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Abstract

Federated learning aims to protect data privacy by collaboratively learning a model
without sharing private data among users. However, an adversary may still be
able to infer the private training data by attacking the released model. Differential
privacy provides a statistical protection against such attacks at the price of sig-
nificantly degrading the accuracy or utility of the trained models. In this paper,
we investigate a utility enhancement scheme based on Laplacian smoothing for
differentially private federated learning (DP-Fed-LS), to improve the statistical
precision of parameter aggregation with injected Gaussian noise without losing
privacy budget. Our key observation is that the aggregated gradients in federated
learning often enjoy a type of smoothness, i.e. sparsity in a graph Fourier basis
with polynomial decays of Fourier coefficients as frequency grows, which can
be exploited by the Laplacian smoothing efficiently. Under a prescribed differ-
ential privacy budget, convergence error bounds with tight rates are provided for
DP-Fed-LS with uniform subsampling of heterogeneous non-iid data, revealing
possible utility improvement of Laplacian smoothing in effective dimensionality
and variance reduction, among others. Experiments over MNIST, SVHN, and
Shakespeare datasets show that the proposed method can improve model accu-
racy with DP-guarantee and membership privacy under both uniform and Poisson
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1. Introduction

In recent years, we have already witnessed the great success of machine learning
algorithms in handling large-scale and high-dimensional data (He et al., 2016;
Devlin et al., 2018; Silver et al., 2016; Berner et al., 2019; Senior et al., 2020).
Most of these models are trained in a centralized manner by gathering all data into
a single database. However, in applications like mobile keyboard development
(Hard et al., 2018), speech recognition (Jiang et al., 2021), and autonomous driving
(Nguyen et al., 2022), sensitive data are distributed in the devices of users, who are
not willing to share their own data with others. Federated learning (FL), proposed
in (McMabhan et al., 2017), provides a solution that data owners can collaboratively
learn a useful model without disclosing their private data. In FL, a server, and
multiple data owners, referred to as clients, are involved in maintaining a global
model. They no longer share the private data but the updated models trained on
these data.

In some cases, however, federated learning is not sufficient to protect the
sensitive data by simply decoupling the model training from the direct access to the
raw training data (Shokri et al., 2017; Fredrikson et al., 2014, 2015). Information
about raw data can still be identified from a well-trained model. In some extreme
cases, a neural network can even memorize the whole training set with its huge
number of parameters. For example, an adversary may infer the presence of
particular records in training (Shokri et al., 2017) or even recover the identity (e.g.
face images) in the training set by attacking the released model (Fredrikson et al.,
2015, 2014). Differential privacy (DP) provides us with a solution to defend against
these threats (Dwork and Nissim, 2004; Dwork et al., 2006). DP guarantees privacy
in a statistical way that the well-trained models are not sensitive to the change of
an individual record in the training set. This task is usually fulfilled by adding
noise, calibrated to the model’s sensitivity, to the outputs or the updates.

One major deficiency of DP lies in its potential significant degradation of the
utility of the models due to the noise injection. Laplacian smoothing (LS) has
recently been shown to be a good choice for reducing noise in noisy gradient, e.g.
in stochastic gradient descent (SGD) (Osher et al., 2022), and thus promising for
utility improvement in machine learning with DP (Wang et al., 2020). However,
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due to the heterogeneity of client data distributions in federated learning, it remains
open how to apply Laplacian smoothing effectively to such settings.

To fill in this gap, we develop in this paper a framework of exploiting Laplacian
smoothing to improve the utility of the differentially private federated learning
(DP-Fed) while maintaining the same DP budget.

1.1. Main Contributions

The major contributions of our work are summarized as follows.

* Our key observation in federated learning is that the federated average
of gradients are often smooth or sparse in Fourier basis with polynomial
decays. If we can capture the smooth or sparse signal in Fourier basis with
corresponding low-pass filters, then we can reduce the variance and get a
better estimate. Therefore Laplacian smoothing of the federated average of
gradients is introduced to the differentially private federated learning, that
can reduce variance with improved estimates of such gradients. With the
aid of 1-D Fast Fourier Transform (FFT), such a Laplacian smoothing can
be efficiently computed on the server. We denote the proposed algorithm as
DP-Fed-LS.

* Convergence bounds under heterogeneous data distributions are developed
for DP-Fed-LS in strongly-convex, general-convex, and non-convex set-
tings under our differential privacy budget bounds. We show how Laplacian
smoothing can help reduce the true dimension factor d in the differential
privacy error term to an effective dimension d, < d, which helps alleviate the
degeneration introduced by DP. The rates on convergence and communica-
tion complexity match those on federated learning without DP (Karimireddy
et al., 2020), while our results extend to include the effect of differential
privacy and Laplacian smoothing; as well as our rates match the ones of
empirical risk minimization (ERM) via SGD with differential privacy in a
centralized setting (Bassily et al., 2019; Wang et al., 2019a). See Table 1 for
a comparison.

* The utility of Laplacian smoothing in DP-Fed is demonstrated by training
a logistic regression model over MNIST, a convolutional neural network
(CNN) over extended SVHN, in an iid fashion, and a long short-term mem-
ory (LSTM) model over Shakespeare dataset in a non-iid setting. These
experiments show that DP-Fed-LS improves accuracy while providing at



least the same DP-guarantees and membership privacy as DP-Fed with two
subsampling mechanisms across different datasets.
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Table 1: Utility guarantee of (e, §)-DP (upper part) and rate of communication round needed to
achieve € accuracy (lower part) for u strongly-convex and non-convex optimization problems. I
denotes that logarithmic factors are ignored here. See Appendix D for more details. } denotes
that no client subsampling is used. In full participation scenarios, 7 = 1 and log(.S) = log(N). *
after DP-Fed-LS further denotes the specific setting of iid (G = 0) with K > 1. The effective
dimension d, = Y% | A; and d, = Y% | A2, where A; < 1 is the eigenvalue of A, '. For
centralized settings (Bassily et al., 2014; Wang et al., 2017, 2020), N denotes the number of data
points, while in federated learning, N denotes the number of clients. DP-SRM (Wang et al., 2019a)
is a distributed setting where /N and n denote the number of clients and number of samples owned
by each client, respectively. They consider data-level DP while we consider user-level DP.

1.2. Background and Related Works

70 Risk of Federated Learning. Despite its decoupling of training from direct
access to raw data, federated learning may suffer from the risk of privacy leakage by
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unintentionally allowing malicious clients to participate in the training (Hitaj et al.,
2017; Melis et al., 2019; Zhu et al., 2019). In particular, model poisoning attacks
are introduced in (Bagdasaryan et al., 2020; Bhagoji et al., 2019). Even though
we can ensure the training is private, the released model may also leak sensitive
information about the training data. Fredrikson et al. (2014, 2015) introduce the
model inversion attack that can infer sensitive features or even recover the input
given a model. Membership inference attacks can determine whether a record is in
the training set by leveraging the ubiquitous overfitting of machine learning models
(Shokri et al., 2017; Yeom et al., 2018; Sablayrolles et al., 2019). In these cases,
simply decoupling the training from direct access to private data is insufficient to
guarantee data privacy.

Differential Privacy. Differential privacy comes as a solution for privacy
protection. Gradient perturbation (Bassily et al., 2014; Abadi et al., 2016) receives
lots of recent attention in ML applications since it admits the public training process
and ensures DP guarantee even for a non-convex objective. Papernot et al. (2017,
2018) propose PATE that bridges the target model and training data by multiple
teacher models. Mironov (2017) proposes a natural relaxation of DP based on
Rényi divergence (RDP), which allows tighter analysis of composite heterogeneous
mechanisms. Wang et al. (2019b) provide a tight numerical upper bound on RDP
parameters for randomized mechanism with uniform subsampling. Furthermore,
they extend their bound to the case of Poisson subsampling (Zhu and Wang, 2019),
which is the same as the one in (Mironov et al., 2019). Our differential privacy
guarantees are based on these two numerical results, and we derive new closed-
form bounds which are more precise or tighter than previous works (Wang et al.,
2019a; Mironov et al., 2019; Bun et al., 2018).

Differential Privacy in Distributed Settings. DP has been applied in many
distributed learning scenarios. Pathak et al. (2010) propose the first DP training
protocol in distributed setting. Jayaraman et al. (2018) reduce the noise needed
in (Pathak et al., 2010) by firstly training DP local models and then performing
naive aggregation. Zhang et al. (2019) propose to decouple the feature extraction
from the training process, where clients only need to extract features with frozen
pre-trained convolutional layers and perturb them with Laplace noise. However,
this method needs to introduce extra edge servers besides the central server in the
standard federated learning.

Geyer et al. (2017) and McMahan et al. (2018b) consider a similar problem
setting as this paper, which applies the Gaussian mechanism in federated learning
to ensure DP. However, Geyer et al. (2017) only train models over MNIST, with
repetition of the data across different clients, which is unrealistic in applications.

5
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McMahan et al. (2018a) use moment accountant in (Mironov et al., 2019; Zhu
and Wang, 2019), and show that given a sufficiently large number of clients (~
760K in their example), their models suffer no utility degradation. However, in
many scenarios, one has to deal with a much smaller number of clients, which
will induce a large noise level with the same DP constraint, significantly reducing
the utility of the models. This motivates us to leverage Laplacian smoothing to
mitigate the utility degradation due to DP, broadening its scope of application, and
we further provide convergence bounds and evaluate the membership privacy of
our method by the membership inference attack, comparing with (Geyer et al.,
2017; McMahan et al., 2018a).

1.3. Paper Organization

This paper is organized as follows. Section 2 presents our proposed algorithm
of differentially private federated learning with Laplacian smoothing (DP-Fed-LS),
and demonstrates our key observation and motivation to apply LS. In Section 3, we
characterize the privacy budget such that our algorithm satisfies (¢, 0)-differential
privacy guarantee. In Section 4, we provide a convergence analysis for DP-Fed-LS,
which characterizes the influences on the optimization error and communication
complexity of differential privacy and Laplacian smoothing with heterogeneous
data. In Section 5, we demonstrate the utility of DP-Fed-LS with three applications,
i.e. MNIST, SVHN, and Shakespeare (non-iid) datasets. Conclusion is given in
Section 6. Appendices collect all the remaining proofs and empirical results in this
paper.

Reproducible source codes can be downloaded at:

https://github.com/zliangak/dp-fed-1s.

2. Differentially Private Federated Learning with Laplacian Smoothing

In this section, we formulate the basic scheme of private (noisy) federated
learning with Laplacian smoothing. Consider the following distributed optimization
model,

N
. 1 d
muinf(w) = ;fj(w),w eR
where f; represent the loss function of client j, and N is the number of clients.
Here f;(w) = E,, f;(w, z;,y;), where E,; is the expectation over the dataset of
the j-th client.
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We propose differentially private federated learning with Laplacian smoothing
(DP-Fed-LS), which is summarized in Algorithm 1, to solve the above optimization
problem. In each communication round ¢, the server distributes the global model
w' to a selected subset out of N total clients. These selected (active) clients will
perform K steps mini-batch SGD to update the models on their private data, and
send back the model update A;’KS, from which the server will aggregate and
yield a new global model w®*!. This process will be repeated until the global
model converges. We call a setting iid if data of different clients are sampled
from the same distribution independently. Otherwise, if data from different clients
are independent but not identically distributed, we will call it non-iid setting
(McMabhan et al., 2017; Li et al., 2019). In non-iid setting, the data from each
client will depend on the her/his characteristic and lack representativeness for the
whole population.

In each update of the mini-batch SGD, we bound the local model w;’i,i €
[K] within a £-ball (£ > 0) centering around w' by clipping: clip(v, L) +
v/max(1, ||v||2/£). In each round, we regard the aggregation of locally-trained
models as the federated average of gradients, where we add calibrated Gaussian
noise n ~ N(0, »*I) to guarantee DP. Then we apply Laplacian smoothing with a
smoothing factor o on the noisy aggregated federated average of gradients (Eq.
(*) in Algorithm 1), to stabilize the training while preserving DP based on the post-
processing lemma (Proposition 2.1 of (Dwork and Roth, 2014)). It will reduces to
DP-Fedif A, =1, eg. 0 = 0.

It is worth to note that Laplacian smoothing is only applied to the global
update in federated average, while in the local update, the general mini-batch
SGD is applied. One may wonder if we apply the same Laplacian smoothing on
both local and global updates like (Wang et al., 2020). However, the empirical
performance of such a proposal will become worse in federated learning, because
the noise scales in local and global updates are significantly different, especially
with heterogeneous non-iid data over clients. Therefore, it is difficult to find a
unified Laplacian smoothing that can achieve a good trade-off between bias and
variance (as discussed below Proposition 1) for both updates. As we shall see in the
below, smoothness or sparsity still holds with the federated average of gradients,
despite the heterogeneity over clients.

2.1. Laplacian Smoothing

To understand the Laplacian smoothing in DP-Fed-LS, consider the following
general iteration:
wt+1 = wt - nAglvf(wtaxiﬁyit)’ (1)

7
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Algorithm 1 Differentially-Private Federated Learning with Laplacian Smoothing
(DP-Fed-LS)

parameters: Server executes:
activate client fraction 7 € (0, 1] initialize w®
total communication round 7’ fort=0to7 — 1do
clipping parameter £ S; + (a random subset of clients se-
local and global learning rate 7, 7, lected by uniform or Poisson subsam-
noise level v pling with ratio 7)
S« |St|
function CLIENTUPDATE(), w') for client j € S, in parallel do
Wy W Al < CLIENTUPDATE(j, w")
fori =0to K —1do end for
gj(wj-’l) < mini-batch gradient At %gA;l(ZJ{1 AL+ N(0, V1)) (%)
wit e wt + cue(w)t -
mgj(w;,z) _ wt,ﬁ) wt+1 — wt 4 At
end for end for
return A% < w;-’K —wt Output w” = S apw'/(3 ay), for

function CLIP(v, £) return v/max(1, ||v||2/L) some a; > 0.

where 7) is the learning rate and f(w, x;,,y;,) is the loss of a given model with
parameter w on the training data {x;,, y;, }. In Laplacian smoothing (Osher et al.,
2022), we let A, = I+ oL, where L € R% is the 1-dimensional Lapla-
cian matrix of a cycle graph, i.e. A, a circulant matrix whose first row is
(14 20,—0,0,---,0,—0) with ¢ > 0 being a constant. When ¢ = 0, Lapla-
cian smoothing stochastic gradient descent reduces to SGD.

Laplacian smoothing can be effectively implemented by using the fast Fourier
transform. To be specific, for any 1-D signal v (a flattened layer of V f(w', z;,, v;,)
in our case), we would like to calculate u = A;lv. Since v = A,u = u — od * u,
where d = [-2,1,0, ...,0, 1]7 and * denotes the convolutional operator. We have
the following equality by exploiting the 1-D fast Fourier transform (FFT)

fft(v) = fft(u) - (1 — o - fft(d)), ()

where - is point-wise multiplication. In other words, the Laplacian matrix L has
eigenvectors defined by the Fourier basis, which diagonalizes convolutions via 1-D
fast Fourier transform. Going back to Eq. (2), we solve u by applying the inverse
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Fourier transform

fft(v)
(O
TS ()
The motivation behind Laplacian smoothing lies in that if the target parameter
v is smooth under Fourier basis, then when it is contaminated by Gaussian noise,
ie. ? =v+mn,v€RYn ~ N(0,20), a smooth approximation of @ is helpful to
reduce the noise. The Laplacian smoothlng estimate is defined by

b5 1= argmin [u = 73+ o[V} ®)

where V is a 1-dimensional gradient operator such that L = VTV. It satisfies
A, 05 = v = v + n. The following proposition characterizes the prediction error
of Laplacian smoothing estimate 0.

Proposition 1 (Bias-Variance decomposition). Let the graph Laplacian have eigen
decomposition Ae; = \;e; with eigenvalues 0 = Ay < \y < ... < \; and the first
eigenvectore; = 1/ \V/d. Then the mean square error (risk) of estimate 1,g admits
the following decomposition,

R(01s) = Ellors — vl = [|(T - AT) H§ +E[Aln|;
_Z —l—a)\ (v, i) +Z —1—0)\

where the first term is called the bias and the second term is called the variance.

In the bias-variance decomposition of the risk above, if o = 0, the risk becomes
bias-free with variance dv?; if o > 0, bias is introduced while variance is reduced.
The optimal choice of o must depend on an optimal trade-off between the bias and
variance in this case. When the true parameter v is smooth, in the sense that its
projections (v, e;) — 0 rapidly as ¢ increases, the introduction of bias can be much
smaller compared to the reduction of variance, hence the mean squared error (risk)
can be reduced with Laplacian smoothing. A bias-variance trade-off with similar
idea for graph neural network can be found in (Nt and Maehara, 2019).

To illustrate the Proposition 1, in Figure 1, we show the efficacy of Laplacian
smoothing. We consider a vector signal y = sin(x) where x is a vector of size
500, whose entries are evenly spaced over [0,30]. We perturb it by Gaussian
noise: § = y + n where n ~ A(0,2?). Then we get the Laplacian smoothing
estimate g := argmin, |u — 7||* + o||Vu|[*>. From Figure 1 (a), we notice
that ;¢ can significantly smooth the noisy signal. Then in Figure 1 (b), we

9
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Figure 1: Efficacy of Laplacian smoothing. In (a), signals from top to bottom are y = sin(z),
where X is a vector of size 500, whose entries are evenly spaced over [0, 30]. § = y + N(0, v?)
with v = 0.1 and gy s with ¢ = 1. In (b), we compute the MSE reduction ratio of Laplacian
smoothing estimator (MSE(3) — MSE(91s))/MSE(y) along different noise level v, where 41,5 :=
arg min,, [|[u — g||* + o||Vu|?.

compute the MSE reduction ratio of Laplacian smoothing estimator: (MSE(y) —
MSE(9.s))/MSE(7) to demonstrate the efficacy of Laplacian smoothing. We
see that, when the noise level v is small, Laplacian smoothing will introduce
higher MSE: the bias introduced by Laplacian smoothing is larger than its variance
reduction. However, once the noise level increases, Laplacian smoothing will
significantly reduce the MSE. The larger the o is, the more MSE reduction achieved.

2.2. Sparsity of Aggregated Gradients in the Fourier Basis

To verify that the true signal v is smooth or sparse with respect to the Fourier
basis, we show in Figure 2 the magnitudes distribution of CNN by layers in fre-
quency domain of v = % > ; A, in non-DP (noise free and no clipping) federated
learning under the fast Fourier transform. We will firstly flatten the weights into
a 1-D vector layer-wise, by the natural order of Pytorch, and then perform the
FFT on them layer-by-layer. We use the experimental setting described in Sec-
tion 5, where our CNN stacks two 5 x 5 convolutional layers with max-pooling,
two fully-connected layers with 384 and 192 units, respectively, and a final soft-
max output layer. The patterns in four different training communication rounds
(t = 1,50,100,200) are shown. One can see that from the log-log plot, as the
communication round and frequency grow, the magnitudes of Fourier coefficients
demonstrate a power law decay with respect to the frequency, indicated by a linear
envelope between log,,(Magnitude) and log,,(Frequency) when log,,(Frequency)
increases. In other words, it shows that the projections of magnitudes (v, ;) — 0 at
a polynomial rate when the frequency in Fourier basis is large enough, supporting

10
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the assumption above for variance reduction. In Figure G.10 in Appendix G,
we also show that the frequency distribution of federated average of gradients
is insensitive to different flattening orders and permutation of the output channel
weight indices of convolutional layer. What’s more we visualize that (v, e;) goes

to O rapidly as ¢ increases in Figure G.11 in Appendix G.

convl.weight, t=1

convl.weight, t=50

convl.weight, t=100

convl.weight, t=200

1072 N 10-4 \ P N 10744 i
7 1M [ 10 \ N o
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Figure 2: Frequency distribution of federated average of gradients v = % > j A§- over different
CNN layers and communication rounds ¢ in non-DP federated learning, following experiment setting
in Section 5. Here we use the first convolutional layer (conv1.weight) and the first fully-connected
layer (fcl.weight) as an example.

2.3. Connection to Mirror Descent

Laplacian smoothing can also be viewed as a special case of mirror descent
(Nemirovskij and Yudin, 1983) by setting ®(w) = 1{jwl|3 . It can be also regarded
as a case of natural gradient descent where the parameter space adopts a Rieman-
nian metric || - ||, (Amari, 1998). In mirror descent, we update our parameters
by

w™t = arg min{n(V f(w', zi,, y;,), w) + Dyp(wllw)},

where Dy, (y||z) = ®(y) — ®(z) — (VP(z),y — x) is the Bregman divergence.
Setting the gradient at w'™ to zero gives

nvf(wt7 'Iit) yzt) + V@(wt“) — Cp(wt) — 0

11
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Since V& (w) = A, w, we have
wt+1 - wt - T]Ac:lvf(wta Liys yif,)a

which reduces to Eq. (1). From this point of view, Laplacian smoothing serves as a
regularizer that constrains the difference between w!*! and w’ to be smooth under
the Fourier basis, which agrees with the discussion above.

In Appendix F, we demonstrate an additional classification example where
Laplacian smoothing reaches improved estimates of smooth signals (parameters)
against Gaussian noise. Among a variety of usages such as reducing the variance
of SGD on-the-fly, escaping spurious minima, and improving generalization in
training many machine learning models including neural networks (Osher et al.,
2022; Wang et al., 2020), the Laplacian smoothing in this paper particularly
improves the utility when Gaussian noise is injected to federated learning for
privacy, which will be discussed in the following sections.

3. Differential Privacy Guarantee

In this section, we provide closed-form DP guarantees for differentially private
federated learning, with or without LS, under both scenarios that active clients are
sampled with uniform subsampling or with Poisson subsampling.

First of all, recall the definition of differential privacy and Rényi differential
privacy (RDP).

Definition 1 ((¢,0)-DP). (Dwork and Roth, 2014) A randomized mechanism M :
D — RY satisfies (£,0)-DP if for any two adjacent datasets D, D' € D differing by
only one element, and any output subset O C R, it holds that

PIM(D) € 0] < ¢ - PIM(D') € O] + 6.

Definition 2 ((«, p)-RDP). (Mironov, 2017) For o > 1 and p > 0, a randomized
mechanism M : D — RY satisfies (v, p)-Rényi DP, i.e. («, p)-RDP, if for all
adjacent datasets D, D' € D differing by one element, it has

Do (M(D)|IM(D")) :=

1 Y@

T log E(M(D)/M(D))" < p.
Lemma 1 (From («, p)-RDP to (¢,0)-DP ). (Mironov, 2017) If a randomized
mechanism M : D — R%satisfies (v, p)-RDP, then M satisfies (p+1og(1/6)/(a—
1),8)-DP forall 6 € (0,1).

12
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In federated learning, we consider the user-level DP. So the terms element and
dataset in the definition will refer to a single client, and a set of clients respectively
in our scenario. There are two ways to construct a subset of active clients. The
first one is uniform subsampling, i.e. in each communication round, a subset
of fixed size S = 7 - N of clients are sampled uniformly. The second one is
Poisson subsampling, which includes each client in the subset with probability 7
independently. If we trace back to the definition, this subtle difference actually
comes from the difference of how we construct the adjacent datasets D and D’. For
uniform subsampling, D and D’ are adjacent if and only if there exist two samples
a € D and b € D' such that if we replace a in D with b, then D is identical with
D’ (Dwork and Roth, 2014). However, for Poisson subsampling, D and D’ are said
to be adjacent if D U {a} or D\{a} is identical to D’ for some sample a (Mironov
et al., 2019; Zhu and Wang, 2019). This subtle difference results in two different
parallel scenarios below.

Theorem 1 (Differential Privacy Guarantee for DP-Fed-LS with Uniform Subsam-
pling). Forany $ € (0,1), € > 0, DP-Fed or DP-Fed-LS with uniform subsampling,
satisfies (£,0)-DP when the variance of the injected Gaussian noise N (0, v?) satis-

fies

7L [14T (log(1/9)
V2V ( X +5>’ X

if there exists \ € (0,1) such that v*/4L?

>2anda—1< 6’22 log(1/(ta(1 +
v2/4L?))), where oo = log(1/5)/((1 — N)e) +

2
3
1.

Theorem 2 (Differential Privacy Guarantee for DP-Fed-LS with Poisson Subsam-
pling). Forany 6 € (0, 1), € > 0, DP-Fed or DP-Fed-LS with Poisson subsampling,
satisfies (£,0)-DP when its injected Gaussian noise N (0, v?) is chosen to be

2T )

if there exists A\ € (0,1) such that v?/£?> > 2 and o — 1 < 322 log(1/(Ta(l +
v2/L?))), where o = log(1/6)/((1 — Ne) + 1.

Nejlv

Theorem 1 and Theorem 2 characterize the closed-form relationship between
(¢,6)-DP and the corresponding noise level v, based on the numerical results in
(Wang et al., 2019b; Zhu and Wang, 2019; Mironov et al., 2019). As we can see
later, they will also serve as backbone theorems when we analyse the optimization
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error bounds of DP-Fed-LS. The two conditions in the above theorems are used
for inequality scaling. In practical implementation, we will do a grid search of
A € (0,1) and select the one that gives the smallest lower bound of v while
satisfying both conditions. After that, we set v to its lower bound.

Proofs of Theorem 1 and Theorem 2 are given in Appendix A and Appendix B.
These closed-form bounds are of similar rates as the numerical moment accountant
(Wang et al., 2019b; Zhu and Wang, 2019; Mironov et al., 2019) up to a constant
(see Appendix E).

4. Convergence with Differential Privacy Guarantee

In this section, convergence and communication complexity bounds are pro-
vided for DP-Fed-LS in Algorithm 1 with uniform subsampling.

First of all, we state several commonly used assumptions adapted for the non-
Euclidean geometry in Laplacian smoothing. In the following statements, the
primal norm || - || = || ||a, and its dual norm [| - || = || - |-, where o = 0 reduces
to the case of Euclidean geometry.

Assumption 1 ((G, B)-BGD (Bounded Gradient Dissimilarity)). There exist con-
stants G > 0 and B > 1 such that

N

1

5 2 V@I < G+ BV (w2, V.
j=1

This assumption describes the heterogeneity of data clients with GG. For non-iid
data, G > 0, while G = 0 and B = 1 reduce to the iid case.

Assumption 2. f, ..., fy are all 5-smooth: for all u and v,

Bllu = vl

Assumption 3. fi, ..., fy are all u-strongly convex:

Vi)~V £ )], <

I
filu) = fi(0) + {u = v, Vfi(v)) + Sllu — vl[>,  forallu,v.
Assumption 4. f, ..., fy are all convex:

fitw) > f;(v) + (u—v,Vf;(v), forallu,v.
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Assumption 5. Let g;(w) be a stochastic mini-batch gradient of client j. The
variance of g;(w) under the dual norm in each device is bounded:

Ellg;(w) — Vf;(w)|2 < (o) forall j € [N].
We further denote ¢*(0) = + Zjvzl (o).

Here for o = 0, it reduces to the common assumption in federated learning
(Karimireddy et al., 2020); for o > 0, variance could be significantly reduced as
the discussions in Section 2.

Assumption 6. fi, ..., fx are all L-Lipschitz: || f;(u) — f;(v)||« < L|lu — v|| for
all u,v.

For simplicity, we use v, to represent v in Theorem 1 as a linear function of the
clipping parameter £. Then we have v, = L1,. We use O to denote asymptotic
growth rate up to a logarithmic factor (including log K, log S), while O up to a
constant.

Now we are ready to present the convergence guarantees for strongly-convex,
general-convex and non-convex loss scenarios. For the non-convex scenario, the
convergence guarantee is for stationary point and the error is measured by the
expected norm of the gradient at the approximate stationary point.

Theorem 3 (Convergence Guarantees for DP-Fed-LS). Assuming the conditions
in Theorem 1 hold, with log(1/6) > e and a proper constant local and global
update step sizes 1, and ny. Let L = KL, ng > /.S, and communication round
T = Q)L%]X;(l/é)’ then DP-Fed-LS with uniform subsampling satisfies (g, 0)-DP
and the following error bounds, where the expectation is taken over the randomness
in SGD in local client update, client selection and noise injection.

* 1 Strongly-Convex: Under Assumption 1, 2, 3, 5, 6, it holds that

2(o) _ G2 214
E(@") = E[f(@")] ~ f(w") < @(< it (1 L@;%)L ! g<1/5>>7

* General-Convex: Under Assumption 1, 2, 4, 5, 6, it holds that

(9 4+ (1 -7)G2 +d,)D, L2 log(l/é))

£(a") = Elf (@)~ (u") < ON N

15
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* Non-Convex: Under Assumption 1, 2, 5, 6, it holds that

0 (1 7)G? + d,) FoBL? log(1/6
E(@") = E|Vf(@)|3-: SO(W e ) 2 ))‘

eN
The effective dimension d, = Z?Zl A;, where \; = 1+2¢7(1—Clos(27rz'/d)) < 1is the
eigenvalue of A", For an optimum w*, Dy = | — w*|3_, Fo = f(w°) — f(w*)

and Co = (1 + %)

The sketchy proof of Theorem 3 can be found in Section 4.1 with details
in Appendix C. For simplicity, we set L = 7, /K L to avoid the clipping effect,
which can be left for future exploration.

In this theorem, dominant errors are introduced by the variance of stochastic
gradients (s%(0)/K), heterogeneity of non-iid data ((1 — 7)G?) and DP (d,), in
comparison to the initial error. Among the three dominant errors, the variance term
¢2(0)/K will diminish while the number of local iteration K grows large enough
(K > 1). What’s more, the heterogeneity term (1 — 7)G? will be reduced if
subsampling ratio 7 is high. Particularly, in iid (G = 0) or full-device participation
(1 = 1) setting, this term will vanish. Therefore the error term introduced by
DP, of effective dimensionality d,, dominates the variance and heterogeneity
terms in these scenarios, whose rates in Theorem 3 matches the optimal ones of
ERM via SGD with differential privacy in centralized setting (Wang et al., 2020,
2017), as shown in the upper part of Table 1 !. In particular when o = 0, the
bounds above reduce to the standard DP-Fed setting. The benefit of introducing
Laplacian smoothing (¢ > 0) lies in the reduction of variance ¢?(o) and the
effective dimension d, < dy = d, although it might increase the initial error D,,.

The following corollary provides the communication complexity of DP-Fed-
LS in Algorithm 1 with uniform subsampling, with tight bounds on the number
of communications 7' to reach an optimization error €. Its proof is deferred to
Appendix C.6.

Corollary 1 (Communication Complexity). Assuming the same conditions in
Theorem 3, the communication complexity of DP-Fed-LS with uniform subsampling
and fixed noise level v, = Lvy independent to T satisfies the following rates to
reach an e-optimality gap,

'In Table 1, the term log(.S) of DP-Fed-LS comes from the numerator of learning rate 7) in
Theorem 4 in Appendix, implicitly involved in O.
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* 1 Strongly-Convex:

T—6 (1+40)?BB> n 2(o)  dyL*V? N (1 +40)v/BG - T)ﬁ
U uKSe = puS2%e /€ ueS )’
* General-Convex:
((1+40)28B?D, _*(0)Dy  dyDyL*} _(1+40)VBD,G _,  D,G
r= O( € T Kse S2¢2 €3/2 +(1=7) €S )’

e Non-Convex:

T— (’)<(1 +40)2BB%F, N (0)BFy  deFoL*V?B (1 +40)BFoG

+(1-171)

€ K Se2 S2e2 €3/2 e2S

FyBG? )
In Corollary 1, we regard that v is a given constant independent to the commu-
nication round 7', such that v, = Lv; and £ = K L. In this case, if v, > 8/3 and

a—1< %% In m, then (&, §)-DP satisfying T < Ae?v? /147 (2812 4 o)
can be achieved for any A € (0, 1) (See Appendix D). Compared with the best
known rates in federated average without DP (Karimireddy et al., 2020), the com-
munication complexity in Corollary 1 involves an extra term for the injected noise
vy in DP, while other terms match the best known rates, which are tighter than
others in literature (Yu et al., 2019; Khaled et al., 2020; Li et al., 2019) with the
same (G, B)-BGD assumption, as shown in the lower part of Table 1.

In spite of the reduced variance and effective dimension mentioned above, LS
might increase the initial error by a factor of (1 + 40)? and a non-dominant part
of the heterogeneity term G by a factor of (1 + 4¢). This is because in the local
update, we only apply the general mini-batch SGD, while we apply LS on the
global update. In this case, to bound the divergence of local parameters, we need
to firstly transform the local update in norm || - |4, to its dual norm || - ||y-1 by
the norm equivalence || - ||a, < ﬁ” +||az1, where Ayin > ﬁ is the smallest
eigenvalue of A '. Therefore, we introduce an extra constant (1 4 40) to the
non-dominant part of heterogeneity term G. The factor (1 + 40)? in the initial
error is a by-product of the learning rate adjusted to the local update divergence.

4.1. Error Decomposition and Sketchy Proof of Theorem 3

To prove Theorem 3, we establish the following Meta Theorem summarizing
a decomposition of the optimization error into four components caused by initial
error, heterogeneous clients data, stochastic gradient variance and differential
privacy noise.
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Meta Theorem. There exists constant step size n;, and 1, Gaussian noise v,
communication round T, and clipping parameter L such that DP-Fed-LS satisfies

8<wT) S ginit (T) + ghete(T) + gvar(T) + gdp(T) (6)

where E(w?) = E[f(w?)] — f(w*) for strongly convex and general convex cases
while E(w") = E||V f(w)||-1 for non-convex case. iy is the initial error; Epere
is introduced by the heterogenezty of clients’ data, &, accounts for the variance of
stochastic gradients, and &gy, is due to privacy noise under Laplacian smoothing.

To see this, the following Theorem 4, 5 and 6 instantiate the Meta Theorem
for three scenarios, i.e. strongly convex, convex, and non-convex cases of loss
functions, respectively, whose detailed proof can be found in Appendix C.

Theorem 4 (;, Strongly-Convex). Under Assumption 1, 2, 3, 5, 6, ny > 1, a; =

- o~ . og(max(e,u? o/ Hos AZ
(1= pifc/2)™", 7 = nimg = min {21 T sm<1+32>} L=mKL,
andT > ——

Algorithm I with uniform subsampling satisfies

~K’
Einit =3 (—uKT/2)Dy < O H,
init = Ofbg €XP Hn ,LLT
S\ -2
S8 2e) L (H ) (0)
var S 2n(1 ) S - ’
& M+ e) =g <O\ TSt

K ~( (14 40)?8G? 2(1 —
gheteS24(1+40)2ﬁ2K2ﬂG2+8ﬁ(1—r)5G2§O<( + o) PG, G T)),

w1 uST

where H, = ( + g )% (o) + (1 —7)G* + L2 Vld" , Dy = [Jw® —w*||3_, and
the effective dzmenswn dy = Zz’:l A;.

Theorem 5 (General-Convex). Under Assumption 1, 2, 4, 5, 6, n, > 1, a; =
L/(T + 1), and 1) := nny = min{ H, gyl \/Q1TK3’ 8K,3(1+B2)} L =mnKL

Algorithm 1 with uniform subsampling satisfies

2 163(1+ B?)(1 +40)?D,,
nit = = Do’ < ’
iTK T

&
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2
5 .2(0) \/(H 72)s%(0) Do
gvar S 2n(1 ) <2 . ’
il +ng) S KST
2id, K L?v? D, L*V3d,
gdp S 2 S 2 S2T k)
) N K 2[24(1 + 40)23D2G2 (1—1)DyG?
ete < 24(1 4 40)2BG? P K? 1—2<\/ T—+4 z
Enete < 24(1 + 40)"BG 77 K=+81)( T)SG = T2 + ST ’
Q1
1) .2 2 4 L*vid, _ 0 (|2
where H, = ( + SK)§ (0)+ 5 ( 7)G* + =52, Dy = ||w” —w*||} , and

the effective a’zmenszon d, = Zi:l A,
Theorem 6 (Non-Convex). Under Assumption 1, 2, 5, 6, n, > 1, a; = 1/(T +

A2,
1), L = n KL and setting i == nn, = mm{\/H TAR? \/Q;;(’Km 8K5(“f3;‘32)},
Algorithm 1 with uniform subsampling satisfies

e 8 3 p< 64ﬂ(1+32)(1+4a) F
init — NTK T ’

S\c2
N S (o) \/ (14 32)s(0) Fof8
<A4Anp(l+ — <4 :
g’UCLT — nﬁ( + 773 ) S — KST )

4ijd, KL2BV} _ o [FoLPviBds

Eap < 52 = 52T

1+ 40)2F2G232 +8\/(1 — 7)FyBG?

K 32(
< 202,42 =2 172 S 22 < i/
Ehete < 32(1 4 40)*B°G* 1" K*+167(1 T)BSG < T2 ST ;

Q2
where H, = (T@LK + SLK)@(U) + %(1 - 7)G* + L2 Vlda , Fo = f(w?) — flw?),
and the effective dimension d, = Zle A,.

Finally, Theorem 3 follows from substituting v in Theorem 4, 5 and 6 by the
one in Theorem 1. As we can see, in the non-DP setting, &4, will reduce to 0 since
we can set v; = 0. In this case, the benefit of introducing Laplacian smoothing
(0 > 0) lies in the reduction of variance ¢*(¢). If we further take a full gradient
descent in each client device, then &,,, will becomes zero, too. In this case, an
implicit benefit of Laplacian smoothing is that it allows us to take a larger step size
with high probability and make training progress in shallow directions effectively,
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which is detailed in Section 3 in Osher et al. (2022). In addition, if G = 0, which
means that different clients have similar optima, then &, will also vanish. In
this case, the federated learning setting will have O(%) convergence rate in convex
and non-convex setting while linear convergence rate in strongly convex setting as
gradient descent. One may notice that if we let G = 0 then sampling ratio 7 no
longer contributes to the errors. Actually, this is because in the initial error term

Eimit» we absorb the T-related term by B?(1 — &)+ < 2B for simplicity.

5. Experimental Results

In this section, we show that Laplacian smoothing in DP-Fed-LS (o > 0)
improves the utility of plain DP-Fed (¢ = 0) with varying ¢ and 6 = 1/N!!
(McMahan et al., 2018b) in (£,0)-DP on three benchmark classification tasks.
In practice, we will firstly flatten the weights of a layer into a 1-D vector by the
natural order in Pytorch, and then apply the Laplacian smoothing layer-wise. Please
see Section 5.2 for details about the orders of flattening. The detailed settings,
parameter tuning and other results are deferred to Appendix H.

Logistic regression with iid MNIST dataset. We train a differentially private
federated logistic regression on the MNIST dataset (LeCun et al., 1998). MNIST is
a dataset of 28 x28 grayscale images of digit from 0 to 9, containing 60K training
samples and 10K testing samples. We split 50K training samples into 1000/500
clients each containing 50/100 samples in an iid fashion (McMahan et al., 2017)
for uniform/Poisson subsampling. We use 10K training samples for validation.

CNN with iid SVHN dataset. We train a differentially private federated CNN
on the extended SVHN dataset (Netzer et al., 2011). SVHN is a dataset of 32x32
colored images of digits from O to 9, containing 73,257 training samples and
26,032 testing samples. We enlarge the training set with another 531,131 extended
samples and split them into 2,000 clients each containing about 300 samples in
an iid fashion (McMahan et al., 2017). We also split the testing set by 10K/16K
for validation and testing. Our CNN stacks two 5 X 5 convolutional layers with
max-pooling, two fully-connected layers with 384 and 192 units, respectively, and
a final softmax output layer (about 3.4M parameters in total) (Papernot et al., 2017).
We pretrain the model over the MNIST dataset to speed up the training without
losing privacy guarantee.

LSTM with non-iid Shakespeare dataset. We train a differentially private
LSTM on the Shakespeare dataset (Caldas et al., 2018; McMahan et al., 2017),
which is built from all works of William Shakespeare, where each speaking role is
considered as a client, whose local database consists of all her/his lines. This is
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a non-iid setting. The full dataset contains 1,129 clients and 4,226,158 samples.
Each sample consists of 80 successive characters and the task is to predict the next
character. In our setting, we remove the clients that own less than 100 samples
to stabilize training, which reduces the total client number to 975. We split the
training, validation, and testing set chronologically, with fractions of 0.7, 0.1, 0.2.
Our LSTM first embeds each input character into a 8-dimensional space, after
which two LSTM layers are stacked, each have 256 nodes. The outputs will be
then fed into a linear layer, of which the number of output nodes equals the number
of distinct characters (Caldas et al., 2018; McMahan et al., 2017).

For demonstration purpose, we apply the privacy budget in Theorem 1 and 2
for the logistic regression. For CNN and LSTM, we apply the moment accountants
in (Wang et al., 2019b)? and (Mironov et al., 2019)* for uniform subsampling and
Poisson subsampling, respectively. For moment accountants, we should provide
a noise multiplier z to control the noise level. Then we can compute the privacy
budget with given communication round and subsampling ratio. For CNN and
LSTM, the selected noise multiplier z are 2.4, 2.2, 2.0, 1.8 and 1.4, 1.2, 1.0, 0.8,
respectively.

5.1. Improved Test Accuracy under the Same Privacy Budget

From Table 2, 3 and 4, we notice that DP-Fed-LS outperforms DP-Fed in
almost all settings. The accuracy are reported based on 5 independent runs. In
particular, when ¢ is small, the improvement of DP-Fed-LS is remarkably large.
We show the average training curves over 5 runs in Figure 3, 4 and 5, where we
find that DP-Fed-LS converges slower than DP-Fed in both subsampling scenarios.
However, DP-Fed-LS will generalize better than DP-Fed at the later stage of the
training. This phenomenon further validates our founding in Theorem 4-6, and
the discussion after Theorem 3 and Corollary 1 that, Laplacian smoothing will
introduce higher initial error and a non-dominate part the heterogeneity, but the
model will finally benefit from the reduced effective dimensionality d,, which
become dominant term in the later stage of the training.

https://github.com/yuxiangw/autodp
Shttps://github.com/tensorflow/privacy/tree/master/tensorflow_
privacy/privacy/analysis
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€ 6 7 8 9
oc=0.0 8287097 84.67£0.54 84.99+1.01 85.41 £ 0.57
oc=10 84.77+0.28 8590+0.22 86.32+040 86.63+0.80

Uniform 50 83024062 8543+£1.00 85784049  86.22 +0.42
0=30 84734091 85.62+0.58 86.40+0.50 86.42 + 0.54
: 6 7 8 9
7 =00 83904+028 8545+024 8630074 86.53+0.79
Poicson O =10 85644052 86514046  86.61+0.67  86.95%0.56

oc=20 8549£028 86.34£052 86.79+0.28 87.23+0.53
c=30 8552+0.72 86.51+0.28 86.63+£0.70 86.85£0.32

Table 2: Test accuracy of logistic regression on MNIST with DP-Fed (¢ = 0) and DP-Fed-LS
(0 = 1,2,3) under different (,1/1000'1) and (£,1/500'1)-DP guarantees for uniform and
Poisson subsampling.

€ 2.83 3.15 3.53 4.05
0c=00 76.14+077 7856=+0.55 80.28+£0.73  82.05£0.38
0c=05 8067057 8218=£0.17 8294+£0.35 84.17%£0.64

Uniform 10 80824024 82174036 83.19+019 8440+ 0.33
c=15 81.02+0.47 81384075 82934023 83.51 +0.51
5 1.39 155 174 2.00
o =00 7593+024 7823+085 79.94+088 82.01 %042
Poisson O =00 80684030 81864036 8287+0.39 83.94+0.39

c=10 80.82+043 8210+0.23 82.89+0.46 83.85+0.37
c=15 80.79+034 81.80+0.33 82.83+£0.61 83.74 £0.23

Table 3: Test accuracy of CNN on SVHN with DP-Fed (o = 0) and DP-Fed-LS (¢ = 0.5,1,1.5)
under different (g, 1/2000%)-DP guarantees and subsampling methods.

€ 17.69 22.43 27.25 39.90
0c=00 3879+054 39.06+0.18 41.48+£0.45 43.96=+=0.20
c=05 3997+0.58 41.44+0.39 43.66£0.69 45.49+0.47

Uniform = 40 40364039 41904020 4429+034 4535+ 027
c=15 40.76+0.48 42.04+0.39 43.68+043  44.91 4 0.32
: 823 10.41 14.05 20.92
o =00 3858+042 3984+025 41.49+041 4378042
Poisson O =00 39444047 40874031 43704055 45.24+0.45

c=10 40.73+0.34 4220£0.28 44.06+0.55 45.03+0.11
oc=15 40.60+0.34 4227+0.36 43.92+0.26 45.06 + 0.36

Table 4: Test accuracy of LSTM on Shakespeare with DP-Fed (o = 0) and DP-Fed-LS (o =
0.5,1,1.5) under different (g,1/975!:!)-DP guarantees and subsamplings.
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Figure 3: Training curves of logistic regression on MNIST with DP-Fed (¢ = 0), DP-Fed-LS
(0 = 1,2,3). (a) and (b): training loss and validation accuracy with uniform subsampling and
(7,1/ 10001-D-DP. (c) and (d): training loss and validation accuracy with Poisson subsampling and

(7,1/500'1)-DP.
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Figure 4: Training curves of CNN on SVHN with DP-Fed (¢ = 0), DP-Fed-LS (o = 0.5,1, 1.5). (a)
and (b): training loss and validation accuracy with uniform subsampling and (3.53,1/2000%1)-DP.
(c) and (d): training loss and validation accuracy with Poisson subsampling and (1.74, 1/2000:!)-
DP.
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Figure 5: Training curves of LSTM on Shakespeare dataset with DP-Fed (¢ = 0), DP-Fed-LS
(0 =0.5,1,1.5). (a) and (b): training loss and validation accuracy with uniform subsampling and
(27.25,1/97511)-DP. (c) and (d): training loss and validation accuracy with Poisson subsampling,
and (14.05,1/975%1)-DP.
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5.2. Stability under Large Noise, Learning Rate and Different Orders of Parameter
Flattening

In Figure 6, we show the training curves where relatively large noise multipliers
z are applied with Poisson subsampling and different local learning rates 7;. Here
our CNNs are trained for 1 run from scratch without pretraining. When the noise
levels are large, the training curves fluctuate a lot. In these extreme cases, DP-Fed-
LS outperforms DP-Fed by a large margin with the same learning rate selection.
For example, when 2z = 3.5 and n; = 0.1 or 1, = 0.125, validation accuracy of
DP-Fed starts to drop at the 25th epoch while DP-Fed-LS with the same learning
rate can still converge. Overall speaking, DP-Fed-LS is more stable against large
noise levels and the change of local learning rate than DP-Fed.

Before we apply fast Fourier transform, we will firstly flatten the model’s
parameters into a 1-dimensional vector layer-wise. In this case, the order of the
flattening matters. For example, the weight of a convolutional layer is ordered by
output channel, input channel, width and height ("OIWH?”) by default in Pytorch.
One can apply another ordering, like "OIHW” or "7OHWI” for flattening. In Table 5,
we demonstrate that DP-Fed-LS is insensitive to the order of parameter flattening
and consistently performs better than DP-Fed. The accuracy is reported based on 5
independent runs.

e
o

I
~

val accuracy
val accuracy

e
N
val accuracy

0 50 ,100 150 0 50 ,100 150 200 0 50 . 100 150 200
communication round communication round communication round

(a) (b) (©)

Figure 6: Training curves of CNN on SVHN where large noise levels are applied, with Poisson
subsampling and different local learning rates 7;. From left tor right, noise multiplier z = 3.0, 3.5
and 4.0. For DP-Fed-LS, we set o = 1.

5.3. Comparison with Other Denoising Estimators

In Table 6, we show the results of another two adaptive denoising estimators:
the James-Stein estimator (JS) and the soft-thresholding estimator (TH), which have
been shown to be useful for high dimensional parameter estimation and number
release (Balle and Wang, 2018), comparing with other denoising estimators (Barak
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Order OIWH OIHW OWHI OHWI
=05 8294+0.35 8291+0.29 8325+£045 83.20£0.18
Uniform = 1.0 83.19+0.19 82924039 83.66£0.40 83.54+0.48
oc=15 8293+023 8250+£046 83.34+£0.50 83.10+0.33

Order OIWH OIHW OWHI OHWI
oc=05 8287+039 8282+0.07 83.13+0.41 82.87+0.61
Poisson 7 — 1.0 8289+046 83.19£0.16 83.11+£042 8&83.31+0.64
oc=15 82.83+£0.61 8245+0.64 82.82+£0.37 83.20+0.37

Table 5: Test accuracy of CNN on SVHN with DP-Fed-LS (o0 = 0.5,1,1.5), with different
unfolding ordering of convolutional kernel, under (3.53,1/20001)-DP guarantees along with
uniform subsampling, and (1.74,1/2000%:1)-DP guarantees along with Poisson subsampling. “O”,
“I”, “W”, and “H” represent for output channel, input channel, width, and height. OIWH is the
default setting. The accuracy for pure DP-Fed is 79.89 £ 0.48 and 80.28 =+ 0.66 respectively.

et al., 2007; Hay et al., 2009; Williams and McSherry, 2010; Bernstein et al., 2017).
As mentioned in (Balle and Wang, 2018), thanks to the fact that we know the
parameter v exactly, both JS and TH estimators are completely free of tuning
parameters. As we can see in Table 6, neither of these two estimators performs
well in our scenario, compared with Laplacian smoothing in Table 3, indicating
that high dimensional sparsity assumption (Balle and Wang, 2018) does not hold
here on federated average of gradients.

e

2.83

3.15

3.53

4.05

. J
Uniform TH

34.85 £ 1.56
17.86 £1.89

35.92+1.45
18.22 £1.80

37.55 £ 2.00
18.37 £ 0.81

38.65 £1.48
18.96 £1.24

9

1.39

1.55

1.74

2.00

. J
Poisson TH

35.61 £1.98
17.05 £2.44

36.25 £ 1.55
16.55 £1.94

37.01 £1.02
17.84 £1.69

38.81 £2.01
18.17+£1.49

Table 6: Test accuracy of CNN on SVHN James-Stein (JS) and soft-thresholding (TH) estimators
(Balle and Wang, 2018) under different (&, 1/2000:!)-DP guarantees and subsampling methods
(the same settings as the ones we used in Table 3).

5.4. Membership Inference Attack

Membership privacy is a simple yet quite practical notion of privacy (Shokri
et al., 2017; Yeom et al., 2018; Sablayrolles et al., 2019). Given a model 6 and
sample z, membership inference attack is to infer the probability that a sample 2
belongs to the training dataset (Sablayrolles et al., 2019). Specifically, a test set
T = {(zi,m;)}, is constructed with samples from both training data (m; = 1) and
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hold-out data (m; = 0), where the prior probability P(m = 1|7T) = py. Then a
successful membership attack can increase the excess probability using knowledge
of model 8, P(m(z) = 1|0, z € T)—p7. In (Sablayrolles et al., 2019), Sablayrolles
et al. define (g, d)-membership privacy, and show that (¢, §)-membership privacy
can guarantee an upper bound P(m(z) =16,z € T) — pr < § + 0.

To evaluate the membership information leakage of models, threshold attack
(Yeom et al., 2018) is adopted in our experiment. It is widely used as a metric to
evaluate membership privacy (Jayaraman and Evans, 2019; Wu et al., 2020; Yeom
et al., 2018). It bases on the intuition that a sample with relatively small loss is
more likely to belong to the training set, due to the more or less overfitting of ML
models. Specifically, the test set 7 consists of both training and hold-out data of
equal size (thus pr = 0.5). Given a sample z = (z,y) and a model M,,(z), we
calculate the loss ¢(y, M,,(x)). Then we select a threshold ¢: if ¢ < ¢, we regard
this sample in the training set; otherwise, it belongs to the hold-out set. As the
threshold varies over all possible values in (0,2 ), where U is the upper bound for
¢, the area under ROC curve (AUC) is used to measure the information leakage. In
perfectly-private situation, the AUC should be 0.5, indicating that the adversary
could not infer whether a given sample belongs to the training set or not. The larger
the AUC, the more membership information leaks.

Improved membership privacy. We follow the CNN setup here while we only
split 64K data into 500 clients and set 7 = 0.2 for training (Jayaraman and Evans,
2019; Shokri et al., 2017; Yeom et al., 2018). Our test set 7 for membership
inference attack includes 10K training data and 10K testing data of SVHN. In
Figure 7, we show the AUC values of threshold attack against different models.
We observe that Non-DP model actually suffers high risk of membership leakage.
In addition, applying DP can significantly lower the risk. Comparing with DP-Fed,
DP-Fed-LS may even further improve the membership privacy.

6. Conclusion

In this paper, based on the observation that in federated learning the average of
gradients is often sparse or smooth under a cyclic graph Fourier basis, Laplacian
smoothing is introduced for the variance reduction of the noisy federated average
of gradients to improve the generalization accuracy with the same differential
privacy guarantee. Privacy bounds in closed-form are given under uniform or Pois-
son subsampling mechanisms. Optimization error bound is decomposed into four
components caused by heterogeneous data distribution of clients, stochastic gradi-
ent variance, differential privacy, and a non-dominant initialization, which sheds
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Figure 7: AUC of threshold attack of different model on SVHN. (a) and (b): uniform subsampling
with noise multiplier z = 1.8 and z = 2.2 for DP models. (c) and (d): Poisson subsampling
with z = 1.8 and z = 2.2. The larger the AUC, the more membership information leakages. For
DP-Fed-LS, the LS parameter o = 1.

light on the theoretical understanding of the effectiveness of Laplacian smoothing.
Experimental results show that DP-Fed-LS outperforms DP-Fed in both iid and
non-iid settings, regarding accuracy and membership privacy, demonstrating its
potential in practical applications.
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Appendix A. Proof of Theorem 1

We firstly introduce the notation of ¢5-sensitivity and some lemmas for future
reference.

Definition 3 (/,-Sensitivity). For any given function f(-), the {y-sensitivity of f is
defined by
A(f) = max |[f(D)—= f(D)]2,

[D—Dr[l1=1

where |D — D'||; = 1 means the data sets D and D' differ in only one entry.

Lemma 2 (Composition Theorem of RDP ). (Mironov, 2017) If k randomized
mechanisms M; : D — R, fori € [k], satisfy («, p;)-RDP, then their composition
denoted as (M (D), ..., My(D)) satisfies (c, S | pi)-RDP. Moreover, the input
of the i-th mechanism can be based on outputs of the previous (i — 1) mechanisms.

Lemma 3 (RDP for Uniform Subsampling). Gaussian mechanism M = f(D) +
N(0,v?) applied on a subset of samples drawn uniformly without replacement
with probability T satisfies (cv, 3.57a/v?)-RDP given v* > 2 and o — 1 <
2v%1n (1/a7(1 + v2)), where the sensitivity of f is 1.

Remark 1. Comparing with the result (o, 57%a/v?) in (Wang et al., 2019a), and
(o, 672 /v?) in (Bun et al., 2018), Lemma 3 provides a tighter bound while relaxing
their requirement on v? that v*> > 1.5 and v* > 5 respectively. The proof of
Lemma 3 is deferred to Appendix A.l.

Here we are going to provide privacy upper bound for FedAvg (DP-Fed). We
R tK . ..
drop the superscript A from w;™ for simplicity, then

wt+1:wt+%<2w§—5-wt+n>, (A.1)
JEM:
Similarly, for the one with Laplacian Smoothing (DP-Fed-LS), it becomes
@tH—tDt—i-%A;l(Z@;—S-ﬁ)t—i-n), (A.2)
JEM;

where n ~ N (0,21), and w§- is the updated model from client j, based on the
previous global model w'.
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Proof. In the following, we will show that the Gaussian noise NV (0, ?) in Eq. (A.1)
for each coordinate of n, the output of DP-Fed, w, after T’ iteration is (¢,0)-DP. We
drop the superscript K from w;.’K for simplicity.

Let us consider the mechanism M; = %Z]I;l wt — w' 4+ ¢n with query
QG = Zjvzl wh — w* and its subsampled version M, = § 37\, w! — w' + gn.
Define the query noise n, = n/S whose variance is v2 := v /5?%. We will firstly

q
evaluate the sensitivity of w§. For each local iteration

uﬂ; — w§» — mg(w;)

w} «— w' + clip(w} — w', L),

where clip(v, £) <= v/max(1, ||v[]2/L). All the local output A% < w’ —w* will be
inside the /,-norm ball centering around w' with radius £. We have [,-sensitivity
of q as A(q) = [Jw! —w!|]2/S < 2L/8S.

According to (Mironov, 2017), if we add noise with variance,

1472aT L?

2 _ @2 2
— S = —_
g Ya Ae
the mechanism M, will satisfy (o, aA*(q)/(2v7)) = (a, \e/77°T)-RDP. By
Lemma 3, M, will satisfy (a,\e/T)-RDP provided that v2/A%(q) = 1?/(S?A%(q)) >

2v,

2anda—1 < W((?q) log (1/7a(1 + v2/A?%(q))). By post-processing theorem,

M, = ASMN(S D e, wh — w' 4 gm) will also satisfy (o, \e/T')-RDP.
Let o = log(1/6)/((1 — A)e) + 1, we obtain that M, (and M,) satisfies

(log(1/6)/(1 — X)e + 1, A\e/T)-RDP as long as the following inequalities hold

(A.3)

2 2 2
v __v___ v 2 A4
Alq)  SAq) 1273 (A9
and ) |
a—1< 21 . (A.5)

6L£2  Ta(l 4 v2/4L2)

Therefore, according to Lemma 2, we have w' (and ") satisfies (log(1/9)/(1—
A)e+1, Ate/T)-RDP. Finally, by Lemma 1, we have w’ (and w°) satisfies (Ate /T +
(1 — A)e, 6)-DP. Thus, the output of DP-Fed (and DP-Fed-LS), w (and w), is (&,0)-
DP. 0
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Appendix A.l. Proof of Lemma 3

Proof. This proof is inspired by Lemma 3.7 of (Wang et al., 2019a), while we
relax their requirement and get a tighter bound. According to Theorem 9 in (Wang
et al., 2019b), Gaussian mechanism applied on a subset of size S = 7 - N, whose
samples are drawn uniformly satisfies («, p')-RDP, where

1 2 (¢ : p(2) p(2) - i (G=1)p()
_1log (1+T <2> m1n{4(e 1),2e }4—;7 i 2e

where p(j) = j/2v%. As mentioned in (Wang et al., 2019b), the dominant part in
the summatlon on the right hand side arises from the term min {4(e”® —1), 2e7() }
when 22 is relatively large. We will bound this term as a whole instead of bounding
it firstly by 4(e”® — 1) (Wang et al., 2019a). For * > 2, we have

pa) < =

min{4(ep(2) - 1), 26'0(2)} = min {4(61/V2 - 1), 261/V2} <6/v°. (A.6)

For the term summing from j = 3 to «, we have

« «
M« . . . G—1)j G=1j
§ :7.]( _)QG(J—l)p(J) — § :7-3( )26 27 < § :7.9_ e 27
j=3 J j=3 J
« : 2 «
ol (e-1) « (a=1)
< 1 2e mT 27'2? E 202 a2
j=3 ’ Jj=3
N (A.7)
[0 - (a=1)j
_7_2 ZTJ 200720752
2) 4
Jj=3

3(a—1) 3(a—1)
o\ Tae 27 « Tae 22
ST T ST 3(a—1) 7
2) 1~ raew? 2/1— rae 22
where the first inequality follows from the fact that (j) < C;—] and the last inequality
follows from the condition that Tov exp (av — 1)/(21%) < 1. In this case, given that

2 1
1< ln— A8
Qo _3u nTa(1+V2), (A.8)
we have N
2 () ei-00) < 2( @) L (A9)
g j - 2)v?
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Combining the results in Eq. (A.6) and Eq. (A.9), we have

, 1 a 672 a\ 72
1 1 — —
pla) a_1% * 2/) v? * 2 ) v?

1
72 (a) T 3.5a1% V2.

IA

“a—1 2 )12

Condition Tavexp (o« — 1) /(21%) < 1 directly follows from Eq.(A.8). O

Appendix B. Proof of Theorem 2

Lemma 4 (RDP for Poisson Subsampling). Gaussian mechanism M = f(D) +
N(0,v?) applied to a subset that includes each data point independently with prob-
ability T satisfies (., 2% /v?)-RDP given v* > 2 and o — 1 < 212 log (1/ar(1+
1/2)), where the sensitivity of f is I.

Remark 2. The bound in Lemma 4 matches the bound of (o, 2at?/v*)-DP in
(Mironov et al., 2019). However, we relax the requirement that v > 4 used
in (Mironov et al., 2019), and simplify the multiple requirements over « that
l<a< ”QTC —2Inv and a < lgﬁiﬁ;;ﬂ;&;’; where C = In (1 + ﬁ), to
only one requirement. This makes our closed-form privacy bound in Theorem 2
below more concise and easier to implement. The proof of Lemma 4 is deferred to

Section Appendix B.1.

Proof. The proof is identical to proof of Theorem 1 except that we use Lemma 4
instead of Lemma 3. According to the definition of Poisson subsampling, we have
ly-sensitivity of q; as A(q) < [[w![2/S < £/S. We start from the Eq. (A.3) in
the proof of Theorem 1. If we add noise with variance

V=572 = @ (B.1)
the mechanism M, will satisfy (o, aA%(q)/(2v2)) = (o, 255)-RDP. According
to Lemma 4, M, will satisfy («,Ae/T)-RDP provided that

2 2 2
AZ’Elq) B SQAVQ(Q) - % - g’ ®-2
and )
a—1< 2 ! (B.3)

< .
=32 ol + v?/L?)
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By post-processing theorem, M, = A7 (1> jens, W — w' 4 gn) will also
satisfy (a, A\e/T')-RDP. Let o = log(1/0)/((1 — A)e) + 1, we obtain that M, (and
M,) satisfies (log(1/6)/(1—N)e+1, Ae/T)-RDP. Therefore, according to Lemma
2, we have w' (and w") satisfies (log(1/9)/(1 — A)e + 1, Adte/T)-RDP. Finally, by
Lemma 1, we have w' (and w') satisfies (Ate /T + (1 — \)e, 6)-DP. Thus, the output

of DP-Fed (and DP-Fed-LS), w (and w), is (¢,0)-DP. ]

Appendix B.1. Proof of Lemma 4

Proof. According to (Mironov et al., 2019; Zhu and Wang, 2019), Gaussian mecha-
nism applied on a subset where samples are included into the subset with probability
ratio 7 independently satisfies («, p')-RDP, where

pla) < i 1 log ((ow —T7+ D)1 —-7) 1+ (CQY) (1 — 1) 272er?

+Z( ) (1—7)" Jrdeli=1)p (]))

(67

where p(j) = j/20°.
We notice that, when o is relatively large, the sum in right-hand side will be
dominated by the first two terms. For the first term, we have

ar —7+1
— V1= e =2 = © &
(ar =7+ 1)1 —7) "1+ (a—Dr1

where the first inequality follows from the inequality that

=1, (B.4)

(I+2)" <

forz € [-1,0],n € N.
—nx

For the second term, we have

o[ 2,5 a\ 1 a) 7
T (2)(1—7') <7 <2) <rT (2) 52 (B.5)

given that % > g. The summation from j = 3 to « follows Eq. (A.9) given that

2 1
1< ln—FF—. B.6
“ =3" nTOé(l—i-I/Q) (B.6)

Combining Eq. (B.4), (B.5) and (A.9), we have
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Appendix C. Proof of Theorem 3

Theorem 3 follows from substituting v; in Theorem 4, 5 and 6 by the one in
Theorem 1. For completeness, we wrap it into a corollary below.

Corollary 2. Assume that log(1/0) > € n, > V'S, the conditions on a;, L and
7 in Theorem 4, 5 and 6, as well as the assumptions in Theorem 1. Algorithm 1
with uniform subsampling satisfies (¢, 0)-DP and the following optimization error
bounds.

* 1 Strongly-Convex: Select T = G)L%]X;(I/é) with T > #d% = where 1) follows
from Theorem 4. Then

Bl ") - ) < O DL A= DO s G 0el/0)),

e General-Convex: Set'l’ — &)L%]Z;(l/é)' Then

) < V@K T A= 1)GF d) D, L og(1]0)
E[f(a")] - f(w) < s

e Non-Convex: Set'T = COL285+§(1/5)- Then

e \/(gQ(a)/K +4(1 — 7)G? + d, ) Fy L2 log(1/9)
E|[V f(@")|3: < ° |

The proof of Corollary 2 is deferred to Appendix C.7.
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Appendix C.1. Proof of Lemmas

We firstly provide some useful Lemmas.

Lemma 5 (Noise reduction of Laplacian smoothing). Consider Gaussian noise
n(L) ~ N(0,V2I), where v is the noise level scaled by L, i.e. vy = Lv,. We
have

Eln(L)|3. < L2,

d
where d, = d(, and (, = 5 >77_. 1+26_201005(2m/d).

Proof of Lemma 5. The proof is inspired by the proof of Lemma 4 in (Wang et al.,
2020). Let the eigenvalue decomposition of A, ' be A;' = UAUT, where A is a

diagonal matrix with A; = —5-—-— @=i7a)» We have

E[n(£)[[3-1 = E[Tr(n" UAU 'n)]
=Tr(UAU 'E[nn"))

= v2Tr(UAU)
a 1
_ .2
— 12:; 1+ 20 — 20 cos(27i/d)
= L*Vd,
eso  where CU = é Z?:l Ai. O

Lemma 6 (Bounding the divergence of local parameters). Following convexity,
Assumption 1, 2, 5, we have

1 N K 4

%2 D Ellw' — w3,
j=1 i=1

1

A2

min

< AQL <4K377l2G2 + 8K377l2]326(f(wt) — f(w*)) + 2K27712§2(0))

min

< (4K3nfG2 FARPRBY fh) 2 + 2K2m2€2(0))

where w;’ denote the model of client j in i-th iteration of the t-th communication
round.
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Proof of Lemma 6. The proof of is inspired by Lemma 8 in (Karimireddy et al.,
2020) while we consider the A, norm. Recall that the local update made on client

]ISU} —wM 1—1—771ij( bt z7). When i = 0, thew will just equal w?.
For 7 21 we have

Ellw;" ~ wt||i(,
= Efwy™" —w' —mg;(w; DI,
=Efu — ' —meg( i 1)I|3§C,+771E||gg( 7 = V@R,

< Eljwy™ —w' =V f(wi IR, + A2 2 Ellg; (™) = V fi(wy D3

min

’i Z /r’
<E[uy™ —w' =V iR, + 25 )

min

AQ

min

1 i i 712
< (1= gy Bl = R, KRIVA IR, + o)

1 i 2K n? i1
< (1_ﬁ)EHw§" l_wt”ia A2l 2E||Vf]( ; )_ij(wmﬁ;l

min

2K77 n;
A2 = vaj( )“A—1 + A2, JZ(U)
1 2K n?[3? i 2K} n
< (1 T K1 + AQZ EHU}; ' _thiU AL - |V f(w )HA—l + A2l 12(0)
1 ti1 t2 2K} U
< (1 - m)E”% -—w ||Aa AZ |V £ (w )||A—1 + Alzmn j(U)

where the last inequality comes from the assumption that 7, < ‘;I'gg Unrolling the
recursion above, we have
i

[ 1 ! k
Ellw)’ — [}, < 15— Y KRV @)+ (o)) (1 TAE ) >>

min j_ —1

2K
< 2 (BKRIVEWIIE + o))
where the last step is due to

> (1)~

= TRT)

)i-i—l

IA



Taking average over ¢ and 7, and considering Assumption 1, we have

1 N K '
LS S Bl — R,

j=1 =1

S < Z4K3 IV £ (w )\|§01+2K2m2g2(0)>

min

(4K3n,262 AR BV s + 2K2n?<2<a>)
1
< o <4K377 G* 4+ 8K3n B2B(f(wt) — f(w*)) + 2K27h2§2<0)>7

min

which completes the proof. 0

Lemma 7 (Perturbed Strongly Convexity (Karimireddy et al., 2020)). TThe fol-
lowing holds for any [3-smoothness and ji-strongly convex function h, and for any
x,Y, 2 in the domain of h:

(Vh(x), 2 =) 2 h(z) = h(y) + Ly — =1 = Bl — >

Lemma 8 (Subsampling Variance). (Lemma B.1 in (Lei and Jordan, 2017)) Given
a vector space X € R with norm || - ||, we consider a dataset x1, x5, ...,xn € X.
We select a subset S with size S from the given dataset without replacement. The
subsampling mechanism can be uniform subsampling or Poisson subsampling. The
variance of the subset’s average can be bounded by the following upper bound.:

N
S—1\1 .
Si - = 5(- 525 A ke

]ES ]:1

Appendix C.2. Setup
Before the proof of the main theorem, we denote the sever update in round ¢ as
A', which can be expressed as:

At:—ﬁiirlw( N+ A n(L)
§ b e T S



ess where 7 = nn,, n(L£) ~ N(0,v2I), and v, is the noise level as a proportional

function of the clipping parameter £. We get v, = Lv; in Theorem 1 with clipping

parameter L.

Let the eigenvalue decomposition of A;! be AJ' = UAU', where A =
diag(A;) is a diagonal matrix with
1
A= s
1+ 20(1 — cos(2mi/d))
and denote the smallest eigenvalue of A ' by
: 1 S 1

min .
1<i<d 1 4 20(1 — cos(27i/d)) — 1+ 4o
Appendix C.3. Proof of Theorem 4
Proof. We start from the total update of a communication round

Amin =

Ellw™ — |,

=E|jw' + A" — w*

2

7j=1 =1 Agl
N————
A Az
1 s K 2
t,1
+8] g 30 u)
j=1 i=1 A
As
(C.1)

IN
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b

b
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gﬁ
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=
N——

. : 2775 Al ti £2 UMK w12
< 2K (1) — £) + 2SSttt



As for A, by the equation EX? = (EX)? + E(X — EX)?, we have

' I N +ﬁ2EH ié(gxw;f")—wj(w;’i))

=1 =1 =1

660
2

At

Ay < R

-~

(C.2)

B1

For B,, we have
s K
B =i’k ’% Z Z (Vf(w)") = Vfi(w') + V f;(w'))
522 (9 - V)
e NOK
N LIV - VAWl

+ 2772K2EH% le Vfi(w") = Vf(w') + V f(w)

2

A71

o

+ 2772K2EH Z Vfi(w

2

Al

AL

2

A1
22K B2 o Z. i
< T DL D Bl — o}, + 27K VA ()3
j=1 i=1

+2~2K2]EH ZWJ Vf(wh

2

At

KB & Z- ~
<=5 ZZEHw? — w3, + 272K |V f ()3
j=1 i=1
vapre (1 2) (04 BV
N/ S As
2 2 N
< P S S gt — ut,
7j=1 =1
472 K2 S
PR+ BB() - ) + L (1- 3 )

(C.3)

where the second last inequality comes from Assumption 1 and Lemma 8. When
we apply Lemma 8, we set z; = f;(w') and 7 = + Zjvzl f;(w"). What’s more,
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we use the inequality 1 — N—ll < 2(1 — i). The last inequality comes from

ess Assumption 2. As for By, we apply Assumption 5, then we have

S K 2

N 1 i i
B <5 § 303 () - va )|
j=1 i=1 A;
| S.K ‘ C4)
< PRy 30D lgslwl) = VA ~
7j=1 =1
< 773 $*(0)
By Lemma 5 and the assumption that 7, < W, whence 71, K3 < %, we
have )
t+1 12 nuk ¢ 12 ~ t *
Ellw™ —w*[}, < 1—7 Efw’ —w*|}, — 7K (f(w') = f(w"))
~0 277272, 2
i n°K ny K*L*vid,
+ 308+ ZZEW —wly, + s} o) + T
j 1 =1
kel
402 K? S
11— —)G?
(%)
According to Lemma 6, and the assumption 7, > 1 ( = ngn > n;) and 7 <
A?nin
SKAn. (LFBY) for C, we have

| MK '
36~ D D Ellwy" — w3,
j=1 i=1
120m? K3BG?*  6nqn?BK? ¢*(o 247m? K3 B? 3? .
l + l ( ) + 1 (f(wt) . f(w ))

= A2 A2, A2,
12 K362 2K 1. , )
< —7 5 S (0)+§77K(f(w ) — f(w"))
mln ng

(C.5)
In this case,

Elw™t! — w3, < (1 - T)Euwt —w*|}, - K (f(w') = f(w?))
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Reorganizing the terms, we have

2 nuk . 2 .
F(wt) = flw >s—(1——)E||wt—w 12— 2Bt — w2,

nk 2 nk
1 1 L?v2d 4 S 12
20K 2 L 11— = )G*+ 7K BG?
ok (g + gt + £ + 5(1- 7)o+ ghmoc?)
~ (C.6)
By averaging using weights a; = ¢~ where ¢ £ (1 — “Z%), we have
d 2
> (RIS - 1) sl — 'l
T
1 1 L?v2d 4 S 12
207K | (= + =—=)<? L (1-= )G+ 7K BG?
i ; i (( S K " SK)§ (0) 52 S( N)G Ar2mn BG )
Diving by Ztho a;, we have
2
E[f(0")] = f(w*) < ——5— [’ —w|,
nk Zfzo at *

i 1 1., L3, 4 SN o 12
+277K<(772K+S_K)g(0)+ s Ts\! 7w )9 Ry, 1RAC

min

Now we consider 7K 3, a; = 7K 3,_, ¢ ". Since we assume that 7' >

~K,
we have
T T _
N . ol = (1= unK/2)™+  2¢7T
MKy a=0Kq ") ¢ =iqKq" ! > :
2 =) K2 i
So
1 3 3 /mK) 3 _
< Zyudt = 11— — — [ ex KT/2
ﬁKZfzoat_Qﬂq 2#( 5 < gH p(—unKT/2)
In this case,
— * ~ * 24 ~
B/ ()] — (") < exp(—uKT/2) [u’ — w3, +or i K*C7
T min
1 1 4 S L22d
21K —)¢? —(1-=)G? 19
M ((7721(*51() (U)+S( N) I
H,
(C.7)

Here we discuss two situations:
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1 A?nin 2 IOg(maX(euuzTDO'/HU))) Amin
o If < 8KB(1+B2)°

uKT = 8KB(1+B2) — WKT

Elf(@")] - f(w)

uT ~ (14 40)?BG? ~(H,
<suD.o (~ st am) O () o)

, we choose 1) =

<0 <&> :
< T
where we use K < 21°g(max(eﬁ;RD”/Hf’))) = O(1/(uT))
. 1 2log(max(e,u’TDy/Hy))) A2 ~  2log(max(e,u?TDy/Hy)))
Ilfl TRT = . MMKT < sra(iipYy» We choose ) = . ;;(T ’
then

E[f(@")] = f(w")
< 3uD, exp(—log(max(e, u*TD,/H,))) + O <E) +0 (M)

wT w21?
<O <—")
wl

In this case, we choose 77 = min {21°g(maX(Z§$D”/H“))), SKﬁ(ﬁfIBz)} (T >
88(1+B2)
m) Then
~ (1 1 1 4 S L*v2d
E[f(a™)] — <Ol — —)¢? —(1-=)G*+—=<
760~ 100) < O (e + g + 5 (1- 7 )&+
which completes the proof. [

Appendix C.4. Proof of Theorem 5
Proof. We start from Eq. (C.6) and set . = 0 for general-convex case:

2 2
f(w) — f(w*) < ﬁ—KEHwt —w*|}, — ﬁ—];(lfi‘«llwt+1 — w3,
1 1 L22d, 4 S 12
27K —)¢? L2 —(1-=)G? 7K BG?
+27) ((n§K+SK)< (o) + < +S( N)G +A?mnn BG)

(C.8)
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e7s Summing the above inequality from ¢ = 0 to ¢ = 7" and taking average , we have

E —t\1 __ * < 0 _ |2 G2 ~2K2
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27K | (——= + ==)¢° L7 (1- = )G?
+ ((n2K+SK) @)+ =% +S< N)
H,
(C.9
2
We set Nmax = W. Here we consider two situations:

I e < e and i < 5, We Set ] = fimas, then

E[f(@")]—f(w") <

163(1 4 B?)(1 + 40)2D, +2\/D0Ha+</24(1 +40)2D2G28

T T T2
e If f 77max > HDTUKQ or nmax > Q%K:,,, we set 1) = min{\/Hch}(% 3 QIDT?@},
then
B D, H, 3/24(1 4+ 40)2D2G2p
F T\ ) <« 4\/ otlo p
(") = fw) < 4/ =22 + -
In conclusion, if we set 77 = min {\/H TR \/QITK:’,, SKB( HBQ) }, we have

Elf(@")]—f(w") <

168(1 + B2)(1 + 40)2D, D,H, /24(1 + 40)2D2G2f
- +4 + =

which completes the proof. [
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Appendix C.5. Proof of Theorem 6
Proof of Theorem 6. According to the smoothness of f, we have

B
2

< flwt) — (Y f(w gii Ly (w “>+<Vf(wt),A;1ng%>

. 1A n(L)[13,
A 52

f™h) < fwh) + (Vf(w'),w™ —w') + 3

Sl — '},

~ N K 2
n tyi B
E[f(w")] < f(w') =+ ; 2 (Vf(w'),V fi(w;"))azt +\2?‘ZEHH(£)H§;1/
- ~ . Az
Ay
" s K 2
NI i
+ 5Bl 2 > ai(w))
5 || 2 Afl
Jj=1 =1 o
As

According to Eq (C.2), (C.3) and (C.4), we have

1
Ay < 2PKPB(L+ BV ()30 + 2ﬁ2K26(1 - E) e

N/ S
~2 3
e S Bt - il +

7j=1 =1

As for A;, we apply the inequality ab = 1[(b—a)?—a*|—10* > L{a®—(b—a)?,
we have

~ N K
A< =SS (1WA~ IV = TR

7=1 =1
N

~K 2
< —”7||Vf(wt)||A_1 L Z Z Jw}* — w3,

jl’Ll
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According to Lemma 5, we have

~2 172712 2
P22,
A< A —— -7
2= 252
Summing up A;, As and As, and using the inequality m < %, where
S 4 < Apin < 1 is the smallest eigenvalue of A , we have
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In this case, we have

. iK . PK2L2BuAd, S\ 1
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Summing the above inequality from ¢ = 0 to ¢ = 7" and taking average , we

have
8 32B32G*
]E < 0y * K2 ~2
Iy
Q2
1 4 S L?v2d
4K — + —)¢? —(1-=)G?
T 6<(n§K+SK)<<U) S< N) 52 >
H,
(C.12)
We set Nax = W. Here we consider two situations:

~2 Fi ~3 F{ ~ o~
o If 12, < W%KQ and 7, . < %T(’K?,, we set 1) = 7max, then

_ 645(1 + B?)(1 + 40)%F, FoH,B 3/32(1 + 40)2F2G?32
I 957, < SO ENAATT [T o[ 320 A0 T

F
. IfnrnaX > m ornmX > 0 TK3,W6 setn = mln{\/H BTR? \/QQT‘)K?,},
then

FoH, 32(1 + 40)2F2G2 32
||V f(@")|3-: 312\/ OT B of3 UT)2 0GB

. . - . A2,
685 In conclusion, if we set 77 = mln{\/ 5 5% 73 \3/ Q;})KS, SRAOLE }, we have
(o8

645(1 + B?)(1 + 40)*F, FyH, 32(1 4 40)2F2G? B2
E||vf(U_JT)||i—1 ﬁ( + )( + U) 0+12\/ 0 B \/ + 0) 6 :
= T T2
(C.13)
which completes the proof. [
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Appendix C.6. Proof of Corollary 1

Proof. Corollary 1 is a direct result of Theorem 4, 5 and 6. Here we take the
non-convex case for example. We recall Eq. (C.13) that

646(1 + B?)(1 + 40)2F0+12\/F0H0ﬁ+§/32(1 + 40)2F2G2 32
= .

BV (") < - -

To bound the error by €, we require that for the first and the last term in the above
equation, we have

T:O(645(1+BQ)(1+40)2F0> and T:O((1+40)F0G5>'

€ 63/2

For the middle term, we have

Plugging in H, = (UQLK + =)o)+ 2(1 - 2)G* + Llezd”, we conclude the
g
proof. ]

s0 Appendix C.7. Proof of Corollary 2

Proof of Corollary 2. We assume log(1/0) > e, then applying Theorem 1 with v,
S

and 7 = %, we have

L%d, L?d, 72147 (log(1/d
. r (og</>+€>7

= T\ by Theorem 1

sz T Ter Ty
_ L2, 7 14T (log(1/9)

- 52 g2 ) 1—A

L*d, 7*Tlog(1/6) 14( 1

< : il
=5 22 \ (1—)\+ )

o

+ log(l/é)), by assumption log(1/0) > ¢

J/

CoL*d,Tlog(1/6)
- g2N?

* 1 Strongly-Convex: following the proof of Theorem 4, we have

1

Elf(@")] - f(w) < O(u_T(

U430 40— dCoL*Tlog(1/8)
SK S €2N2
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and assume 7, > VS , then we have
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* General-Convex: Following Theorem 5, we have
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* Non-Convex: Following Theorem 6, we have
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If wesetT = #ﬁum and assume that 7, > /S, then we have

V(2(0)/K +4(1 — 7)G? + d,) Fo BL2 log(1/6)
eN ’

E|Vf(@")l3- <
which completes the proof. [

Appendix D. Details about Table 1 and Corollary 1

In Table 1, for (Khaled et al., 2020), the log(7") term in denominators are
ignored. For the communication complexity with strongly-convex condition for
(Karimireddy et al., 2020) and DP-Fed-LS, the log S and log K terms in numerator
are ignored.

For Corollary 1, given fixed noise level v; and communication round T, we
would like to determined what (e, §)-DP can be achieved. Following from Theo-
rem 1, we know that to satisfy (¢, d)-DP, we need

. g\/MT (1og(1/5) B €>’ o)

€ A 1—A

and v satisfying 12 /4£? > 2and a — 1 < % log(1/(Ta(1 + v%/4L?))) for some
A € (0,1), where a = log(1/9)/((1 — A)e) + 1. In other words, we require

\e?v?

T < : (D.2)
log(1/6
147’2(% +8)
and 2 o 2
V1 Vi
= 5= D.3
S2A%(q) 4 — 3 0-3)
and )
v 1
-1<Ztlm— D.4
“ 6 nTa(1+V12/4) D4
for v; = v/L. In other words, if ; > 8/3 and o — 1 < % In m, then
1

(¢, 6)-DP satisfying Eq (D.2) can be achieved for any A € (0, 1).

In Theorem 1, we select A € (0, 1) such that v4’s lower bound can satisfy two
inequalities Eq. (D.3) and (D.4). However, in Corollary 1, our first step is to fix
the noise level v such that it directly satisfies Eq. (D.3) and (D.4). In this case,
A € (0,1) is a free parameter. One could select A € (0, 1) such that the upper
bound for 7" is maximized.
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Appendix E. Comparison of Theorem 1 and 2 with Moment Accountants

In this section, we show that our bounds provided in Theorem 1 and Theorem 2
are tight by comparing them with the numerical moment accountants in (Wang
et al., 2019b) and (Zhu and Wang, 2019; Mironov et al., 2019) respectively. We
consider two settings where 7' = 30, 7 = 0.05, N = 500 and 7" = 200, 7 = 0.05,
N = 2000, which we uses for the experiment over MNIST and SVHN respectively.
Firstly, one thing we need to notice is that, in Theorem 1 and 2, noise level v is in
nearly inverse proportion to € when ¢ is small, where the first term under the square
root in Eq. 4 and Eq. 5 become the major term. However, when ¢ is relatively
large, like settings we use in our experiment, this relation changes. The slopes of
the curves lie in [—1, —1/2], at similar rates. Note that when we apply Theorem 1
and 2, we will firstly select \ satisfying all the proposed conditions by line search.
Then we choose the one minimizing the lower bound of v.

Figure E.8 a) and b) compare Theorem 1 with accountant in (Wang et al.,
2019b) under the two settings above. We can notice that the two curves are almost
parallel when ¢ is relatively large. For Theorem 2 and accountant in (Zhu and
Wang, 2019; Mironov et al., 2019), (Figure E.8 d) and e)), we can notice that
their curves are getting close when € becomes large. If we further choose a large
T = 1000 (7 = 0.05 and N = 2000), these observations are more obvious, which
is shown in Figure E.8 ¢) and f). It demonstrate that our closed-form bounds are
tight and only differ from numerical moment accountant by a constant.

Appendix F. Laplacian Smoothing

In Figure F.9, we compare the evolution curves of Gradient Descent (GD)
and Laplacian smoothing Gradient Descent (LSGD). We can notice that the curve
(Figure F.9 (b)) of LSGD is much more smoother than the one of GD.

Appendix G. Smoothness of Aggregated Gradients

In the following Figure G.10, we show the frequency distribution of federated
average of gradients over a convolutional layer after we permute the ordering
(input channel (I), output channel (O), width (W) and height (H)) or the weight
indices. It follows the same experiment setting as Figure 2, and OIWH is the
natural ordering. As we can see, the frequency distribution is insensitive to the
ordering and the weight indices permutations.

In Figure G.11, we plot the curves of (v, e;), which verifies that the original
signal v is smooth in the sense that (v,e;) — 0 rapidly. Here v is the first
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Figure E.8: Comparison of Theorem 1 and 2 with uniform (Wang et al., 2019b) and Poisson moment
accountants (Zhu and Wang, 2019; Mironov et al., 2019). We can observe that Theorem 1 is nearly
parallel to moment accountant (Wang et al., 2019b) and and 2 is close to moment accountant in
(Zhu and Wang, 2019; Mironov et al., 2019) when € becomes large. For example, in c), the slopes
of least square regression for Theorem 1 and moment accountant are -0.80 and -0.73 respectively,
while the intercepts are 3.31 and 2.29. It shows that the theoretical bound are of similar rates

as numerical moment accountants and differ from moment accountants only by a small constant
3.31-2.29
e =2.77.

convolutional layer of federated average of gradients % > ; A; of the CNN model
defined in Section 5. Here e;,2 = 0, 1, ..., 100 are the top 100 eigenvectors of the
graph Laplacian corresponding to the largest eigenvalues.
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Figure F.9: Demonstration of Laplacian smoothing. We try to use a linear classifier y =
sigmoid(Wz) to separate data points from two distributions, i.e., the blue points (y = 0) and
the green points (y = 1) in (a). We use gradient descent (GD) and Laplacian smoothing gradient
descent (LSGD with o = 1) with binary cross entropy loss to fulfill this task. Here W is initialized
as (0,0) and its perfect solution would be (c,c) for any ¢ < 0. Gaussian noise with standard deviation
of 0.3 is added on the gradients. Learning rate is set to be 0.1. In (b), we plot the evolution curves
of W in 100 updates, where we can find that the curve of LSGD is much smoother than the one of
GD.
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Figure G.10: Frequency distribution of federated average of gradients v = % > j A;- in non-DP
federated learning, following experiment setting in Section 5. Here we use the first convolutional
layer (conv1.weight) as an example. In (a)-(d), we permute the ordering of input channel (I), output
channel (O), width (W) and height (H). In (e)-(h), we use the natural ordering but we permute the
output channel weight indices of the convolutional layer with four independent permutations.
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Figure G.11: Projection (v, e;) of the first covolutional layer of federated average of gradients
% > y A; in CNN, over different communication rounds ¢ in non-DP federated learning, following
experiment setting in Section 5. Here e;,7 = 0, 1, ..., 100 are the top 100 eigenvectors of the graph
Laplacian corresponding to the largest eigenvalues.
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Appendix H. Detailed Experiment Settings and Other Results

In Table H.7, we list the default hyper-parameter for three classification models.
To comply with traditional neural network training, we replace local iteration step
K with local epoch E and denote the batch size as b. Here we use decay the local
learning rate 7; by a factor of v in each communication round.

r E b n ng T L vy N weight decay
Logistic 30 5 10 01 1 0.05 04 0.99 1000/500 de — 5
CNN 200 10 64 0.1 1 0.05 03 099 2000 de — 5
LSTM 100 5 50 147 1 02 5 099 975 de — 5

Table H.7: Default parameters for logistic regression, CNN and LSTM

For all the tasks, we tune the hyper-parameters such that DP-Fed achieves the
best validation accuracy, and then apply the same settings to DP-Fed-LS. During
the parameter tuning, all results are reported based on 1 run. For example, the
clipping parameter L is involved since a large one will induce too much noise
while a small one will deteriorate training. In Table H.8, we show the result of
different £ for CNN, and we set the default £ to 0.3. Other parameters are set as
default in Table H.7. We further show the result of different local epoch F and
local batch size b in Table H.9 for the CNN experiment. In Table H.10, we show
the result of LSTM with different learning rates.

In Table H.11, we show the test accuracy of the curves in Figure 6 in Section 5.2.
In Table H.12, we show the testing accuracy of the curves in Figure 7 in Section 5.4.

L 0.1 0.3 0.5 0.7

oc=0.0 7755 84.14 8275 81.54
oc=0.5 7576 8523 8479 82.33
oc=10 7373 8524 8470 82.35

Table H.8: Test Accuracy of CNN on SVHN with DP-Fed (¢ = 0) and DP-Fed-LS (¢ = 0.5, 1)
under (2.56,1/ 2000'1)-DP guarantees (z = 1.5) and Poisson subsampling.
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E.b E=5b=32 E=5b=64 E=10,b=32 E=10,b=64

o=20.0 81.53 83.73 81.87 84.14
o=0.5 82.55 84.65 83.79 85.23
o=1.0 83.23 84.92 82.95 85.24

Table H.9: Test Accuracy of CNN on SVHN with DP-Fed (¢ = 0) and DP-Fed-LS (¢ = 0.5,1)
under (2.56, 1/200011)-DP guarantees (z = 1.5) and Poisson subsampling.

L 1.27 147 167 1.87

oc=0.0 3844 3883 3834 37.50
oc=0.5 3838 3881 38.10 38.53
oc=10 3937 3893 38.67 39.49

Table H.10: Test Accuracy of LSTM on Shakespeare with DP-Fed (¢ = 0) and DP-Fed-LS
(0 = 0.5,1) under (6.78, 1/9751'1)-DP guarantees (z = 1.6) and Poisson subsampling.

m 0.025 005 0.1 0.125
oc=0.0 7214 70.11 64.88 59.99
o=10 7577 7602 7433 71.29
c=0.0 6646 66.14 5648 51.98
oc=10 7280 73.08 68.46 64.16
oc=0.0 6351 5806 51.16 41.12
oc=10 68.01 6680 61.31 55.85

z=30 e£=1.07

z=35 €=0.90

z2=30 £=0.78

Table H.11: Test accuracy of CNN on SVHN with DP-Fed (¢ = 0.0) and DP-Fed-LS (o = 1.0)
with Poisson subsampling, under different large noise level z and different local learning rate 7; in
Figure 6 in Section 5.2.

Uniform Poisson
z2=18 2=22 2z=18 2z=22
c=0.0 79.02 76.05 79.19 75.63
c=10 81.5lI 77.20 81.45 79.75

Table H.12: Test Accuracy of CNN on SVHN with DP-Fed (0 = 0) and DP-Fed-LS (¢ = 1) with
noise level z = 1.8 and z = 2.2 in Figure 7 in Section 5.4. The non-DP accuracy are 90.47 and
90.52 for uniform and Poisson subsampling respectively.
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