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Abstract

Federated learning aims to protect data privacy by collaboratively learning a model

without sharing private data among users. However, an adversary may still be

able to infer the private training data by attacking the released model. Differential

privacy provides a statistical protection against such attacks at the price of sig-

nificantly degrading the accuracy or utility of the trained models. In this paper,

we investigate a utility enhancement scheme based on Laplacian smoothing for

differentially private federated learning (DP-Fed-LS), to improve the statistical

precision of parameter aggregation with injected Gaussian noise without losing

privacy budget. Our key observation is that the aggregated gradients in federated

learning often enjoy a type of smoothness, i.e. sparsity in a graph Fourier basis

with polynomial decays of Fourier coefficients as frequency grows, which can

be exploited by the Laplacian smoothing efficiently. Under a prescribed differ-

ential privacy budget, convergence error bounds with tight rates are provided for

DP-Fed-LS with uniform subsampling of heterogeneous non-iid data, revealing

possible utility improvement of Laplacian smoothing in effective dimensionality

and variance reduction, among others. Experiments over MNIST, SVHN, and

Shakespeare datasets show that the proposed method can improve model accu-

racy with DP-guarantee and membership privacy under both uniform and Poisson
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subsampling mechanisms.

Keywords: Differential Privacy, federated learning, Laplacian smoothing

1. Introduction

In recent years, we have already witnessed the great success of machine learning

algorithms in handling large-scale and high-dimensional data (He et al., 2016;

Devlin et al., 2018; Silver et al., 2016; Berner et al., 2019; Senior et al., 2020).

Most of these models are trained in a centralized manner by gathering all data into5

a single database. However, in applications like mobile keyboard development

(Hard et al., 2018), speech recognition (Jiang et al., 2021), and autonomous driving

(Nguyen et al., 2022), sensitive data are distributed in the devices of users, who are

not willing to share their own data with others. Federated learning (FL), proposed

in (McMahan et al., 2017), provides a solution that data owners can collaboratively10

learn a useful model without disclosing their private data. In FL, a server, and

multiple data owners, referred to as clients, are involved in maintaining a global

model. They no longer share the private data but the updated models trained on

these data.

In some cases, however, federated learning is not sufficient to protect the15

sensitive data by simply decoupling the model training from the direct access to the

raw training data (Shokri et al., 2017; Fredrikson et al., 2014, 2015). Information

about raw data can still be identified from a well-trained model. In some extreme

cases, a neural network can even memorize the whole training set with its huge

number of parameters. For example, an adversary may infer the presence of20

particular records in training (Shokri et al., 2017) or even recover the identity (e.g.

face images) in the training set by attacking the released model (Fredrikson et al.,

2015, 2014). Differential privacy (DP) provides us with a solution to defend against

these threats (Dwork and Nissim, 2004; Dwork et al., 2006). DP guarantees privacy

in a statistical way that the well-trained models are not sensitive to the change of25

an individual record in the training set. This task is usually fulfilled by adding

noise, calibrated to the model’s sensitivity, to the outputs or the updates.

One major deficiency of DP lies in its potential significant degradation of the

utility of the models due to the noise injection. Laplacian smoothing (LS) has

recently been shown to be a good choice for reducing noise in noisy gradient, e.g.30

in stochastic gradient descent (SGD) (Osher et al., 2022), and thus promising for

utility improvement in machine learning with DP (Wang et al., 2020). However,
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due to the heterogeneity of client data distributions in federated learning, it remains

open how to apply Laplacian smoothing effectively to such settings.

To fill in this gap, we develop in this paper a framework of exploiting Laplacian35

smoothing to improve the utility of the differentially private federated learning

(DP-Fed) while maintaining the same DP budget.

1.1. Main Contributions

The major contributions of our work are summarized as follows.

• Our key observation in federated learning is that the federated average40

of gradients are often smooth or sparse in Fourier basis with polynomial

decays. If we can capture the smooth or sparse signal in Fourier basis with

corresponding low-pass filters, then we can reduce the variance and get a

better estimate. Therefore Laplacian smoothing of the federated average of

gradients is introduced to the differentially private federated learning, that45

can reduce variance with improved estimates of such gradients. With the

aid of 1-D Fast Fourier Transform (FFT), such a Laplacian smoothing can

be efficiently computed on the server. We denote the proposed algorithm as

DP-Fed-LS.

• Convergence bounds under heterogeneous data distributions are developed50

for DP-Fed-LS in strongly-convex, general-convex, and non-convex set-

tings under our differential privacy budget bounds. We show how Laplacian

smoothing can help reduce the true dimension factor d in the differential

privacy error term to an effective dimension dσ ≤ d, which helps alleviate the

degeneration introduced by DP. The rates on convergence and communica-55

tion complexity match those on federated learning without DP (Karimireddy

et al., 2020), while our results extend to include the effect of differential

privacy and Laplacian smoothing; as well as our rates match the ones of

empirical risk minimization (ERM) via SGD with differential privacy in a

centralized setting (Bassily et al., 2019; Wang et al., 2019a). See Table 1 for60

a comparison.

• The utility of Laplacian smoothing in DP-Fed is demonstrated by training

a logistic regression model over MNIST, a convolutional neural network

(CNN) over extended SVHN, in an iid fashion, and a long short-term mem-

ory (LSTM) model over Shakespeare dataset in a non-iid setting. These65

experiments show that DP-Fed-LS improves accuracy while providing at
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least the same DP-guarantees and membership privacy as DP-Fed with two

subsampling mechanisms across different datasets.

Method µ strongly-convex non-convex

DP-SGD

(Bassily et al., 2014)

d log3(N/δ)
µN2ε2

−

DP-SVRG

(Wang et al., 2017)†
d log(N) log(1/δ)

µN2ε2

√
d log(1/δ)

Nε

DP-SRM

(Wang et al., 2019a)
−

√
d log(1/δ)

Nñε

DP-SGD-LS

(Wang et al., 2020)
−

√
d̃σ log(1/δ)

Nε

DP-Fed-LS∗ dσ log(S) log(1/δ)
µN2ε2

√
dσ log(1/δ)

Nε

Fed-Avg

(Li et al., 2019)†
ς2(0)

µ2NKε
+G2K

µ2ε
−

Fed-Avg

(Khaled et al., 2020)†
ς2(0)+G2

µNKε
+ ς(0)+G

µ
√
ε
+NB

µ

‡ −

Fed-Avg

(Karimireddy et al., 2020)

ς2(0)
µSKε

+ (1−τ)G2

µSε
+ G

µ
√
ε
+B2

µ

‡ ς2(0)
SKε2

+ (1−τ)G2

Sε2
+ G

ε3/2
+B2

ε

DP-Fed-LS

ς2(σ)
µSKε+

(1−τ)G2

µSε + (1+4σ)G
µ
√
ε

+ (1+4σ)2B2

µ +
dσLν2

1

µS2ε

‡

ς2(σ)
SKε2 +

(1−τ)G2

Sε2 + (1+4σ)G
ε3/2

+ (1+4σ)2B2

ε +
dσL

2ν2

1

S2ε2

Table 1: Utility guarantee of (ε, δ)-DP (upper part) and rate of communication round needed to

achieve ε accuracy (lower part) for µ strongly-convex and non-convex optimization problems. ‡
denotes that logarithmic factors are ignored here. See Appendix D for more details. † denotes

that no client subsampling is used. In full participation scenarios, τ = 1 and log(S) = log(N). ∗
after DP-Fed-LS further denotes the specific setting of iid (G = 0) with K � 1. The effective

dimension dσ =
∑d

i=1 Λi and d̃σ =
∑d

i=1 Λ
2
i , where Λi ≤ 1 is the eigenvalue of A−1

σ . For

centralized settings (Bassily et al., 2014; Wang et al., 2017, 2020), N denotes the number of data

points, while in federated learning, N denotes the number of clients. DP-SRM (Wang et al., 2019a)

is a distributed setting where N and ñ denote the number of clients and number of samples owned

by each client, respectively. They consider data-level DP while we consider user-level DP.

1.2. Background and Related Works

Risk of Federated Learning. Despite its decoupling of training from direct70

access to raw data, federated learning may suffer from the risk of privacy leakage by
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unintentionally allowing malicious clients to participate in the training (Hitaj et al.,

2017; Melis et al., 2019; Zhu et al., 2019). In particular, model poisoning attacks

are introduced in (Bagdasaryan et al., 2020; Bhagoji et al., 2019). Even though

we can ensure the training is private, the released model may also leak sensitive75

information about the training data. Fredrikson et al. (2014, 2015) introduce the

model inversion attack that can infer sensitive features or even recover the input

given a model. Membership inference attacks can determine whether a record is in

the training set by leveraging the ubiquitous overfitting of machine learning models

(Shokri et al., 2017; Yeom et al., 2018; Sablayrolles et al., 2019). In these cases,80

simply decoupling the training from direct access to private data is insufficient to

guarantee data privacy.

Differential Privacy. Differential privacy comes as a solution for privacy

protection. Gradient perturbation (Bassily et al., 2014; Abadi et al., 2016) receives

lots of recent attention in ML applications since it admits the public training process85

and ensures DP guarantee even for a non-convex objective. Papernot et al. (2017,

2018) propose PATE that bridges the target model and training data by multiple

teacher models. Mironov (2017) proposes a natural relaxation of DP based on

Rényi divergence (RDP), which allows tighter analysis of composite heterogeneous

mechanisms. Wang et al. (2019b) provide a tight numerical upper bound on RDP90

parameters for randomized mechanism with uniform subsampling. Furthermore,

they extend their bound to the case of Poisson subsampling (Zhu and Wang, 2019),

which is the same as the one in (Mironov et al., 2019). Our differential privacy

guarantees are based on these two numerical results, and we derive new closed-

form bounds which are more precise or tighter than previous works (Wang et al.,95

2019a; Mironov et al., 2019; Bun et al., 2018).

Differential Privacy in Distributed Settings. DP has been applied in many

distributed learning scenarios. Pathak et al. (2010) propose the first DP training

protocol in distributed setting. Jayaraman et al. (2018) reduce the noise needed

in (Pathak et al., 2010) by firstly training DP local models and then performing100

naive aggregation. Zhang et al. (2019) propose to decouple the feature extraction

from the training process, where clients only need to extract features with frozen

pre-trained convolutional layers and perturb them with Laplace noise. However,

this method needs to introduce extra edge servers besides the central server in the

standard federated learning.105

Geyer et al. (2017) and McMahan et al. (2018b) consider a similar problem

setting as this paper, which applies the Gaussian mechanism in federated learning

to ensure DP. However, Geyer et al. (2017) only train models over MNIST, with

repetition of the data across different clients, which is unrealistic in applications.
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McMahan et al. (2018a) use moment accountant in (Mironov et al., 2019; Zhu110

and Wang, 2019), and show that given a sufficiently large number of clients (∼
760K in their example), their models suffer no utility degradation. However, in

many scenarios, one has to deal with a much smaller number of clients, which

will induce a large noise level with the same DP constraint, significantly reducing

the utility of the models. This motivates us to leverage Laplacian smoothing to115

mitigate the utility degradation due to DP, broadening its scope of application, and

we further provide convergence bounds and evaluate the membership privacy of

our method by the membership inference attack, comparing with (Geyer et al.,

2017; McMahan et al., 2018a).

1.3. Paper Organization120

This paper is organized as follows. Section 2 presents our proposed algorithm

of differentially private federated learning with Laplacian smoothing (DP-Fed-LS),

and demonstrates our key observation and motivation to apply LS. In Section 3, we

characterize the privacy budget such that our algorithm satisfies (ε, δ)-differential

privacy guarantee. In Section 4, we provide a convergence analysis for DP-Fed-LS,125

which characterizes the influences on the optimization error and communication

complexity of differential privacy and Laplacian smoothing with heterogeneous

data. In Section 5, we demonstrate the utility of DP-Fed-LS with three applications,

i.e. MNIST, SVHN, and Shakespeare (non-iid) datasets. Conclusion is given in

Section 6. Appendices collect all the remaining proofs and empirical results in this130

paper.

Reproducible source codes can be downloaded at:

https://github.com/zliangak/dp-fed-ls.

2. Differentially Private Federated Learning with Laplacian Smoothing

In this section, we formulate the basic scheme of private (noisy) federated

learning with Laplacian smoothing. Consider the following distributed optimization

model,

min
w

f(w) :=
1

N

N∑

j=1

fj(w), w ∈ R
d

where fj represent the loss function of client j, and N is the number of clients.135

Here fj(w) = Exj
fj(w, xj, yj), where Exj

is the expectation over the dataset of

the j-th client.
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We propose differentially private federated learning with Laplacian smoothing

(DP-Fed-LS), which is summarized in Algorithm 1, to solve the above optimization

problem. In each communication round t, the server distributes the global model140

wt to a selected subset out of N total clients. These selected (active) clients will

perform K steps mini-batch SGD to update the models on their private data, and

send back the model update ∆t,K
j s, from which the server will aggregate and

yield a new global model wt+1. This process will be repeated until the global

model converges. We call a setting iid if data of different clients are sampled145

from the same distribution independently. Otherwise, if data from different clients

are independent but not identically distributed, we will call it non-iid setting

(McMahan et al., 2017; Li et al., 2019). In non-iid setting, the data from each

client will depend on the her/his characteristic and lack representativeness for the

whole population.150

In each update of the mini-batch SGD, we bound the local model wt,i
j , i ∈

[K] within a L-ball (L > 0) centering around wt by clipping: clip(v,L) ←
v/max(1, ‖v‖2/L). In each round, we regard the aggregation of locally-trained

models as the federated average of gradients, where we add calibrated Gaussian

noise n ∼ N (0, ν2I) to guarantee DP. Then we apply Laplacian smoothing with a155

smoothing factor σ on the noisy aggregated federated average of gradients (Eq.

(*) in Algorithm 1), to stabilize the training while preserving DP based on the post-

processing lemma (Proposition 2.1 of (Dwork and Roth, 2014)). It will reduces to

DP-Fed if Aσ = I, e.g. σ = 0.

It is worth to note that Laplacian smoothing is only applied to the global160

update in federated average, while in the local update, the general mini-batch

SGD is applied. One may wonder if we apply the same Laplacian smoothing on

both local and global updates like (Wang et al., 2020). However, the empirical

performance of such a proposal will become worse in federated learning, because

the noise scales in local and global updates are significantly different, especially165

with heterogeneous non-iid data over clients. Therefore, it is difficult to find a

unified Laplacian smoothing that can achieve a good trade-off between bias and

variance (as discussed below Proposition 1) for both updates. As we shall see in the

below, smoothness or sparsity still holds with the federated average of gradients,

despite the heterogeneity over clients.170

2.1. Laplacian Smoothing

To understand the Laplacian smoothing in DP-Fed-LS, consider the following

general iteration:

wt+1 = wt − ηA−1
σ ∇f(wt, xit , yit), (1)
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Algorithm 1 Differentially-Private Federated Learning with Laplacian Smoothing

(DP-Fed-LS)

parameters:

activate client fraction τ ∈ (0, 1]
total communication round T
clipping parameter L
local and global learning rate ηl, ηg
noise level ν

function CLIENTUPDATE(j, wt)

wt,0
j ← wt

for i = 0 to K − 1 do

gj(w
t,i
j )← mini-batch gradient

wt,i+1
j ← wt + CLIP

(
wt,i
j −

ηlgj(w
t,i
j )− wt,L

)

end for

return ∆t
j ← wt,K

j − wt

function CLIP(v,L) return v/max(1, ‖v‖2/L)

Server executes:

initialize w0

for t = 0 to T − 1 do

St ← (a random subset of clients se-

lected by uniform or Poisson subsam-

pling with ratio τ )

S ← |St|
for client j ∈ St in parallel do

∆t
j ← CLIENTUPDATE(j, wt)

end for

∆t ← ηg
S A−1

σ

(∑S
j=1∆

t
j +N (0, ν2I)

)
(∗)

wt+1 ← wt +∆t

end for

Output w̄T =
∑T

t=0 atw
t/(

∑
at), for

some at ≥ 0.

where η is the learning rate and f(w, xit , yit) is the loss of a given model with

parameter w on the training data {xit , yit}. In Laplacian smoothing (Osher et al.,175

2022), we let Aσ = I + σL, where L ∈ R
d×d is the 1-dimensional Lapla-

cian matrix of a cycle graph, i.e. Aσ a circulant matrix whose first row is

(1 + 2σ,−σ, 0, · · · , 0,−σ) with σ ≥ 0 being a constant. When σ = 0, Lapla-

cian smoothing stochastic gradient descent reduces to SGD.

Laplacian smoothing can be effectively implemented by using the fast Fourier180

transform. To be specific, for any 1-D signal v (a flattened layer of∇f(wt, xit , yit)
in our case), we would like to calculate u = A−1

σ v. Since v = Aσu = u− σd ∗ u,

where d = [−2, 1, 0, ..., 0, 1]T and ∗ denotes the convolutional operator. We have

the following equality by exploiting the 1-D fast Fourier transform (FFT)

fft(v) = fft(u) ·
(
1− σ · fft(d)

)
, (2)

where · is point-wise multiplication. In other words, the Laplacian matrix L has

eigenvectors defined by the Fourier basis, which diagonalizes convolutions via 1-D

fast Fourier transform. Going back to Eq. (2), we solve u by applying the inverse
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Fourier transform

u = ifft
( fft(v)

1− σ · fft(d)
)

.

The motivation behind Laplacian smoothing lies in that if the target parameter185

v is smooth under Fourier basis, then when it is contaminated by Gaussian noise,

i.e. ṽ = v + n, v ∈ R
d,n ∼ N (0, ν2I), a smooth approximation of ṽ is helpful to

reduce the noise. The Laplacian smoothing estimate is defined by

v̂LS := argmin
u
‖u− ṽ‖22 + σ‖∇u‖22, (3)

where ∇ is a 1-dimensional gradient operator such that L = ∇T∇. It satisfies

Aσv̂LS = ṽ = v + n. The following proposition characterizes the prediction error190

of Laplacian smoothing estimate v̂LS .

Proposition 1 (Bias-Variance decomposition). Let the graph Laplacian have eigen

decomposition ∆ei = λiei with eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λd and the first

eigenvector e1 = 1/
√
d. Then the mean square error (risk) of estimate v̂LS admits

the following decomposition,

R(v̂LS) := E‖v̂LS − v‖22 = ‖(I−A
†
σ)v‖22 + E‖A†

σn‖22
=

∑

i

σ2λ2
i

(1 + σλi)2
〈v, ei〉2 +

∑

i

ν2

(1 + σλi)2
,

where the first term is called the bias and the second term is called the variance.

In the bias-variance decomposition of the risk above, if σ = 0, the risk becomes

bias-free with variance dν2; if σ > 0, bias is introduced while variance is reduced.

The optimal choice of σ must depend on an optimal trade-off between the bias and195

variance in this case. When the true parameter v is smooth, in the sense that its

projections 〈v, ei〉 → 0 rapidly as i increases, the introduction of bias can be much

smaller compared to the reduction of variance, hence the mean squared error (risk)

can be reduced with Laplacian smoothing. A bias-variance trade-off with similar

idea for graph neural network can be found in (Nt and Maehara, 2019).200

To illustrate the Proposition 1, in Figure 1, we show the efficacy of Laplacian

smoothing. We consider a vector signal y = sin(x) where x is a vector of size

500, whose entries are evenly spaced over [0, 30]. We perturb it by Gaussian

noise: ỹ = y + n where n ∼ N (0, ν2). Then we get the Laplacian smoothing

estimate ŷLS := argminu ‖u − ỹ‖2 + σ‖∇u‖2. From Figure 1 (a), we notice205

that ŷLS can significantly smooth the noisy signal. Then in Figure 1 (b), we
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(a) (b)

Figure 1: Efficacy of Laplacian smoothing. In (a), signals from top to bottom are y = sin(x),
where x is a vector of size 500, whose entries are evenly spaced over [0, 30]. ỹ = y +N (0, ν2)
with ν = 0.1 and ŷLS with σ = 1. In (b), we compute the MSE reduction ratio of Laplacian

smoothing estimator (MSE(ỹ)−MSE(ŷLS))/MSE(ỹ) along different noise level ν, where ŷLS :=
argminu ‖u− ỹ‖2 + σ‖∇u‖2.

compute the MSE reduction ratio of Laplacian smoothing estimator: (MSE(ỹ)−
MSE(ŷLS))/MSE(ỹ) to demonstrate the efficacy of Laplacian smoothing. We

see that, when the noise level ν is small, Laplacian smoothing will introduce

higher MSE: the bias introduced by Laplacian smoothing is larger than its variance210

reduction. However, once the noise level increases, Laplacian smoothing will

significantly reduce the MSE. The larger the σ is, the more MSE reduction achieved.

2.2. Sparsity of Aggregated Gradients in the Fourier Basis

To verify that the true signal v is smooth or sparse with respect to the Fourier

basis, we show in Figure 2 the magnitudes distribution of CNN by layers in fre-215

quency domain of v = 1
S

∑

j ∆
t
j , in non-DP (noise free and no clipping) federated

learning under the fast Fourier transform. We will firstly flatten the weights into

a 1-D vector layer-wise, by the natural order of Pytorch, and then perform the

FFT on them layer-by-layer. We use the experimental setting described in Sec-

tion 5, where our CNN stacks two 5 × 5 convolutional layers with max-pooling,220

two fully-connected layers with 384 and 192 units, respectively, and a final soft-

max output layer. The patterns in four different training communication rounds

(t = 1, 50, 100, 200) are shown. One can see that from the log-log plot, as the

communication round and frequency grow, the magnitudes of Fourier coefficients

demonstrate a power law decay with respect to the frequency, indicated by a linear225

envelope between log10(Magnitude) and log10(Frequency) when log10(Frequency)
increases. In other words, it shows that the projections of magnitudes 〈v, ei〉 → 0 at

a polynomial rate when the frequency in Fourier basis is large enough, supporting
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the assumption above for variance reduction. In Figure G.10 in Appendix G,

we also show that the frequency distribution of federated average of gradients230

is insensitive to different flattening orders and permutation of the output channel

weight indices of convolutional layer. What’s more we visualize that 〈v, ei〉 goes

to 0 rapidly as i increases in Figure G.11 in Appendix G.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Frequency distribution of federated average of gradients v = 1
S

∑

j ∆
t
j over different

CNN layers and communication rounds t in non-DP federated learning, following experiment setting

in Section 5. Here we use the first convolutional layer (conv1.weight) and the first fully-connected

layer (fc1.weight) as an example.

2.3. Connection to Mirror Descent

Laplacian smoothing can also be viewed as a special case of mirror descent

(Nemirovskij and Yudin, 1983) by setting Φ(w) = 1
2
‖w‖2Aσ

. It can be also regarded

as a case of natural gradient descent where the parameter space adopts a Rieman-

nian metric ‖ · ‖Aσ (Amari, 1998). In mirror descent, we update our parameters

by

wt+1 = argmin
w
{η〈∇f(wt, xit , yit), w〉+Dh(w‖wt)},

where Dh(y‖x) = Φ(y) − Φ(x) − 〈∇Φ(x), y − x〉 is the Bregman divergence.

Setting the gradient at wt+1 to zero gives

η∇f(wt, xit , yit) +∇Φ(wt+1)− Φ(wt) = 0.

11



Since ∇Φ(w) = Aσw, we have

wt+1 = wt − ηA−1
σ ∇f(wt, xit , yit),

which reduces to Eq. (1). From this point of view, Laplacian smoothing serves as a235

regularizer that constrains the difference between wt+1 and wt to be smooth under

the Fourier basis, which agrees with the discussion above.

In Appendix F, we demonstrate an additional classification example where

Laplacian smoothing reaches improved estimates of smooth signals (parameters)

against Gaussian noise. Among a variety of usages such as reducing the variance240

of SGD on-the-fly, escaping spurious minima, and improving generalization in

training many machine learning models including neural networks (Osher et al.,

2022; Wang et al., 2020), the Laplacian smoothing in this paper particularly

improves the utility when Gaussian noise is injected to federated learning for

privacy, which will be discussed in the following sections.245

3. Differential Privacy Guarantee

In this section, we provide closed-form DP guarantees for differentially private

federated learning, with or without LS, under both scenarios that active clients are

sampled with uniform subsampling or with Poisson subsampling.

First of all, recall the definition of differential privacy and Rényi differential250

privacy (RDP).

Definition 1 ((ε,δ)-DP). (Dwork and Roth, 2014) A randomized mechanismM :
D → R

d satisfies (ε,δ)-DP if for any two adjacent datasets D,D′ ∈ D differing by

only one element, and any output subset O ⊆ R
d, it holds that

P[M(D) ∈ O] ≤ eε · P[M(D′) ∈ O] + δ.

Definition 2 ((α, ρ)-RDP). (Mironov, 2017) For α > 1 and ρ > 0, a randomized

mechanism M : D → R
d satisfies (α, ρ)-Rényi DP, i.e. (α, ρ)-RDP, if for all

adjacent datasets D,D′ ∈ D differing by one element, it has

Dα

(
M(D)||M(D′)

)
:=

1

α− 1
logE

(
M(D)/M(D′)

)α ≤ ρ.

Lemma 1 (From (α, ρ)-RDP to (ε, δ)-DP ). (Mironov, 2017) If a randomized

mechanismM : D → R
d satisfies (α, ρ)-RDP, thenM satisfies (ρ+log(1/δ)/(α−

1), δ)-DP for all δ ∈ (0, 1).
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In federated learning, we consider the user-level DP. So the terms element and255

dataset in the definition will refer to a single client, and a set of clients respectively

in our scenario. There are two ways to construct a subset of active clients. The

first one is uniform subsampling, i.e. in each communication round, a subset

of fixed size S = τ · N of clients are sampled uniformly. The second one is

Poisson subsampling, which includes each client in the subset with probability τ260

independently. If we trace back to the definition, this subtle difference actually

comes from the difference of how we construct the adjacent datasets D and D′. For

uniform subsampling, D and D′ are adjacent if and only if there exist two samples

a ∈ D and b ∈ D′ such that if we replace a in D with b, then D is identical with

D′ (Dwork and Roth, 2014). However, for Poisson subsampling, D and D′ are said265

to be adjacent if D ∪ {a} or D\{a} is identical to D′ for some sample a (Mironov

et al., 2019; Zhu and Wang, 2019). This subtle difference results in two different

parallel scenarios below.

Theorem 1 (Differential Privacy Guarantee for DP-Fed-LS with Uniform Subsam-

pling). For any δ ∈ (0, 1), ε > 0, DP-Fed or DP-Fed-LS with uniform subsampling,270

satisfies (ε,δ)-DP when the variance of the injected Gaussian noise N (0, ν2) satis-

fies

ν ≥ τL
ε

√

14T

λ

(
log(1/δ)

1− λ
+ ε

)

, (4)

if there exists λ ∈ (0, 1) such that ν2/4L2 ≥ 2
3

and α − 1 ≤ ν2

6L2 log(1/(τα(1 +
ν2/4L2))), where α = log(1/δ)/((1− λ)ε) + 1.

Theorem 2 (Differential Privacy Guarantee for DP-Fed-LS with Poisson Subsam-275

pling). For any δ ∈ (0, 1), ε > 0, DP-Fed or DP-Fed-LS with Poisson subsampling,

satisfies (ε,δ)-DP when its injected Gaussian noise N (0, ν2) is chosen to be

ν ≥ τL
ε

√

2T

λ

(
log(1/δ)

1− λ
+ ε

)

, (5)

if there exists λ ∈ (0, 1) such that ν2/L2 ≥ 5
9

and α − 1 ≤ 2ν2

3L2 log(1/(τα(1 +
ν2/L2))), where α = log(1/δ)/((1− λ)ε) + 1.

Theorem 1 and Theorem 2 characterize the closed-form relationship between280

(ε, δ)-DP and the corresponding noise level ν, based on the numerical results in

(Wang et al., 2019b; Zhu and Wang, 2019; Mironov et al., 2019). As we can see

later, they will also serve as backbone theorems when we analyse the optimization

13



error bounds of DP-Fed-LS. The two conditions in the above theorems are used

for inequality scaling. In practical implementation, we will do a grid search of285

λ ∈ (0, 1) and select the one that gives the smallest lower bound of ν while

satisfying both conditions. After that, we set ν to its lower bound.

Proofs of Theorem 1 and Theorem 2 are given in Appendix A and Appendix B .

These closed-form bounds are of similar rates as the numerical moment accountant

(Wang et al., 2019b; Zhu and Wang, 2019; Mironov et al., 2019) up to a constant290

(see Appendix E).

4. Convergence with Differential Privacy Guarantee

In this section, convergence and communication complexity bounds are pro-

vided for DP-Fed-LS in Algorithm 1 with uniform subsampling.

First of all, we state several commonly used assumptions adapted for the non-295

Euclidean geometry in Laplacian smoothing. In the following statements, the

primal norm ‖ ·‖ = ‖ ·‖Aσ and its dual norm ‖ ·‖∗ = ‖ ·‖A−1
σ

, where σ = 0 reduces

to the case of Euclidean geometry.

Assumption 1 ((G,B)-BGD (Bounded Gradient Dissimilarity)). There exist con-

stants G ≥ 0 and B ≥ 1 such that

1

N

N∑

j=1

‖∇fj(w)‖2∗ ≤ G2 +B2‖∇f(w)‖2∗, ∀w.

This assumption describes the heterogeneity of data clients with G. For non-iid

data, G > 0, while G = 0 and B = 1 reduce to the iid case.300

Assumption 2. f1, ..., fN are all β-smooth: for all u and v, ‖∇fj(u)−∇fj(v)‖∗ ≤
β‖u− v‖.

Assumption 3. f1, ..., fN are all µ-strongly convex:

fj(u) ≥ fj(v) + 〈u− v,∇fj(v)〉+
µ

2
‖u− v‖2, for all u, v.

Assumption 4. f1, ..., fN are all convex:

fj(u) ≥ fj(v) + 〈u− v,∇fj(v)〉, for all u, v.

14



Assumption 5. Let gj(w) be a stochastic mini-batch gradient of client j. The

variance of gj(w) under the dual norm in each device is bounded:

E‖gj(w)−∇fj(w)‖2∗ ≤ ς2j (σ) for all j ∈ [N ].

We further denote ς2(σ) = 1
N

∑N
j=1 ς

2
j (σ).

Here for σ = 0, it reduces to the common assumption in federated learning

(Karimireddy et al., 2020); for σ > 0, variance could be significantly reduced as305

the discussions in Section 2.

Assumption 6. f1, ..., fN are all L-Lipschitz: ‖fj(u)− fj(v)‖∗ ≤ L‖u− v‖ for

all u, v.

For simplicity, we use νL to represent ν in Theorem 1 as a linear function of the

clipping parameter L. Then we have νL = Lν1. We use Õ to denote asymptotic310

growth rate up to a logarithmic factor (including logK, log S), while O up to a

constant.

Now we are ready to present the convergence guarantees for strongly-convex,

general-convex and non-convex loss scenarios. For the non-convex scenario, the

convergence guarantee is for stationary point and the error is measured by the315

expected norm of the gradient at the approximate stationary point.

Theorem 3 (Convergence Guarantees for DP-Fed-LS). Assuming the conditions

in Theorem 1 hold, with log(1/δ) ≥ ε and a proper constant local and global

update step sizes ηl and ηg. Let L = ηlKL, ηg ≥
√
S, and communication round

T = ε2N2

C0L2S log(1/δ)
, then DP-Fed-LS with uniform subsampling satisfies (ε, δ)-DP320

and the following error bounds, where the expectation is taken over the randomness

in SGD in local client update, client selection and noise injection.

• µ Strongly-Convex: Under Assumption 1, 2, 3, 5, 6, it holds that

E(w̄T ) = E[f(w̄T )]− f(w∗) ≤ Õ
(
( ς

2(σ)
K

+ (1− τ)G2 + dσ)L
2 log(1/δ)

µε2N2

)

,

• General-Convex: Under Assumption 1, 2, 4, 5, 6, it holds that

E(w̄T ) = E[f(w̄T )]−f(w∗) ≤ O
(
√

( ς
2(σ)
K

+ (1− τ)G2 + dσ)DσL2 log(1/δ)

εN

)

,
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• Non-Convex: Under Assumption 1, 2, 5, 6, it holds that

E(w̄T ) = E‖∇f(w̄)‖2
A−1
σ
≤ O

(
√

( ς
2(σ)
K

+ (1− τ)G2 + dσ)F0βL2 log(1/δ)

εN

)

.

The effective dimension dσ =
∑d

i=1 Λi, where Λi =
1

1+2σ(1−cos(2πi/d))
≤ 1 is the

eigenvalue of A−1
σ . For an optimum w∗, Dσ = ‖w0 −w∗‖2Aσ

, F0 = f(w0)− f(w∗)
and C0 =

14
λ
(1 + 1

1−λ
).325

The sketchy proof of Theorem 3 can be found in Section 4.1 with details

in Appendix C. For simplicity, we set L = ηlKL to avoid the clipping effect,

which can be left for future exploration.

In this theorem, dominant errors are introduced by the variance of stochastic

gradients (ς2(σ)/K), heterogeneity of non-iid data ((1 − τ)G2) and DP (dσ), in330

comparison to the initial error. Among the three dominant errors, the variance term

ς2(σ)/K will diminish while the number of local iteration K grows large enough

(K � 1). What’s more, the heterogeneity term (1 − τ)G2 will be reduced if

subsampling ratio τ is high. Particularly, in iid (G = 0) or full-device participation

(τ = 1) setting, this term will vanish. Therefore the error term introduced by335

DP, of effective dimensionality dσ, dominates the variance and heterogeneity

terms in these scenarios, whose rates in Theorem 3 matches the optimal ones of

ERM via SGD with differential privacy in centralized setting (Wang et al., 2020,

2017), as shown in the upper part of Table 1 1. In particular when σ = 0, the

bounds above reduce to the standard DP-Fed setting. The benefit of introducing340

Laplacian smoothing (σ > 0) lies in the reduction of variance ς2(σ) and the

effective dimension dσ ≤ d0 = d, although it might increase the initial error Dσ.

The following corollary provides the communication complexity of DP-Fed-

LS in Algorithm 1 with uniform subsampling, with tight bounds on the number

of communications T to reach an optimization error ε. Its proof is deferred to345

Appendix C.6.

Corollary 1 (Communication Complexity). Assuming the same conditions in

Theorem 3, the communication complexity of DP-Fed-LS with uniform subsampling

and fixed noise level νL = Lν1 independent to T satisfies the following rates to

reach an ε-optimality gap,350

1In Table 1, the term log(S) of DP-Fed-LS comes from the numerator of learning rate η̃ in

Theorem 4 in Appendix, implicitly involved in Õ.
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• µ Strongly-Convex:

T = Õ
(
(1 + 4σ)2βB2

µ
+

ς2(σ)

µKSε
+

dσL
2ν21

µS2ε
+

(1 + 4σ)
√
βG

µ
√
ε

+ (1− τ)
G2

µεS

)

,

• General-Convex:

T = O
(
(1 + 4σ)2βB2Dσ

ε
+

ς2(σ)Dσ

KSε2
+

dσDσL
2ν21

S2ε2
+

(1 + 4σ)
√
βDσG

ε3/2
+(1−τ)

DσG
2

ε2S

)

,

• Non-Convex:

T = O
(
(1 + 4σ)2βB2F0

ε
+

ς2(σ)βF0

KSε2
+

dσF0L
2ν21β

S2ε2
+

(1 + 4σ)βF0G

ε3/2
+(1− τ)

F0βG
2

ε2S

)

.

In Corollary 1, we regard that ν1 is a given constant independent to the commu-

nication round T , such that νL = Lν1 and L = ηlKL. In this case, if ν1 ≥ 8/3 and

α− 1 ≤ ν2
1

6
ln 1

τα(1+ν2
1
/4)

, then (ε, δ)-DP satisfying T ≤ λε2ν2
1/14τ

2
(
log(1/δ)
1−λ

+ ε
)

can be achieved for any λ ∈ (0, 1) (See Appendix D). Compared with the best

known rates in federated average without DP (Karimireddy et al., 2020), the com-355

munication complexity in Corollary 1 involves an extra term for the injected noise

ν1 in DP, while other terms match the best known rates, which are tighter than

others in literature (Yu et al., 2019; Khaled et al., 2020; Li et al., 2019) with the

same (G,B)-BGD assumption, as shown in the lower part of Table 1.

In spite of the reduced variance and effective dimension mentioned above, LS360

might increase the initial error by a factor of (1 + 4σ)2 and a non-dominant part

of the heterogeneity term G by a factor of (1 + 4σ). This is because in the local

update, we only apply the general mini-batch SGD, while we apply LS on the

global update. In this case, to bound the divergence of local parameters, we need

to firstly transform the local update in norm ‖ · ‖Aσ to its dual norm ‖ · ‖A−1
σ

by365

the norm equivalence ‖ · ‖Aσ ≤ 1
Λ2

min

‖ · ‖A−1
σ

, where Λmin ≥ 1
1+4σ

is the smallest

eigenvalue of A−1
σ . Therefore, we introduce an extra constant (1 + 4σ) to the

non-dominant part of heterogeneity term G. The factor (1 + 4σ)2 in the initial

error is a by-product of the learning rate adjusted to the local update divergence.

4.1. Error Decomposition and Sketchy Proof of Theorem 3370

To prove Theorem 3, we establish the following Meta Theorem summarizing

a decomposition of the optimization error into four components caused by initial

error, heterogeneous clients data, stochastic gradient variance and differential

privacy noise.
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Meta Theorem. There exists constant step size ηl and ηg, Gaussian noise ν,375

communication round T , and clipping parameter L such that DP-Fed-LS satisfies

E(w̄T ) ≤ Einit(T ) + Ehete(T ) + Evar(T ) + Edp(T ) (6)

where E(w̄T ) = E[f(w̄T )]− f(w∗) for strongly convex and general convex cases

while E(w̄T ) = E‖∇f(w̄)‖A−1
σ

for non-convex case. Einit is the initial error, Ehete
is introduced by the heterogeneity of clients’ data, Evar accounts for the variance of

stochastic gradients, and Edp is due to privacy noise under Laplacian smoothing.380

To see this, the following Theorem 4, 5 and 6 instantiate the Meta Theorem

for three scenarios, i.e. strongly convex, convex, and non-convex cases of loss

functions, respectively, whose detailed proof can be found in Appendix C.

Theorem 4 (µ Strongly-Convex). Under Assumption 1, 2, 3, 5, 6, ηg ≥ 1, at =

(1−µη̃K/2)−t, η̃ := ηlηg = min

{

2 log(max(e,µ2TDσ/Hσ)))
µKT

,
Λ2

min

8Kβ(1+B2)

}

, L = ηlKL,

and T ≥ 1
µη̃K

, Algorithm 1 with uniform subsampling satisfies

Einit = 3µσ exp(−µη̃KT/2)Dσ ≤ Õ
(
Hσ

µT

)

,

Evar ≤ 2η̃(1 +
S

η2g
)
ς2(σ)

S
≤ Õ

( (1 + S
η2
g

)ς2(σ)

µKST

)

,

385

Edp ≤
2η̃dσKL2ν21

S2
≤ Õ

(
dσL

2ν21
µS2T

)

,

Ehete ≤ 24(1 + 4σ)2η̃2K2βG2 + 8η̃(1− τ)
K

S
G2 ≤ Õ

(
(1 + 4σ)2βG2

µ2T 2
+

G2(1− τ)

µST

)

,

where Hσ =
(

1
η2gK

+ 1
SK

)
ς2(σ) + 4

S
(1− τ)G2 +

L2ν2
1
dσ

S2 , Dσ = ‖w0−w∗‖2Aσ
, and

the effective dimension dσ =
∑d

i=1 Λi.

Theorem 5 (General-Convex). Under Assumption 1, 2, 4, 5, 6, ηg ≥ 1, at =

1/(T + 1), and η̃ := ηlηg = min

{√
Dσ

HσTK2 , 3

√
Dσ

Q1TK3 ,
Λ2

min

8Kβ(1+B2)

}

, L = ηlKL,

Algorithm 1 with uniform subsampling satisfies

Einit =
2

η̃TK
Dσ ≤

16β(1 +B2)(1 + 4σ)2Dσ

T
,
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Evar ≤ 2η̃(1 +
S

η2g
)
ς2(σ)

S
≤ 2

√

(1 + S
η2
g

)ς2(σ)Dσ

KST
,

Edp ≤
2η̃dσKL2ν21

S2
≤ 2

√

DσL2ν21dσ
S2T

,

Ehete ≤ 24(1 + 4σ)2βG2

︸ ︷︷ ︸

Q1

η̃2K2+8η̃(1−τ)K
S
G2 ≤ 3

√

24(1 + 4σ)2βD2
σG

2

T 2
+4

√

(1− τ)DσG2

ST
,

where Hσ =
(

1
η2gK

+ 1
SK

)
ς2(σ) + 4

S
(1− τ)G2 +

L2ν2
1
dσ

S2 , Dσ = ‖w0−w∗‖2Aσ
, and

the effective dimension dσ =
∑d

i=1 Λi.390

Theorem 6 (Non-Convex). Under Assumption 1, 2, 5, 6, ηg ≥ 1, at = 1/(T +

1), L = ηlKL and setting η̃ := ηlηg = min{
√

F0

HσTβK2 , 3

√
F0

Q2TK3 ,
Λ2

min

8Kβ(1+B2)
},

Algorithm 1 with uniform subsampling satisfies

Einit =
8

η̃TK
F0 ≤

64β(1 +B2)(1 + 4σ)2F0

T
,

Evar ≤ 4η̃β(1 +
S

η2g
)
ς2(σ)

S
≤ 4

√

(1 + S
η2
g

)ς2(σ)F0β

KST
,

Edp ≤
4η̃dσKL2βν21

S2
≤ 2

√

F0L2ν21βdσ
S2T

,

Ehete ≤ 32(1 + 4σ)2β2G2

︸ ︷︷ ︸

Q2

η̃2K2+16η̃(1−τ)βK
S
G2 ≤ 3

√

32(1 + 4σ)2F 2
0G

2β2

T 2
+8

√

(1− τ)F0βG2

ST
,

where Hσ =
(

1
η2gK

+ 1
SK

)
ς2(σ) + 4

S
(1 − τ)G2 +

L2ν2
1
dσ

S2 , F0 = f(w0) − f(w∗),

and the effective dimension dσ =
∑d

i=1 Λi.

Finally, Theorem 3 follows from substituting ν1 in Theorem 4, 5 and 6 by the

one in Theorem 1. As we can see, in the non-DP setting, Edp will reduce to 0 since395

we can set ν1 = 0. In this case, the benefit of introducing Laplacian smoothing

(σ > 0) lies in the reduction of variance ς2(σ). If we further take a full gradient

descent in each client device, then Evar will becomes zero, too. In this case, an

implicit benefit of Laplacian smoothing is that it allows us to take a larger step size

with high probability and make training progress in shallow directions effectively,400
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which is detailed in Section 3 in Osher et al. (2022). In addition, if G = 0, which

means that different clients have similar optima, then Ehete will also vanish. In

this case, the federated learning setting will have O( 1
T
) convergence rate in convex

and non-convex setting while linear convergence rate in strongly convex setting as

gradient descent. One may notice that if we let G = 0 then sampling ratio τ no405

longer contributes to the errors. Actually, this is because in the initial error term

Einit, we absorb the τ -related term by B2
(
1− S

N

)
1
S
≤ 2B2 for simplicity.

5. Experimental Results

In this section, we show that Laplacian smoothing in DP-Fed-LS (σ > 0)

improves the utility of plain DP-Fed (σ = 0) with varying ε and δ = 1/N1.1
410

(McMahan et al., 2018b) in (ε, δ)-DP on three benchmark classification tasks.

In practice, we will firstly flatten the weights of a layer into a 1-D vector by the

natural order in Pytorch, and then apply the Laplacian smoothing layer-wise. Please

see Section 5.2 for details about the orders of flattening. The detailed settings,

parameter tuning and other results are deferred to Appendix H.415

Logistic regression with iid MNIST dataset. We train a differentially private

federated logistic regression on the MNIST dataset (LeCun et al., 1998). MNIST is

a dataset of 28×28 grayscale images of digit from 0 to 9, containing 60K training

samples and 10K testing samples. We split 50K training samples into 1000/500

clients each containing 50/100 samples in an iid fashion (McMahan et al., 2017)420

for uniform/Poisson subsampling. We use 10K training samples for validation.

CNN with iid SVHN dataset. We train a differentially private federated CNN

on the extended SVHN dataset (Netzer et al., 2011). SVHN is a dataset of 32×32

colored images of digits from 0 to 9, containing 73,257 training samples and

26,032 testing samples. We enlarge the training set with another 531,131 extended425

samples and split them into 2,000 clients each containing about 300 samples in

an iid fashion (McMahan et al., 2017). We also split the testing set by 10K/16K

for validation and testing. Our CNN stacks two 5 × 5 convolutional layers with

max-pooling, two fully-connected layers with 384 and 192 units, respectively, and

a final softmax output layer (about 3.4M parameters in total) (Papernot et al., 2017).430

We pretrain the model over the MNIST dataset to speed up the training without

losing privacy guarantee.

LSTM with non-iid Shakespeare dataset. We train a differentially private

LSTM on the Shakespeare dataset (Caldas et al., 2018; McMahan et al., 2017),

which is built from all works of William Shakespeare, where each speaking role is435

considered as a client, whose local database consists of all her/his lines. This is
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a non-iid setting. The full dataset contains 1,129 clients and 4,226,158 samples.

Each sample consists of 80 successive characters and the task is to predict the next

character. In our setting, we remove the clients that own less than 100 samples

to stabilize training, which reduces the total client number to 975. We split the440

training, validation, and testing set chronologically, with fractions of 0.7, 0.1, 0.2.

Our LSTM first embeds each input character into a 8-dimensional space, after

which two LSTM layers are stacked, each have 256 nodes. The outputs will be

then fed into a linear layer, of which the number of output nodes equals the number

of distinct characters (Caldas et al., 2018; McMahan et al., 2017).445

For demonstration purpose, we apply the privacy budget in Theorem 1 and 2

for the logistic regression. For CNN and LSTM, we apply the moment accountants

in (Wang et al., 2019b)2 and (Mironov et al., 2019)3 for uniform subsampling and

Poisson subsampling, respectively. For moment accountants, we should provide

a noise multiplier z to control the noise level. Then we can compute the privacy450

budget with given communication round and subsampling ratio. For CNN and

LSTM, the selected noise multiplier z are 2.4, 2.2, 2.0, 1.8 and 1.4, 1.2, 1.0, 0.8,

respectively.

5.1. Improved Test Accuracy under the Same Privacy Budget

From Table 2, 3 and 4, we notice that DP-Fed-LS outperforms DP-Fed in455

almost all settings. The accuracy are reported based on 5 independent runs. In

particular, when ε is small, the improvement of DP-Fed-LS is remarkably large.

We show the average training curves over 5 runs in Figure 3, 4 and 5, where we

find that DP-Fed-LS converges slower than DP-Fed in both subsampling scenarios.

However, DP-Fed-LS will generalize better than DP-Fed at the later stage of the460

training. This phenomenon further validates our founding in Theorem 4-6, and

the discussion after Theorem 3 and Corollary 1 that, Laplacian smoothing will

introduce higher initial error and a non-dominate part the heterogeneity, but the

model will finally benefit from the reduced effective dimensionality dσ, which

become dominant term in the later stage of the training.465

2https://github.com/yuxiangw/autodp
3https://github.com/tensorflow/privacy/tree/master/tensorflow_

privacy/privacy/analysis
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ε 6 7 8 9

Uniform

σ = 0.0 82.87± 0.97 84.67± 0.54 84.99± 1.01 85.41± 0.57
σ = 1.0 84.77± 0.28 85.90± 0.22 86.32± 0.40 86.63± 0.80
σ = 2.0 83.92± 0.62 85.43± 1.00 85.78± 0.49 86.22± 0.42
σ = 3.0 84.73± 0.91 85.62± 0.58 86.40± 0.50 86.42± 0.54

ε 6 7 8 9

Poisson

σ = 0.0 83.94± 0.28 85.45± 0.24 86.30± 0.74 86.53± 0.79
σ = 1.0 85.64± 0.52 86.51± 0.46 86.61± 0.67 86.95± 0.56
σ = 2.0 85.49± 0.28 86.34± 0.52 86.79± 0.28 87.23± 0.53
σ = 3.0 85.52± 0.72 86.51± 0.28 86.63± 0.70 86.85± 0.32

Table 2: Test accuracy of logistic regression on MNIST with DP-Fed (σ = 0) and DP-Fed-LS

(σ = 1, 2, 3) under different (ε, 1/10001.1) and (ε, 1/5001.1)-DP guarantees for uniform and

Poisson subsampling.

ε 2.83 3.15 3.53 4.05

Uniform

σ = 0.0 76.14± 0.77 78.56± 0.55 80.28± 0.73 82.05± 0.38
σ = 0.5 80.67± 0.57 82.18± 0.17 82.94± 0.35 84.17± 0.64
σ = 1.0 80.82± 0.24 82.17± 0.36 83.19± 0.19 84.40± 0.33
σ = 1.5 81.02± 0.47 81.38± 0.75 82.93± 0.23 83.51± 0.51

ε 1.39 1.55 1.74 2.00

Poisson

σ = 0.0 75.93± 0.24 78.23± 0.85 79.94± 0.88 82.01± 0.42
σ = 0.5 80.68± 0.30 81.86± 0.36 82.87± 0.39 83.94± 0.39
σ = 1.0 80.82± 0.43 82.10± 0.23 82.89± 0.46 83.85± 0.37
σ = 1.5 80.79± 0.34 81.80± 0.33 82.83± 0.61 83.74± 0.23

Table 3: Test accuracy of CNN on SVHN with DP-Fed (σ = 0) and DP-Fed-LS (σ = 0.5, 1, 1.5)

under different (ε, 1/20001.1)-DP guarantees and subsampling methods.

ε 17.69 22.43 27.25 39.90

Uniform

σ = 0.0 38.79± 0.54 39.05± 0.18 41.48± 0.45 43.96± 0.20
σ = 0.5 39.97± 0.58 41.44± 0.39 43.66± 0.69 45.49± 0.47
σ = 1.0 40.36± 0.39 41.90± 0.29 44.29± 0.34 45.35± 0.27
σ = 1.5 40.76± 0.48 42.04± 0.39 43.68± 0.43 44.91± 0.32

ε 8.23 10.41 14.05 20.92

Poisson

σ = 0.0 38.58± 0.42 39.84± 0.25 41.49± 0.41 43.78± 0.42
σ = 0.5 39.44± 0.47 40.87± 0.31 43.70± 0.55 45.24± 0.45
σ = 1.0 40.73± 0.34 42.20± 0.28 44.06± 0.55 45.03± 0.11
σ = 1.5 40.60± 0.34 42.27± 0.36 43.92± 0.26 45.06± 0.36

Table 4: Test accuracy of LSTM on Shakespeare with DP-Fed (σ = 0) and DP-Fed-LS (σ =
0.5, 1, 1.5) under different (ε, 1/9751.1)-DP guarantees and subsamplings.
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(a) (b) (c) (d)

Figure 3: Training curves of logistic regression on MNIST with DP-Fed (σ = 0), DP-Fed-LS

(σ = 1, 2, 3). (a) and (b): training loss and validation accuracy with uniform subsampling and

(7, 1/10001.1)-DP. (c) and (d): training loss and validation accuracy with Poisson subsampling and

(7, 1/5001.1)-DP.

(a) (b) (c) (d)

Figure 4: Training curves of CNN on SVHN with DP-Fed (σ = 0), DP-Fed-LS (σ = 0.5, 1, 1.5). (a)

and (b): training loss and validation accuracy with uniform subsampling and (3.53, 1/20001.1)-DP.

(c) and (d): training loss and validation accuracy with Poisson subsampling and (1.74, 1/20001.1)-
DP.

(a) (b) (c) (d)

Figure 5: Training curves of LSTM on Shakespeare dataset with DP-Fed (σ = 0), DP-Fed-LS

(σ = 0.5, 1, 1.5). (a) and (b): training loss and validation accuracy with uniform subsampling and

(27.25, 1/9751.1)-DP. (c) and (d): training loss and validation accuracy with Poisson subsampling,

and (14.05, 1/9751.1)-DP.
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5.2. Stability under Large Noise, Learning Rate and Different Orders of Parameter

Flattening

In Figure 6, we show the training curves where relatively large noise multipliers

z are applied with Poisson subsampling and different local learning rates ηl. Here

our CNNs are trained for 1 run from scratch without pretraining. When the noise470

levels are large, the training curves fluctuate a lot. In these extreme cases, DP-Fed-

LS outperforms DP-Fed by a large margin with the same learning rate selection.

For example, when z = 3.5 and ηl = 0.1 or ηl = 0.125, validation accuracy of

DP-Fed starts to drop at the 25th epoch while DP-Fed-LS with the same learning

rate can still converge. Overall speaking, DP-Fed-LS is more stable against large475

noise levels and the change of local learning rate than DP-Fed.

Before we apply fast Fourier transform, we will firstly flatten the model’s

parameters into a 1-dimensional vector layer-wise. In this case, the order of the

flattening matters. For example, the weight of a convolutional layer is ordered by

output channel, input channel, width and height (”OIWH”) by default in Pytorch.480

One can apply another ordering, like ”OIHW” or ”OHWI” for flattening. In Table 5,

we demonstrate that DP-Fed-LS is insensitive to the order of parameter flattening

and consistently performs better than DP-Fed. The accuracy is reported based on 5

independent runs.

(a) (b) (c)

Figure 6: Training curves of CNN on SVHN where large noise levels are applied, with Poisson

subsampling and different local learning rates ηl. From left tor right, noise multiplier z = 3.0, 3.5
and 4.0. For DP-Fed-LS, we set σ = 1.

5.3. Comparison with Other Denoising Estimators485

In Table 6, we show the results of another two adaptive denoising estimators:

the James-Stein estimator (JS) and the soft-thresholding estimator (TH), which have

been shown to be useful for high dimensional parameter estimation and number

release (Balle and Wang, 2018), comparing with other denoising estimators (Barak
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Order OIWH OIHW OWHI OHWI

Uniform

σ = 0.5 82.94± 0.35 82.91± 0.29 83.25± 0.45 83.20± 0.18
σ = 1.0 83.19± 0.19 82.92± 0.39 83.66± 0.40 83.54± 0.48
σ = 1.5 82.93± 0.23 82.50± 0.46 83.34± 0.50 83.10± 0.33
Order OIWH OIHW OWHI OHWI

Poisson

σ = 0.5 82.87± 0.39 82.82± 0.07 83.13± 0.41 82.87± 0.61
σ = 1.0 82.89± 0.46 83.19± 0.16 83.11± 0.42 83.31± 0.64
σ = 1.5 82.83± 0.61 82.45± 0.64 82.82± 0.37 83.20± 0.37

Table 5: Test accuracy of CNN on SVHN with DP-Fed-LS (σ = 0.5, 1, 1.5), with different

unfolding ordering of convolutional kernel, under (3.53, 1/20001.1)-DP guarantees along with

uniform subsampling, and (1.74, 1/20001.1)-DP guarantees along with Poisson subsampling. “O”,

“I”, “W”, and “H” represent for output channel, input channel, width, and height. OIWH is the

default setting. The accuracy for pure DP-Fed is 79.89± 0.48 and 80.28± 0.66 respectively.

et al., 2007; Hay et al., 2009; Williams and McSherry, 2010; Bernstein et al., 2017).490

As mentioned in (Balle and Wang, 2018), thanks to the fact that we know the

parameter ν exactly, both JS and TH estimators are completely free of tuning

parameters. As we can see in Table 6, neither of these two estimators performs

well in our scenario, compared with Laplacian smoothing in Table 3, indicating

that high dimensional sparsity assumption (Balle and Wang, 2018) does not hold495

here on federated average of gradients.

ε 2.83 3.15 3.53 4.05

Uniform
JS 34.85± 1.56 35.92± 1.45 37.55± 2.00 38.65± 1.48
TH 17.86± 1.89 18.22± 1.80 18.37± 0.81 18.96± 1.24
ε 1.39 1.55 1.74 2.00

Poisson
JS 35.61± 1.98 36.25± 1.55 37.01± 1.02 38.81± 2.01
TH 17.05± 2.44 16.55± 1.94 17.84± 1.69 18.17± 1.49

Table 6: Test accuracy of CNN on SVHN James-Stein (JS) and soft-thresholding (TH) estimators

(Balle and Wang, 2018) under different (ε, 1/20001.1)-DP guarantees and subsampling methods

(the same settings as the ones we used in Table 3).

5.4. Membership Inference Attack

Membership privacy is a simple yet quite practical notion of privacy (Shokri

et al., 2017; Yeom et al., 2018; Sablayrolles et al., 2019). Given a model θ and

sample z, membership inference attack is to infer the probability that a sample z500

belongs to the training dataset (Sablayrolles et al., 2019). Specifically, a test set

T = {(zi,mi)}, is constructed with samples from both training data (mi = 1) and
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hold-out data (mi = 0), where the prior probability P (m = 1|T ) = ρT . Then a

successful membership attack can increase the excess probability using knowledge

of model θ, P (m(z) = 1|θ, z ∈ T )−ρT . In (Sablayrolles et al., 2019), Sablayrolles505

et al. define (ε, δ)-membership privacy, and show that (ε, δ)-membership privacy

can guarantee an upper bound P (m(z) = 1|θ, z ∈ T )− ρT ≤ cε
4
+ δ.

To evaluate the membership information leakage of models, threshold attack

(Yeom et al., 2018) is adopted in our experiment. It is widely used as a metric to

evaluate membership privacy (Jayaraman and Evans, 2019; Wu et al., 2020; Yeom510

et al., 2018). It bases on the intuition that a sample with relatively small loss is

more likely to belong to the training set, due to the more or less overfitting of ML

models. Specifically, the test set T consists of both training and hold-out data of

equal size (thus ρT = 0.5). Given a sample z = (x, y) and a model Mw(x), we

calculate the loss `(y,Mw(x)). Then we select a threshold t: if ` ≤ t, we regard515

this sample in the training set; otherwise, it belongs to the hold-out set. As the

threshold varies over all possible values in (0,U), where U is the upper bound for

`, the area under ROC curve (AUC) is used to measure the information leakage. In

perfectly-private situation, the AUC should be 0.5, indicating that the adversary

could not infer whether a given sample belongs to the training set or not. The larger520

the AUC, the more membership information leaks.

Improved membership privacy. We follow the CNN setup here while we only

split 64K data into 500 clients and set τ = 0.2 for training (Jayaraman and Evans,

2019; Shokri et al., 2017; Yeom et al., 2018). Our test set T for membership

inference attack includes 10K training data and 10K testing data of SVHN. In525

Figure 7, we show the AUC values of threshold attack against different models.

We observe that Non-DP model actually suffers high risk of membership leakage.

In addition, applying DP can significantly lower the risk. Comparing with DP-Fed,

DP-Fed-LS may even further improve the membership privacy.

6. Conclusion530

In this paper, based on the observation that in federated learning the average of

gradients is often sparse or smooth under a cyclic graph Fourier basis, Laplacian

smoothing is introduced for the variance reduction of the noisy federated average

of gradients to improve the generalization accuracy with the same differential

privacy guarantee. Privacy bounds in closed-form are given under uniform or Pois-535

son subsampling mechanisms. Optimization error bound is decomposed into four

components caused by heterogeneous data distribution of clients, stochastic gradi-

ent variance, differential privacy, and a non-dominant initialization, which sheds
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(a) (b) (c) (d)

Figure 7: AUC of threshold attack of different model on SVHN. (a) and (b): uniform subsampling

with noise multiplier z = 1.8 and z = 2.2 for DP models. (c) and (d): Poisson subsampling

with z = 1.8 and z = 2.2. The larger the AUC, the more membership information leakages. For

DP-Fed-LS, the LS parameter σ = 1.

light on the theoretical understanding of the effectiveness of Laplacian smoothing.

Experimental results show that DP-Fed-LS outperforms DP-Fed in both iid and540

non-iid settings, regarding accuracy and membership privacy, demonstrating its

potential in practical applications.
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Appendix A. Proof of Theorem 1

We firstly introduce the notation of `2-sensitivity and some lemmas for future

reference.

Definition 3 (`2-Sensitivity). For any given function f(·), the `2-sensitivity of f is

defined by

∆(f) = max
‖D−D′‖1=1

‖f(D)− f(D′)‖2,

where ‖D −D′‖1 = 1 means the data sets D and D′ differ in only one entry.560

Lemma 2 (Composition Theorem of RDP ). (Mironov, 2017) If k randomized

mechanismsMi : D → R
d, for i ∈ [k], satisfy (α, ρi)-RDP, then their composition

denoted as
(
M1(D), . . . ,Mk(D)

)
satisfies (α,

∑k
i=1 ρi)-RDP. Moreover, the input

of the i-th mechanism can be based on outputs of the previous (i− 1) mechanisms.

Lemma 3 (RDP for Uniform Subsampling). Gaussian mechanismM = f(D) +565

N (0, ν2) applied on a subset of samples drawn uniformly without replacement

with probability τ satisfies (α, 3.5τ 2α/ν2)-RDP given ν2 ≥ 2
3

and α − 1 ≤
2
3
ν2 ln

(
1/ατ(1 + ν2)

)
, where the sensitivity of f is 1.

Remark 1. Comparing with the result (α, 5τ 2α/ν2) in (Wang et al., 2019a), and

(α, 6τ 2α/ν2) in (Bun et al., 2018), Lemma 3 provides a tighter bound while relaxing570

their requirement on ν2 that ν2 ≥ 1.5 and ν2 ≥ 5 respectively. The proof of

Lemma 3 is deferred to Appendix A.1.

Here we are going to provide privacy upper bound for FedAvg (DP-Fed). We

drop the superscript K from wt,K
j for simplicity, then

wt+1 = wt +
ηg
S

(
∑

j∈Mt

wt
j − S · wt + n

)

, (A.1)

Similarly, for the one with Laplacian Smoothing (DP-Fed-LS), it becomes575

w̃t+1 = w̃t +
ηg
S
A−1

σ

(
∑

j∈Mt

w̃t
j − S · w̃t + n

)

, (A.2)

where n ∼ N (0, ν2I), and wt
j is the updated model from client j, based on the

previous global model wt.
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Proof. In the following, we will show that the Gaussian noiseN (0, ν2) in Eq. (A.1)

for each coordinate of n, the output of DP-Fed, w, after T iteration is (ε,δ)-DP. We

drop the superscript K from wt,K
j for simplicity.580

Let us consider the mechanism Mt = 1
S

∑K
j=1 w

t
j − wt + 1

S
n with query

qt =
1
S

∑N
j=1 w

t
j − wt and its subsampled version M̂t =

1
S

∑

j∈Mt
wt

j − wt + 1
S
n.

Define the query noise nq = n/S whose variance is ν2
q := ν2/S2. We will firstly

evaluate the sensitivity of wt
j . For each local iteration

wt
j ← wt

j − ηlg(w
t
j)

wt
j ← wt + clip

(
wt

j − wt,L
)
,

where clip(v,L)← v/max(1, ‖v‖2/L). All the local output ∆t
j ← wt

j−wt will be

inside the l2-norm ball centering around wt with radius L. We have l2-sensitivity

of qt as ∆(q) = ‖wt
j − wt′

j ‖2/S ≤ 2L/S.
According to (Mironov, 2017), if we add noise with variance,

ν2 = S2ν2
q =

14τ 2αTL2

λε
, (A.3)

the mechanism Mt will satisfy (α, α∆2(q)/(2ν2
q )) = (α, λε/7τ 2T )-RDP. By585

Lemma 3, M̂t will satisfy (α,λε/T )-RDP provided that ν2
q/∆

2(q) = ν2/(S2∆2(q)) ≥
2
3

and α − 1 ≤ 2ν2q
3∆2(q)

log
(
1/τα(1 + ν2

q/∆
2(q))

)
. By post-processing theorem,

M̃t = A−1
σ

(
1
S

∑

j∈Mt
wt

j − wt + 1
S
n
)

will also satisfy (α, λε/T )-RDP.

Let α = log(1/δ)/((1 − λ)ε) + 1, we obtain that M̂t (and M̃t) satisfies

(log(1/δ)/(1− λ)ε+ 1, λε/T )-RDP as long as the following inequalities hold590

ν2
q

∆2(q)
=

ν2

S2∆2(q)
=

ν2

4L2
≥ 2

3
(A.4)

and

α− 1 ≤ ν2

6L2
ln

1

τα(1 + ν2/4L2)
. (A.5)

Therefore, according to Lemma 2, we have wt (and w̃t) satisfies (log(1/δ)/(1−
λ)ε+1, λtε/T )-RDP. Finally, by Lemma 1, we have wt (and w̃t) satisfies (λtε/T +
(1− λ)ε, δ)-DP. Thus, the output of DP-Fed (and DP-Fed-LS), w (and w̃), is (ε,δ)-

DP.595
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Appendix A.1. Proof of Lemma 3

Proof. This proof is inspired by Lemma 3.7 of (Wang et al., 2019a), while we

relax their requirement and get a tighter bound. According to Theorem 9 in (Wang

et al., 2019b), Gaussian mechanism applied on a subset of size S = τ ·N , whose

samples are drawn uniformly satisfies (α, ρ′)-RDP, where

ρ′(α) ≤ 1

α− 1
log

(

1 + τ2
(
α

2

)

min
{

4(eρ(2) − 1), 2eρ(2)
}

+

α∑

j=3

τ j
(
α

j

)

2e(j−1)ρ(j)

)

where ρ(j) = j/2ν2. As mentioned in (Wang et al., 2019b), the dominant part in

the summation on the right hand side arises from the term min
{
4(eρ(2)−1), 2eρ(2)

}

when ν2 is relatively large. We will bound this term as a whole instead of bounding

it firstly by 4(eρ(2) − 1) (Wang et al., 2019a). For ν2 ≥ 2
3
, we have600

min
{

4(eρ(2) − 1), 2eρ(2)
}

= min
{

4(e1/ν
2 − 1), 2e1/ν

2
}

≤ 6/ν2. (A.6)

For the term summing from j = 3 to α, we have

α∑

j=3

τ j
(
α

j

)

2e(j−1)ρ(j) =
α∑

j=3

τ j
(
α

j

)

2e
(j−1)j

2ν2 ≤
α∑

j=3

τ j
αj

j!
2e

(j−1)j

2ν2

≤
α∑

j=3

τ j
αj

3!
2e

(α−1)j

2ν2 = τ 2
α2

3

α∑

j=3

τ j−2αj−2e
(α−1)j

2ν2

≤ τ 2
(
α

2

) α∑

j=3

τ j−2αj−2e
(α−1)j

2ν2

≤ τ 2
(
α

2

)
ταe

3(α−1)

2ν2

1− ταe
α−1

2ν2

≤ τ 2
(
α

2

)
ταe

3(α−1)

2ν2

1− ταe
3(α−1)

2ν2

,

(A.7)

where the first inequality follows from the fact that
(
α
j

)
≤ αj

j!
, and the last inequality

follows from the condition that τα exp (α− 1)/(2ν2) < 1. In this case, given that

α− 1 ≤ 2

3
ν2 ln

1

τα(1 + ν2)
, (A.8)

we have
α∑

j=3

τ j
(
α

j

)

2e(j−1)ρ(j) ≤ τ 2
(
α

2

)
1

ν2
(A.9)
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Combining the results in Eq. (A.6) and Eq. (A.9), we have

ρ′(α) ≤ 1

α− 1
log

(

1 +

(
α

2

)
6τ 2

ν2
+

(
α

2

)
τ 2

ν2

)

≤ 1

α− 1
τ 2
(
α

2

)
7

ν2
= 3.5ατ 2/ν2.

Condition τα exp (α− 1)/(2ν2) < 1 directly follows from Eq.(A.8).605

Appendix B. Proof of Theorem 2

Lemma 4 (RDP for Poisson Subsampling). Gaussian mechanismM = f(D) +
N (0, ν2) applied to a subset that includes each data point independently with prob-

ability τ satisfies (α, 2τ 2α/ν2)-RDP given ν2 ≥ 5
9

and α−1 ≤ 2
3
ν2 log

(
1/ατ(1+

ν2)
)
, where the sensitivity of f is 1.610

Remark 2. The bound in Lemma 4 matches the bound of (α, 2ατ 2/ν2)-DP in

(Mironov et al., 2019). However, we relax the requirement that ν ≥ 4 used

in (Mironov et al., 2019), and simplify the multiple requirements over α that

1 < α ≤ ν2C
2
− 2 ln ν and α ≤ ν2C2/2−ln 5−2 ln ν

C+ln(τα)+1/(2ν2)
, where C = ln

(
1 + 1

τ(α−1)

)
, to

only one requirement. This makes our closed-form privacy bound in Theorem 2615

below more concise and easier to implement. The proof of Lemma 4 is deferred to

Section Appendix B.1.

Proof. The proof is identical to proof of Theorem 1 except that we use Lemma 4

instead of Lemma 3. According to the definition of Poisson subsampling, we have

l2-sensitivity of qt as ∆(q) ≤ ‖wt′

j ‖2/S ≤ L/S. We start from the Eq. (A.3) in620

the proof of Theorem 1. If we add noise with variance

ν2 = S2ν2
q =

2τ 2αTL2

λε
, (B.1)

the mechanismMt will satisfy (α, α∆2(q)/(2ν2
q )) = (α, λε

4τ2T
)-RDP. According

to Lemma 4, M̂t will satisfy (α,λε/T )-RDP provided that

ν2
q

∆2(q)
=

ν2

S2∆2(q)
=

ν2

L2
≥ 5

9
, (B.2)

and

α− 1 ≤ 2ν2

3L2
ln

1

τα(1 + ν2/L2)
. (B.3)
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By post-processing theorem, M̃t = A−1
σ

(
1
S

∑

j∈Mt
wt

j − wt + 1
S
n
)

will also625

satisfy (α, λε/T )-RDP. Let α = log(1/δ)/((1− λ)ε) + 1, we obtain that M̂t (and

M̃t) satisfies (log(1/δ)/(1−λ)ε+1, λε/T )-RDP. Therefore, according to Lemma

2, we have wt (and w̃t) satisfies (log(1/δ)/(1− λ)ε+ 1, λtε/T )-RDP. Finally, by

Lemma 1, we have wt (and w̃t) satisfies (λtε/T +(1−λ)ε, δ)-DP. Thus, the output

of DP-Fed (and DP-Fed-LS), w (and w̃), is (ε,δ)-DP.630

Appendix B.1. Proof of Lemma 4

Proof. According to (Mironov et al., 2019; Zhu and Wang, 2019), Gaussian mecha-

nism applied on a subset where samples are included into the subset with probability

ratio τ independently satisfies (α, ρ′)-RDP, where

ρ′(α) ≤ 1

α− 1
log

(

(ατ − τ + 1)(1− τ)α−1 +

(
α

2

)

(1− τ)α−2τ 2eρ(2)

+
α∑

j=3

(
α

j

)

(1− τ)α−jτ je(j−1)ρ(j)

)

where ρ(j) = j/2ν2.

We notice that, when σ is relatively large, the sum in right-hand side will be

dominated by the first two terms. For the first term, we have

(ατ − τ + 1)(1− τ)α−1 ≤ ατ − τ + 1

1 + (α− 1)τ
= 1, (B.4)

where the first inequality follows from the inequality that

(1 + x)n ≤ 1

1− nx
for x ∈ [−1, 0], n ∈ N.

For the second term, we have635

τ 2
(
α

2

)

(1− τ)α−2e
1
ν2 ≤ τ 2

(
α

2

)

e
1
ν2 ≤ τ 2

(
α

2

)
7

2ν2
(B.5)

given that ν2 ≥ 5
9
. The summation from j = 3 to α follows Eq. (A.9) given that

α− 1 ≤ 2

3
ν2 ln

1

τα(1 + ν2)
. (B.6)

Combining Eq. (B.4), (B.5) and (A.9), we have
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ρ′(α) ≤ 1

α− 1
log

(

1 + τ 2
(
α

2

)
7

2ν2
+ τ 2

(
α

2

)
1

2ν2

)

≤ τ 2α
4

2ν2
= 2ατ 2/ν2.

(B.7)

Appendix C. Proof of Theorem 3

Theorem 3 follows from substituting ν1 in Theorem 4, 5 and 6 by the one in640

Theorem 1. For completeness, we wrap it into a corollary below.

Corollary 2. Assume that log(1/δ) ≥ ε, ηg ≥
√
S, the conditions on at, L and

η̃ in Theorem 4, 5 and 6, as well as the assumptions in Theorem 1. Algorithm 1

with uniform subsampling satisfies (ε, δ)-DP and the following optimization error

bounds.645

• µ Strongly-Convex: Select T = ε2N2

C0L2S log(1/δ)
with T ≥ 1

µσ η̃K
where η̃ follows

from Theorem 4. Then

E[f(w̄T )]− f(w∗) ≤ Õ
(
(ς2(σ)/K + (1− τ)G2 + dσ)L

2 log(1/δ)

µε2N2

)

.

• General-Convex: Set T = ε2N2

C0L2S log(1/δ)
. Then

E[f(w̄T )]− f(w∗) ≤
√

(ς2(σ)/K + 4(1− τ)G2 + dσ)DσL2 log(1/δ)

εN
.

• Non-Convex: Set T = ε2N2

C0L2S log(1/δ)
. Then

E‖∇f(w̄T )‖2
A−1
σ
≤
√

(ς2(σ)/K + 4(1− τ)G2 + dσ)F0βL2 log(1/δ)

εN
.

The proof of Corollary 2 is deferred to Appendix C.7.
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Appendix C.1. Proof of Lemmas

We firstly provide some useful Lemmas.

Lemma 5 (Noise reduction of Laplacian smoothing). Consider Gaussian noise

n(L) ∼ N (0, ν2
LI), where νL is the noise level scaled by L, i.e. νL = Lν1. We

have

E‖n(L)‖2
A−1
σ
≤ L2ν2

1dσ

where dσ := dζσ and ζσ := 1
d

∑d
i=i

1
1+2σ−2σ cos(2πi/d)

.

Proof of Lemma 5. The proof is inspired by the proof of Lemma 4 in (Wang et al.,

2020). Let the eigenvalue decomposition of A−1
σ be A−1

σ = UΛU>, where Λ is a

diagonal matrix with Λi =
1

1−2σ−2σ cos(2πi/d)
, we have

E‖n(L)‖2
A−1
σ

= E[Tr(n>UΛU>n)]

= Tr(UΛU>
E[nn>])

= ν2
LTr(UΛU>)

= ν2
L

d∑

i=i

1

1 + 2σ − 2σ cos(2πi/d)

= L2ν2
1dσ

where ζσ = 1
d

∑d
i=1 Λi.650

Lemma 6 (Bounding the divergence of local parameters). Following convexity,

Assumption 1, 2, 5, we have

1

N

N∑

j=1

K∑

i=1

E‖wt − wt,i
j ‖2Aσ

≤ 1

Λ2
min

(

4K3η2l G
2 + 4K3η2l B

2‖∇f(wt)‖2
A−1
σ

+ 2K2η2l ς
2(σ)

)

≤ 1

Λ2
min

(

4K3η2l G
2 + 8K3η2l B

2β
(
f(wt)− f(w∗)

)
+ 2K2η2l ς

2(σ)

)

where wt,i
j denote the model of client j in i-th iteration of the t-th communication

round.
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Proof of Lemma 6. The proof of is inspired by Lemma 8 in (Karimireddy et al.,

2020), while we consider the Aσ norm. Recall that the local update made on client

j is wt,i
j = wt,i−1

j + ηl∇fj(wt,i−1
j , xi−1

j ). When i = 0, the wt,i
j will just equal wt.

For i ≥ 1, we have:

E‖wt,i
j − wt‖2Aσ

= E‖wt,i−1
j − wt − ηlgj(w

t,i−1
j )‖2Aσ

= E‖wt,i−1
j − wt − ηl∇fj(wt,i−1

j )‖2Aσ
+ η2l E‖gj(wt,i−1

j )−∇fj(wt,i−1
j )‖2Aσ

≤ E‖wt,i−1
j − wt − ηl∇fj(wt,i−1

j )‖2Aσ
+

η2l
Λ2

min

E‖gj(wt,i−1
j )−∇fj(wt,i−1

j )‖2
A−1
σ

≤ E‖wt,i−1
j − wt − ηl∇fj(wt,i−1

j )‖2Aσ
+

η2l
Λ2

min

ς2j (σ)

≤
(

1− 1

K − 1

)

E‖wt,i−1
j − wt‖2Aσ

+Kη2l ‖∇fj(wt,i−1
j )‖2Aσ

+
η2l
Λ2

min

ς2j (σ)

≤
(

1− 1

K − 1

)

E‖wt,i−1
j − wt‖2Aσ

+
2Kη2l
Λ2

min

η2l E‖∇fj(wt,i−1
j )−∇fj(wt)‖2

A−1
σ

+
2Kη2l
Λ2

min

‖∇fj(wt)‖2
A−1
σ

+
η2l
Λ2

min

ς2j (σ)

≤
(

1− 1

K − 1
+

2Kη2l β
2

Λ2
min

)

E‖wt,i−1
j − wt‖2Aσ

+
2Kη2l
Λ2

min

‖∇fj(wt)‖2
A−1
σ

+
η2l
Λ2

min

ς2j (σ)

≤
(

1− 1

2(K − 1)

)

E‖wt,i−1
j − wt‖2Aσ

+
2Kη2l
Λ2

min

‖∇fj(wt)‖2
A−1
σ

+
η2l
Λ2

min

ς2j (σ)

where the last inequality comes from the assumption that ηl ≤ Λmin

2Kβ
. Unrolling the

recursion above, we have

E‖wt,i
j − wt‖2Aσ

≤ 1

Λ2
min

i∑

k=0

(
2Kη2l ‖∇fj(wt)‖2

A−1
σ

+ η2l ς
2
j (σ)

)
(

1− 1

2(K − 1)

)k

≤ 2K

Λ2
min

(

2Kη2l ‖∇fj(wt)‖2
A−1
σ

+ η2l ς
2
j (σ)

)

where the last step is due to

i∑

k=0

(

1− 1

2(K − 1)

)k

=
1−

(
1− 1

2(K−1)

)i+1

1−
(
1− 1

2(K−1)

)

≤ 1

1−
(
1− 1

2(K−1)

) ≤ 2(K − 1) ≤ 2K.
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Taking average over i and j, and considering Assumption 1, we have

1

N

N∑

j=1

K∑

i=1

E‖wt − wt,i
j ‖2Aσ

≤ 1

Λ2
min

(
1

N

N∑

j=1

4K3η2l ‖∇fj(wt)‖2
A−1
σ

+ 2K2η2l ς
2(σ)

)

≤ 1

Λ2
min

(

4K3η2l G
2 + 4K3η2l B

2‖∇f(wt)‖2
A−1
σ

+ 2K2η2l ς
2(σ)

)

≤ 1

Λ2
min

(

4K3η2l G
2 + 8K3η2l B

2β
(
f(wt)− f(w∗)

)
+ 2K2η2l ς

2(σ)

)

,

which completes the proof.

Lemma 7 (Perturbed Strongly Convexity (Karimireddy et al., 2020)). TThe fol-

lowing holds for any β-smoothness and µ-strongly convex function h, and for any

x, y, z in the domain of h:

〈∇h(x), z − y〉 ≥ h(z)− h(y) +
µ

4
‖y − z‖ − β‖z − x‖2.

Lemma 8 (Subsampling Variance). (Lemma B.1 in (Lei and Jordan, 2017)) Given

a vector space X ∈ R
d with norm ‖ · ‖, we consider a dataset x1, x2, ..., xN ∈ X .

We select a subset S with size S from the given dataset without replacement. The

subsampling mechanism can be uniform subsampling or Poisson subsampling. The

variance of the subset’s average can be bounded by the following upper bound:

E

∥
∥
∥
∥

1

S

∑

j∈S
xj − x̄

∥
∥
∥
∥

2

=
1

S

(

1− S − 1

N − 1

)
1

N

N∑

j=1

‖xj − x̄‖2,

Appendix C.2. Setup

Before the proof of the main theorem, we denote the sever update in round t as

∆t, which can be expressed as:

∆t = − η̃

S

S∑

j=1

K∑

i=1

A−1
σ ∇gj(wt,i

j ) + A−1
σ ηg

n(L)
S

and E[∆t] = − η̃

S

S∑

j=1

K∑

i=1

EA−1
σ ∇fj(wt,i

j ),
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where η̃ = ηlηg, n(L) ∼ N (0, ν2
LI), and νL is the noise level as a proportional655

function of the clipping parameter L. We get νL = Lν1 in Theorem 1 with clipping

parameter L.

Let the eigenvalue decomposition of A−1
σ be A−1

σ = UΛU>, where Λ =
diag(Λi) is a diagonal matrix with

Λi =
1

1 + 2σ(1− cos(2πi/d))
,

and denote the smallest eigenvalue of A−1
σ by

Λmin = min
1≤i≤d

1

1 + 2σ(1− cos(2πi/d))
≥ 1

1 + 4σ
.

Appendix C.3. Proof of Theorem 4

Proof. We start from the total update of a communication round

E‖wt+1 − w∗‖2Aσ

= E
∥
∥wt +∆t − w∗∥∥2

Aσ

= E

∥
∥
∥
∥
wt − w∗ − η̃

S

S∑

j=1

K∑

i=1

A−1
σ gj(w

t,i
j ) + A−1

σ η2g
n(L)
S

∥
∥
∥
∥

2

Aσ

≤ E‖wt − w∗‖2Aσ
−2η̃

N

N∑

j=1

K∑

i=1

〈wt − w∗,∇fj(wt,i
j )〉

︸ ︷︷ ︸

A1

+η2g E

∥
∥
∥
∥

n(L)
S

∥
∥
∥
∥

2

A−1
σ

︸ ︷︷ ︸

A2

+ η̃2E

∥
∥
∥
∥

1

S

S∑

j=1

K∑

i=1

gj(w
t,i
j )

∥
∥
∥
∥

2

A−1
σ

︸ ︷︷ ︸

A3

(C.1)

As for A1, we apply Lemma 7, we have

A1 =
2η̃

N

N∑

j=1

K∑

i=1

〈w∗ − wt,∇fj(wt,i
j )〉

≤ 2η̃

N

N∑

j=1

K∑

i=1

(

fj(w
∗)− fj(w

t) + β‖wt,i
j − wt‖2Aσ

− µ

4
‖wt − w∗‖2Aσ

)

≤ −2η̃K
(
f(wt)− f(w∗)

)
+

2η̃β

N

N∑

j=1

K∑

i=1

‖wt,i
j − wt‖2Aσ

− η̃µK

2
‖wt − w∗‖2Aσ
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As for A3, by the equation EX2 = (EX)2 + E(X − EX)2, we have660

A3 ≤ η̃2E

∥
∥
∥
∥

1

S

S∑

j=1

K∑

i=1

∇fj(wt,i
j )

∥
∥
∥
∥

2

A−1
σ

︸ ︷︷ ︸

B1

+ η̃2E

∥
∥
∥
∥

1

S

S∑

j=1

K∑

i=1

(
gj(w

t,i
j )−∇fj(wt,i

j )
)
∥
∥
∥
∥

2

A−1
σ

︸ ︷︷ ︸

B2

(C.2)

For B1, we have

B1 = η̃2E

∥
∥
∥
∥

1

S

S∑

j=1

K∑

i=1

(
∇f(wt,i

j )−∇fj(wt) +∇fj(wt)
)
∥
∥
∥
∥

2

A−1
σ

≤ 2η̃2E

∥
∥
∥
∥

1

S

S∑

j=1

K∑

i=1

(
∇f(wt,i

j )−∇fj(wt)
)
∥
∥
∥
∥

2

A−1
σ

+ 2η̃2K2
E

∥
∥
∥
∥

1

S

S∑

j=1

∇fj(wt)

∥
∥
∥
∥

2

A−1
σ

≤ 2η̃2K

N

N∑

j=1

K∑

i=1

E‖∇f(wt,i
j )−∇f(wt)‖2

A−1
σ

+ 2η̃2K2
E

∥
∥
∥
∥

1

S

S∑

j=1

∇fj(wt)−∇f(wt) +∇f(wt)

∥
∥
∥
∥

2

A−1
σ

≤ 2η̃2Kβ2

N

N∑

j=1

K∑

i=1

E‖wt,i
j − wt‖2Aσ

+ 2η̃2K2‖∇f(wt)‖2
A−1
σ

+ 2η̃2K2
E

∥
∥
∥
∥

1

S

S∑

j=1

∇fj(wt)−∇f(wt)

∥
∥
∥
∥

2

A−1
σ

≤ 2η̃Kβ2

N

N∑

j=1

K∑

i=1

E‖wt,i
j − wt‖2Aσ

+ 2η̃2K2‖∇f(wt)‖2
A−1
σ

+ 4η̃2K2

(

1− S

N

)
1

S

(

G2 +B2‖∇f(wt)‖2
A−1
σ

)

≤ 2η̃2Kβ2

N

N∑

j=1

K∑

i=1

E‖wt,i
j − wt‖2Aσ

+ 8η̃2K2(1 + B2)β
(
f(wt)− f(w∗)

)
+

4η̃2K2

S

(

1− S

N

)

G2

(C.3)

where the second last inequality comes from Assumption 1 and Lemma 8. When

we apply Lemma 8, we set xj = fj(w
t) and x̄ = 1

N

∑N
j=1 fj(w

t). What’s more,
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we use the inequality 1 − S−1
N−1

≤ 2
(
1 − S

N

)
. The last inequality comes from

Assumption 2. As for B2, we apply Assumption 5, then we have665

B2 ≤ η̃2E

∥
∥
∥
∥

1

S

S∑

j=1

K∑

i=1

(
gj(w

t,i
j )−∇fj(wt,i

j )
)
∥
∥
∥
∥

2

A−1
σ

≤ η̃2E
1

S2

S∑

j=1

K∑

i=1

‖gj(wt,i
j )−∇fj(wt,i

j )‖2
A−1
σ

≤ η̃2K

S
ς2(σ)

(C.4)

By Lemma 5 and the assumption that ηl ≤ 1
8Kβηg(1+B2)

, whence ηlηgKβ ≤ 1
2
, we

have

E‖wt+1 − w∗‖2Aσ
≤
(

1− η̃µK

2

)

E‖wt − w∗‖2Aσ
− η̃K

(
f(wt)− f(w∗)

)

+ 3η̃β
1

N

N∑

j=1

K∑

i=1

E‖wt,i
j − wt‖2Aσ

︸ ︷︷ ︸

C

+
η̃2K

S
ς2(σ) + η2g

η2l K
2L2ν2

1dσ
S2

+
4η̃2K2

S

(

1− S

N

)

G2

According to Lemma 6, and the assumption ηg ≥ 1 (η̃ = ηgηl ≥ ηl) and ηl ≤
Λ2
min

8Kβηg(1+B2)
, for C, we have

3η̃β
1

N

N∑

j=1

K∑

i=1

E‖wt,i
j − wt‖2Aσ

≤ 12η̃η2l K
3βG2

Λ2
min

+
6η̃η2l βK

2 ς2(σ)

Λ2
min

+
24η̃η2l K

3B2β2

Λ2
min

(
f(wt)− f(w∗)

)

≤ 12η̃3K3βG2

Λ2
min

+
η̃2K

η2g
ς2(σ) +

1

2
η̃K
(
f(wt)− f(w∗)

)

(C.5)

In this case,

E‖wt+1 − w∗‖2Aσ
≤
(

1− η̃µK

2

)

E‖wt − w∗‖2Aσ
− 1

2
η̃K
(
f(wt)− f(w∗)

)

+ η̃2K2

(
( 1

η2gK
+

1

SK

)
ς2(σ) +

L2ν2
1dσ

S2
+

4

S

(

1− S

N

)

G2 +
12

Λ2
min

η̃KβG2

)
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Reorganizing the terms, we have

f(wt)− f(w∗) ≤ 2

η̃K

(

1− η̃µK

2

)

E‖wt − w∗‖2Aσ
− 2

η̃K
E‖wt+1 − w∗‖2Aσ

+ 2η̃K

(
( 1

Kη2g
+

1

SK

)
ς2(σ) +

L2ν2
1dσ

S2
+

4

S

(

1− S

N

)

G2 +
12

Λ2
min

η̃KβG2

)

(C.6)

By averaging using weights at = q−t where q ,
(
1− µη̃K

2

)
, we have

T∑

t=0

at
(
E[f(wt)]− f(w∗)

)
≤ 2

η̃K
‖w0 − w∗‖2Aσ

+
T∑

t=0

2atη̃K

(
( 1

η2gK
+

1

SK

)
ς2(σ) +

L2ν2
1dσ

S2
+

4

S

(

1− S

N

)

G2 +
12

Λ2
min

η̃KβG2

)

Diving by
∑T

t=0 at, we have

E[f(w̄T )]− f(w∗) ≤ 2

η̃K
∑T

t=0 at
‖w0 − w∗‖2Aσ

+ 2η̃K

(
( 1

η2gK
+

1

SK

)
ς2(σ) +

L2ν2
1dσ

S2
+

4

S

(

1− S

N

)

G2 +
12

Λ2
min

η̃KβG2

)

Now we consider η̃K
∑T

t=0 at = η̃K
∑T

t=0 q
−t. Since we assume that T ≥ 1

µη̃K
,

we have

η̃K

T∑

t=0

at = η̃Kq−T

T∑

t=0

qt = η̃Kq−T 1− (1− µη̃K/2)T+1

µη̃K/2
≥ 2q−T

3µ
.

So

1

η̃K
∑T

t=0 at
≤ 3

2
µqT =

3

2
µ

(

1− µη̃K

2

)T

≤ 3

2
µ exp(−µη̃KT/2)

In this case,

E[f(w̄T )]− f(w∗) ≤ 3µ exp(−µη̃KT/2) ‖w0 − w∗‖2Aσ
︸ ︷︷ ︸

Dσ

+
24

Λ2
min

η̃2K2βG2

+ 2η̃K

(
( 1

η2gK
+

1

SK

)
ς2(σ) +

4

S

(

1− S

N

)

G2 +
L2ν2

1dσ
S2

︸ ︷︷ ︸

Hσ

)

(C.7)

Here we discuss two situations:670
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• If 1
µKT
≤ Λ2

min

8Kβ(1+B2)
≤ 2 log(max(e,µ2TDσ/Hσ)))

µKT
, we choose η̃ =

Λ2
min

8Kβ(1+B2)
, then

E[f(w̄T )]− f(w∗)

≤ 3µDσ exp

(

− µT

16β(1 + 4σ)2(1 + B2)

)

+ Õ

(
(1 + 4σ)2βG2

µ2T 2

)

+ Õ

(
Hσ

µT

)

≤ Õ

(
Hσ

µT

)

.

where we use η̃K ≤ 2 log(max(e,µ2RDσ/Hσ)))
µT

= Õ(1/(µT ))

• If 1
µKT
≤ 2 log(max(e,µ2TDσ/Hσ)))

µKT
≤ Λ2

min

8Kβ(1+B2)
, we choose η̃ = 2 log(max(e,µ2TDσ/Hσ)))

µKT
,

then

E[f(w̄T )]− f(w∗)

≤ 3µDσ exp(− log(max(e, µ2TDσ/Hσ))) + Õ

(
Hσ

µT

)

+ Õ

(
(1 + 4σ)2βG2

µ2T 2

)

≤ Õ

(
Hσ

µT

)

In this case, we choose η̃ = min

{

2 log(max(e,µ2TDσ/Hσ)))
µKT

,
Λ2
min

8Kβ(1+B2)

}
(
T ≥

8β(1+B2)

µΛ2
min

)
. Then

E[f(w̄T )]− f(w∗) ≤ Õ
(

1

µT

(
( 1

η2gK
+

1

SK

)
ς2(σ) +

4

S

(

1− S

N

)

G2 +
L2ν2

1dσ
S2

))

which completes the proof.

Appendix C.4. Proof of Theorem 5

Proof. We start from Eq. (C.6) and set µ = 0 for general-convex case:

f(wt)− f(w∗) ≤ 2

η̃K
E‖wt − w∗‖2Aσ

− 2

η̃K
E‖wt+1 − w∗‖2Aσ

+ 2η̃K

(
( 1

η2gK
+

1

SK

)
ς2(σ) +

L2ν2
1dσ

S2
+

4

S

(

1− S

N

)

G2 +
12

Λ2
min

η̃KβG2

)

(C.8)
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Summing the above inequality from t = 0 to t = T and taking average , we have675

E
[
f(w̄t)]− f(w∗) ≤ 2

η̃TK
‖w0 − w∗‖2Aσ
︸ ︷︷ ︸

Dσ

+
24

Λ2
min

βG2

︸ ︷︷ ︸

Q1

η̃2K2

+ 2η̃K

(
( 1

η2gK
+

1

SK

)
ς2(σ) +

L2ν2
1dσ

S2
+

4

S

(

1− S

N

)

G2

︸ ︷︷ ︸

Hσ

)

(C.9)

We set η̃max =
Λ2
min

8Kβ(1+B2)
. Here we consider two situations:

• If η̃2max ≤ Dσ

HσTK2 and η̃3max ≤ Dσ

Q1TK3 , we set η̃ = η̃max, then

E[f(w̄T )]−f(w∗) ≤ 16β(1 + B2)(1 + 4σ)2Dσ

T
+2

√

DσHσ

T
+

3

√

24(1 + 4σ)2D2
σG

2β

T 2

• If η̃2max ≥ Dσ

HσTK2 or η̃3max ≥ Dσ

Q1TK3 , we set η̃ = min

{√
Dσ

HσTK2 , 3

√
Dσ

Q1TK3

}

,

then

E[f(w̄T )]− f(w∗) ≤ 4

√

DσHσ

T
+

3

√

24(1 + 4σ)2D2
σG

2β

T 2

In conclusion, if we set η̃ = min

{√
Dσ

HσTK2 , 3

√
Dσ

Q1TK3 ,
Λ2
min

8Kβ(1+B2)

}

, we have

E[f(w̄T )]−f(w∗) ≤ 16β(1 + B2)(1 + 4σ)2Dσ

T
+4

√

DσHσ

T
+

3

√

24(1 + 4σ)2D2
σG

2β

T 2

which completes the proof.
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Appendix C.5. Proof of Theorem 6

Proof of Theorem 6. According to the smoothness of f , we have

f(wt+1) ≤ f(wt) + 〈∇f(wt), wt+1 − wt〉+ β

2
‖wt+1 − wt‖2Aσ

≤ f(wt)−
〈

∇f(wt),
η̃

S

S∑

j=1

K∑

i=1

A−1
σ gj(w

t,i
j )

〉

+

〈

∇f(wt),A−1
σ ηg

n(L)
S

〉

+
β

2

(∥
∥
∥
∥

η̃

S

S∑

j=1

K∑

i=1

A−1
σ gj(w

t,i
j )

∥
∥
∥
∥

2

Aσ

+ η2g
‖A−1

σ n(L)‖2Aσ

S2

+ 2

〈
η̃

S

S∑

j=1

K∑

i=1

A−1
σ gj(w

t,i
j ), ηg

n(L)
S

〉)

By taking the expectation on both sides, we have

E[f(wt+1)] ≤ f(wt)− η̃

N

N∑

j=1

K∑

i=1

〈∇f(wt),∇fj(wt,i
j )〉A−1

σ

︸ ︷︷ ︸

A1

+
βη2g
2S2

E‖n(L)‖2
A−1
σ

︸ ︷︷ ︸

A2

+
η̃2β

2
E

∥
∥
∥
∥

1

S

S∑

j=1

K∑

i=1

gj(w
t,i
j )

∥
∥
∥
∥

2

A−1
σ

︸ ︷︷ ︸

A3

According to Eq (C.2), (C.3) and (C.4), we have

A3 ≤ 2η̃2K2β(1 + B2)‖∇f(wt)‖2
A−1
σ

+ 2η̃2K2β

(

1− S

N

)
1

S
G2

+
η̃2Kβ3

N

N∑

j=1

K∑

i=1

E‖wt,i
j − wt‖2Aσ

+
η̃2Kβ

2S
ς2(σ)

(C.10)

As for A1, we apply the inequality ab = 1
2
[(b−a)2−a2]− 1

2
b2 ≥ 1

2
[a2−(b−a)2],

we have

A1 ≤ −
η̃

2N

N∑

j=1

K∑

i=1

[

‖∇f(wt)‖2
A−1
σ
− ‖∇fj(wt,i

j )−∇f(wt)‖2
A−1
σ

]

≤ − η̃K

2
‖∇f(wt)‖2

A−1
σ

+
η̃β2

2N

N∑

j=1

K∑

i=1

‖wt,i
j − wt‖2Aσ
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According to Lemma 5, we have

A2 ≤
η̃2K2L2βν2

1dσ
2S2

Summing up A1, A2 and A3, and using the inequality ηl ≤ Λ2
min

8Kβηg(B2+1)
, where

1
1+4σ

≤ Λmin ≤ 1 is the smallest eigenvalue of A−1
σ , we have

E[f(wt+1)] ≤ f(wt)− η̃K

(
1

2
− 2η̃Kβ(1 + B2)

)

‖∇f(wt)‖2
A−1
σ

+
η̃2Kβ

2S
ς2(σ)

+
η̃2K2L2βν2

1dσ
2S2

+ 2η̃2K2β

(

1− S

N

)
1

S
G2

+ η̃β2

(
1

2
+ η̃Kβ

)
1

N

N∑

j=1

K∑

i=1

‖wt,i
j − wt‖2Aσ

≤ f(wt)− η̃K

4
‖∇f(wt)‖2

A−1
σ

+
η̃2Kβ

2S
ς2(σ) +

η̃2K2L2βν2
1dσ

2S2

+ 2η̃2K2β

(

1− S

N

)
1

S
G2 + η̃β2 1

N

N∑

j=1

K∑

i=1

‖wt,i
j − wt‖2Aσ

According to Lemma 6 and the assumption that ηg ≥ 1 (η̃ = ηlηg ≥ ηl) and680

ηl ≤ Λ2
min

8Kβηg(B2+1)
, we have

η̃β2 1

N

N∑

j=1

K∑

i=1

‖wt,i
j − wt‖2Aσ

≤ 1

Λ2
min

(

4K3η̃η2l β
2G2 + 4K3η̃η2l β

2B2‖∇f(wt)‖2
A−1
σ

+ 2K2η̃η2l β
2ς2(σ)

)

≤ 1

Λ2
min

(

4K3η̃3β2G2 + 4K3η̃3β2B2‖∇f(wt)‖2
A−1
σ

+ 2K2η̃η2l β
2ς2(σ)

)

≤ 4

Λ2
min

K3η̃3β2G2 +
η̃K

16
‖∇f(wt)‖2

A−1
σ

+
η̃2Kβ

2η2g
ς2(σ)

(C.11)
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In this case, we have

E[f(wt+1)] ≤ f(wt)− η̃K

8
‖∇f(wt)‖2

A−1
σ

+
η̃2K2L2βν2

1dσ
2S2

+ 2η̃2K2β

(

1− S

N

)
1

S
G2

+
η̃2K2β

2

(
1

η2gK
+

1

SK

)

ς2(σ) +
4

Λ2
min

K3η̃3β2G2

≤ f(wt)− η̃K

8
‖∇f(wt)‖2

A−1
σ

+
4

Λ2
min

K3η̃3β2G2

+
η̃2K2β

2

(
( 1

η2gK
+

1

SK

)
ς2(σ) +

4

S

(

1− S

N

)

G2 +
L2ν2

1 d̃σ
S2

)

Summing the above inequality from t = 0 to t = T and taking average , we

have

E‖∇f(w̄t)‖2
A−1
σ
≤ 8

η̃KT

(
f(w0)− f(w∗)
︸ ︷︷ ︸

F0

)
+

32β2G2

Λ2
min

︸ ︷︷ ︸

Q2

K2η̃2

+ 4η̃Kβ

(
( 1

η2gK
+

1

SK

)
ς2(σ) +

4

S

(

1− S

N

)

G2 +
L2ν2

1dσ
S2

︸ ︷︷ ︸

Hσ

)

(C.12)

We set ηmax =
Λ2
min

8Kβ(1+B2)
. Here we consider two situations:

• If η̃2max ≤ F0

HσβTK2 and η̃3max ≤ F0

Q2TK3 , we set η̃ = η̃max, then

E‖∇f(w̄T )‖2
A−1
σ
≤ 64β(1 + B2)(1 + 4σ)2F0

T
+4

√

F0Hσβ

T
+

3

√

32(1 + 4σ)2F 2
0G

2β2

T 2

• If η̃2max ≥ F0

HσβTK2 or η̃3max ≥ F0

Q2TK3 , we set η̃ = min{
√

F0

HσβTK2 , 3

√
F0

Q2TK3},
then

E‖∇f(w̄T )‖2
A−1
σ
≤ 12

√

F0Hσβ

T
+

3

√

32(1 + 4σ)2F 2
0G

2β2

T 2

In conclusion, if we set η̃ = min{
√

F0

HσTβK2 , 3

√
F0

Q2TK3 ,
Λ2
min

8Kβ(1+B2)
}, we have685

E‖∇f(w̄T )‖2
A−1
σ
≤ 64β(1 + B2)(1 + 4σ)2F0

T
+12

√

F0Hσβ

T
+

3

√

32(1 + 4σ)2F 2
0G

2β2

T 2
,

(C.13)

which completes the proof.
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Appendix C.6. Proof of Corollary 1

Proof. Corollary 1 is a direct result of Theorem 4, 5 and 6. Here we take the

non-convex case for example. We recall Eq. (C.13) that

E‖∇f(w̄T )‖2
A−1
σ
≤ 64β(1 + B2)(1 + 4σ)2F0

T
+12

√

F0Hσβ

T
+

3

√

32(1 + 4σ)2F 2
0G

2β2

T 2
.

To bound the error by ε, we require that for the first and the last term in the above

equation, we have

T = O

(
64β(1 + B2)(1 + 4σ)2F0

ε

)

and T = O

(
(1 + 4σ)F0Gβ

ε3/2

)

.

For the middle term, we have

T = O

(
F0Hσβ

ε2

)

.

Plugging in Hσ =
(

1
η2gK

+ 1
SK

)
ς2(σ) + 4

S

(
1 − S

N

)
G2 +

L2ν21dσ
S2 , we conclude the

proof.

Appendix C.7. Proof of Corollary 2690

Proof of Corollary 2. We assume log(1/δ) ≥ ε, then applying Theorem 1 with ν1,

and τ = S
N

, we have

L2dσ
S2
· ν2

1 =
L2dσ
S2
· τ

2

ε2
14T

λ

(
log(1/δ)

1− λ
+ ε

)

, by Theorem 1

≤ L2dσ
S2
· τ

2

ε2
14T

λ

(
log(1/δ)

1− λ
+ log(1/δ)

)

, by assumption log(1/δ) ≥ ε

≤ L2dσ
S2
· τ

2T log(1/δ)

ε2
· 14
λ

(
1

1− λ
+ 1

)

︸ ︷︷ ︸

C0

=
C0L

2dσT log(1/δ)

ε2N2

• µ Strongly-Convex: following the proof of Theorem 4, we have

E[f(w̄T )]− f(w∗) ≤ Õ
(

1

µT

((1 + S
η2g
)ς2(σ)

SK
+

4(1− τ)

S
G2 +

dσC0L
2T log(1/δ)

ε2N2

))
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If we select T = ε2N2

C0L2S log(1/δ)
with T ≥ 1

µσ η̃K
where

η̃ = min

{
2 log(max(e, µ2TDσ/Hσ)))

µσKT
,

Λ2
min

8Kβ(1 + B2)

}

,

and assume ηg ≥
√
S, then we have

E[f(w̄T )]− f(w∗) ≤ Õ
(
(dσ + ς2(σ)/K + (1− τ)G2)L2 log(1/δ)

µε2N2

)

.

• General-Convex: Following Theorem 5, we have

E[f(w̄T )]− f(w∗)

≤ O
(√

DσHσ

T

)

= O
(
√

Dσ

T

((1 + S
η2g
)ς2(σ)

SK
+

4

S
(1− τ)G2 +

L2ν2
1dσ

S2

))

= O
(√

Dσ

T

((1 + S
η2g
)ς2(σ)

SK
+

4

S
(1− τ)G2 +

dσC0L2T log(1/δ)

ε2N2

))

If we set T = ε2N2

C0L2S log(1/δ)
and assume that ηg ≥

√
S, then we have

E[f(w̄T )]− f(w∗) ≤
√

(ς2(σ)/K + 4(1− τ)G2 + dσ)DσL2 log(1/δ)

εN
.

• Non-Convex: Following Theorem 6, we have

E‖∇f(w̄T )‖2
A−1
σ

≤ O
(√

F0Hσβ

T

)

= O
(√

F0β

T

((1 + S
η2g
)ς2(σ)

SK
+

4

S
(1− τ)G2+

L2ν2
1 d̃σ

S2

))

= O
(√

F0β

T

((1 + S
η2g
)ς2(σ)

SK
+

4

S
(1− τ)G2 +

d̃σC0L2T log(1/δ)

ε2N2
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If we set T = ε2N2

C0L2S log(1/δ)
and assume that ηg ≥

√
S, then we have

E‖∇f(w̄T )‖2
A−1
σ
≤
√

(ς2(σ)/K + 4(1− τ)G2 + dσ)F0βL2 log(1/δ)

εN
,

which completes the proof.

Appendix D. Details about Table 1 and Corollary 1

In Table 1, for (Khaled et al., 2020), the log(T ) term in denominators are

ignored. For the communication complexity with strongly-convex condition for

(Karimireddy et al., 2020) and DP-Fed-LS, the log S and logK terms in numerator695

are ignored.

For Corollary 1, given fixed noise level ν1 and communication round T, we

would like to determined what (ε, δ)-DP can be achieved. Following from Theo-

rem 1, we know that to satisfy (ε, δ)-DP, we need

ν ≥ τL
ε

√

14T

λ

(
log(1/δ)

1− λ
+ ε

)

, (D.1)

and ν satisfying ν2/4L2 ≥ 2
3

and α− 1 ≤ ν2

6L2 log(1/(τα(1 + ν2/4L2))) for some700

λ ∈ (0, 1), where α = log(1/δ)/((1− λ)ε) + 1. In other words, we require

T ≤ λε2ν2
1

14τ 2
( log(1/δ)

1−λ
+ ε
) . (D.2)

and
ν2
1L2

S2∆2(q)
=

ν2
1

4
≥ 2

3
(D.3)

and

α− 1 ≤ ν2
1

6
ln

1

τα(1 + ν2
1/4)

. (D.4)

for ν1 = ν/L. In other words, if ν1 ≥ 8/3 and α − 1 ≤ ν21
6
ln 1

τα(1+ν21/4)
, then

(ε, δ)-DP satisfying Eq (D.2) can be achieved for any λ ∈ (0, 1).705

In Theorem 1, we select λ ∈ (0, 1) such that ν1’s lower bound can satisfy two

inequalities Eq. (D.3) and (D.4). However, in Corollary 1, our first step is to fix

the noise level ν1 such that it directly satisfies Eq. (D.3) and (D.4). In this case,

λ ∈ (0, 1) is a free parameter. One could select λ ∈ (0, 1) such that the upper

bound for T is maximized.710
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Appendix E. Comparison of Theorem 1 and 2 with Moment Accountants

In this section, we show that our bounds provided in Theorem 1 and Theorem 2

are tight by comparing them with the numerical moment accountants in (Wang

et al., 2019b) and (Zhu and Wang, 2019; Mironov et al., 2019) respectively. We

consider two settings where T = 30, τ = 0.05, N = 500 and T = 200, τ = 0.05,715

N = 2000, which we uses for the experiment over MNIST and SVHN respectively.

Firstly, one thing we need to notice is that, in Theorem 1 and 2, noise level ν is in

nearly inverse proportion to ε when ε is small, where the first term under the square

root in Eq. 4 and Eq. 5 become the major term. However, when ε is relatively

large, like settings we use in our experiment, this relation changes. The slopes of720

the curves lie in [−1,−1/2], at similar rates. Note that when we apply Theorem 1

and 2, we will firstly select λ satisfying all the proposed conditions by line search.

Then we choose the one minimizing the lower bound of ν.

Figure E.8 a) and b) compare Theorem 1 with accountant in (Wang et al.,

2019b) under the two settings above. We can notice that the two curves are almost725

parallel when ε is relatively large. For Theorem 2 and accountant in (Zhu and

Wang, 2019; Mironov et al., 2019), (Figure E.8 d) and e)), we can notice that

their curves are getting close when ε becomes large. If we further choose a large

T = 1000 (τ = 0.05 and N = 2000), these observations are more obvious, which

is shown in Figure E.8 c) and f). It demonstrate that our closed-form bounds are730

tight and only differ from numerical moment accountant by a constant.

Appendix F. Laplacian Smoothing

In Figure F.9, we compare the evolution curves of Gradient Descent (GD)

and Laplacian smoothing Gradient Descent (LSGD). We can notice that the curve

(Figure F.9 (b)) of LSGD is much more smoother than the one of GD.735

Appendix G. Smoothness of Aggregated Gradients

In the following Figure G.10, we show the frequency distribution of federated

average of gradients over a convolutional layer after we permute the ordering

(input channel (I), output channel (O), width (W) and height (H)) or the weight

indices. It follows the same experiment setting as Figure 2, and OIWH is the740

natural ordering. As we can see, the frequency distribution is insensitive to the

ordering and the weight indices permutations.

In Figure G.11, we plot the curves of 〈v, ei〉, which verifies that the original

signal v is smooth in the sense that 〈v, ei〉 → 0 rapidly. Here v is the first
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(a) (b) (c)

(d) (e) (f)

Figure E.8: Comparison of Theorem 1 and 2 with uniform (Wang et al., 2019b) and Poisson moment

accountants (Zhu and Wang, 2019; Mironov et al., 2019). We can observe that Theorem 1 is nearly

parallel to moment accountant (Wang et al., 2019b) and and 2 is close to moment accountant in

(Zhu and Wang, 2019; Mironov et al., 2019) when ε becomes large. For example, in c), the slopes

of least square regression for Theorem 1 and moment accountant are -0.80 and -0.73 respectively,

while the intercepts are 3.31 and 2.29. It shows that the theoretical bound are of similar rates

as numerical moment accountants and differ from moment accountants only by a small constant

e3.31−2.29 = 2.77.

convolutional layer of federated average of gradients 1
S

∑

j ∆
t
j of the CNN model745

defined in Section 5. Here ei, i = 0, 1, ..., 100 are the top 100 eigenvectors of the

graph Laplacian corresponding to the largest eigenvalues.
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(a) (b)

Figure F.9: Demonstration of Laplacian smoothing. We try to use a linear classifier y =
sigmoid(Wx) to separate data points from two distributions, i.e., the blue points (y = 0) and

the green points (y = 1) in (a). We use gradient descent (GD) and Laplacian smoothing gradient

descent (LSGD with σ = 1) with binary cross entropy loss to fulfill this task. Here W is initialized

as (0,0) and its perfect solution would be (c,c) for any c < 0. Gaussian noise with standard deviation

of 0.3 is added on the gradients. Learning rate is set to be 0.1. In (b), we plot the evolution curves

of W in 100 updates, where we can find that the curve of LSGD is much smoother than the one of

GD.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure G.10: Frequency distribution of federated average of gradients v = 1

S

∑

j ∆
t
j in non-DP

federated learning, following experiment setting in Section 5. Here we use the first convolutional

layer (conv1.weight) as an example. In (a)-(d), we permute the ordering of input channel (I), output

channel (O), width (W) and height (H). In (e)-(h), we use the natural ordering but we permute the

output channel weight indices of the convolutional layer with four independent permutations.
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(a) (b) (c) (d)

Figure G.11: Projection 〈v, ei〉 of the first covolutional layer of federated average of gradients
1

S

∑

j ∆
t
j in CNN, over different communication rounds t in non-DP federated learning, following

experiment setting in Section 5. Here ei, i = 0, 1, ..., 100 are the top 100 eigenvectors of the graph

Laplacian corresponding to the largest eigenvalues.
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Appendix H. Detailed Experiment Settings and Other Results

In Table H.7, we list the default hyper-parameter for three classification models.

To comply with traditional neural network training, we replace local iteration step750

K with local epoch E and denote the batch size as b. Here we use decay the local

learning rate ηl by a factor of γ in each communication round.

T E b ηl ηg τ L γ N weight decay

Logistic 30 5 10 0.1 1 0.05 0.4 0.99 1000/500 4e− 5
CNN 200 10 64 0.1 1 0.05 0.3 0.99 2000 4e− 5

LSTM 100 5 50 1.47 1 0.2 5 0.99 975 4e− 5

Table H.7: Default parameters for logistic regression, CNN and LSTM

For all the tasks, we tune the hyper-parameters such that DP-Fed achieves the

best validation accuracy, and then apply the same settings to DP-Fed-LS. During

the parameter tuning, all results are reported based on 1 run. For example, the755

clipping parameter L is involved since a large one will induce too much noise

while a small one will deteriorate training. In Table H.8, we show the result of

different L for CNN, and we set the default L to 0.3. Other parameters are set as

default in Table H.7. We further show the result of different local epoch E and

local batch size b in Table H.9 for the CNN experiment. In Table H.10, we show760

the result of LSTM with different learning rates.

In Table H.11, we show the test accuracy of the curves in Figure 6 in Section 5.2.

In Table H.12, we show the testing accuracy of the curves in Figure 7 in Section 5.4.

L 0.1 0.3 0.5 0.7

σ = 0.0 77.55 84.14 82.75 81.54

σ = 0.5 75.76 85.23 84.79 82.33

σ = 1.0 73.73 85.24 84.70 82.35

Table H.8: Test Accuracy of CNN on SVHN with DP-Fed (σ = 0) and DP-Fed-LS (σ = 0.5, 1)

under (2.56, 1/20001.1)-DP guarantees (z = 1.5) and Poisson subsampling.

53



E, b E = 5, b = 32 E = 5, b = 64 E = 10, b = 32 E=10, b=64

σ = 0.0 81.53 83.73 81.87 84.14

σ = 0.5 82.55 84.65 83.79 85.23

σ = 1.0 83.23 84.92 82.95 85.24

Table H.9: Test Accuracy of CNN on SVHN with DP-Fed (σ = 0) and DP-Fed-LS (σ = 0.5, 1)

under (2.56, 1/20001.1)-DP guarantees (z = 1.5) and Poisson subsampling.

L 1.27 1.47 1.67 1.87

σ = 0.0 38.44 38.83 38.34 37.50

σ = 0.5 38.38 38.81 38.10 38.53

σ = 1.0 39.37 38.93 38.67 39.49

Table H.10: Test Accuracy of LSTM on Shakespeare with DP-Fed (σ = 0) and DP-Fed-LS

(σ = 0.5, 1) under (6.78, 1/9751.1)-DP guarantees (z = 1.6) and Poisson subsampling.

ηl 0.025 0.05 0.1 0.125

z = 3.0 ε = 1.07
σ = 0.0 72.14 70.11 64.88 59.99

σ = 1.0 75.77 76.02 74.33 71.29

z = 3.5 ε = 0.90
σ = 0.0 66.46 66.14 56.48 51.98

σ = 1.0 72.80 73.08 68.46 64.16

z = 3.0 ε = 0.78
σ = 0.0 63.51 58.06 51.16 41.12

σ = 1.0 68.01 66.80 61.31 55.85

Table H.11: Test accuracy of CNN on SVHN with DP-Fed (σ = 0.0) and DP-Fed-LS (σ = 1.0)

with Poisson subsampling, under different large noise level z and different local learning rate ηl in

Figure 6 in Section 5.2.

Uniform Poisson

z = 1.8 z = 2.2 z = 1.8 z = 2.2
σ = 0.0 79.02 76.05 79.19 75.63

σ = 1.0 81.51 77.20 81.45 79.75

Table H.12: Test Accuracy of CNN on SVHN with DP-Fed (σ = 0) and DP-Fed-LS (σ = 1) with

noise level z = 1.8 and z = 2.2 in Figure 7 in Section 5.4. The non-DP accuracy are 90.47 and

90.52 for uniform and Poisson subsampling respectively.
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