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Safety-Guaranteed Learning-Based
Flocking Control Design

Mingzhe Liu and Yan Chen , Member, IEEE

Abstract—This letter aims to develop a new learning-
based flocking control framework that ensures inter-agent
free collision. To achieve this goal, a leader-following flock-
ing control based on a deep Q-network (DQN) is designed
to comply with the three Reynolds’ flocking rules. However,
due to the inherent conflict between the navigation attrac-
tion and inter-agent repulsion in the leader-following
flocking scenario, there exists a potential risk of inter-
agent collisions, particularly with limited training episodes.
Failure to prevent such collision not only caused penalties
in training but could lead to damage when the proposed
control framework is executed on hardware. To address
this issue, a control barrier function (CBF) is incorporated
into the learning strategy to ensure collision-free flocking
behavior. Moreover, the proposed learning framework with
CBF enhances training efficiency and reduces the complex-
ity of reward function design and tuning. Simulation results
demonstrate the effectiveness and benefits of the proposed
learning methodology and control framework.

Index Terms—Multi-agent systems, flocking control, rein-
forcement learning, collision avoidance, control barrier
function.

I. INTRODUCTION

F
LOCKING behavior, describing the group coordination

and motion of animals in nature, has great potential for

various engineering applications. The self-organizing feature

and robust scalability make flocking control suitable for

transportation systems and mobile sensor networks [1]. In

1987, Reynolds proposed three famous heuristic rules as

the foundation of flocking: cohesion, separation, and align-

ment [2]. Inter-agent collision avoidance is a fundamental

property that helps mobile robot systems avoid incidents and

hardware damage. The flocking rules were extended to include

obstacle avoidance and leader following later [3]. Moreover, to

realize these flocking rules, different flocking control designs

were proposed by using potential field methods [3], and other

approaches [4], [5]. In addition to theoretical research, other

studies have focused on applying flocking control theory to

engineering practice, such as considering traffic rules and
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real-world scenarios that include road boundaries [6] and

vehicle spacing [7].

However, model-based flocking control has a potential issue:

the control performance heavily relies on accurate models

of multi-agent systems, which may not be realistic [8], [9].

An alternative approach is the learning-based method, which

does not require accurate knowledge of multi-agent systems

and environments. Moreover, learning-based flocking can offer

environmental adaptability [10], handle disturbances from a

dynamic environment [11], and find near-optimal results [12].

Because of the advantages, various reinforcement learning

algorithms were recently applied to achieve different flock-

ing behaviors and applications. For example, reinforcement

techniques with both teacher and non-teacher scenarios were

used to achieve Vicsek flocking, which only considered

velocity consensus [13]. A particle-based flocking algorithm

was first developed using Q-learning to achieve Reynolds

flocking [14], and a Q-learning flocking algorithm was applied

for fixed-wing UAV dynamics [8]. As an extension of Q-

learning, a deep Q-Network (DQN) was studied to solve

the flocking problem with fixed-wing UAV kinematics [15].

The feasibility of collision-free flocking was achieved via

discrete actions in these learning methods [8], [14], [15].

Imitation learning was used to train policies and learn the

local controller by mimicking the centralized controller using

global information [16]. In addition, graph neural networks

(GNNs) were used to address the scaling problem. Deep

deterministic policy gradient (DDPG)-based flocking was also

recently studied and improved [17], and a brain emotional

learning-based flocking control method was applied for UAVs

with experimental validation [11].

Implementing machine learning on cyber-physical systems

(CPS) in the real world is a great challenge [18]. A popular

method is to learn policies in simulation and execute the

resulting policies experimentally. However, this approach may

not be capable of considering various uncertainties in hardware

and environment. Training on CPS can overcome this issue by

continuously learning when policies are executed on hardware.

In the trial-by-error method of reinforcement learning, because

agents learn from misbehavior by receiving a penalty and

minimizing the overall penalty scores, collision-free is critical

for learning the near-optimal policy during the learning on

CPS process. On the other hand, a collision-free condition

in a learning process is challenging due to the essential

conflict between inter-agent repulsion and the (virtual) leader

agent attraction. This conflict makes the training result highly

dependent on the reward function design and parameter tuning.
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In other words, collision-free is not guaranteed in the afore-

mentioned learning methods. Since collisions usually generate

bad effects, such as hardware damages or injuries, a guaranteed

collision-free mechanism is critical for mobile agents to utilize

machine learning methods in real-world applications.

Control barrier function (CBF) is a model-based control

design method to guarantee safety constraints in dynamic

systems [19], which was recently integrated with flocking con-

trol. For instance, a new flocking control scheme was proposed

to consider the synchronization of agents’ attitudes, in which

CBF was used for separation [20]. Recently, CBF-based

resilient flocking control was applied to collision and obstacle

avoidance of ground robots with experimental validations [21].

Furthermore, CBF was integrated into flocking control to

control a dynamic obstacle and prevent the flocking group

from entering the protection zone, which demonstrated the

capability of CBF for obstacle avoidance [22]. CBF was also

integrated with learning-based control, though not for flocking.

A CBF-based guiding control with reinforcement learning,

including DDPG and TRPO, was proposed to achieve safe and

efficient learning [18]. A matrix-variate Gaussian process was

used to learn dynamic uncertainties, which were incorporated

into robust multi-agent CBF to prevent collisions [23]. Inspired

by the aforementioned works, the research gap is identified to

achieve safety (collision-free) guaranteed constraints by using

CBF in learning-based flocking for multi-agent systems.

Thus, we propose a safety-guaranteed framework for

learning-based flocking to ensure collision-free operations of

multi-agent systems. The main contributions of this letter are

summarized as follows:

• A leader-following flocking scheme is realized through

a deep Q-network (DQN), in which the phenomena of

inter-agent collisions are unavoidable and analyzed.

• A safety-guaranteed learning-based framework is

proposed to employ a pairwise CBF to achieve collision-

free flocking behavior.

• The proposed framework can introduce additional bene-

fits in easier or simpler reward design and tuning, thereby

enhancing learning efficiency, which was demonstrated

through online training and simulation results.

The remainder of this letter is organized as follows.

Section II provides the background of DQN and formulates

the flocking problem as the DQN. Section III introduces the

CBF and shows how it is formulated and integrated into the

learning strategy. Section IV presents the simulation results

and discusses the effectiveness and benefits of the proposed

method. Conclusions are drawn in Section V.

II. LEARNING-BASED FLOCKING

A. Background: Deep Q-Network

The deep Q-network (DQN) [24] is a reinforcement learning

method that extends Q-learning by employing a neural network

(NN) to predict Q-values rather than relying on tabular

reward-action updates. This extended feature provides several

advantages. First, DQN can effectively handle continuous state

inputs and large state spaces. Second, DQN exhibits strong

generalization capabilities and performs well in complex

situations where traditional learning methods struggle. The

utilization of a neural network for approximating Q-values

enhances the flexibility and efficiency of the learning process,

making DQN a favorable tool for learning-based multi-agent

systems, which usually require massive amounts of state

inputs.

B. DQN-Based Flocking

A decentralized multi-agent learning scheme based on

DQN is proposed to achieve learning-based flocking. Leader-

following can be formulated as a reinforcement learning (RL)

problem within a Markov decision process (MDP) framework.

In the multi-agent system, a set of RL agents indexed as N =
{1, 2, . . . , n} are trained to achieve virtual leader following and

desired flocking behaviors. To represent the dynamics of the

RL agents, a particle-based double integrator model, which

is commonly used in the flocking control and multi-agent

systems literature, such as [2], [3], [4] and [25], was adopted.

{

q̇i = pi

ṗi = ui
, (1)

where each RL agent i ∈ N is characterized by its position

qi ∈ R
2, velocities pi ∈ R

2, and control input ui ∈ R
2.

The generated trajectories or references based on the

point-mass model (1), although simplified, could be applied

to tracking control of CPS through a hierarchical control

architecture, in which nonlinear model dynamics and model

uncertainties of connected and automated vehicles were han-

dled in the low-level control layer [1].

The virtual leader follows a predefined trajectory, while

the RL agents aim to learn how to track the leader with the

Reynolds’ flocking rules of maintaining separation, alignment,

and cohesion within the flock.

1) Action Space: To provide flexibility in velocity con-

trol and enable different speed profiles, three magnitudes

of acceleration are utilized: 0 (maintaining velocity), a low

acceleration denoted as aL (low acceleration), and a high accel-

eration denoted as aH (high acceleration). The action space for

selecting acceleration directions is discretized into intervals of

30 degrees, starting from the X direction. Consequently, the

action space Action can be described as a matrix in R
2×25,

as shown in (2), where each column represents a specific

direction and magnitude of acceleration,

Action =

⎡

⎢
⎢
⎣

[

0

0◦

] [

aL

0◦

] [

aL

30◦

] [

aL

330◦

]

· · ·
[

aH

0◦

] [

aH

30◦

]

· · ·

[

aH

330◦

]

⎤

⎥
⎥
⎦

. (2)

2) Observation Representation: In the context of multi-

agent systems, the states of RL agent i, denoted as si, is defined

as the concatenation of its global position qi and velocity

pi, represented as si =
[

qi pi

]T
. To facilitate information

exchange among the RL agents, inter-agent communication

and sensor networks are employed. Additionally, the state of

the virtual leader, denoted as sγ =
[

qγ pγ

]T
, is broadcast to

all RL agents. With knowledge of the states of all RL agents

and the virtual leader, the observation Si for agent i is defined

in order as follows,

Si =
[

si s1 · · · si−1 si+1 · · · sn sγ

]

. (3)
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Fig. 1. Spatial relations between different types of agents.

3) Reward Scheme: The reward scheme in the learning

setup is designed based on the Reynold’s flocking rules plus

the leader following requirements. Fig. 1 illustrates the spatial

relations where an ego α-agent has a sensing range R3. For

agent αi, any other α-agents within the sensing range of R3,i

are considered as neighbors. The sensing range covers a 360-

degree field of view and forms a cyclic coverage area.

The inter-agent distance dij between agents αi and αj is

categorized in different ranges to determine the corresponding

rewards in Fig. 1. When dij is small (less than R1,i in Fig. 1),

a negative reward is assigned to discourage close proximity.

When dij is within the sensing range R3,i and the agents

maintain a safe distance (larger than R1,i), a positive reward is

given to encourage the α-agents to remain together. Moreover,

a desired distance zone (R1,i < dij ≤ R2,i) is introduced to

encourage agents to maintain a compact group. Based on the

design, the reward function rd
ij between two agents, αi and αj,

is formulated as follows,

rd
ij =

⎧

⎪
⎨

⎪
⎩

−5, dij ≤ R1 (Separation)

10, R1 < dij ≤ R2 (Desired zone)

5, R2 < dij ≤ R3 (Cohesion)

0, dij > R3 (No interaction)

. (4)

Note that the values of rd
ij in (4) are given as examples,

which can be tuned based on the learning performance.

Furthermore, for the case of multiple neighbors, the accumu-

lating distance reward rd
i of agent αi can be defined as,

rd
i =

∑

j∈Nj

rd
ij, Nj = {j ∈ N : i �= j}. (5)

where rd
ij is shown in (4).

In addition to position rewards described in (4) and (5), the

reward of alignment or velocity consensus for the neighbors

of an α-agent also need to be defined. An alignment reward

ra
i ∈ [0, 1] is introduced based on the standard deviation of

velocities in the neighbor group, which is expressed in (6).

ra
i =

⎧

⎨

⎩

1

1 + σi,v

, dij ≤ R3

0, dij > R3

, (6)

where σi,v is the standard deviation of the velocity among

all the α-agents in the neighbor group of αi agent. Note that

only α-agents in the communication range R3 are considered

neighbors.

Furthermore, a straightforward reward for the leader fol-

lowing scheme is designed for αi, which is dependent on

the distance diγ between αi and the virtual leader γ -agent as

shown in Fig. 1.

r
γ
i = −diγ . (7)

Finally, the total reward ri for α-agent i is expressed as,

ri = cdrd
i + cara

i + cγ r
γ
i , (8)

where cd, ca, and cγ are the weights for distance reward,

alignment reward, and leader-following reward, respectively.

III. COLLISIONS-FREE GUARANTEED LEARNING-BASED

FLOCKING FRAMEWORK

A. Background: Control Barrier Function

This section presents a concise overview of CBF, which

forms the basis of the proposed approach for ensuring

collision-free learning among the agents. The CBF concept

serves as a vital tool in control theory for enforcing safety

constraints on dynamic systems. A mathematical framework

was presented to design controllers that maintain system

states within predefined safety bounds, see details in [19].

By incorporating CBF constraints in the control design, the

proposed method can enable the agents to navigate without

collisions and enhance overall safety and maneuverability.

The CBF approach is designed to guarantee system safety

by imposing safety constraints on the system behaviors. These

safety constraints are carefully defined to prevent undesired

behavior or violations of safety limits. Consider a control

system represented in an affine form,

ẋ = f (x) + g(x)u, (9)

where x ∈ R
n, and the control input is represented as u ∈ U ⊂

R
m. The functions f and g are assumed to be locally Lipschitz

continuous. Let C ⊂ R
n be a safe set that all agents need to

maintain. A controller u can guarantee the forward invariance

of C if, for every initial state x0 ∈ C , the state trajectory x(t)

remains within C for all t ≥ 0. In other words, regardless of

the initial condition, the system’s solutions will always remain

in the invariant set C . Assuming that the invariant set C can

be defined as the level set of a control barrier function,

C = {x ∈ R
n|h(x) ≥ 0}. (10)

Definition 1 [19]: Assuming the existence of a dynamic

system (9) and a safety set (10). Let h : R
n → R

n be a

continuously differentiable function. Suppose there exists a

locally Lipschitz extended class κ function α and a set C ⊆
D ⊂ R

n such that for all x ∈ D ,

sup
u∈U

[

Lf h(x) + Lgh(x)u + α(h(x))
]

≥ 0, (11)

where the first-order Lie derivative of the system (9) is

expressed as ḣ(x) = ∂h
∂x

(f (x) + g(x)u) = Lf h(x) + Lgh(x)u, the

function h(x) is considered a Zeroing Control Barrier Function

(ZCBF) defined on D .

In the ZCBF h(x), the set of feasible solutions as the control

input is,

K(x) = {u ∈ U|Lf h(x) + Lgh(x)u + α(h(x)) ≥ 0}. (12)

B. CBF Formulation for Pairwise Double Integrator
Agents

Each α-agent i ∈ N = {1, 2, . . . , n} is modeled by a double

integrator dynamics in (1). The acceleration of α-agent i is

bounded by ‖ui‖∞ ≤ amax, and the velocity is limited by
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‖pi‖∞ ≤ βmax. �qij = qi−qj and �pij = pi−pj represent the

relative position and velocity, respectively, between α-agent i

and agent j.

In this letter, we adopt the pairwise CBF proposed in [25].

The inter-agent distance requires maintaining a safe distance

ds, which considers the normal component of the relative

velocity �p̄ij = ‖�q̇ij‖ =
�qT

ij

‖�qij‖
�pij and the maximum

deceleration between α-agents i and j in (13),

∥
∥�qij

∥
∥ −

(

�p̄ij

)2

4amax
≥ ds,∀i �= j, (13)

where amax can be practically understood as the saturated

actuation capabilities of actuators.

The ZCBF candidate hij(q, p) is formulated in (14) based

on the constraint in (13).

hij(q, p) =

√

4amax

(

‖�qij‖ − ds

)

+
�qT

ij

‖�qij‖
�pij, (14)

and hij(q, p) is the level set function of the pairwise safe set

C ij = {(qi, pi) ∈ R
4|hij(q, p) ≥ 0},∀i �= j. Furthermore, the

constraint in (15) is obtained by combining (12) and (14).

− �qT
ij�uij ≤ γ h3

ij

∥
∥�qij

∥
∥ −

(

�pT
ij�qij

)2

∥
∥�qij

∥
∥

2
+

∥
∥�pij

∥
∥

2

+
2amax�pT

ij�qij
√

4amax

(∥
∥�qij

∥
∥ − ds

)
, ∀i �= j. (15)

Finally, the pairwise safety barrier constraints are repre-

sented in the form of Aiju ≤ bij, where

Aij =

⎡

⎢
⎣0, . . . ,−�qT

ij
︸ ︷︷ ︸

agent i

, . . . , �qT
ij

︸︷︷︸

agent j

, . . . , 0

⎤

⎥
⎦, (16)

and

bij = γ h3
ij

∥
∥�qij

∥
∥ −

(

�pT
ij�qij

)2

∥
∥�qij

∥
∥

2
+

∥
∥�pij

∥
∥

2

+
2amax�pT

ij�qij
√

4amax

(∥
∥�qij

∥
∥ − ds

)
. (17)

C. RL-CBF Flocking Architecture

The architecture of the multi-agent flocking system incor-

porating reinforcement learning and CBF is depicted in Fig. 2.

In this architecture, RL agent i learns a policy based on the

observation Si in (3), and its output is represented by the pre-

defined nominal control ûi, which serves as one desired control

input of a CBF controller. The CBF controller utilizes the

desired input to generate the actual control command for αi

agent, ensuring adherence to safety constraints and achieving

collision-free flocking behavior.

Inspired by [18] and [25], a quadratic programming (QP)

controller is employed in the architecture. This controller

Fig. 2. Control architecture combining the DQN controller for flocking
and the CBF controller for guaranteed free collisions during flocking.

TABLE I
SIMULATION PARAMETERS

aims to minimize the discrepancy between the actual control

command ui and the nominal control command ûi.

u∗ = argmin
u∈R2N

J(u) =

N
∑

i=1

∥
∥ui − ûi

∥
∥

2

s.t. Aiju ≤ bij, ∀i �= j

‖ui‖∞ ≤ ai, ∀i ∈ N. (18)

As a result, the resulting control command u∗ is equal to

the nominal control ûi, when the system is in a safe state

without any predicted collisions. However, when a collision is

anticipated based on the states of the agents, the QP controller

triggers an essential behavior modification. In such cases, the

QP controller adjusts the control command to ensure collision

avoidance and maintain the safety of the multi-agent flocking

system. Ultimately, u∗
i is substituted into (1) as the control

input.

IV. SIMULATION RESULTS AND DISCUSSIONS

A ten-agent system was simulated with MATLAB/Simulink

and Reinforcement Learning Toolbox, utilizing the proposed

framework in Fig. 2. A comparison study was conducted to

compare the outcomes of a pure RL method and the RL

method with CBF. The simulation results and advantages of

the proposed framework are discussed and analyzed in this

section.

Tab. I provides detailed information about the parame-

ters of the simulations. Decentralized training using DQN

was conducted for all α-agents in the multi-agent system.

Each α-agent consisted of two fully connected layers, with

32 neurons in each layer. The training contained 1000

episodes, and each episode had 30 seconds duration. For

both cases (with and without CBF), the initial positions

of α-agents i ∈ N, were set as [−1 4], [−1 2], [−1 0],

[−1 −2], [−1 −4], [0 4], [0 2], [0 0], [0 −2], and [0,−4],
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Fig. 3. Simulation result of a pure DQN flocking at the 1000th episode. From the time-stamp section and the trajectories of the α-agents, collisions
occurred during the flocking training, highlighted in the red boxes. The circles around the agents represent the safe range with a radius of ds.

Fig. 4. Simulation result of the DQN flocking with CBF constraints at the 1000th episode. The flocking motion was maintained collision-free during
the entire journey. The circles around the agents represent the safe range with a radius of ds .

respectively. The virtual leader traveled along the y-

axis at a constant speed of 1 m/s, starting from the

origin.

The simulation results of the last episode using the DQN

training without and with CBF are presented in Fig. 3 and

Fig. 4, respectively. To make a fair comparison, the DQN

reward design (4)-(8) and the configurations of parameters in

Tab. I are identical in both cases. In both simulations, the

virtual leader γ attracted all α-agents in the early phase (before

10 second), causing them to converge within a small range.

As highlighted/labeled in Fig. 3, there are various collisions

during the flock training. In contrast, by incorporating CBF

into the learning scheme, the flocking members can success-

fully avoid inter-agent collisions from the beginning. The CBF

was continuously applied, which allowed the α-agents to avoid

inter-agent collisions in a continuous action space and remedy

the limitation of discrete control commands from the DQN

controller.

Another significant distinction between the two simulations

lies in the overall flocking performance of achieving the

desired flocking rule with smooth trajectories. Because the

introduced CBF from the beginning of the learning process

will influence both the collision results and the overall flocking

performance, the two simulations trained separately with ran-

dom sampling processes gave different trajectories of α-agents,

as shown in Fig. 3 and Fig. 4. The training with CBF was able

to achieve the desired leader-following flocking behaviors with

a smaller number of training episodes. As a result, all α-agents

followed the virtual leader γ , maintained a safe distance,

and prevented fragmentation. In contrast, the training without

CBF exhibited inferior performance. Specifically, α4 and α7

deviated from the agent group. Additionally, α4 struggled to

track the virtual leader with a significantly large gap. The

flocking group also tended to adopt diverse trajectories toward

the end of the simulation. Furthermore, due to the reduced

penalties incurred for undesired small inter-agent distances,
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Fig. 5. Comparison of average reward for both cases, when the score
averaging window length is 30 episodes. The lines indicate the mean
value of 10 α-agents’ average reward, and the patch areas represent
the range of the average reward.

DQN with CBF trained flocking behaviors with smoother

trajectories than those of the pure DQN approach. It is worth

pointing out that the neural network setup and parameter

settings remain consistent across both simulations. From this

perspective, integrating CBF into the RL-based flocking not

only ensures collision-free but also relaxes parameter tuning

and the complexity of reward function design. Unlike other

flocking control methods (e.g., [3]), no specific formation

(e.g., hexagon shapes corresponding to the minimization of

the Hamiltonian function) emerges among the α-agents during

the flocking process.

An additional benefit of integrating CBF into reinforcement

learning for flocking control is the enhanced training effi-

ciency. Fig. 5 presents a comparison of the rewards with a

moving average filter between the two simulations. By effec-

tively mitigating the high penalties arising from inter-agent

distances falling below the safety threshold and minimizing

over-repulsion due to close inter-agent distances, the reinforce-

ment learning integrated with CBF exhibits superior reward

progression throughout the training process. The advantage

was demonstrated by a higher reward over time and faster

convergence to the ‘fine-tuning’ training stage, as shown in

the solid line and the corresponding patch area in Fig. 5.

V. CONCLUSION

This letter developed a new learning-based flocking control

framework that guarantees free collisions among interacting

agents. In addition to guaranteeing safety during the learning

process and outcomes, the introduced CBF in the DQN-

based framework can also enhance the training efficiency

and relax the reward design to achieve desired flocking

behaviors. Simulation results demonstrated the effectiveness of

the proposed framework for flocking motions satisfying three

Reynolds’ flocking rules and also the leader-following rule.
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