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In this paper, we propose a controller that stabilizes a holonomic robot with single-integrator dynamics
to a target position in a bounded domain, while preventing collisions with convex obstacles. We
assume that the robot can measure its own position and heading in a global coordinate frame, as
well as its relative position vector to the closest point on each obstacle in its sensing range. The robot
has no information about the locations and shapes of the obstacles. We define regions around the
boundaries of the obstacles and the domain within which the robot can sense these boundaries, and
we associate each region with a virtual potential field that we call a local navigation-like function (NLF),
which is only a function of the robot’s position and its distance from the corresponding boundary. We
also define an NLF for the remaining free space of the domain, and we identify the critical points of
the NLFs. Then, we propose a switching control law that drives the robot along the negative gradient
of the NLF for the obstacle that is currently closest, or the NLF for the remaining free space if no
obstacle is detected. We derive a conservative upper bound on the tunable parameter of the NLFs that
guarantees the absence of locally stable equilibrium points, which can trap the robot, if the obstacles’
boundaries satisfy a minimum curvature condition. We also analyze the convergence and collision
avoidance properties of the switching control law and, using a Lyapunov argument, prove that the
robot safely navigates around the obstacles and converges asymptotically to the target position. We
validate our analytical results for domains with different obstacle configurations by implementing the
controller in both numerical simulations and physical experiments with a nonholonomic mobile robot.
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1. Introduction

Numerous algorithmically and mathematically rigorous ap-
proaches have been proposed for robot navigation in environ-
ments with obstacles, many requiring prior information about the
environment. We present a switching control law for safe robot
navigation that guarantees obstacle avoidance and convergence
to a destination without using any prior information about the
obstacles’ locations and shapes, instead relying only on the robot’s
localization and onboard sensor measurements. We first review
key developments in control schemes for safe robot navigation,
categorized according to the properties of the environment that
must be known, and then describe our contribution in the context
of this work.
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Many existing collision-free navigation control schemes are
based on virtual potential fields and require knowledge of the
locations and shapes of the obstacles. Early works on such con-
trol schemes include Khatib (1986), Kim and Khosla (1992),
Koditschek and Rimon (1990), Rimon and Koditschek (1992),
Shahidi, Shayman, and Krishnaprasad (1991), with the works
Koditschek and Rimon (1990), Rimon and Koditschek (1992)
introducing controllers based on potential fields called navi-
gation functions (NFs) that produce exact robot navigation to
target positions in generalized sphere worlds. Many subsequent
works developed NF-based control strategies for diverse scenar-
ios. In Conner, Rizzi, and Choset (2003), a combination of NFs
and harmonic potential fields, which satisfy Laplace’s equation,
is proposed for environments in which the free space can be
represented as a chain of connected polygons. Acceleration of the
robot’s convergence to the target position is achieved in Ogren
and Leonard (2005) for dynamic environments by merging an NF-
based strategy with the dynamic window approach (Fox, Burgard,
& Thrun, 1997), and in Paternain, Mokhtari and Ribeiro (2018)
for static environments in which the robot starts near the stable
manifold of a saddle point of the NF by using a modified Newton
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method for nonconvex optimization. The work Filippidis and
Kyriakopoulos (2011) presents an algorithm for automatically
tuning the parameters of NFs for sphere worlds. In Li and Tan-
ner (2019), NFs are constructed for tracking a dynamic target
in environments with star-shaped obstacles. Modified NF-based
controllers have been recently designed for robot navigation
to the minimum of a globally convex potential function in an
environment with convex obstacles (Paternain, Koditschek and
Ribeiro, 2018), and to the minimum of a quadratic potential
function in environments with ellipsoidal obstacles that may
be highly eccentric (flat) (Kumar, Paternain, & Ribeiro, 2019) or
star-shaped obstacles (Kumar, Paternain, & Ribeiro, 2020). The
works Constantinou and Loizou (2020), Loizou (2017) solve the
navigation problem on a known star world using a diffeomorphic
transformation from the star world to a point world and its
inverse.

Barrier certificates (Prajna, Jadbabaie, & Pappas, 2004) and bar-
rier functions (Ames, Xu, Grizzle, & Tabuada, 2017) have been used
to develop control schemes that prevent a dynamical system from
entering unsafe or undesired regions of its state space, which
is the set of obstacles when the control objective is collision-
free robot navigation. These approaches require knowledge of
the boundaries of the unsafe/undesired regions (i.e., the obsta-
cles). The work Wang, Ames, and Egerstedt (2017) presents a
control approach that utilizes barrier certificates to prevent colli-
sions among multiple robots and between robots and static or
dynamic obstacles. The centers and radii of circles that bound
the obstacles must be known beforehand. Control barrier func-
tions have been used to implement collision avoidance in multi-
robot systems (Chen, Singletary, & Ames, 2021) and rigid body
networks (Ibuki, Wilson, Ames, & Egerstedt, 2020).

Other collision-free navigation control schemes require only
approximate information about the locations and shapes of the
obstacles. A sliding mode controller is proposed in Guldner and
Utkin (1995) to track the gradient of a potential field that is con-
structed based on the smallest circle that encloses each obstacle.
In Paternain and Ribeiro (2017), the robot follows a stochastic
approximation of the gradient of an NF, which requires prior esti-
mates of obstacle locations and shapes according to a probability
distribution. Sampling-based control schemes that combine opti-
mization techniques and simultaneous localization and mapping
(SLAM) approaches comprise another class of controllers that
rely on a priori partial and/or approximate information about the
environment (Arslan, Pacelli, & Koditschek, 2017; Pierson et al.,
2019; Vasilopoulos et al., 2020; Vasilopoulos, Vega-Brown, Arslan,
Roy, & Koditschek, 2018).

There are also collision-free navigation control schemes that
do not rely on prior information about the shapes and locations
of the obstacles, but have limitations on their performance guar-
antees, use particular types of sensor measurements by the robot,
and/or require the robot to continuously update its control inputs
via online optimization and continuously update its map of the
environment. The potential-based controller designed in Ge and
Cui (2000) for cases where the robot’s target position is very close
to an obstacle, extended in Ge and Cui (2002) to scenarios where
the target position and obstacles are moving, does not ensure
the absence of all local minima that could trap the robot. The
work (Ramirez-Llanos & Martinez, 2019) presents a stochastic
source-seeking scheme for a robot that can measure a signal and
is allowed to make contact with the boundaries of the environ-
ment and obstacles, traveling along these boundaries until it finds
a feasible direction to the signal source. In Angélico, Chamon,
Paternain, Ribeiro, and Pappas (2021), a sinusoidal extremum
seeking control scheme is proposed that guarantees collision-free
navigation of a robot in environments with convex obstacles; this
approach requires online measurements of the curvature of ob-
stacles that the robot encounters. The work Arslan and Koditschek
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(2019) presents a sensor-based feedback control law for robot
navigation in environments with convex obstacles in which the
robot computes a Voronoi diagram for the environment online.
Although the obstacles may be unknown, an assumption on their
curvature is required (Assumption 2 in Arslan and Koditschek
(2019)).

In this paper, we develop a robot controller that guaran-
tees collision-free navigation to a target location using minimal
on-board sensing, without information about obstacle locations
and shapes. The proposed controller has a closed-form structure
and does not require online projection/optimization and map-
ping algorithms, which are used in the controllers presented
in Vasilopoulos et al. (2020, 2018) and Arslan and Koditschek
(2019); thus, it is simpler and less computationally intensive to
implement on a robot. Both obstacle avoidance and convergence
to the target position are enforced by a term in the controller that
is the gradient of a virtual potential field that we refer to as a local
navigation-like function (NLF), due to its similarity to navigation
functions but its dependence only on local sensor measurements.
This control approach is similar to the potential-based control
law that we designed in Farivarnejad and Berman (2020) for
stabilizing a holonomic robot to a target velocity in an unknown,
unbounded environment with strictly convex obstacles. The main
contributions of this paper are as follows:

(1) We present a closed-form switching controller for safe
navigation of a holonomic mobile robot to a target position
in a bounded domain containing convex obstacles that are
sufficiently separated and curved. The robot can measure
its own position and heading and its relative position vec-
tor to the closest point on any obstacles within its sensing
range. The robot knows the target position and the size
of the domain, but not the locations and shapes of the
obstacles, and it has no predefined trajectory.

(2) We prove that the controller drives the robot asymptoti-
cally to the target position while preventing collisions with
the obstacles and entrapment in local minima.

(3) We validate our theoretical results in numerical simula-
tions and experiments with a mobile robot.

2. Preliminaries and problem statement

We consider a disk-shaped holonomic robot with radius r that
moves in a planar bounded domain and has a circular sensing
range that extends a distance 8. from the robot’s center. The
robot has first-order dynamics (a single-integrator model), § = u,
where q = (x, y)T € R? denotes the position of the robot’s center
in a global reference frame and u € R? is the robot’s control
input. We assume that the domain contains multiple arbitrary
convex obstacles. The control objective is for the robot to travel
to a target position while avoiding collisions with the obstacles
and the domain boundary. We assume that the target position is
the origin of the global frame, without loss of generality. We first
define several terms.

Definition 1 (Domain). A compact, closed and convex subset
of R?, whose interior includes the origin (the target position).
The domain and its boundary are denoted by D and 9D, respec-
tively. The domain’s interior is denoted by Z(D) and is defined as
I(D) =D\ 9D.

Definition 2 (Obstacle). A compact, closed and convex subset
of the domain, which does not intersect the domain’s boundary.
The domain contains m > 1 obstacles, which are indexed by
i € {1,...,m}. Obstacle i and its boundary are denoted by O;
and 00;, respectively.
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Definition 3 (Free Space). An open subset of the domain which
is obtained by removing the obstacles from the domain’s interior,
defined as ¥ := (D) \ UL, Oi.

Definition 4 (Repulsion Space). Let §;(q) be the distance from
point q € R? to the boundary of the domain for i = 0, or to the
boundary of obstacle i fori € {1, ..., m}. We define the repulsion
space R; as the following semi-closed subset of the free space F:
Ri = {qe F|10<3d8i(q) <4}, i = 0,1,..., m. The repulsion
space Ry is the set of points between dD and the closed curve
that is offset from this boundary by a distance §. along the inward
normal to aD. The repulsion space R;,i € {1, ..., m}, is the set of
points between d0O; and the closed curve that is offset from this
boundary by a distance §. along the outward normal to 00O;. The
boundary of R; is denoted by 9R;.

Definition 5 (Switching Repulsion Surface). 1f | > 2 repul-
sion spaces intersect, then the set of points that belong to this
intersection and are equidistant from the boundaries of the cor-
responding obstacles (or the boundary of the domain) is called
a switching repulsion surface. If R,,, ..., Ry, are intersecting
repulsion spaces, where {oq,...,0;} C {0,1,...,m}, then the
corresponding switching repulsion surface is defined as

Soror = {8 € Nicloy,oyRi | 86,(@) = -+ = 85 (q)} .

Definition 6 (Safe Space). An open subset of the free space which
is obtained by removing the repulsion spaces from the free space,
defined as SS := 7\ U, Ri.

Remark 7. The safe space has no intersection with any repulsion
space; ie, SS(\1Ri = @,i € {0,1,...,m}. Moreover, the
safe space and repulsion spaces form a cover of the free space;
e, ssU (U Ri) = F.

An example domain is shown in Fig. 1, with the associated
spaces in Definitions 1-6 illustrated in Fig. 2.

Definition 8 (Closest Collision Point). The line from the robot’s
current position q that is normal to the boundary of obstacle i
intersects the boundary at the closest collision point. This point
is denoted by P; and its position vector is denoted by g, as shown
in Fig. 3.

Definition 9 (Collision Vector). The vector q — qp, from the clos-
est collision point to the robot’s current position is called the
collision vector. This vector is denoted by d;, as shown in Fig. 3.

We make the following assumptions about the robot’s ca-
pabilities. The robot has global localization (e.g., GPS) and has
no prior information about the obstacles’ locations and shapes.
The robot can measure its own heading in the global frame,
and it can identify the boundaries of nearby obstacles within its
sensing range. We assume that at each time instant, the robot can
measure the distance §;(q) between its center and the boundary
of each obstacle i within its sensing range (e.g., using infrared
sensors or LIDAR). This distance is the length of the collision
vector d;, according to the Projection Theorem (Bertsekas, Nedich,
& Ozdaglar, 2003). We also assume that the robot can measure
the angle ¢q4, of the vector —d; in its body-fixed frame, e.g., using
LIDAR. By adding ¢q4; + 7 rad to the robot’s heading in the global
frame, the robot can obtain the angle of d; in the global frame,
which we denote by 6y,.

We also make the following three assumptions. The first,
Assumption 1 in Arslan and Koditschek (2019), enforces a min-
imum inter-obstacle spacing such that the robot can navigate
between any two obstacles. The second defines the (minimal)
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Fig. 1. A circular domain with convex obstacles and the regions that define their
associated repulsion spaces.

Fig. 2. Different spaces for the environment shown in Fig. 1.

prior information that the robot has about the environment. The
third specifies that the obstacles’ boundaries satisfy a minimum
curvature condition.

Assumption 10. The shortest distance between the boundaries
of each pair of obstacles, and the shortest distance between the
boundary of each obstacle and the domain boundary, both exceed
the robot’s diameter, 2r.

Assumption 11. The only information provided to the robot is
the target position and the size of the domain, defined as the
diameter of the smallest circle that contains it. The radius of this
circle is denoted by rp.

Assumption 12. For each obstacle, the curvature « at every point
along the obstacle’s boundary is strictly greater than 1/rp (see
Appendix F.)

Given the robot’s local sensor measurements and its minimal
information about the environment, we aim to design a control
law that can solve the following problem.

Problem 13. We consider a bounded domain, defined as in
Definition 1, whose boundary 9D is described by Bo(x,y) =
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Fig. 3. Illustration of the closest collision point, the collision vector, and their
associated variables.

0, where 8, : R?> — R is a smooth function. The domain
contains a finite number m > 1 of convex obstacles, defined as in
Definition 2, with arbitrary boundaries described by S;(x,y) = 0,
i € {1,...,m}, where each function 8 : R?> — R is at least
twice continuously differentiable. The robot’s target position is in
F and is assumed to be the origin of the global reference frame,
without loss of generality. Given Assumptions 10, 11, and 12 and
the robot’s initial position, which is in the free space F, we design
a robot control law that uses only local measurements available
to the robot to achieve the following objectives: the robot must
(1) asymptotically converge to the target position; (2) not collide
with any obstacle or the domain boundary 9D; and (3) never
become trapped by any set of obstacles or between obstacles and
aD.

3. Local Navigation-Like Functions (NLFs)

The construction of a navigation function (NF) in the sense of
Rimon-Koditschek (Rimon & Koditschek, 1992) over a bounded
domain requires prior knowledge of equations that describe the
boundaries of the domain and the obstacles that it contains.
Moreover, it is necessary to know the number of obstacles in
order to tune the parameter « of the NF (Eq. (10), Rimon and
Koditschek (1992)) such that the NF has no local minima that
could trap the robot before it reaches its target position. However,
in scenarios where robots must navigate an uncertain or com-
pletely unknown environment, this information is not available
beforehand. To overcome this limitation, we define functions that
are similar in form to the NFs in Rimon and Koditschek (1992)
but that depend only on locally sensed information. We refer
to these functions as local navigation-like functions (NLFs). The
NLFs are defined in association with the safe space and each of
the repulsion spaces, and they are designed in such a way that:
(1) their gradients form a vector field over F such that a control
law that steers the robot in the opposite direction of the vector
field at its current position will achieve the objectives described
in Problem 13; and (2) to calculate the gradient of an NLF, a robot
only needs its on-board measurements of its global position and
the collision vectors associated with obstacles within its sensing
range. We next define the NLFs and establish properties of their
critical points through analysis of their gradients and Hessians.
The proofs of all theoretical results in this section are provided in
the Appendix.

3.1. Safe space navigation-like function

The safe space NLF, ¢ss : SS — [0, 1), is defined as
vss(@)=(a"q)/(q" q+ 1). (1)
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Fig. 4. An illustration of a non-zero norm critical point (C;) with the associated
parameters (p, pp;, and §;), the closest collision point (P;), and the local & — &
coordinate system.

Proposition 14. If the target position (the origin) is located in the
safe space SS, then it is the only critical point of pss and, further,
is the global minimum of ¢ss. Otherwise, ¢ss has no critical point.

Remark 15. Given the form of Vgss in Eq. (A.1), the robot
requires only measurements of its own position q to calculate the
gradient of ¢ss.

3.2. Repulsion space navigation-like function

The NLF ¢, for repulsion space R; is defined as

or(@) = (4" 9)/(q"q + 2(5)). (2)
where g(6;) : R.g — R is the following function of the robot’s
distance from the boundary of the domain for i = 0 or the
boundary of obstaclei € {1, ..., m}:

8(8) = (8i/8)", (3)
in which §; := ||d;||, §; is the radius of the robot’s sensing range,

and k is a strictly positive real number. We can confirm that
¢r; € [0, 1) for a bounded domain. We note that since §; depends
on the robot’s position q, g(é;) is implicitly a function of q. The
next two propositions characterize the critical points of ¢x,.

Proposition 16. If the target position (the origin) is in R;, then it
is the global minimum of ¢x;.

Proposition 17. Given the assumption that the target position is
q = 0, g, may have one critical point in R; with non-zero norm,
ie.q#0,ifkeR.o— {2}

Each obstacle i is associated with one non-zero norm critical
point, G, which is in R; (see Fig. 4). This is because ¢, is an
analytical function in R; C R? which implies that it admits
exactly one non-zero norm critical point (Rimon & Koditschek,
1992).

Proposition 18. The non-zero norm critical point G of ¢r, is
degenerate fori =0,1,...,m.

The following properties are used in the stability analysis of
the proposed controller in the next section.
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Remark 19. To calculate the gradient of ¢x,, the robot only
requires measurements of its own position q and the collision
vector d;, as indicated by Eqs. (B.1) and (C.1).

Remark 20. The values of the repulsion space NLFs ¢y, for inter-
secting repulsion spaces R, ..., Ry, are equal along the switch-
ing repulsion surface S;,. 5, (Definition 5), since a robot on this
surface is equidistant from the associated obstacles O,,, ..., Oq,.

4. Controller design and analysis

To define the control law u € R? in the single-integrator
model of the robot, § = u, we first define the set

&g = argmax  {¢,(q)} (4)
0e{SS8.,Rg,R1,...Rm}
and denote the cardinality of & by ng := |&g|. The proposed
control law is given by
1
u=—— v . 5
— 2 Vo (5)

1 ne&q

To execute the control law (5), the robot does not need to
measure its distance from every obstacle or identify the particular
space it is located in; it only needs to measure and compare
its distance from each obstacle within its sensing range. If the
robot is in the safe space SS, where all obstacles are outside its
sensing range, then the controller uses the gradient of ¢ss. If
the robot is in the union of multiple repulsion spaces R; and is
not on a switching repulsion surface, then the controller uses the
gradient of the NLF ¢, that has the largest value at the robot’s
current position. By construction, this NLF is associated with the
obstacle i that is closest to the robot (Eq. (2)). Finally, if the robot
is on a switching repulsion surface S,,.,,, then the controller
uses the average of the gradients of the NLFs PRy -+ s PRe of

the corresponding intersecting repulsion spaces. The control law
(5) is a switching control law, since the gradients of the NLFs
could change discontinuously when the robot crosses a switching
repulsion surface or moves from a repulsion space to the safe
space or vice versa.

Substituting (5) into the robot’s equation of motion § = u,
we obtain the closed-loop system, a differential equation with a
discontinuous right-hand side:

1
g=-—> Vo,q. (6)

T
q ne&q

Since (5) is a switching control law, the closed-loop system (6)
represents a switching system composed of multiple subsystems,
each driven by the gradient of the safe space NLF or a repulsion
space NLF. The closed-loop robot dynamics in each subsystem are
given by

qG=-Ve,(q), o €{SS,Ro,R1,...,Rm}. (7)

We will analyze the stability, convergence, and collision avoid-
ance properties of system (6) and prove that it achieves the three
objectives described in Problem 13. The proofs of some of the
theoretical results in this section are provided in the Appendix.

4.1. Stability characteristics of subsystem equilibria

In this subsection, we study the stability of the closed-loop
dynamics in an individual subsystem, defined in Eq. (7), by ana-
lyzing the stability characteristics of the equilibrium points of the
subsystem. The equilibrium points of each subsystem in Eq. (7)
are the critical points of the NLF ¢, corresponding to that subsys-
tem. To investigate the stability properties of these critical points,
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we apply Lyapunov’s indirect method. Linearizing Eq. (7) about
the position g* of a critical point of ¢,, we obtain:

4= (-V’¢:(q"))q. 0 €{SS5,Ro.R1,...,Rm}. (8)

Given linearized model (8), we now analyze the eigenvalues of
the Hessian of the corresponding NLF ¢, at q* and apply the
results in Propositions 14, 16, 17, and 18.

Proposition 21. The origin is an asymptotically stable equilibrium
point if it is located in either the safe space or the union of the
repulsion spaces.

Proof. This is concluded from Propositions 14 and 16, where
we proved the positive definiteness of the Hessian at the origin.
Thus, the negative of the Hessian in Eq. (8) has strictly negative
eigenvalues at the origin. O

Non-zero norm critical points of repulsion space NLFs ¢x, are
other equilibrium points of the subsystems in Eq. (7). As proved
in Proposition 18, these critical points are degenerate, since their
corresponding Hessian matrices each have one zero eigenvalue
and one positive eigenvalue. This means that the negative of the
Hessian in Eq. (8) has one zero eigenvalue and one negative eigen-
value, and therefore linearization about the equilibrium points
cannot be used to determine their stability properties. Instead,
we use the center manifold theorem (Khalil, 1996) to investigate
their stability properties. We will use the following two lemmas
in this stability analysis.

Lemma 22. Let q* be the position of the non-zero norm critical
point of the NLF ¢r,, i € {0,1,...,m}, in the global reference
frame. We define | as the line through the origin and q* and 1,
as the line perpendicular to I, as illustrated in Fig. 4. Then I, and
I are the center manifold and stable manifold, respectively, of the
corresponding subsystem in (7) (o = R;) in a neighborhood of q*.

Lemma 23. We define a subset B, (q*, €) of the center manifold
as B (q*,¢) = {qeli|llg—q*ll <e, € >0} If the obstacle’s
boundary has sufficiently large curvature (Assumption 12) at the
closest collision point that corresponds to q*, then there exists a finite
€ > 0 for which ¢r,(q) is maximal at q* for all q € B, (q*, €).

Proposition 24. Given Assumption 12, the non-zero norm critical
point of ¢, i € {0,1,...,m}, is an unstable equilibrium of the
subsystem in Eq. (7) with 0 = R;.

Proof. The existence of a center manifold and a stable manifold
in a neighborhood of a non-zero norm critical point (Lemma 22),
and the fact that ¢g,(q) is maximal at g* for all q along the
center manifold within a distance ¢ of g* if Assumption 12 holds
(Lemma 23), show that there is no neighborhood of q* in R? for
which ¢r,(q*) is a local minimum. Thus, no basin of attraction
can be established for g*, and it is therefore unstable.! O

4.2. Absence of equilibria on the switching surfaces

In this subsection, we investigate the existence of locally stable
equilibrium points, which could entrap the robot, and derive
conditions that guarantee the absence of such equilibrium points
from all switching surfaces in the domain. As stated earlier,
the robot moves according to Eq. (7) in each subsystem of the

1 Although q* is not technically a saddle point, its stability properties
resemble those of a saddle point. It is stable for trajectories that start in a set
of measure zero (the stable manifold, [) and unstable for trajectories that start
outside 1.
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Fig. 5. Illustration of switching repulsion surfaces (red dashed lines) and switch-
ing surfaces between the safe space and repulsion spaces (purple dashed lines).
(For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.).

switching system (6). The equilibrium points of each subsystem
were characterized in Section 4.1. The subsystem indexed by
o € {88, Ro, ..., Rm} is active when the robot’s position q is in
the space o. A classical (continuously differentiable) solution of
Eq. (6), which gives the robot’s trajectory q(t), can be obtained
as long as the robot evolves in a single subsystem. The active
subsystem switches from o; to o, when the robot leaves space
o1 and enters space o;. This state-dependent switching creates
switching surfaces in the robot’s state space. System (6) gives rise
to two types of switching surfaces, illustrated in Fig. 5: switching
repulsion surfaces (Definition 5), and switching surfaces between
the safe space and repulsion spaces. On a switching surface,
Eq. (6) can have equilibrium points, depending on the directions
of the gradients V¢, associated with the spaces o that share
the switching surface. These equilibrium points may be stable
and therefore entrap the robot. In this subsection, we derive
conditions that guarantee the absence of equilibrium points on
both types of switching surfaces.

4.2.1. Switching repulsion surfaces

If two repulsion spaces R; and R; intersect, then a switching
repulsion surface Sj exists. This implies that the gradient —V g,
drives the dynamics of the robot when it is on the side of the
switching surface that contains obstacle i, and —Vgg; drives its
dynamics when it is on the side that contains obstacle j. The
closed-loop system (6) can have two types of solutions, depend-
ing on the directions of the gradients —Vog, and —Ver, with
respect to the switching surface. If the components of —V¢x, and
—VgaRj that are normal to the switching surface are pointing in
the same direction, then the solution of the closed-loop system
is a Carathéodory solution. In this case, the system trajectory
passes through the switching surface, and no equilibrium point
exists on the switching surface. If the two components that are
normal to the switching surface point in opposite directions, then
the system has a Filippov solution that satisfies the following
differential inclusion (Liberzon, 2003), defined in terms of a convex
combination of —V¢x, and —Vog;:

g€ Y(q) = {a(-Vor(q) + (1—a)=Voer,q):a [0, 1]}
(9)
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Eq. (9) describes the dynamics of the robot as:

—Vor(q), qeRi, &<
a(—Vor(q)+ (1 —a)(—Ver(q), q€S;
—Vor,(@, q<€R;, &>

Since the components of —Vgr, and —Vgz, that are normal to
the switching surface point in opposite directions, the system tra-
jectory corresponding to the Filippov solution can only evolve on
the switching surface. At the point where the trajectory reaches
the switching surface, there is a unique convex combination of
—Vog; and —Vor. (i.e., a unique value for « in Eq. (9)) that is
tangent to the surtjace, which defines the direction of Y'(q) on
the surface. The Filippov solution at each point on the switching
surface is represented by the value of o for which X°(q) is tangent
to the surface at that point.

A trajectory corresponding to a Filippov solution often chatters
about the switching surface. Unlike a sliding mode controller, our
controller is not designed to stabilize the system trajectories to
the switching surface; although chattering may occur, the robot
will eventually leave the switching surface if the parameter k
is bounded by the constant derived in Proposition 25. Under
this condition, the closed-loop system has no equilibria on the
switching surface, which ensures that the robot will not become
trapped between two obstacles.

q= (10)

Proposition 25. Suppose that a switching repulsion surface Sj;
exists. Given Assumptions 10 and 11, no equilibrium point exists on
Sjj if k in Eq. (3) is chosen to satisfy k < r/(rp —1).

This result can be generalized to a switching repulsion surface
that is associated with more than two obstacles (e.g., point A in
Fig. 5), as stated in the next corollary.

Corollary 26. Consider a switching repulsion surface Sy, o,
{o1,...,0} € {0,1,...,m}, that lies within the intersection of
I > 3 repulsion spaces R, ..., Ry. The condition in Eq. (G.4)
ensures that no equilibrium point exists on this switching surface.

4.2.2. Switching surfaces between the safe space and repulsion
spaces

Suppose that a segment of the boundary dR; of repulsion
space R; is adjacent to the safe space SS, forming a switching
surface. This implies that the gradient —V ¢y, drives the dynam-
ics of the robot when it is on the side of the switching surface
that contains obstacle i, and —V¢ss drives its dynamics when
it is on the other side, i.e. in SS. The discussion in Section 4.2.1
about the discontinuity of the right-hand side of Eq. (6) and the
two possible types of solutions to this equation (Carathéodory
and Filippov) also applies to this type of switching surface. Thus,
as in Section 4.2.1, we consider a Filippov solution to the closed-
loop system (6) on the switching surface between R; and SS and
derive conditions under which the system has no equilibria on
this switching surface, given in the next proposition.

Proposition 27. Given Assumption 11, no equilibrium point exists
on the switching surface between repulsion space R; and the safe
space SS if k in Eq. (3) is chosen to satisfy k < 8./(rp — ).

As we show next, this result can be generalized to a switching
surface that is adjacent to SS and is associated with more than
one obstacle (e.g., point B in Fig. 5).

Corollary 28. Consider a switching surface that lies within the in-
tersection of the boundaries of | > 2 repulsion spaces Ry, ..., R,
{o1,...,0} €{0,1,...,m}, and is adjacent to SS. The condition
in Eq. (1.5) ensures that no equilibrium point exists on this switching
surface.
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The following theorem guarantees the absence of equilibrium
points on all switching surfaces in the domain.

Theorem 29. Given Assumptions 10 and 11, no equilibrium point
exists on any switching surface in the domain if k in Eq. (3) satisfies
the following condition:

k < min(r, 8.)/(rp — 1). (11)
Proof. The result follows from Corollaries 26 and 28. O
4.3. Convergence analysis

In this subsection, we study the convergence properties of the
entire closed-loop system (6), which has a switching structure,
and prove the robot’s almost global asymptotic stability to the
target position. As discussed in Section 4.2, system (6) is a dif-
ferential equation with a discontinuous right-hand side, which
does not satisfy the Lipschitz continuity condition. This implies
that we cannot directly apply Lyapunov’s stability theorems or
LaSalle’s invariance principle to analyze the stability and conver-
gence properties of the system. To this end, we apply the concept
of multiple Lyapunov functions, which has been developed for
stability analysis of switching systems (Ch. 3 in Liberzon (2003)).
We first state the following two lemmas, which are used in the
analysis afterward.

Lemma 30. Given the closed-loop system (6), which is composed
of the subsystems in Eq. (7), the function V,(q) = ¢,(q), 0 €
{SS, Ro, R1, ..., Rm}, is continuous over every solution q(t) of
Eq. (6) for t > 0.

Lemma 31. Assume that the robot does not start at a critical point
of ¢, (q). Given the subsystems indexed by o € {SS, Ro, ..., Rm} in
Eq.(7), we define t, 1 and t, , as the times when the robot enters and
leaves space o, respectively; i.e., q(t) € o forall t € [t; 1, ta,z).2
Then for every space o, the function V,, defined in Lemma 30 strictly
decreases over the time interval [t, 1, t, ). Moreover, the robot’s
trajectory converges to the origin (the target position) if the origin
is in o. Finally, if there is a non-zero norm critical point q* in o,
and the robot’s trajectory starts on the stable manifold | of q* (i.e.,
q(0) € 1), then the robot’s trajectory converges to q*.

We define the set £ as the union of the stable manifolds I of
all the non-zero norm critical points in 7. We now state the main
result of this subsection.

Theorem 32. Consider the switching closed-loop system (6) with
parameter k satisfying Eq. (11). Every trajectory of system (6) that
starts in F and outside £ asymptotically converges to the origin
(the target position), and the origin is almost globally asymptotically
stable.

4.4. Collision avoidance analysis

Here, we prove that under the control law (5), the robot never
collides with the obstacles or the domain boundary. Theorem 32
directly implies the following result.

Corollary 33. Consider the closed-loop system (6) with parameter
k satisfying Eq. (11). The free space F is a positively invariant set
for any trajectory that starts in F, and consequently no collision
occurs between the robot and the boundaries of the obstacles and
the domain.

2 If the robot starts in space o, rather than entering it from another space,
then t, ; = 0. If the robot converges to a point in o, rather than leaving o, then
o2 = 00.
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5. Simulation results

We validated our theoretical results with MATLAB simulations
of a holonomic robot with r = 0.1 m and 6. = 0.5 m. The
robot must navigate from q(0) = [-3 3]" to ¢ = [0 0]"
in a domain of radius rp = 2.5 m with six obstacles, whose
configuration satisfies Assumption 10. We set k = 0.04, which
satisfies the bound in Eq. (11). In the first simulation, q; is in
Ro. Fig. 6 plots the robot’s trajectory q(t) (red dashed line) for
t € [0, 12] s, and Fig. 7 plots the corresponding time evolution
of ¢, (q(t)). Fig. 6 shows that the robot avoids the obstacles (blue
circles and ellipses) and converges to q; within 10 s. The robot’s
convergence to g; coincides with the monotonic convergence of
0. (q(t)) to 0 in Fig. 7, and the fact that ¢, (q(t)) < 1 over the
entire trajectory confirms that the robot never collides with the
boundaries of the obstacles or the domain, where ¢,(q) = 1. In
the second simulation, g; is in SS. Figs. 8 and 9 plot q(t) and
0. (q(t)), respectively, for t € [0, 12] s. Again, the robot converges
to q; within 10 s without colliding with boundaries; i.e., ¢, (q(t))
converges monotonically to O while remaining below 1. Figs. 7
and 9 show that in both simulations, the robot has a slow rate of
convergence to q; during the first 7 s. This is because the force
of attraction to q; is much smaller than the net repulsion force
from the obstacles during this time. The convergence rate can be
increased by reducing k, which would create smaller repulsion
forces that allow the robot to travel closer to the boundaries.

6. Experimental implementation and results

We also tested our controller on a commercial nonholonomic
robot, the TurtleBot3 Burger robot (Robotis, 2021). We first used
our method in Lafmejani, Farivarnejad, and Berman (2021) to
convert the controller, which is designed for a holonomic robot,
into one that can be implemented on a nonholonomic robot. This
method can be applied to any feedback controller, such as the
control law (5), that is based on the gradient of a potential field ¢
and is designed for a single-integrator holonomic robot model in
R? to achieve position stabilization and obstacle avoidance. Given
a nonholonomic robot with a reference point P at the midpoint
of the axis connecting its wheels, the unicycle kinematic model
of the robot is:

y=vsin(y), v =o, (12)

where x := [x y]” is the position of point P in the global reference
frame, v is the speed of this point, ¥ is the robot’s heading angle
in the global frame, and w is the robot’s angular velocity. Defining
uw = |Vol, o := |x|, and y = tan‘1(%), the control law (5) is
converted into:

w:kw%Sin(lﬁ—V), (13)

X = vcos(y),

v=kyu,

where k, and k, are controller gains. It is proved in Lafmejani
et al. (2021) that if k, < O and k, = 2k, then control
law (13) drives the robot to the origin from almost any initial
position in the domain while preventing it from colliding with
the obstacles and the domain’s boundary. This control law has no
discontinuities since it uses continuous functions (trigonometric
functions of the robot’s heading angle) that produce a smooth
robot trajectory.

The robot estimates its global pose using a fusion of odometry
and IMU sensor data, as described in Lafmejani et al. (2021).
It uses its onboard LIDAR to measure its distance to obstacles
within its sensing range, which we truncate from the maximum
range of 3.5 m to §. = 0.6 m. We tested the controller in two
scenarios, which differ in the number of obstacles, the robot’s
initial position q(0), and the value of k. A video of the experiments



H. Farivarnejad, A.S. Lafmejani and S. Berman

is available at Autonomous Collective Systems Lab YouTube chan-
nel (2021). Scenario 1, in which q(0) = [-3.75 2.0]" m and
k = 0.15, demonstrates that the robot’s trajectory can switch
between Carathéodory and Filippov solutions of Eq. (6) (see
Section 4.2.1). Fig. 10 shows that the robot’s trajectory (dashed
line) chatters when it first passes between obstacles due to its
repeated crossing of the switching surface between them, and
does not chatter when it next passes between obstacles since
they are relatively far apart. After avoiding the obstacles, the
robot reaches the goal point at 359 s. Scenario 2, in which q(0) =
[—3.75 2.25]" and k = 0.12 or 0.1, illustrates the effect of k
on the robot’s convergence rate to the goal: when k is decreased,
this rate increases (see Section 5). Figs. 11 and 12 show that the
robot reaches the goal at 198 s when k = 0.12 and at 124 s when
k=0.1.

7. Conclusion

We have designed a control scheme for collision-free navi-
gation of a holonomic disk-shaped robot with single-integrator
dynamics in a bounded convex domain that contains unknown
convex obstacles. We introduced virtual potential fields called
navigation-like functions and proposed a switching control law
based on the negative gradient of these functions. The control
law only requires the robots’ local sensor measurements and does
not rely on any information about the obstacles’ locations and
shapes. Moreover, it does not require the robot to solve online
optimization problems or to continuously update a map of the
environment. These features allow the proposed controller to be
implemented in a computationally efficient manner. We analyzed
the stability and convergence properties of the robot’s closed-
loop dynamics and derived bounds on the controller parameter
that ensure the absence of local minima that could trap the robot.

One direction for future work is to modify the controller for
navigation in domains that have a non-convex boundary and/or
contain non-convex obstacles, and for which Assumptions 10 and
12 do not hold. This requires deriving conditions that guarantee
the absence of local minima that could arise in concave regions
of the obstacles and domain boundary and in narrow channels in
the free space. Future work can also include modifying the control
law in Eq. (5) to eliminate chattering when the robot passes
over a switching surface. One potential solution is to use hystere-
sis switching, which enforces the property that two consecutive
switching events are separated by a finite time interval, resulting
in a hybrid closed-loop system with both continuous and discrete
state variables (Liberzon, 2003). Another possible extension is to
adapt the controller to achieve collision-free navigation in three
dimensions.
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Appendix A. Proof of Proposition 14

The gradient of ¢pss can be calculated as:

Voss =2q/(q"q+ 1) (A1)

Setting Vypss = 0, ¢ = 0 is the only solution, provided it is in
SS. In addition, the Hessian of pss is given by:

Vioss=2(q'q+ 1) —4qq") /(q'q + 1)°, (A2)

where I € R?*? is the identity matrix. The Hessian at g = 0 is
equal to 2I, a positive definite matrix. Also, from Eq. (1), ¢ss is
zero at ¢ = 0 and positive everywhere else. Thus, ¢ = 0 is the
global minimum of ¢ss. If ¢ = 0 is not in SS, then ¢ss has no
critical point.
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Initial position

Final position
-4 -3 -2 -1 0 1
X (m)

Fig. 6. Robot trajectory in a simulation with q; € Ry. (For interpretation of the
references to color in this figure, the reader is referred to the web version of
this article.).

Navigation-like function
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Fig. 7. Value of ¢,(q(t)) along the trajectory in Fig. 6.
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Fig. 8. Robot trajectory in a simulation with q; € SS.

Navigation-like function

t(s)

Fig. 9. Value of ¢,(q(t)) along the trajectory in Fig. 8.
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Fig. 12. Robot trajectory for a run of Scenario 2; k = 0.1.

Appendix B. Proof of Proposition 16

The gradient of ¢, is calculated as:
_2g(8)q9 — (q"q)Vg(8)

V(pRi = > (B])
(a"q +g(5)

Setting Vo, = 0 to find the critical points leads to:

2g(5)q — (4'q)Vg () = 0. (B.2)

A solution to Eq. (B.2) is ¢ = 0. The Hessian of ¢, is:

VZor, = (N1(q) — N2(q))/(q'q + g)’, (B.3)

in which N1(q), N2(q) € R**? are:

Ni(q) = (p* +g) (28I — p*V’g +2(qVg" — Vgq")),

No(q) =2 (2gqq" +2gqVg’ — p*Veq' — p*VgVg'),  (B4)

where p = ||q||. For ¢ = 0, N; = 2g°I and N, = 0, and so the
Hessian at the origin is simplified to V2¢r, lqg—0 = gl, a positive
definite matrix. Also, by construction, ¢g; is zero at the origin
and positive everywhere else in R;. Thus, the origin is the global
minimum of ¢g,.

Appendix C. Proof of Proposition 17

The gradient of g(&;) in Eq. (B.2), which is the derivative of
g with respect to g, is equal to Vq,g(5;), since ¢ = d; + qp,
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and g is only a function of §;, where §; = |/d;|| (similar to Eq.
(7) in Tanner, Jadbabaie, and Pappas (2003), and as proved in
Appendix A of Farivarnejad and Berman (2020)). Also, V4,(5;)
can be calculated as:

Va,8(8) = g'(8i)eq;,

in which g'(8;) is the derivative of g with respect to &;, and ey is
the unit vector along d;. Substituting Eq. (C.1) into Eq. (B.2) and
incorporating the expressions for g(8;) and g’(s;), Eq. (B.2) can be
rewritten as:

(C.1)

ps !
(;k (2818,1 — pkedi) =0, (CZ)
[
where p := ||q|| and e, is the unit vector along q. Therefore, the
non-zero norm solutions of Eq. (B.2) are the solutions of:
25,’8‘, — pked,. =0. (C3)

Given that this is a vector equation, e, and eg, are unit vectors,
and §;, p,k > 0, Eq. (C.3) implies that at the non-zero norm
critical points of ¢,

(C4)
(C5)

The vector ey; is normal to the boundary of obstacle i and
points outward from this boundary (Fig. 3). Thus, the existence
of a solution to Egs. (C.4) and (C.5) depends on the geometry
of obstacle i and the obstacle’s position and orientation with
respect to the target position. If k = 2, then from Eq. (C.5) we
have that p = §;, which implies that Eq. (C.3) has a solution
only if the origin (the target point) is on the boundary of the
obstacle, i.e., coincident with the closest collision point P; (see
Fig. 4). However, this would violate objective (2) in Problem 13,
since the robot would collide with the obstacle in its attempt to
reach the target point. We note that the dependency of a solution
to Eq. (C.3) on p implies its dependency on the target position,
not the origin of the coordinate system. We have assumed the
target position to be the origin, without loss of generality, only
to simplify the mathematical derivations.

€; = €q;,
26 = ,Ok.

Appendix D. Proof of Proposition 18

We found that Eqgs. (C.4)-(C.5) hold at the non-zero norm crit-
ical point of ¢r,. Incorporating Eqs. (C.4)-(C.5) into the Hessian
of pg;, defined by Eqgs. (B.3)-(B.4), we can confirm that N, = 0
at the critical point, and the Hessian is simplified to

VZor, lg=c. = (281 —p*V’g) /(@"q+g) .

The Hessian of g is obtained from V2g = % (Vg). Given Eq. (C.1),
the Hessian of g can be rewritten as

(D.1)

0 0ey.
Vo) = o (8Ger) = g”(ai>ed,.e5,.+g’(8,-)(ai(‘l"). (D.2)

Denoting the angle of eg; in the global reference frame by 6y, (see
Fig. 3), and incorporating the equation for the second derivative
of g(8;) with respect to §;, the first term on the right-hand side of
Eq. (D.2) is calculated as:

kik — 1
k( )Sgk—Z) |:

cos?(6q;)

"(8;)eq.er =
g (0n)ea;eq cos(6a;) sin(6q;)

8k !

c

cos(6y; ) sin(6q; )
sinz(Gdi) '

Furthermore, by the chain rule, the second term on the right-hand
side of Eq. (D.2) can be rewritten as:

oey; k oey; de
g6 (5 ) = 58 (5o ) (5 )
aq Sk deq aq

(D.3)
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The vectors eq;, and e are related via the equation eg, = R(;)ey,
where R(«;) € R? is a rotation matrix and o; = 6 — 0q;, with
6 denoting the angle of q with respect to the global frame (see
Fig. 3). Hence, in Eq. (D.3), deq4;/0eq = R(e;). In addition, we can
calculate that:

deq 1 sin(9)

34 p | —cos(0)sin(0)
At the non-zero norm critical point, e, eq; (see Eq. (C4)),
implying that 6 = 6y,; thus, R(e;) = R(0) =I. Also, p in Eq. (D.4)
can be replaced by 26;/k from Eq. (C.5). Hence, the Hessian of g
can be written as:
ks 2 [(5 = 1)c200,+1 (% — 1)cO4,504, 5)

8 | (X —1)cOasbs, (X —1)5%0q+1|
where ¢y, and s, abbreviate cos(6y;) and sin(6g,), respectively.

Finally, the Hessian of ¢, at the non-zero norm critical point can
be obtained from Eq. (D.1), and its determinant and trace can be
calculated as:
det (Vg lg-c) = 0
2—k

2k

This demonstrates that at non-zero norm critical points inside 7,
which exist when k € (0, 2), one eigenvalue of VZ(pRi is zero and
the other is positive.

4
cos?(8) (D4)

— cos(0) sin(@):|

Vzg |q:C,~=

Vie{l,2,...,m},

tr (VZor, lg=¢) = Vie{1,2,...,m}. (D.6)

Appendix E. Proof of Lemma 22

We define a local coordinate system with its origin located
at q* and its axes denoted by & and &, (Fig. 4). The axis & lies
along I and points in the direction of eq;, and &, lies along [, and
forms a right-handed coordinate system with &;. Given a position
q in the global reference frame, we define § := [ &, ] € R? as
its coordinates in this local reference frame. Denoting the angle
of the vector q* with respect to the global frame by 6* and the
rotation matrix from the local frame to the global frame by R(6*),
the transformation of (q — q*) from the global frame to the local
frame is given by

E=R'(6")q—q").

We define the augmented vectors q, = [q" 1]7 € R3, &, =
(€7 1]" € R3. Then Eq. (E.1) can be written as

R'(6%) —RT(0°)4"] _ s,
01x2 1

(E.1)

§,=Tq,, T= [ (E.2)

Also, the linearized system in Eq. (8) can be rewritten in an
augmented form in terms of q, as

. —V20,(q*) 0y
qa=[ #o(d°) 201}%

0152
o € {85, Ro, R1, ..., Rm). From Eq. (E.2), we have q, = T &,
which we use to rewrite Eq. (E.3) in terms of &,:

£ _ _szﬂa(q*) 02><1 -1
sa - T [ 0] %2 0 T Sﬂ'
Multiplying the matrices in Eq. (E.4) and removing the third row

and third column (which are all zeros) of the resulting matrix,
Eq. (E.4) is simplified to

2—k|[-1 0

2k 0 0 .
The matrix in the linearized system (E.5) is in block diagonal
form and has a negative eigenvalue and a zero eigenvalue for

(E3)

(E.4)

E= (E5)

10
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k € (0, 2). Applying Theorem 8.1 in Khalil (1996), this implies
that the corresponding nonlinear system, Eq. (7), has a center
manifold in the form & = h(&, ), where h is a smooth function.
Since the vector field of system (7) (the negative gradient of
the corresponding NLF, where the gradient is given by Eq. (B.1))
points along [, we can confirm that the only smooth candidate for
h is the zero function. Consequently, & = 0, which defines the
&1, -axis of the local coordinate system, is the center manifold of
system (7) in a neighborhood of q*. Moreover, the &-axis, which is
associated with the negative eigenvalue of the matrix in Eq. (E.5),
is the stable manifold of system (7) in a neighborhood of q*.

Appendix F. Proof of Lemma 23

From Eq. (E.1), g = q* + R(0*)&. We insert this expression for
q into Eq. (2) and rewrite ¢, in terms of &:

(g = — EETUREE+q"q

T e+ 20 RO+ q + 8(8)
The expression q*TRT(O*)f;‘ is the inner product of q* and the
representation of & in the global frame, q — g*. These two vectors

are normal to each other for any q € I,. Hence, at any q € 5;,
¢,(q) can be simplified to

¢rilges, = EE+q @)/EE+q 0 +5(5)).

We know that q*T q* is constant. Also, we can confirm that §; is
an implicit function of || &||. Defining & := ||&||, we can rewrite the
equation above as

Vrilges, = &+ p™)/(E2 + p* +g(£),

where p* := ||q*| and g(&) := g o §;(€). Eq. (F.1) represents the
value of ¢r,(q) at points q € B, in terms of their distance & from
the position g* of the non-zero norm critical point. The derivative
of PRrilges;, with respect to & is calculated as

_ —g(§)82 +2g(5)5 — 0 g/(8)
(&2 +p” +8(8)’

where g'(§) = %g(é) denotes the derivative of g(&) with re-
spect to &, which, by the chain rule, can be calculated as %g(‘;‘)
= %Z—?. Let 8 := &;(§)|:—0 denote the distance between q* and
the closest collision point on the obstacle. It is straightforward to
show that:

57 < 8i(E) < A(E) = (85 +E2)2, V& €0, 00).

(F.1)

7(@721"(165&) (F2)

dg

(E.3)

We can also confirm that %Ai(sﬂg:o = 0. Since §; is constant

in Eq. (F.3), the squeeze theorem yields %8,-(;—‘)|g=0 = 0. This
consequently gives g'(£)|¢=o = 0.
We now consider the following two functions:
/ 2
hi(§) :==g'(§)/8(€),  ha§) :==2& /(&> + p*"). (F4)

We can confirm that h{(0) = h,(0) = 0. Given the continuity of
h1(£¢) and hy(&) and the fact that & € R, which is a connected
set, we can apply the comparison lemma (Khalil, 1996) to show
that h{(&) > hy(&) V& € (0, €) for some finite € > 0 if

h(E)le=o > hy(8)le=o-
We calculate that h)(€)ls—o = .
¥

(F.5)
Using the fact that g”(§) =

%(g’(é)) = %(g—iz—?), we find that
/ 1 dg(s;) "

h =0 = ——~ 8 -0, F.6
1(E)le=0 2l do - i (E)le=o (F.6)
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where §/(£) denotes the second derivative of §;(§) with respect
to &£. The Maclaurin series of §;(¢) is written as:

S(E) =8+ @ +aE? +azE> +-- -, (F.7)

where a, nl, d‘gns(g)k:& Given this definition, we have

87(€)le=0 = 2a, = «, the curvature of the obstacle’s boundary
at the closest collision point. Substituting §/(£)l¢=0 = « into
Eq. (F.6), using the resulting expression for h}(&)|¢=o in the

inequality (F.5), and writing & as —kp* from Eq. (C.5), we obtain
the condition
K > 1/p%, (F.8)
which guarantees the inequality hi(§) > hy(§) V& € (0, €). This
inequality can be rewritten as:
’ 249 o #R
88" +2g(8) — p" &'(€) _ 0. VE € (0.¢) (F9)

g(&) (82 + )

The denominator of the fraction in inequality (F.9) is strictly pos-
itive. This implies that the numerator is strictly negatlve More-
over, the numerator is the same as the numerator of 4 i (or;lqe Bu)
in Eq. (F.2). Given the positiveness of the denominator of
ddg(@R, |qu1 ), we can thus conclude that §(</>R |qu, ) is strictly
negative, and therefore that ¢, |q€31 is strictly decreasmg for all
& € [0, €). This demonstrates that ¢, |4€Bz is maximal at £ =0
for all £ € [0,¢). Since § = 0 when q = q* and § € [0, ¢)
when q € B (q* €), we conclude that ¢x,(q) is maximal at
q* for all g € By (q*, €). By substituting the maximum possible
value for p*, which is rp, into Eq. (F.8), we obtain the following
conservative lower bound on «: « > 1/rp. This inequality
imposes a minimum curvature on the obstacles’ boundaries.

Appendix G. Proof of Proposition 25

By Assumption 10, the shortest distance between the bound-
aries of obstacles i and j is greater than 2r. If there exists an
equilibrium point (q = 0) on the switching repulsion surface Sj;,
then by Eq. (10), we have that

a(=Vor (@) + (1 —a)—Ver(q) =0 (G.1)

Using the fact that §; = §; on the switching surface, and writing
the expressions for —Vez, and —VgaRj using Egs. (B.1) and (C.1),

Eq. (G.1) becomes:
28(5,)eq — pg'(5) (req, + (1 — @)eq)) =0, (G2)
where 6; = §; = §;. We now derive a conservative upper

bound on the parameter k in the NLF ¢z, defined by Egs. (2)
and (3). When the robot is on the switching repulsion surface,
as illustrated in Fig. G.1, the repulsive force on it has the largest
possible component in the direction opposite to e; when ey,
edj3 and ey, = e,. By substituting ey, = eq = eq into Eq. (G.2),
we can reduce it to the scalar equation:

2g(85) — pg'(8;) = 0. (G.3)

To prevent the existence of an equilibrium point, and to ensure
that the robot converges to the origin (the target position), the
attraction term in this equation must exceed the repulsion term,
i.e., 2g(8s) > pg'(8). Using Eq. (3), this inequality can be sim-
plified to 2§; > kp. From Assumption 10, the robot’s radius r
is the smallest possible value of §s, and from Assumption 11, the
distance 2rp —2r is the largest possible value of p (i.e., the longest
straight-line distance that the robot’s center can travel across the

3 This is a theoretical scenario that would not happen in practice; we use it
here to find a conservative bound on k.
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/

Destination
Robot

Switching
surface

Fig. G.1. Illustration of the vector field components that act on a robot when
it is located on a switching repulsion surface between two obstacles i and
j. The vector field Vgx,, which defines the robot’s controller on the side
of the switching surface containing obstacle i, is the sum of an attractive
component V(pR and a repulsive component Vor, ; the vector field Vor; is
defined similarly. The theoretical scenario that results in Eq. (G.3) happens if
VR, + Vo&, = Vo, + Vo,

domain). Given this minimum value of §; and maximum value of
p, the inequality 26; > kp becomes 2r > 2k(rp —r), which yields
the following conservative upper bound on k:

k<r/(rp—T). (G.4)
Appendix H. Proof of Corollary 26

The convex combination of vector fields —Ver,,
ie{1,...,1},is given by T(q) = Z§=1 —angoRai(q), where

oj € [0,1] forallie{1,...,1} and Zf’:] «o; = 1. The differential
inclusion in Eq. (9) and the expression in Eq. (10) for the robot
dynamics in S,,. ,, are redefined in terms of this convex combi-
nation Y'(q). Then, if there exists an equilibrium point on S,,._4,,
by Eq. (10) we have that Z -1 a,VgaRn (q) = 0. Using the fact that

8oy = 0y = =85 0N Sy, 4, and wrltmg V(ﬂRg in terms of
Eqgs. (B.1) and ( 1), this equation becomes:
!
2g(5:)eqg — pg'(8:)(> _ aiea,) = (H.1)
i=1
where §; = 8,, = &,, = --- = J,. Again, we consider the

repulsive force on the robot with the largest possible component
in the direction opposite to eq, which occurs when e; = eq, =

This simplifies the sum in Eq. (H.1) to

Zf 1% €a,, = €q, and the equation can be reduced to Eq. (G.3).
This shows that choosing k small enough to satisfy Eq. (G.4)
also guarantees the absence of an equilibrium on a switching
repulsion surface that is equidistant from three or more obstacles.

€q o €q o

Appendix 1. Proof of Proposition 27

We follow the same procedure as
Proposition 25. An equilibrium point (q
switching surface between R; and SS if

a(—Voss(@) + (1 —a)(—Ver,(q) = 0. (L1)
Using the fact that §; = §. and, consequently, g(5;) = 1 and
g/(8;) = k/3. on the boundary dR; of R;, and writing the expres-
sions for —Vess and —Voeg, using Egs. (A.1), (B.1), and (C.1),
Eq. (I.1) becomes:

2eq — (1 —a)(k/d:)peq; = 0.

in the proof of
0) exists on the

(L2)
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On the switching surface, the repulsive force on the robot has the
largest possible component in the direction opposite to e; when
eq; = eg. In this case, we can reduce Eq. (1.2) to the scalar equation

2—(1—a)k/s)p = 0.

To prevent the existence of an equilibrium point and ensure
the robot’s convergence to the origin, the attraction term in this
equation must exceed the repulsion term:

2> (1—a)k/s:)p-

The right-hand side of Eq. (1.4) is maximized when ¢ = 0 and
p = 2rp — 2r, the largest possible value of p. For these values of
« and p, Eq. (I.4) can be rearranged as the following conservative
upper bound on k:

k<é§:/(rp—r).

(L3)

(14)

(L5)
Appendix ]. Proof of Corollary 28

We follow the same procedure as in the proof of
Corollary 26. The convex combination of vector fields —V¢ss(q)
and —Vor, ()i € {1,..., 1} isgivenby T (q) := —assVpss(q)—
Zl 12V or, (q) where ass, aj € [0,1] foralli € {1,...,1}
and o + Z & = 1. The differential inclusion in Eq. (9)
and the expression in Eq. (10) for the robot dynamics on the
switching surface are redefined in terms of Y'(q). Thus, there
is an equilibrium q on the switching surface if ozsngoSS(q) +

Zf 1 %i¢R,. (@) = 0. Using the fact that §,, = 8,, = -+ = 3, on
the sw1tch1ng surface, and writing —V¢ss and — V(pR in terms
of Egs. (A.1), (B.1), and (C.1), this equation becomes:

2 (ass +g(s8 Z 0‘1) €q — pg (Z C’lled(7 ) =0, (J.1

where 85 = 8,, = &5, = --- = &,. This distance equals d,
on the boundaries of the repulsion spaces, and therefore on the
switching surface, which implies that g(é;) = 1 and g/SSS) =k/8.
on the switching surface. Using the fact that o, + Zi:l o = 1,
Eq. (J.1) is reduced to

1
— p(k/8)()_ aiea,) = 0
i=1

On the switching surface, the largest possible repulsive force
on the robot in the direction opposite to e; occurs when e =
€d, = €d,, = =€d,. Then, the sum in Eq. (].2) is simplified
to Zl 1 eq, = (Zl 1 i) eg = (1—ass)eq, and the equation can
be reduced to Eq. (1.3), with a in place of «. Finally, setting the
attraction term in the equation higher than the repulsion term
to prevent the existence of an equilibrium point and to ensure
the robot’s convergence to the origin, we obtain the inequality in
Eq. (1.4), with o in place of «. This gives the same conservative
upper bound on k as Eq. (1.5).

J:2)

Appendix K. Proof of Lemma 30

The safe space NLF ¢ss(q) in Eq. (1) and the repulsion space
NLF ¢x,(q) in Eq. (2) are continuous functions by construction.
We first consider the case where the robot crosses a switching
repulsion surface S,, .., that lies within the intersection of [ >
2 repulsion spaces Re,, ..., Ro, {01,...,011 € {0,1,...,m}.
When the robot is on the switching surface, the distances §;,
and hence the values of g(§;) and ¢x,(q), are the same for all
i € {o1,...,01}. Therefore, the NLFs ¢x,(q), i € {01, ..., 0y}, are
continuous at all points on this switching surface. In addition, we
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consider the case where the robot crosses a switching surface that
lies within the intersection of the boundaries of I > 1 repulsion
spaces Rg,, ..., Rop {01, ..., 01} €{0,1,...,m}, and is adjacent
to SS. When the robot is on the switching surface, the distances
8i, i € {o1,...,0}, are all equal to &, and therefore g(§;) =
1, which implies that ¢x,(q) = @ss(q). Thus, the NLFs ¢x,(q),
i € {o1,...,0}, and ¢ss(q) are continuous at all points on this
switching surface.

Appendix L. Proof of Lemma 31

The time derivative of V, over t € [t;.1,t52) iS V (t) =
@s(t) = (V(pg(q(t))) q(t). Inserting the expression for q from
Eq. (7), we obtain v, (t) = — || Vo, (q(t))]|?, which is non-positive
in o. Since V, is positive definite, which is straightforward to
confirm, this expression for Va(t) indicates that V, is strictly
decreasing over t € [t, 1, t;.2). By LaSalle’s invariance principle,
the robot’s trajectory converges to the largest invariant set in
E={qeo|llVe,(q)| = 0}, the set of critical points of ¢,: the
origin and non-zero norm critical points.

Appendix M. Proof of Theorem 32

Suppose a trajectory q(t) starts in 7 and outside £, and then
passes through a sequence of spaces o1, 03, ..., 0y, Where each
o; € {S8S,Ro,R1,...,Rm}. Then the corresponding functions
Vo,(q), Vo, (q), ..., Vi, (q) comprise a sequence of strictly decreasing
functions (Lemma 31), for which V,,(q(t)) = V,, ,(q(t)) at the
time ¢ = t,,,1 when the trajectory leaves o; and enters o4
(Lemma 30). Given that k satisfies the bound in Theorem 29,
we can invoke Theorem 3.1 in Liberzon (2003) to conclude that
the existence of this continuous sequence of strictly decreasing,
positive definite functions indicates that q(t) converges asymp-
totically to a critical point of ¢,,. Since q(t) starts outside £, this
point cannot be a non-zero norm critical point, and the origin is
the only remaining candidate. Thus, q(t) asymptotically converges
to the origin. On the other hand, if a trajectory starts on the
stable manifold | € £ of a non-zero norm critical point g*, then it
asymptotically converges to g*. Since £ is a set of measure zero in
F, we cannot establish basins of attraction of the non-zero norm
critical points. This implies that the origin is an almost globally
asymptotically stable equilibrium point of system (6).

Appendix N. Proof of Corollary 33

We know that ¢,(q) € [0,1) for each space ¢ €
{SS, Ro, R1, - .-, Rm}, and therefore ¢,(q(0)) € [0, 1) for q(0) €
F. If q(0) ¢ L, then from the proof of Theorem 32, there is a
sequence of strictly decreasing, positive definite functions V;, (q),
Vo, (q), ... Vi,(q) which correspond to the sequence of spaces
o1, 09, ..., 0y that the trajectory q(t) passes through. This implies
that for each o € {01, 03, ..., 00}, ¥, (q(t)) € [0, 1) for all £ > 0.
Thus, the robot’s trajectory remains in F for all t > 0, and so the
robot never collides with the domain boundary, where ¢z, =1,
or the boundary of an obstacle i, where ¢z, = 1.1f q(0) € I, where
I € £ is the stable manifold of a non-zero norm critical point
q*, then the trajectory q(t) monotonically converges to q* due
to the robot’s first-order dynamics. Therefore, the trajectory also
remains in F, and so the robot does not collide with the boundary
of an obstacle or the domain boundary.
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