for all three
asymmetries. Ry transmission was dominated by N. viridescens (x = 0.74,
Fig. 5¢) owing to its abundance and high rate of viral shedding, despite a
relatively low infection rate. When combining all asymmetries for all
pathogens, we did not identify a key host for overall transmission (i.e,
none with 7 > 0.5, Fig. 5d).

4. Discussion

By examining the infection trends of three emerging pathogens in a
diverse amphibian community, we identified host and environmental
associations that predict the risk of infection. Using field-collected
metrics, we partitioned the contributions of each host species to the
overall pathogen transmission of the host community, and identified
species that may amplify or dilute infections, or serve as reservoirs that
promote pathogen persistence. Understanding infection dynamics in
natural systems is essential to inform disease mitigation strategies for
species threatened by emerging pathogens, especially when the goal is to
reintroduce animals into habitats where pathogens persist. Our study
demonstrates the importance of host community on multi-pathogen
dynamics by revealing differences in life stage and species specificity
among pathogens, positing useful considerations for N. perstriatus rein-
troduction efforts.

4.1. Infections peak in the cool season

Emergence was synchronous across all pathogens, and we found
higher probability of Bd and Pr during cooler months. This finding is
consistent with most observations of Bd emergence, as the optimal
growth of the fungus occurs below 28 °C (Forrest and Schlaepfer, 2011;
Piotrowski et al., 2004). We found that Ry loads decreased in the warm
season, conflicting with previous studies where higher Rv prevalence
and infection loads are observed in the summer (Hall et al., 2018; Olori
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et al., 2018; Rosa et al., 2017; von Essen et al., 2020). Most of these
studies come from temperate regions, and the few that examine multi-
pathogen dynamics suggest patterns of asynchronous Bd-Rv emergence
are due to disparities in suitable growth conditions between pathogens.
However, as our system is in a hot, subtropical environment, the tem-
peratures of “cooler” months in Florida may be more like those of
summer in temperate regions. For example, the average summer (June
to August) high temperatures ranged from 23 to 27 °C for a Bd-Rv study

in Portugal (Rosa et al., 2017), while the average monthly high for our
sites ranges from 20 to 27 °C during the cool season (Florida Automated
Weather Network). The significant drop in pathogen prevalence we
observed during the warm season corroborates recent studies of Pr-Rv
dynamics in peninsular Florida (Atkinson and Savage, 2023), suggesting
that these infection patterns are typical of warm sub-tropical amphibian
communities. Future studies should quantify the optimal temperature
limits of hosts and pathogens as this information can improve the
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accuracy of climate change models and predicted disease risk. Warm-
adapted hosts, such as those occurring in Florida, can experience
higher susceptibility under unusually cooler temperatures as predicted
by the thermal mismatch hypothesis (Cohen et al., 2019), which may
explain recent disease-induced mortality in the region (Hartmann et al.,
2022). Overall, our study stresses the need to increase multi-pathogen
surveillance across a wide variety of climatic zones to uncover the
suite of context-dependent infection outcomes in natural populations.

4.2. Pathogens show different specificities

Specificity for certain hosts can reduce competitive interactions be-
tween pathogens and can promote pathogen coexistence (Seabloom
et al., 2015). We found heterogeneity in pathogen infection across
species and life stages, supporting the hypothesis that infection associ-
ations are host specific. In temperate systems Bd infections are more
commonly detected in post-metamorphic stages than in larval aquatic
stages (Bosch et al., 2001, 2023). Similarly, we found that Bd was more
prevalent during cooler months and mid- and post-metamorphic stages
experienced more frequent and intense infections, as we had expected.
Furthermore, the vast majority of Bd infections occurred in only three
species (N. perstriatus, N. viridescens, and A. gryllus), coinciding with the
breeding and metamorphosing period for Notophthalmus species. The
predominantly aquatic lifestyle and periods of high activity in winter
and spring, when temperatures favor Bd growth, may explain why
N. viridescens in this and other regions, is frequently infected with Bd
(Raffel et al., 2010; Rothermel et al., 2008). Conversely, A. gryllus are a
widespread generalist species that can be found year-round, and are
known to harbor both Bd and Ry infections (Hartmann et al., 2022),
potentially serving as a reservoir in this system.

Among salamanders, the facultatively paedomorphic Notophthalmus
species were frequently infected with Bd, while we detected only a single
infection in obligately paedomorphic salamanders in the family Sir-
enidae, supporting developmental and phylogenetic signals of Bd spec-
ificity. Obligately paedomorphic species do not metamorphose and
retain larval traits throughout their lives, including larval-type skin with
mucus-secreting Leydig cells and low keratin (Brown and Cai, 2007;
Jarial, 1989), which may limit the establishment of keratophilic path-
ogens like Bd in the epidermis.

Our results corroborate other studies identifying larval Ranid frogs as
highly susceptible to Pr infection (Atkinson and Savage, 2023; Cham-
bouvet et al., 2015), with most infections detected in Lithobates sphe-
nocephalus tadpoles. While anuran susceptibility to Pr has been
examined across several families (Chambouvet et al., 2015), the sus-
ceptibility of salamanders is not well established, and our findings of Pr
infected A. tigrinum indicates a much broader host range for Pr than
previously known. Interestingly, A. tigrinum were more often infected
with Pr than other salamanders, including the closely related Mole
Salamander, A. talpoideum, suggesting a difference in host traits or
habitat that may increase or modulate susceptibility in salamanders.
Throughout their ranges, A. tigrinum and A. talpoideum exhibit faculta-
tive paedomorphosis and are major predators of larval amphibians,
including conspecifics (Holomuzki and Collins, 1987), providing a route
of Pr infection via ingestion of infected prey (Chambouvet et al., 2015).
However, in this system A. tigrinum are restricted to ephemeral sites and
do not develop paedomorphic stages, while A. talpoideum are found in
both semi-permanent and ephemeral sites and frequently develop as
paedomorphic adults. We hypothesize that these findings may suggest
increased disease infection risk in ephemeral sites, or that paedomorphs
may have more developed immune functions compared to larvae, and
thus are better equipped to fend off potential parasite infections. Future
studies should examine the susceptibility of salamanders to Pr compared
to anurans, specially taking into consideration the alternate develop-
mental routes of facultative and obligate paedomorphosis.
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4.3. Co-infection interactions are likely context-dependent

Despite similar seasonal infection trends for all three pathogens, we
found few instances of co-infection, which may further underscore the
importance of host specificity in diverse amphibian systems. Contrary to
other studies (Bosch et al., 2020; Olori et al., 2018; Warne et al., 2016;
Whitfield et al., 2013), our findings indicate that Rv occurrence posi-
tively associates with Bd infection (Table S4), but these co-infection
associations are likely dependent on host factors, such as life stage
(Fig. 4a,b). Hosts are known to exhibit different infection patterns across
life stages, disproportionately contributing to the maintenance of Bd
(Bielby et al., 2021; Fernandez-Beaskoetxea et al., 2016; Narayan et al.,
2014) and Ry (Brunner et al., 2004, 2017). Bd-Rv co-infections were
detected in only four species and primarily in metamorphosing in-
dividuals, probably due to the different life stage affinities of the path-
ogens. While some studies found no synergistic link between Bd and Rv
infection dynamics, these studies occurred in either tropical (Warne
et al., 2016; Whitfield et al., 2013) or temperate regions (Bosch et al.,
2020; Olori et al., 2018). Our study is the first to examine subtropical
amphibian communities with year-round amphibian activity and across
different life stages and developmental modes (e.g., metamorphic,
obligate and facultatively paedomorphic). Lethal and sublethal effects of
infection with Bd (Bielby et al., 2015; Hanlon et al., 2015) or Rv
(Brunner et al., 2004; Kirschman et al., 2018; Langwig et al., 2015) in
amphibian larvae may occur and carry over into post-metamorphic
stages, but the effects are less clear for developmental modes where
metamorphosis does not occur or is delayed. The synergism between Bd
and Ry suggests that these effects may be exacerbated by the presence of
co-infections, or sequential infections.

We did not observe cumulative or amplified patterns of infection
load between any of the three pathogens, such as those reported for Pr-
Ry dynamics (Atkinson and Savage, 2023). However, our study period
extended just over one year, and continued surveys may reveal different
patterns over longer time scales. Altogether these findings highlight that
despite possible synergistic interactions between pathogens, negative
host outcomes do not always occur when multiple pathogens are enzo-
otic in a system. Data from these natural populations showed that host
traits (species, development) and environmental (temperature) cova-
riates may be more important when predicting infection status or load
than co-infection for most pathogens, demonstrating the importance of
ontogeny and environment in modulating host-pathogen dynamics. The
mechanisms driving infection proliferation across life stages may rely on
the shifts in immunological function (Rollins-Smith, 1998) or microbial
composition across amphibian development (Hartmann et al., 2023).
Acquired immunity responses to pathogens have been examined pri-
marily in the context of Bd infection. Thus, future immunological studies
should expand to other pathogens and co-infections to uncover mecha-
nisms that drive pathogen interactions and the resulting outcomes at the
host level (Smith and Holt, 1996).

4.4. Key hosts and community-level dynamics can inform conservation

efforts

Understanding phylogenetic and developmental signals that predict
infection consequences can be applied to conservation efforts. Our re-
sults can be expanded to predict which species, life stages, or habitats,
might be more susceptible to a given pathogen depending on their
developmental routes, habitat, or phylogenetic placement. These pre-
dictions can guide species suitability assessments for reintroduction ef-
forts before disease screenings of wild populations occur, or at times
when funds are not available for molecular diagnostics. Additionally,
our findings show that amphibian pathogens in the Southeastern US
follow seasonal peaks in prevalence, disproportionately affecting
ephemeral communities. Our approach can be used to inform the release
schedule of captive-reared individuals by targeting periods of the year
where infection risk is low, or to prioritize in-situ conservation efforts by
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habitat type. Ideally, community-level disease analyses should be inte-
grated during reintroduction planning to predict possible outcomes for
the repatriated species and the recipient community. For example, a
highly susceptible species released into a site where a pathogen is
prevalent will not only fail to establish, but it may also amplify trans-
mission to other species within the community. Furthermore, the com-
munity composition should be considered when selecting for release
sites, specifically avoiding sites with high abundances of infection-key
hosts, since a single host species can maintain annual pathogen persis-
tence (Bielby et al., 2021; Wilber et al., 2020).

Determining the key species that drive infection transmission can
also help to understand past population declines and current distribu-
tions of hosts and pathogens. For example, Bd epizootics impacting
amphibian communities in Panama were initially amplified by the
presence of a super-abundant and super-shedding key host species,
Atelopus varius, then declined after A. varius was extirpated (Longo et al.,
2023). We found that Bd transmission was dominated by Notophthalmus
perstriatus via high shedding loads, which is useful for understanding
how ongoing captive releases of this species might impact other am-
phibians in the release sites. Ranavirosis is likely a driver of N. perstriatus
declines (Hartmann et al., 2022), and syntopic species that amplified
infection transmission may have hastened the extirpation of some pop-
ulations. The sites in this study represent one of the few extant pop-
ulations of the western genetic unit of N. perstriatus (Farmer et al., 2017),
and we observed the closely related Notophthalmus viridescens was a
major contributor to Ry infection dynamics in this system. Notoph-
thalmus viridescens is known to be a highly competent host of Bd and Rv
throughout its range (Duffus et al., 2008; Rothermel et al., 2016),
providing support for its role as a disease amplifier. Interestingly,
eastern populations of N. perstriatus do not overlap in habitat with
N. viridescens, and Ry outbreaks in these populations also affect locally
abundant Gopher Frogs, Lithobates capito, which may serve as amplifiers
of Ry infection (Hartmann et al., 2022, 2024).

Our examination of host contributions to transmission is by no means
exhaustive, but it does offer a way to compare the mechanisms that
generate patterns infection across diverse communities of hosts and
pathogens. By identifying key hosts of a pathogen within a particular site
or host community, we can better understand infection risk to guide
disease mitigation strategies. Considering the vast evidence indicating
that the composition of species assemblages alters infection dynamics,
pathogen surveys should quantify how changes in host abundance and
susceptibility are causing new outbreaks and contributing to species
declines. Quantifying infection asymmetries in a community would
require little effort as these models are parameterized with data that is
routinely collected during pathogen surveys (abundance, infection load,
and prevalence), and can help to uncover trends and key players in host-
parasite dynamics. Despite evidence that these pathogens have co-
occurred for >100 years (Karwacki et al., 2021), the Southeastern US
has many examples of enigmatic amphibian declines that are consistent
with range-wide disease outbreaks (Graham et al., 2010; Maerz et al.,
2015). Conservation efforts must transition from individuals and pop-
ulations to improve the likelihood of persistence of the entire amphibian
community, whether species are considered vulnerable, threatened, or
of least concern.

4.5. Wetland characteristics and host diversity

The physical characteristics of habitats largely determine the
composition of the associated amphibian community, which in turn
drives spatial patterns of infection. Semi-permanent sites supported
higher species diversity than ephemeral sites, while also experiencing
far fewer infections, possibly due to dilution effects. Dilution effects
resulting from high host diversity can dampen pathogen transmission by
increasing variability in the infection process (Keesing and Ostfeld,
2021). Similar to determining key hosts, the magnitude of dilution relies
on variable infection competence and abundances of host species within
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a community (Keesing et al., 2010), and shifts in the composition of the
community can reduce infection risk for even the most competent hosts
(Johnson et al., 2013). In our system, Pr occurrence decreased as host
diversity increased. The key host of Pr transmission, L. sphenocephalus,
was present at all sites, yet Pr infections were more frequent in the
relatively species-poor ephemeral wetlands (Table S2). This suggests
that wetland qualities can influence infection dynamics by structuring
the community composition of amphibian hosts, which can modulate
the pathogen-amplification of competent hosts depending on the other
hosts in the community. However, the presence/abundance of a key host
may not be the only factor that helps predict Pr outbreaks. Perkinsea
zoospores can persist in harsh environments and remain viable in the
soil long after ponds have dried (Cook, 2008), which may explain the
more frequent Pr infections we observed in ephemeral wetlands (S.
Fig. 1b). This underscores the need of future work to disentangle the
combined environmental and host factors that drive spatially and
temporally heterogeneous patterns of infection.

5. Conclusion

Amphibians face great challenges to their survival and the emer-
gence and persistence of different pathogens can halt any hope of
reintroduction. Repatriation of extirpated species is a costly and often
last resort of conservation that should be informed by detailed quanti-
fication of potential threats, including pathogens such as Bd, Ry, and Pr.
Although there are no easy solutions to solving the threats posed by
amphibian pathogens, assessing communities and environments
through time can identify traits and associations that best predict
infection risk, providing a comprehensive and dynamic framework to
determine the best strategy for a species. We must consider the which,
when, and where: which life stages are suitable candidates for release,
when is the optimal time to release them, and where will they have the
best chances of survival? Our community-level approach highlights the
infection metrics that are most important to understand disease dy-
namics and can be easily implemented in any system.
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