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Abstract: Model uncertainties are considered in a learning-based control framework that combines
control dependent barrier function (CDBF), time-varying control barrier function (TCBF), and control
Lyapunov function (CLF). Tracking control is achieved by CLF, while safety-critical constraints during
tracking are guaranteed by CDBF and TCBF. A reinforcement learning (RL) method is applied to jointly
learn model uncertainties that related to CDBF, TCBF, and CLF. The learning-based framework
eventually formulates a quadratic programming (QP) with different constraints of CDBF, TCBF and CLF
involving model uncertainties. It is the first time to apply the proposed learning-based framework for
safety-guaranteed tracking control of automated vehicles with uncertainties. The control performances are
validated for two different single-lane change maneuvers via Simulink/CarSim® co-simulation and
compared for the cases with and without learning. Moreover, the learning effects are discussed through
explainable constraints in the QP formulation.
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1. INTRODUCTION

Safe trajectory or path tracking is a crucial task in
autonomous driving. A combined optimization method of
control Lyapunov function (CLF) and control barrier function
(CBF) provided a safety-guaranteed framework (Romdlony
et al., 2016). However, model uncertainties always exist and
usually degrade (if not fail) the desired control performance.
Thus, how to address model uncertainties and maintain
desired control performance with model uncertainties is a
significant challenge for autonomous driving.

In the existing studies of safety-critical tracking control, CLF
and CBF play crucial roles, in which CLF is often used for
tracking control, while CBF is responsible for vehicle safety
and/or stability. Writing CLF in constraints, a CLF-based
quadratic problem (QP) was formulated for manipulation
control (Ames et al., 2013). After that, some researchers
combined CBF with CLF in constraints of QP to achieve an
adaptive cruise control to balance the speed following
condition via CLF and force-based constraints on acceleration
and braking via CBF (Ames et al., 2014).

On the other hand, when CBF was applied to a vehicle system,
the CBF method has a limitation that the vehicle stability
region was considered as a fixed invariant set. However, the
lateral stability region of vehicle systems will vary with
respect to the control input (e.g., steering angle). Hence, a new
method called control-dependent barrier function (CDBF) was
proposed to resolve the issue (Huang et al., 2021). After that,
the authors (Huang and Chen, 2021) also included time-
varying CBF (TCBF) for constraints changing over time and
then integrated CDBF, CLF, and TCBF in a QP to achieve
safety-guaranteed tracking control of automated vehicles.

However, the QP method combining CLF and CBF heavily
relies on model accuracy. Other methods with more robust,
such as adaptive CBF, were proposed to overcome the model
accuracy issues (Lopez et al., 2020; Xiao et al., 2021). Yet,
these methods did not handle model uncertainties in a
systematic way. Moreover, the CDBF design did not consider
the uncertainties as well.

Recently, with the booming of data-driven approaches, many
researchers apply learning methods to CLF and CBF to
systematically handle the control issue with model
uncertainties. For example, a learning-based approach for safe
controller synthesis was proposed based on CBF (Robey et al.,
2020). An imitation learning was used to learn neural
network-based controllers that could satisfy CBF constraints
with disturbances (Yaghoubi et al., 2020). Neural networks
were also applied to jointly learn CBF and CLF to generate a
safe and goal-reaching policy (Jin et al., 2020). To tackle
model uncertainties, a machine learning framework was
developed to learn model uncertainties of CLF and yield a
stable CLF-based controller (Taylor et al., 2019). A learning
framework was also applied to reduce model uncertainties of
CBF and obtain a controller for safe behaviors (Taylor et al.,
2020). Moreover, a new framework that could jointly learn
model uncertainties of CBF and CLF using reinforcement
learning was proposed for robot control (Choi et al., 2020).
These frameworks all learned model uncertainties and then
added them into the original control method.

Based on the literature review, the CDBF method can resolve
CBF limitation for vehicle control, but model uncertainties are
not considered. The learning-based method is powerful to
tackle the uncertainty problem. Therefore, we propose a
reinforcement learning (RL)-based control framework that
learns uncertainties between the nominal model and plant
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system model. Then, the learned uncertainties will be applied
in TCBF, CDBF, and CLF to generate new constraints of a
QP problem, which will be finally solved to obtain control
outputs. The picture of the overall framework is presented in
Figure 1. We use a neural network to learn the model
uncertainties. The inputs of the network are the vehicle states
and corresponding rewards. The outputs of the network are
model uncertainty terms, which are added to the constraints of
a QP problem correspondingly to generate the control inputs.
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Figure 1. RL-CDBF-TCBF-CLF control framework.

Two main contributions of this paper are summarized as
follows.

1) Propose a RL-enabled TCBF-CDBF-CLF control
method for safety-guaranteed tracking control of automated
vehicles with model uncertainties.

2) Analyze the effects of RL on TCBF-CDBF-CLF based
vehicle control with model uncertainties and verify the

proposed method via co-simulation between Simulink and
CarSim®.

The rest of the paper is organized as follows. In Section
Error! Reference source not found., we briefly describe the
kinematic and dynamic vehicle models, CDBF, and TCBF.
Section 3 discusses how to learn model uncertainties for CLF,
CDBF, and TCBF constraints, respectively. In Section 4, we
present the RL settings. In Section 5, we describe the
simulation setups and results and discuss the results. Section
6 makes conclusions.

2. PRELIMINARIES
2.1 Vehicle Model

Vehicle kinematic and lateral dynamic models are introduced
in this section. The vehicle states are selected as x =
[Y 6V, r]", where Y is the global lateral displacement, 8 is
the heading angle, V, is the lateral velocity, and r is the yaw
rate. The control input u consists of the front wheel steering
angle §; and yaw moment Mpyc, u = [§f Mpyc]. Vehicle
lateral kinematic and dynamic models are shown in (1).
Y =V, + Vsin(6),
0=r, O

. 1
v, = ;(Fyfcoscﬁf + Fyr) -V,

o1
7= I (lnyfCOSSf - LE,+ MDYC) .
z

m,V,, lf, L, I, Fyp, and E,, are the vehicle mass, longitudinal
velocity, front wheelbase, rear wheelbase, yaw moment of
inertia, front, and rear tire lateral forces, respectively. Fyr, By
can be calculated by a tire model (Huang et al., 2021).

2.2 CDBF and TCBF

The CDBF definition (Huang et al., 2021) is to describe the
control-dependent situation when the invariant set will change
related to the change of control inputs. TCBF is used to handle
time-varying constraints (Lindemann et al., 2019), such as
vehicle's global lateral displacement (Y) and the heading angle.

CDBF (Huang et al., 2021): The CDBF considers the control
as a new state that augments the original system. A set y is
defined by a continuously differentiable function h(x,u). If
there exists a control u € U, w € {2 (such that 1t = w points
inward of U) and an extended class K function y, and the
following inequality (2) about CDBF is satisfied, the set
WY(x,u) is a control dependent invariant set and h(x,u) is a
zeroing CDBF. Ly is the Lie derivative with respect to f®, w),

where X is the augmented sate of x.

Leh(x,w) + y(h(x, u)) > 0. )

TCBF (Lindemann et al, 2019): Define the differentiable
function b: D x [t0, t1] —» R where D S R, the set G(t)
should satisfy x € D and b(x,t) = 0. b(x,t) is a candidate
control barrier function, which is changed with respect to time.

3. METHODOLOGY

This section presents how reinforcement learning can learn the
model uncertainties represented by a mismatch between the
nominal and plant models. Model uncertainties of dynamics
system in terms of the CDBF, TCBF, and CLF constraints are
analyzed, respectively, and then combine together.

3.1 CDBF + RL

Based on the Definition 1 and the authors’ previous research
work (Huang et al., 2021), the CDBF design for the nominal
model is written in

3,
hi(x,w) = bj[V, — s; W] + ¢;[r — s, (W] + d,
s;(w) = lrvil:fu , Sp(u) = lr‘f‘lfu. 3)

Similar to (Huang et al., 2021), 4 constraint functions to
describe a dynamic stability region are shown in (4)-(7),

hi(x,w) = by[V, = s;(w)] + ¢1[r — s, ()] + d; . “)
hy(x,w) = by[V, — s; (W] + co[r — s, W] + d, - Q)
hs(x,u) = c3[r — s;(W)] — bs [Vy - 51(“)] +ds. (6)
Ry (6, w) = cylr — s,(W)] = by[Vy, — s, ()] + d, - @)
Consider a nonlinear affine system (8),
x=fx)+g)u. (8)

The nominal model is an approximation of the affine system
and expressed in (9),

¥=f®)+g@®1i. )
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The CDBF design of the nominal model (9) should satisfy
(10) based on (4)-(7),j = 1,2,3,4.
hj_model(f' ﬁ) = thj_model(fﬁ i)
+ Lghj moder (%, W1 .
The CDBF design of the real plant similarly should satisfy
(1),

(10)

hy_ptane (6, 0) = Lphy piane (2, 1) (1n)
+ Lghj piane(x, wu .
We want the control design of the nominal model to be still

applicable to the real plant. Thus, (11) minus (10) to get (12),
h] plant(x u) — Iy model(x u) + (L plant(x u)

— Ly h,model(x u))u

12
+ thj_plant(x' u) ( )
- thj_model(f' fl) :
(12) is rewritten in (13).
hj_plant(x: u) = hj_model(f' ﬁ) + A?(X) + Ag(x)ﬁ ’ (13)
where,
A?= Leh; (x,u) — thj (x,u), (14)
A= Lyhi(x,u) — Lgh;(%,%) . (15)

Next, the reinforcement learning (RL) is applied to learn the
effects of the uncertainties in (13) and get (16) below,

h}:lplant(x' u) = h}}model (f' ﬁ) + ag(x) + [)’(S‘(x)ﬁ .

al and B} are learning parameters, which are a part of the
action network output to learn the model uncertainties. The
goal of RL is to make h model(x i) as close as possible to

the hrplant(x u).

(16)

From the constraint (2) of CDBF, the CDBF constraints of
the real plant are written as (17),

Lf plant(x u) + ]/](h plant(x u)) =0. (17)
The inequality (17)is expanded as (18),
Oh;j plant(xu) Oh;j plant(xu) . Ohj plant(xu) .
v, v+ ar | a4t (19)

yj( j_plant(x' u)) =0.
Substituting Vy and 1 from the vehicle model combining with
(16) into (18) gets (19),
ahj,model(f.ﬁ)

ot CD 7 (1) + (1) + (et gy +

av,
BE )) .

ah] model(x u) =~

fr) +ag@) +
a a
( hj model(x ) ~( ) + ,89 (T')) h},mz;(;el(x u)ﬁ +

Vi (hj,model(x i) =>0.
Finally, the inequality can be rewritten linearly in (20),

(19)

Acpprlt < Beppr (20)
where,

ACDBF

roh (%,10) _ oh (%, 10)
ngd;l g(Vy) + ﬁgl (Vy) 1 mzzgel

ahz model(x u) ahZ,mudel(xv u) ~ hy
T w G(B) +Bg* () —ZE==G() + By* () 1)
ahmoe ’ ~ ahmoe~v~~
S moaer2, ) a‘y(" D5 + gy Lomeae@D 5 4 gy
y
ah'<1-JrLt>tiel (’?' ﬁ) ah'4,model (ir ﬁ)
av, ar

30 + B |

(%) + Bg* (%)

@) + Byt ()

Beone
omote G0 gy o Prmett B0 4y B 1) + a0
iahz st &) iy Memet @D gy, m) + 0| (2
s ’”"5‘?(" D ey + Lomett @D sy e ) + 0|
Panotet @ gy PomottEB gy, a5, ) + ag‘(x)j

3.2 TCBF + RL

In real traffic scenarios, some practical driving constraints
need to be considered. For example, the heading angle and
global lateral displacement should be bounded in a
reasonable range to avoid vehicle drift or spin. Thus, these
time-varying geometric constraints need to be addressed.

Safety sets of the heading angle and global lateral
displacement can be defined in (23) and (24) (Huang et al.,
2021),

Y, = {x|hs (1) = Vnax(®) = V(Y = Ypin (1)) (23)
> 0}.

Yy = {x|he(x,t) = (Brmax(t) — 0)(6 — Opin(t)) 24
> 0}.

The above safety conditions can be described via TCBF in (25)
and (26) (Huang et al., 2021),

hs(x t) ( max + Ymm ZY)(VS/ + ng) +

(Ymax + Ymm)y (Ymax min + Ymamein) + (25)
a ((Ymax(t) - Y)(Y - Ymin(t))) =>0.
he(%,6) = (Bmasx + Oin = 2007 + Bmax + 0
mm)e (emaxgmm + Hmmemax) +

az((emax(t) - 9)(9 emm(t))) =0.

Similar to the process of (16) to (20), the inequality of TCBF
is obtained. Since the original TCBF did not consider the
model uncertainties, the new version with model uncertainties
is shown as follows.

Arcprll < Brepr » 27
where,
3h5(xt) ~(V)+ﬁ
Arcpr = — 6h6(x 0 . (28)
—5 9+ Ba?
B 29
BTCBF - Bl] ( )
B, = 6h5(xt)f(V)+ 6h5(xt)9 + 6h5(xt) + o)
ohs (%,
DY 4 &y (Y an(®) = V(Y — Ymm(t)) +
B, = ah6(xt)f( "+ ahf,(xt)e N ahé(xt) + an

a; (Qmax(t) 9) (9 emm(t)) + (X

3.3 CLF +RL

The CLF tracks the reference path by minimizing the tracking
errors. The references of lateral displacement and heading
angle are Y;..r and 0., and the tracking errors are written as
ey =Y -V, and eg=0—0,, . Since the Ilateral
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displacement and heading angle cannot be controlled directly,
V, and r are used to represent the tracking performance. The
desired V4 and 14 are obtained from tracking requirements
of Y;..r and 8,..¢, described in (32) and (33), k> 0,

Vya = —key + Yyer — V6. (32)

T4 = —keg + Oref . (33)

The CLFs are constructed to track the desired V4 and 7y,
which are written in (34) and (35),

ViG) = (b = Vya)”-
V,(x) = (r —1g)?.

(34)
(35)

The constructed CLFs need to satisfy certain conditions for
tracking purposes (Ames et al., 2013). For the affine system
(8), a continuously differentiable function V:X — R is an
exponentially stabilizing CLF if there exist positive constants
1, ¢, and c; > 0 such that (36) and (37) hold.

allxll? V() < collx]l?. (36)

infueu|LV(x) + LV()u + csV(x)] < 0. (37)
Following the process of the previous derivation from (11)-
(16), the formatlon of V, plant(x) is obtained in (38), i =1, 2.

Vrl lant(x) i model(x) + ag f(x) + ﬁ F0) (38)
ag and By are learning parameters, which are a part of the
action network output to learn model uncertainties. Here, a
specific mathematical expression for V/};,,(x) is not
needed since the values are obtained from a high-fidelity
simulation software, CarSim®. Next, plug (38) into the
constraint (37), then (37) is rewritten as (39),

mquU{LfV(x z) + ae‘(x) + (L V(X,z)+ ﬁ (x))ﬁ

39
+ cV(x,z)} <0. (39)

Finally, the expression of (40) is obtained,
‘4CLFﬁ < BCLF' (40)

where,

LgVi(%,2) + By (x)
CLF = — ~ v, . (41)

LgV5(%,z) + By? (x)

~ V.
LgVy(%,2) + cVi(x,2) + ag' (x) “2)

cLr = LiVo (X, 2) + cVa(x, 2) + ag?(x)]

3.4 CDBF-TCBF-CLF + RL

Combining the obtained CLF, CDBF, and TCBF constraints
with model uncertainties, the QP problem is described in (43),

1
i = argmingeps zﬁTHﬁ + Fil. (43)
Subject to,
AcLrti < Bepr - (44)
Acpprll < Beppr - (45)
Arcpril < Brepr - (46)

H € R™™ F € R™ are weightings selected according to the
desired control input.

4. REINFORCEMENT LEARNING FRAMEWORK

In this section, the RL framework is designed to learn model
uncertainties in the constraints of CDBF, TCBF, and CLF.

This framework is shown in Figure 1. The RL networks
receive the states of the dynamic vehicle system as the inputs.
Then, uncertainty parameters af, B, ab, B3, ag, and B are
output to combine with CLF, TCBF, and CDBF constraints,
designed from the nominal model. The combined terms are
considered as constraints in the QP to generate control inputs
that satisfy these constraints all the time.

The reward function needs to be carefully designed for the
RL agent, which is closely related to the desired goal, which
is to minimize the estimation error. Hence, the reward
function is represented in (47),

R(x,0) = Zwvl vy thjlh]

where [, is the loss functlon of CLF (48), 1, is the loss
function of TCBF and CDBF (49), w, and wy, are selected
constants.

47

2
Ly = [V = Vyall™ + Il = rall®. (48)

. lh - ”hrl plant” (49)

In (49), h,; is the derivative of barrier functions designed

from the nominal model and hplant is the derivative of barrier
functions designed from the real plant.

The learning problem is then defined in (50).
T

max expf R(x(7),0)dr, (50)
0

subject to (9).
5. SIMULATION RESULTS AND DISCUSSIONS
5.1 Simulation Settings

A high-speed single-lane change scenario on a high-u
(#=0.85) road is applied to verify the proposed control design.
The vehicle mass is m=1270 kg, the yaw moment of inertia is
1500 Nm and the front and rear wheelbase are 1.11 m and 1.8
m, respectively. The RL agent was trained by using deep
deterministic policy gradient (DDPG) (Lillicrap et al., 2016).
The input of the actor network is the vehicle states. The
output is the 28 dimensional uncertainty terms. Both the
observation network and action network have 4 hidden layers
and every hidden layer has 15 neurons.

A high-fidelity vehicle model in CarSim® is used as the plant
model and the mathematical model (1) is the nominal model.
Thus, a mismatch between the nominal and plant models
introduces the model uncertainties. The 28 learning
parameters are used to calculate the uncertainties even if we
do not know the specific sources of the uncertainties.

We design two maneuvers to compare the original method
and the RL method. The only difference between the two
maneuvers is the vehicle mass. The first maneuver design is
the vehicle mass m=1270kg to finish the single lane change.
Moreover, we train and test the RL network in this maneuver.
Several attempts were made to train the network until it
converges and then the trained network was used in the first
maneuver. We test at the other maneuver that vehicle mass
becomes m=1370 kg in CarSim®, while the mass in the
nominal model is still 1270 kg. We want to increase the
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model uncertainties to sharpen the comparison of the results
and test these two methods' robustness.

5.2 Simulation Results and Discussions

In Figure 2, the vehicle controlled by the TCBF-CDBF-CLF-
RL method tracks the reference path of a single lane change
better than the TCBF-CDBF-CLF without learning. First, the
response time with learning is faster (1.5 seconds vs. 2.5
seconds). Second, the overshooting (magnitude of deviation
from the reference path) is lower for the learning method.
Finally, the convergence time of the proposed method is
much quicker than the original method without learning (13
seconds vs. more than 16 seconds).

The improved tracking performance can be explained from
the control inputs in Figure 3. Around 1 second, the steering
angle from the proposed method is larger than the original
method, so that the vehicle will make a faster lane change
than the original method. From 7 to 11 seconds, the RL
method's steering angle keeps larger than the original method,
making the vehicle turn back to the reference path faster.
Furthermore, some insights can be also seen from vehicle
states in Figure 4. The vehicle states controlled by the RL
method change more smoothly than the original method,
which reflects that the vehicle trajectory is smoother for the

RL method.
8

6
et
o
e TCBF-CDBF-CLF
3 - - -.TCBF-CDBF-CLF-RL
e reference
2 . lane boundary1
lane houndary2

0 2 4 6 8 10 12 14 16
Time(s)

Figure 2. Vehicle tracking performance comparison for a single
lane change maneuver.

To provide further analysis and understand how the RL
method helps control with model uncertainties, the control
constraints in the QP are investigated. In Figure 5 and Figure
6, we present the constraint region of control inputs around
T=5s and 9s as examples. In Figure 5, the TCBF constraints
are shown to influence the control performance most. We can
see that the control region has been changed after adding the
learned uncertainties. From mathematical perspective,
according to the QP constraint Au < B, the relationship
between u; and u, can be expanded as A;;u; —B; <
—Aj,uyand Ayyuy — B, < —A,,u,. The learned uncertainty
terms can affect the feasible region by affecting the sign of
Ay, and A,,. In Figure 6, we can find that the original control
point without learning is above the TCBF boundary, while
the RL control point is below the TCBF boundary. That
means the feasible domain of the control inputs has been
changed after adding the learned uncertainties, which may
allow the vehicle to select more reasonable actions. From

Figure 6, we plot parts of the CDBF constraints, which
influence the performance of the control. We can find that the
learned uncertainties will expand or shift the original control
region. Some control points that are out of the original region
but bounded in the new region will give the vehicle more
optimization rooms to improve the tracking performance.
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Figure 3. Comparison of control inputs with and without learning.
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Figure 4. Comparison of vehicle states with and without learning.
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simulation time T=5s.

—hl_rl
15 h1_origin
—h4_rl
. L h4_origin
10 - Outside the origi rl_point
T CDBF boundary origin_point
Z 5
(o]
=
0 r s
5
-0.05 -0.045 -0.04 -0.035 -0.03 -0.025
ul (rad)

Figure 6. Control output (point) in the constraint region at
simulation time T=9s.

Next, the second test is applied to test the robustness of the
proposed algorithm. In this case, we change the vehicle mass
to m=1370 kg and the other parameters keep the same as
those of the first test. By changing the vehicle mass, the
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vehicle will be more challenging to control since the
controller without learning does not know the mass variation.
From Figure 7, the proposed RL-based method can control
the vehicle. However, the original method without learning
vehicle mass change (or due to model uncertainties) cannot
complete the single lane change maneuver. The two control
outputs are shown in Figure 8. A similar analysis can be
conducted as described for the previous case. For steering
angle control, around 1-3 seconds, the RL control method
generates a larger steering angle so that the vehicle will
respond quicker and track the reference trajectory. In the
process, the magnitudes of steering angle and yaw moment
are smaller than those of the original method. The vehicle
controlled by the RL method will not choose sharp or
dangerous actions, making it less likely to lose control and
better track the reference path.

Y(m)

o TOBF-CDBF-CLF
— TCBF-CDBF-CLF-RL

- - =-= TefeTence

= = =lane boundaryl
i|= = =lane houndarv2

H i H
0 2 4 6 8 10 12 14 16
Time(s)

Figure 7. Vehicle tracking performance comparison with unknown
vehicle mass.
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—— TCBF-CDBF-CLF-RL
TCBF-CDBF-CLF
-1000

0 5 10 15 0 2 4 6 8 10 12 14 16
Time(s) Time(s)

TCBF-CDBF-CLF

Figure 8. Comparison of control inputs for a varied vehicle mass
with and without learning.

6. CONCLUSIONS

In this paper, RL is integrated to CLF, CDBF, and TCBF to
solve the model uncertainties to generate a more reasonable
vehicle tracking strategy. A vehicle lateral stability control
problem is formulated. The algorithm is validated by two
single lane change maneuvers in CarSim® and Simulink co-
simulation. The RL based control outperforms the original
control in the two maneuvers.
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