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Hierarchical MIMO Decoupling Control for Vehicle

Roll and Planar Motions With Control Allocation
Fengchen Wang , Member, IEEE, Yue Shi , and Yan Chen , Member, IEEE

Abstract—Although many methods of ground vehicle dynamics
control have been widely studied, their robustness against undesir-
able oscillatory coupling behaviors of planar and roll dynamics is
not fully explored. To address this issue, a hierarchical multiple-
input-multiple-output (MIMO) decoupling controller is proposed
in this study. Based on the hierarchical control configuration,
the coupled vehicle roll and planar dynamics are resolved in the
high-level control, and a control allocation is utilized for tracking
control in the low-level control. The decoupled internal dynamics
and nominal stability are then analyzed and proved. Moreover, by
using the vehicle yaw rate and load transfer ratio, a control trigger
with dynamic weighting is designed to guarantee the feasibility of
the MIMO decoupling control and smooth control efforts. Through
the co-simulation between CarSim and MATLAB/Simulink, the
feasibility and effectiveness of the proposed controller are verified.

Index Terms—Decoupling control, feedback linearization,
stabilization, rollover, vehicle dynamics.

I. INTRODUCTION

R
ECENTLY, the thriving market of the automotive indus-

try promotes the explosion of new vehicle electrification

and automation technologies, such as steer-by-wire actuation

systems and distributed propulsion architectures with in-wheel

motors (IWMs) [1], [2]. One significant advantage of vehicle

electrification and automation is to provide over-actuated fea-

tures with redundant actuators, which can further improve ve-

hicle safety, energy efficiency, and agility through sophisticated

control design. For instance, the energy efficiency improvement

for electric vehicles with four IMWs in both longitudinal and

lateral motions was investigated via different optimal control

and torque distribution methods [3], [4], [5], [6].

For safety improvement, the stability control of over-actuated

vehicles was studied in the literature [7], [8]. The authors stud-

ied vehicle lateral stability enhancement through a hierarchical

over-actuated control scheme based on an active yaw stabilizer

[7], and roll stability enhancement through the integration of an

active rollover preventer and active front steering control [8],

respectively. Generally, vehicle lateral/yaw and roll motions are

controlled independently based on the assumption that vehicle
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lateral/yaw instability and rollover usually happen on different

driving scenarios [9]. Hence, the control mode switching method

could be employed, in which the mode of vehicle dynamics

control is determined by rollover indexes [10]. Namely, once the

threshold of a rollover index is reached, the control objective

is switched from vehicle lateral/yaw stabilization to rollover

prevention. However, during some aggressive driving maneu-

vers, vehicle lateral/yaw stability and rollover prevention must

be simultaneously considered, even if their control objectives

may be conflicting.

To balance and compromise the conflicting control objectives,

one way is to take the advantages of over-actuated vehicle

systems. For instance, a hierarchical control framework with

control allocation (CA) was introduced in [11] to resolve the

conflicting issue explicitly. In a hierarchical configuration, the

virtual control inputs in the high level ensured vehicle lat-

eral/yaw stability, and the optimal control allocation problem

in the low level was designed to mitigate the rollover propensity

[11]. In [12] and [13], model predictive control (MPC) was used

to keep vehicle lateral/yaw stable and minimize the rollover

indexes simultaneously.

Although the CA and MPC methods can deal with vehicle

lateral/yaw and roll dynamics control together by resolving

optimization problems, the unexpected nonlinear coupling be-

haviors of planar (i.e., longitudinal, lateral, and yaw) and roll

dynamics are not fully explored. Vehicle lateral/yaw and roll

dynamics were considered separately in cost functions and

constraints in the optimization problems [11]. As a result, the

dynamic coupling components between vehicle lateral/yaw and

roll dynamics were usually ignored [11], [12], [13]. In addition,

the coupling dynamics cannot be directly handled in either cost

functions or constraints, which will be illustrated in Section II.

On the other hand, the impacts of nonlinear coupling dynamics

can make vehicle states oscillatory or even unstable due to

common vehicle disturbances and uncertainties, such as side

wind, road unevenness, and cargo load variations [14]. Thus,

it is essential to investigate the coupling dynamics for vehicle

stability control.

In nonlinear control theory, feedback linearization and input-

output decoupling control are usually employed to handle the

coupling issues of nonlinear dynamics. The corresponding ap-

plications on vehicle planar dynamics control were reported

[15], [16], [17]. For example, an asymptotic decoupling control

was studied for sideslip angle and yaw rate to provide the

desired linear vehicle dynamics of outputs regardless of distur-

bances [16]. A decoupled four-wheel steering (4WS) control was
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investigated to consider varying longitudinal speeds [17]. In-

spired by the decoupling control of vehicle planar motions, the

idea of input-output decoupling can be extended to stabilize

vehicle planar and roll dynamics simultaneously.

Motivated by the aforementioned coupling issues between

the vehicle planar and roll dynamics, the authors proposed a

hierarchical input-output decoupling (HIOD) controller with

control allocation by integrating 4WS control and four-IWMs in-

dependent driving/braking control in [18]. The HIOD controller

can prevent vehicle rollover as well as keep the input-output

lateral/yaw L∞ stability of the vehicle planar motion. Never-

theless, the chattering issue occurred in control efforts, and the

small-signal finite-gain L∞ stability may not be fast enough to

stabilize vehicles in motion. Therefore, to extend the authors’

previous work [18], this article has three additional contributions

involving multi-input multi-output (MIMO) decoupling meth-

ods as follows.

1) A MIMO decoupling matrix is established to decouple

nonlinear vehicle dynamics after introducing feedback lin-

earization for vehicle roll dynamics. Using the decoupling

matrix, the input-output vehicle model can be decoupled

and stabilized by the derived input-output decoupling

control law.

2) A hierarchical MIMO decoupling (HMMD) control with

control allocation is proposed. A dynamic control trigger

is also designed to guarantee the feasibility of the MIMO

decoupling control and generate smooth control efforts

without frequently turning the controller on and off.

3) The decoupled internal dynamics and nominal exponential

stability are also analyzed, which is better than theL∞ sta-

bility with a faster convergence speed. The co-simulation

integrating CarSim and MATLAB/Simulink is conducted

to demonstrate the performance of the proposed HMMD

control.

The remainder of this article is organized as follows. In

Section II, the model of the four-wheel nonlinear coupled vehicle

dynamics is developed, which includes the coupling relation-

ship between the roll dynamics and the planar dynamics. In

Section III, the decoupled nonlinear vehicle system is derived. In

Section IV, the HMMD controller is developed, and the nominal

dynamics are analyzed. Simulation results are presented and

discussed in Section V, and conclusions of this article are drawn

in Section VI.

II. MODELING OF NONLINEAR VEHICLE DYNAMICS

The coupled vehicle body dynamics, including both vehicle

planar and roll motions, are modeled in this section. Two com-

mon assumptions are made. First, small steering angles on the

ground are assumed, so that sin δk ≈ 0 and cos δk ≈ 1, where δ
is the steering angle, and the subscript k ∈ {f, r} indicates the

front wheel and rear wheel, respectively. Second, the vehicle is

assumed to be bilaterally symmetric. Namely, the right and left

sides of the steering angles and tire properties are the same.

A. Vehicle Body Dynamics Model

A 4-DOF vehicle dynamics model diagram is presented in

Fig. 1, which includes vehicle longitudinal, lateral, yaw, and roll

Fig. 1. Schematics of coupled nonlinear vehicle planar and roll dynamics.

motions. The four vehicle states corresponding to four DOFs are

selected as:

1) vx: longitudinal vehicle speed;

2) vy: lateral vehicle speed;

3) r: yaw rate;

4) φ: roll angle.

In Fig. 1, β is the vehicle sideslip angle, mφ is the vehicle

sprung mass. Lf and Lr are the distances from the center of

gravity (CG) to front and rear axles, respectively. tw is the

wheel track, hφ is the distance from the CG to the roll center

(RC). Fxi is the longitudinal tire force, where the subscript

i ∈ {fl, fr, rl, rr} indicates the front left, front right, rear left,

and rear right wheels, respectively. Fyi is the lateral tire force

of each wheel. Fzl and Fzr denote the left-side and right-side

vertical tire forces, respectively. αi is the slip angle of each

wheel, and vi is the forwarding speed of each wheel.

The coupled nonlinear vehicle dynamics model with the four

vehicle states are described in (1) [18].
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
Fx = M (v̇x − rvy)−mφhφ

(

φṙ + 2rφ̇
)

∑
Fy = M (v̇y + rvx) +mφhφ

(

φ̈− r2φ
)

∑
Mz = Iz ṙ −mφhφ (v̇x − rvy)φ

∑
Mxφ =

(

Ixφ +mφh
2
φ

)

φ̈+mφhφ (v̇y + rvx)

−
(

mφh
2
φ + Iyφ − Izφ

)

r2φ+ (Kφ −mφhφg)φ

, (1)
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where M denotes the vehicle total mass and Kφ denotes the

roll stiffness. Iz is the overall vehicle yaw moment of inertia

with respect to Z-axis. Ixφ, Iyφ, and Izφ are the roll, pitch, and

yaw moment of inertias about the sprung mass with respect to

X-axis, Y-axis, and Z-axis, respectively. With the small steering

angle assumption,
∑

Fx,
∑

Fy ,
∑

Mz , and
∑

Mxφ are general

forces and moments depicted in (2).

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∑
Fx =

∑

i∈{fl,fr,rl,rr} Fxi − Fres
∑

Fy =
∑

i∈{fl,fr,rl,rr} Fyi
∑

Mz = Lf (Fyfl + Fyfr)− Lr (Fyrl + Fyrr)−∆Mz
∑

Mxφ = −Cφφ̇
(2)

where Cφ denotes the roll damping ratio, and Fres is the re-

sistance force, which includes the air drag and the tire rolling

resistance. ∆Mz is the additional corrective yaw moment gen-

erated by the difference of the longitudinal tire forces, which is

presented in (3).

∆Mz =
tw
2

[(Fxfl + Fxrl)− (Fxfr + Fxrr)] . (3)

B. Tire Model

To accurately characterize the nonlinear tire forces, the magic

formula tire model expressed in (4) is adopted [19].

Y = sd sin {sc arctan [sbX − se (sbX − arctan sbX )]} , (4)

in which Y are longitudinal or lateral tire forces, Fx or Fy ,

respectively, with X accordingly being tire slip ratio or slip

angle, respectively. sb, sc, sd, and se are tire model parameters,

which are calibrated by using CarSim tire data.

III. DECOUPLED NONLINEAR VEHICLE SYSTEM

A. Feedback Linearization for Vehicle Roll Dynamics

A straightforward idea of converting the nonlinear vehicle roll

dynamics in (1) to a controllable linear one is to cancel the non-

linear terms by designing a feedback control law. Substituting

the second equation (e.g., the vehicle lateral dynamics) into the

last equation in (1) to replace v̇y , the vehicle roll dynamics can

be rewritten in (5).

k2φ̈+ Cφφ̇+ k3φ+
k2

1

M

(

r2φ− φ̈+

∑
Fy

k1

)

− k4r
2φ = 0,

(5)

where k1, k2, k3 and k4 are four constants defined in (6).

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

k1 = mφhφ

k2 = Ixφ +mφh
2
φ

k3 = Kφ −mφhφg

k4 = mφh
2
φ + Iyφ − Izφ

. (6)

Selecting x1 = φ, x2 = φ̇, and u =
∑

Fy/M , the vehicle roll

dynamics in (5) is reformulated in a state space model in (7).

ẋ = Ax+B [u− α(x)] , (7)

where x = [x1, x2]
T

, and

A =

[

0 1

−k3

k2
−

Cφ

k2

]

, (8)

B =

[
0

k1

]

, (9)

α(x) =
1

M

(

k1ẋ2 +
Mk4 − k2

1

k1

r2x1

)

. (10)

Implied by the structure of (7), the vehicle roll dynamics in

(5) is a linearizable feedback system. In this case, the following

Theorem 1 provides the state feedback control law to linearize

the vehicle roll dynamics. Namely, the input-output feedback

linearization approach is applied to the single-input-single-

output (SISO) vehicle roll dynamics.

Theorem 1 (Roll dynamics feedback linearization): Consid-

ering the nonlinear vehicle dynamics in (1), if the roll stiffness

satisfies Kφ > mφhφg, then the state feedback control law

designed in (11) makes the linearized vehicle roll dynamics in

(7) stable.

u = α(x). (11)

Proof: Substituting the state feedback control law (7) to (11),

the vehicle roll dynamics becomes

ẋ = Ax. (12)

The eigenvalues of A in (8) are

υj =
−Cφ ±

√

C2
φ − 4k2k3

2k2

, j ∈ {1, 2} . (13)

Physically, the roll damping ratio Cφ and parameter k2 are all

positive. The condition in (14) also makes k3 > 0,

Kφ > mφhφg. (14)

Hence, A is Hurwitz since the real parts of eigenvalues in

(13) are all negative. The linearized roll dynamics in (12) is

exponentially stable. �

Remark 1: The inequality in (14) may need to be checked for

different vehicle design case by case. However, the roll stiffness

Kφ is typically a large value, i.e., 75545 N·m/rad [20], such that

the condition Kφ > mφhφg in Theorem 1 is generally validated

in practice, given that the value of hφ is typically less than 1 for

passenger cars.

B. MIMO Decoupling Matrix for Nonlinear Vehicle Dynamics

By utilizing the feedback control law (11) and the resulting

linearized roll states (7), the nonlinear vehicle dynamics in (1)

are reorganized as a square control-affine system in (15), which

is a MIMO vehicle system.
{
˙̃x = f(x̃)+

∑2
j=1 gj(x̃)ũj

y = h(x̃) = [h1, h2]
T

, (15)

in which x̃ = [x̃1, x̃2, x̃3, x̃4, x̃5]
T

denotes the vehicle states, and

x̃1 = vx, x̃2 = vy, x̃3 = r, x̃4 = φ, and x̃5 = φ̇. ũ1 =
∑

Fx/M
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and ũ2 =
∑

Mz/Iz are the control inputs.y = [y1, y2]
T

denotes

the output of the system, and h1 = x̃2, and h2 = x̃3. Moreover,

f(x̃) = [f1, f2, f3, f4, f5]
T

and gj(x̃) are defined in (16) and

(17), respectively.

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1 =
c1(2x̃5−c2x̃2x̃

2
4)+x̃2

κ
x̃3

f2 = (c1 + c3) x̃
2
3x̃4 − x̃1x̃3

f3 = 2c1c2x̃3x̃4x̃5

κ

f4 = x̃5

f5 = c4x̃4 + c5x̃5

, (16)

{

g1(x̃) =
[

1
κ

0 c2x̃4

κ
0 0

]T

g2(x̃) =
[
c1x̃4

κ
0 1

κ
0 0

]T
, (17)

where κ is defined in (18).

κ = 1 − c1c2x̃
2
4. (18)

Moreover, c1, c2, c3, c4, and c5 are constants defined in (19).
⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c1 = k1

M

c2 = k1

Iz

c3 =
Mk4−k2

1

k1

c4 = −k3

k2

c5 = −
Cφ

k2

. (19)

Based on the vehicle physical properties, positive c1 and c2

are typically less than 1. Moreover, x̃2
4 � 1 since the roll angle

is usually a small angle with a unit in rad (in SI). Hence, κ > 0

and 1/κ is finite in (16) and (17).

Different from the feedback linearization process for vehicle

roll states through (5)–(10), it is not straightforward to directly

find the feedback control law for (15) by rewriting a form that

is similar to (7). In other words, the input-output decoupling

of the MIMO nonlinear vehicle dynamics in (15) demands a

diffeomorphism such that the mapping relationship between the

transformed inputs and outputs are linear and decoupled.

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = ˙̃x2 = (c1 + c3) x̃
2
3x̃4 − x̃1x̃3

y
(2)
1 = (c1 + c3)

(
4c1c2x̃

2
3x̃

2
4x̃5

κ
+ x̃2

3x̃5

)

−x̃2
3

c1(2x̃5−c2x̃2x̃
2
4)+x̃2

κ
− 2c1c2x̃1x̃3x̃4x̃5

κ

+ [(c1 + c3) 2x̃3x̃4 − x̃1]
c2x̃4ũ1+ũ2

κ

−x̃3
ũ1+c1x̃4ũ2

κ

, (20)

Indicated by the derivatives of y1 in (20), the control inputs

ũ1 and ũ2 appear in the second derivative of y1. Hence, the

smallest relative degree corresponding to y1 is ρ1 = 2. Similarly,

the smallest relative degree corresponding to y2 is ρ2 = 1 since

the first derivative of y2 contains ũ1 and ũ2, which is shown in

(21).

ẏ2 = ẋ3 =
2c1c2x̃3x̃4x̃5

κ
+

c2x̃4ũ1 + ũ2

κ
. (21)

Using the smallest relative degree ρ1 and ρ2, the decoupling

matrix of the vehicle system (15) is constructed in (22), which

represents the mapping relationship of the diffeomorphism.

D(x̃) =

[

Lg1
Lρ1−1
f h1(x̃) Lg2

Lρ1−1
f h1(x̃)

Lg1
Lρ2−1
f h2(x̃) Lg2

Lρ2−1
f h2(x̃)

]

2×2

, (22)

where L represents the Lie Derivative as stated in [21], and each

element of D(x̃) in (22) is described as,

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lg1
Lρ1−1
f h1(x̃) =

1
κ
{c2x̃4 [2 (c1 + c3) x̃3x̃4 − x̃1]− x̃3}

Lg2
Lρ1−1
f h1(x̃) =

1
κ
[(c1 + 2c3) x̃3x̃4 − x̃1]

Lg1
Lρ2−1
f h2(x̃) =

1
κ
c2x̃4

Lg2
Lρ2−1
f h2(x̃) =

1
κ

.

(23)

Hence, the decoupling matrixD(x̃) in (22) varies with respect

to x̃1, x̃3, and x̃4.

The existence of the decoupling control solution of the MIMO

nonlinear system is equivalent to the non-singularity of the

decoupling matrix D(x̃) [21]. Namely, the diffeomorphism

requiresD(x̃) being invertible. The following Theorem 2 claims

a necessary and sufficient condition that the nonlinear vehicle

dynamics (15) can be decoupled by D(x̃).
Theorem 2 (MIMO Vehicle Dynamics Decoupling): Given

that 1/κ is finite, the vehicle system in (15) can be decoupled

by the decoupling matrix D(x̃) if and only if x̃3(t) �= 0 for all

t > 0.

Proof: First, (15) can be decoupled if and only ifD(x̃) is non-

singular for all t > 0, which is equivalent to rank(D(x̃)) ≡ 2.

Since κ �= 0, the reduced form ofD(x̃) by removing the same

factor 1/κ is described in (24).

D(x̃) =

[
c2x̃4Θ− x̃3 Θ− c1x̃3x̃4

c2x̃4 1

]

2×2

, (24)

where Θ = 2(c1 + c3)x̃3x̃4 − x̃1. On one hand, when x̃4 = 0,

D(x̃) can be reduced as the upper triangular matrix in (25).

D(x̃) =

[
−x̃3 −x̃1

0 1

]

2×2

. (25)

In this case, rank(D(x̃)) ≡ 2 is held if and only if x̃3 �= 0.

On the other hand, when x̃4 �= 0, rank(D(x̃)) ≡ 2 is held if and

only if two row vectors of D(x̃) in (24) are linear independent.

Namely, when x̃3 �= 0, the two row vectors are independent. �

Remark 2: Implied by Theorem 2, requiring x̃3(t) �= 0

suggests that the proposed decoupling control will not work

with zero yaw rate. Generally, the decoupling control can

only be activated when lateral vehicle dynamics are displayed

through steering commands (e.g., a cornering or lane chang-

ing maneuver). Therefore, a control trigger based on the ve-

hicle states feedback is required to prevent D(x̃) from being

singular.

C. Vehicle Input-Output Model

Together with the smallest relative degrees, ρ1 and ρ2, and

the nonsingular decoupling matrix D(x̃), the decoupled vehicle
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Fig. 2. Control configuration of the HMMD control.

input-output model of (15) can be established as (26).

yρ1,ρ2 =

[
dρ1y1

dtρ1

dρ2y2

dtρ2

]

= C(x̃) +D(x̃)ũ, (26)

where ũ = [ũ1, ũ2]
T

, and C(x̃) is depicted in (27).

C(x̃) =

[

Lρ1

f h1(x̃)

Lρ2

f h2(x̃)

]

, (27)

in which

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lρ1

f h1(x̃) = −x̃2
3

c1(2x̃5−c2x̃2x̃
2
4)+x̃2

κ

+ [2 (c1 + c3) x̃3x̃4 − x̃1]
2c1c2x̃3x̃4x̃5

κ

+(c1 + c3) x̃
2
3x̃5

Lρ2

f h2(x̃) =
2c1c2x̃3x̃4x̃5

κ

. (28)

IV. HIERARCHICAL CONTROLLER DESIGN

The overview of the proposed HMMD controller is presented

in Fig. 2, in which δdf is the feedforward front steering angle in-

put, and yr1 and yr2 are the references of y1 and y2, respectively.

The HMMD control intends to track the references of vehicle

lateral speed and yaw rate, and simultaneously mitigate rollover

propensity by reducing the values of rollover indexes, such as

load transfer ratio (LTR) [8], [9]. For an over-actuated vehicle

with multiple electric driving/braking motors and front and rear

steering motors [4], a control allocation module is typically

applied to distribute the virtual control efforts obtained from

the high-level MIMO decoupling design. Moreover, according

to Remark 2, a state feedback-based trigger is designed for

the feedback control to avoid the singularity of the decoupling

matrix and unexpected chattering effects of control.

A. High-Level Virtual Controller Design

Given the condition x̃3(t) �= 0 in Theorem 2, the feedback

control law can be directly obtained via (26) to achieve the input-

output decoupling, which is shown in (29).

ũ = D−1(x̃) (v − C(x̃)) , (29)

where v = [v1, v2]
T

is the synthetic control input. Substituting

(26) into (29), we have (30),

yρ1,ρ2 = v. (30)

The references yr1 and yr2 are defined as the first order delay

system by the transfer function in (31), [22].

{

yr1 = 0

yr2 = κr

1+τrs
δf

, (31)

in which

κr =
vx

Lf +MLfv2
x

/
2CyfLf (Lf + Lr)

, (32)

τr =
vxIz

MLrv2
x + 2CyfLf (Lf + Lr)

, (33)

where Cyf = Cyfl = Cyfr is the equivalent tire cornering stiff-

ness of the front axle based on the bilateral symmetry assump-

tion. In addition, the equivalent tire corning stiffness can be

estimated from the linear range of the nonlinear tire model (4)

for the reference model.

To track the references yr1, yr2, and stabilize the dynamics

in (30), the synthetic control inputs are designed in (34), which

includes a stabilization part and a tracking part. The stabilization

part has been proved to make (30) Hurwitz stable in [23], and

the tracking part is a proportional–integral controller to dismiss

reference tracking errors.

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v1 = −α1
1h1(x̃)− α1

2Lfh1(x̃)
︸ ︷︷ ︸

Stabilization

+K1
P e1 +K1

I

∫

e1

︸ ︷︷ ︸

Tracking

v2 = −α2
1h2(x̃)

︸ ︷︷ ︸

Stabilization

+K2
P e2 +K2

I

∫

e2

︸ ︷︷ ︸

Tracking

, (34)

where α1
1, α1

2, α2
1, K1

P , K1
I , K2

P , and K2
I are positive control

gains. e1 and e2 are two tracking errors defined in (35).

em = yrm − ym,m ∈ {1, 2} . (35)

B. Nominal Stability Analysis

The diffeomorphism of x̃ is depicted in (36).

z = Φ(x̃) =

[
ξ
η

]

. (36)

Given the sum of the individual smallest relative degree ρ =
ρ1 + ρ2, ξ is the first ρ coordinates in Φ(x̃), which is presented

in (37).

ξ =
[
ξ1

1(x̃) ξ1
2(x̃) ξ2

1(x̃)
]T

=
[
h1(x̃) Lfh1(x̃) h2(x̃)

]T
. (37)

Besides, η is the rest of the n− ρ coordinates in Φ(x̃), where

n is the number of the DOFs of x̃. η is depicted in (38).

η =
[
η1(x̃) η2(x̃)

]T

=
[
x̃4 x̃5

]T
. (38)

Applying the diffeomorphism Φ(x̃), the vehicle system in

(15) is rewritten into the form in (39), which is a decoupled
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linear system.
{

ξ̇ = Hξ +Kv

η̇ = Q(η, ξ) + P (η, ξ)ũ
, (39)

where H , K, Q(η, ξ), and P (η, ξ) are defined in (40).
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H =

⎡

⎣

0 1 0

0 0 0

0 0 0

⎤

⎦

K =

⎡

⎣

0 0

1 0

0 1

⎤

⎦

Q(η, ξ) =

[
Lfη1(x̃)
Lfη2(x̃)

]∣
∣
∣
∣
x̃=Φ−1(z)

=

[
η2

c4η1 + c5η2

]

P (η, ξ) =

[
Lg1

η1(x̃) Lg2
η1(x̃)

Lg1
η2(x̃) Lg2

η2(x̃)

]∣
∣
∣
∣
x̃=Φ−1(z)

= 02×2

, (40)

in which x̃ = Φ−1(z) =
[
(c1 + c2)ξ

2
1η1 −

ξ1
2

ξ2
1

, ξ1
1 , ξ

2
1 , η1, η2

]T
.

The nominal stability of the decoupled system (39) is in-

dicated by its output zero dynamics, which is associated with

internal zero dynamics. The decoupled system is stable, namely

the minimum phase, as long as the output zero dynamics is stable

[21], [23].

Defining the internal zero dynamics as ξ = 03×1, we have

yρ1,ρ2 = 02×1, and the control law in (29) becomes ũ =
−D−1(x̃)C(x̃). Therefore, the output zero dynamics are given

by (41), considering P = 02×2 in (40),

η̇ = Q(η, 0)− P (η, 0)D−1(η, 0)C(η, 0)

= Q(η, 0)

=

[
η2

c4η1 + c5η2

]

. (41)

From (8) and (19), the output dynamics in (41) is exactly the

same as the decoupled roll dynamics in (12), which is proved

in Theorem 1 that the equilibrium point is exponentially stable.

Therefore, the system in (41) is stable and is in the minimum

phase since the zero dynamics have an asymptotical equilibrium

point in the domain of interest.

C. Control Allocation

Integrating the feedback linearization of the vehicle roll

dynamics and the MIMO decoupling control of the vehicle

planar dynamics, the high-level virtual control input of the

HMMD controller is τc = [u, ũ1, ũ2]
T

, which is determined by

the control laws in (11) and (29). Employing the low-level

actuators, the over-actuated vehicle with four-wheel steering

and four-IWMs demands the real control inputs, including the

front and rear steering angles and the driving torque/force of

each IWM. Namely, the low-level real control input is û =
[δf , δr, Fxfl, Fxfr, Fxrl, Fxrr]

T
, in which δf = δdf +∆δf , and

∆δf is the additional front-wheel steering angle by considering

the feedforward front steering angle δdf . Moreover, the addi-

tional rear-wheel steering angle ∆δr equals to δr since there

is no feedforward rear-wheel steering given by human drivers.

Therefore, the control allocation is applied to distribute the

high-level virtual control τc to the low-level real control input û
since the dimension of û is larger than that of τc. Incorporating

all the actuators together, the mapping relationship between û
and the achievable values of τc, denoted as τ , are formulated in

(42) by substituting (2), (3), and (4).

τ =

⎡

⎢
⎣

∑
Fy/M

∑
Fx/M

∑
Mz/Iz

⎤

⎥
⎦ = Sû, (42)

where S is the mapping matrix as shown in (43).

S =

⎡

⎢
⎢
⎣

2Cyf

M

2Cyr

M
0 0 0 0

0 0 1
M

1
M

1
M

1
M

2LfCyf

Iz
−

2LrCyr

Iz

tw
2Iz

tw
2Iz

− tw
2Iz

− tw
2Iz

⎤

⎥
⎥
⎦

(43)

where Cyr = Cyrl = Cyrr is the equivalent tire cornering stiff-

ness of the rear axle.

The control allocation problem is formulated in (44).

min
û

J = ‖û‖W1
+ ‖τ(û)− τc‖W2

s.t.

{
û ∈ U
τ(û) = Sû

, (44)

whereW1 andW2 are two weighting matrices, which are applied

to normalize the two terms with different units in the cost

function for the numerical optimization. U is the feasible region

of û, which depends on the physical capability of the actuators.

For steering angles, δf , δr ∈ [−30◦, 30◦]. For tire longitudinal

forces, Fxfl, Fxfr, Fxrl, Fxrr ∈ [−3000N, 3000N].

D. Control Trigger

A control trigger is necessary to guarantee the feasibility of

the MIMO decoupling control based on Theorem 2. The MIMO

decoupling control will only work when the controlled vehicle

showing lateral dynamics with non-zero yaw rate.

Furthermore, a rollover index, the lateral load transfer ratio

(LTR), is also involved in the prevention of vehicle rollover

[24]. Generally, larger LTR values represent a higher rollover

propensity of vehicles, so that a constant threshold of the

LTR is employed in the trigger [24]. Under this condition, the

decoupling controller with a constant LTR threshold may be

frequently turned on and off due to various driving maneu-

vers. Consequently, the frequent switches will not only provide

discontinuous control efforts but also cause/excite unexpected

chattering of vehicle states. To avoid this situation, a dynamic

weighting method in the trigger is applied to smooth the control

efforts. The design of the trigger is depicted in (45), in which

the value of T varies from 0 to 1.

T = sgn (|r|) · w (|LTR|) , (45)

where sgn(|r|) is the sign function, and the estimation of

LTR ∈ [−1, 1] is shown in (46), [25]. In addition, w(·) denotes

the dynamic weighting function shown in (47), where ε ∈ (0, 1)
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Fig. 3. Dynamic weighting function.

Fig. 4. Driver steering angle input of the DLC maneuver.

and σ are two constants that can be calibrated.

LTR =
2mφhφ

Mtw

[
(v̇y + rvx) cosφ

g
+ sinφ

]

. (46)

w (|LTR|) =

⎧

⎨

⎩

0 |LTR| ≤ ε

1 − exp

[

−
(

|LTR|−ε

σ

)2
]

|LTR| > ε
,

(47)

In detail, ε indicates the lower LTR bound for non-zero value

of w, and σ helps to determine the slop of the rising curve of

non-zero value of w. Fig. 3 illustrates the trend of w(|LTR|)
with σ = 0.05, which starts from 0 and activates the controller

at ε = 0.75.

From (45), T = 0 implies the controller is turned off when

either sgn(|r|) or w(|LTR|) is zero. On one hand, sgn(|r|)
can disable the controller with r = 0 for a straight-line driving,

which ensure that the condition in Theorem 2 holds. On the

other hand, w(|LTR|) provides a continuous control weight to

smooth control inputs activated by LTR.

Applying the trigger, the final virtual control input can be

rewritten as (48).

τc = T · [u, ũ1, ũ2]
T. (48)

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the co-simulations are conducted via in-

tegrated CarSim and MATLAB/Simulink to demonstrate the

performance of the proposed HMMD controller. In CarSim, an

E-class SUV with high-fidelity vehicle parameters is selected as

the simulated vehicle. Moreover, a double-lane change (DLC)

maneuver is commanded on the road with a tire-road friction

coefficient at 0.85. Fig. 4 shows the driver steering angle in-

put δdf of the DLC maneuver. The targeted driving speed is

120 km/h. The proposed HMMD controller is implemented in

MATLAB/Simulink. In addition, the optimization problem of

TABLE I
VALUES OF VEHICLE PARAMETERS AND SIMULATIONS

Fig. 5. Simulation responses of the comprehensive index.

the control allocation is solved by the constrained optimization

command (fmincon) with the active set algorithm. The vehicle

parameters are listed in Table I.

For comparisons, an uncontrolled vehicle is used as a bench-

mark. In addition, the vehicle only with the rollover prevention

control law (11) is also simulated to verify that it is necessary

to have additional MIMO decoupling control to mitigate oscil-

latory coupling responses and maintain vehicle planar motion

stability. The uncontrolled vehicle and the vehicle only with the

rollover control are also with the same initial conditions and

parameters of the vehicle steered by the HMMD controller. The

dynamic weighting function presented in (45) withσ = 0.05 and

ε = 0.75 is applied to both vehicles with only rollover control

and the HMMD controller.

To demonstrate the comprehensive performance of the MIMO

decoupling control, a new nondimensionalized comprehensive

index, Comp, is developed in (49), in which the LTR defined

in (46) represents roll stability, and em defined in (35) indicates

yaw and lateral stability. From (49), a small value of Comp is

anticipated for a desired control performance.

Comp =
1

3

(

|LTR|

max (|LTR|)
+

2∑

m=1

|em|

max (|em|)

)

(49)

The simulation results of three cases are shown in Figs. 5 –12.

The legends “UC” and “RC” represent the uncontrolled vehicle

and the vehicle with only rollover control law (11), respectively.

The results of Comp responses are displayed in Table II and
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Fig. 6. Simulation responses of the LTR.

Control enabled

Fig. 7. Simulation responses of the lateral speed tracking error.

Fig. 8. Simulation responses of the yaw rate tracking error.

Fig. 9. Simulation responses of the longitudinal speed.

Fig. 10. Steering angles inputs after the control allocation.

Fig. 11. Longitudinal tire forces after the control allocation.

Fig. 12. Tracking errors of the virtual controls in the control allocation.

TABLE II
STATISTICAL EVALUATION OF THE COMPREHENSIVE INDEX

Fig. 5. The HMMD controller is activated during 3.2 s–4.1 s.

The “HMMD” vehicle has smaller values of the comprehensive

index, compared with the results of the “UC” and “RC” vehicle.

In addition, based on the statistical evaluations in Table II, the

“HMMD” vehicle also can achieve smallest time integration,

mean, and variance. Therefore, the proposed HMMD can

process better control performance by considering vehicle roll

stability and lateral/yaw stability simultaneously.

The LTR responses of the three cases are shown in Fig. 6.

Owing to the steering maneuver, Fig. 6(a) indicates that high

rollover propensities appear during 3.2 s–4.1 s and 4.6 s–5.4 s,

which are presented in the zoom-in plots of Fig. 6(b) and (c),

respectively. From Fig. 6(b) and (c), the “UC” vehicle is stable

without rollover happening, but it has high rollover propensity

since the values of the LTR approach to 0.9 and –0.6. However,
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compared with the “UC” vehicle, the HMMD controller can

mitigate vehicle rollover propensity when the value of the LTR

exceeds the trigger threshold 0.75. In addition, while the “RC”

vehicle also tries to depress the LTR, the chattering behavior

emerges in Fig. 6(b), which results in the worse/larger LTR

responses than the ones in the “UC” case. That is because the

oscillatory coupling dynamics is not considered in the “RC”

vehicle. Therefore, the HMMD controller can enhance vehicle

anti-rollover performance as well as deal with oscillatory cou-

pling behaviors.

The lateral and yaw state tracking performances of vehicles

are presented in Figs. 7 and 8, which imply the stability of vehicle

planar motion. In Fig. 7, the tracking errors of vehicle lateral

speed are presented. Although the “HMMD” vehicle has a little

larger error after the controller enabled, it does not mean a worse

lateral stability when the 4WS control is introduced. With an

additional rear-steering angle, the vehicle lateral stability region

is enlarged as the front and rear steering angles with the same

direction are applied [26], [27], which is further verified in the

plots of steering angles later. In Fig. 8, compared with the “UC”

vehicle, the “RC” vehicle has larger tracking errors of yaw rate

so that the “RC” vehicle sacrifices the yaw stability to fulfill

the rollover prevention. However, the “HMMD” vehicle can

achieve better yaw rate tracking performance than the “UC” and

“RC” vehicles since the additional MIMO decoupling control

involves the maintenance of yaw stability. The responses of

vehicle longitudinal speed are displayed in Fig. 9, in which the

targeted longitudinal speed 120 km/h is closely maintained.

The control allocation is only conducted in the HMMD con-

troller, and Figs. 10 and 11 present the real control inputs after

control allocation. From Figs. 10 and 11, all additional steering

angles and longitudinal tire forces are within reasonable regions.

Hence, the control inputs are practical for future engineering

applications. In particular, ∆δf and ∆δr displayed in Fig. 10

make δf and δr steer in the same direction. Hence, the lateral

stability region of the “HMMD” vehicle is enlarged, so that the

corresponding larger e1 during 3.2 s – 4.1 s in Fig. 7 is acceptable.

The tracking errors of the virtual controls in the control

allocation et are shown in Fig. 12, which is the second penalty

term in the cost function of (44). From Fig. 12, the maximum et
is less than 1.6 × 10−3. Hence, the control allocation can satisfy

the virtual control inputs with high accuracy. To further validate

the proposed control method, which is not limited to simulation,

an experimental validation will be conducted through a collab-

oration with an auto company.

VI. CONCLUSION

This article studies the HMMD controller with the control

trigger to address the oscillatory coupling behaviors of the planar

and roll dynamics. The derived control laws can decouple vehi-

cle roll and planar dynamics. In addition, the nominal stability

of the decoupled system is also proved via the stability of the

output zero dynamics.

Demonstrated by the co-simulation integrating CarSim and

MATLAB/Simulink, the HMMD controller can achieve the

smallest statistical evaluation values of the comprehensive index

and suppress the vehicle rollover propensity by simultaneously

ensuring vehicle planar stability without oscillations. The chat-

ting issue of control efforts is also resolved. Moreover, the

control allocation in the hierarchical configuration can gener-

ate reasonable real control inputs and track the virtual control

inputs with high accuracy. The future work of the proposed re-

search would investigate the real-time feasibility of the HMMD

controller. Field experiments with a real vehicle will also be

conducted for demonstration.
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