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Safety-Guaranteed Learning-Based
Flocking Control Design

Mingzhe Liu and Yan Chen

Abstract—This letter aims to develop a new learning-
based flocking control framework that ensures inter-agent
free collision. To achieve this goal, a leader-following flock-
ing control based on a deep Q-network (DQN) is designed
to comply with the three Reynolds’ flocking rules. However,
due to the inherent conflict between the navigation attrac-
tion and inter-agent repulsion in the leader-following
flocking scenario, there exists a potential risk of inter-
agent collisions, particularly with limited training episodes.
Failure to prevent such collision not only caused penalties
in training but could lead to damage when the proposed
control framework is executed on hardware. To address
this issue, a control barrier function (CBF) is incorporated
into the learning strategy to ensure collision-free flocking
behavior. Moreover, the proposed learning framework with
CBF enhances training efficiency and reduces the complex-
ity of reward function design and tuning. Simulation results
demonstrate the effectiveness and benefits of the proposed
learning methodology and control framework.

Index Terms—NMulti-agent systems, flocking control, rein-
forcement learning, collision avoidance, control barrier
function.

[. INTRODUCTION

LOCKING behavior, describing the group coordination

and motion of animals in nature, has great potential for
various engineering applications. The self-organizing feature
and robust scalability make flocking control suitable for
transportation systems and mobile sensor networks [1]. In
1987, Reynolds proposed three famous heuristic rules as
the foundation of flocking: cohesion, separation, and align-
ment [2]. Inter-agent collision avoidance is a fundamental
property that helps mobile robot systems avoid incidents and
hardware damage. The flocking rules were extended to include
obstacle avoidance and leader following later [3]. Moreover, to
realize these flocking rules, different flocking control designs
were proposed by using potential field methods [3], and other
approaches [4], [5]. In addition to theoretical research, other
studies have focused on applying flocking control theory to
engineering practice, such as considering traffic rules and
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real-world scenarios that include road boundaries [6] and
vehicle spacing [7].

However, model-based flocking control has a potential issue:
the control performance heavily relies on accurate models
of multi-agent systems, which may not be realistic [8], [9].
An alternative approach is the learning-based method, which
does not require accurate knowledge of multi-agent systems
and environments. Moreover, learning-based flocking can offer
environmental adaptability [10], handle disturbances from a
dynamic environment [11], and find near-optimal results [12].

Because of the advantages, various reinforcement learning
algorithms were recently applied to achieve different flock-
ing behaviors and applications. For example, reinforcement
techniques with both teacher and non-teacher scenarios were
used to achieve Vicsek flocking, which only considered
velocity consensus [13]. A particle-based flocking algorithm
was first developed using Q-learning to achieve Reynolds
flocking [14], and a Q-learning flocking algorithm was applied
for fixed-wing UAV dynamics [8]. As an extension of Q-
learning, a deep Q-Network (DQN) was studied to solve
the flocking problem with fixed-wing UAV kinematics [15].
The feasibility of collision-free flocking was achieved via
discrete actions in these learning methods [8], [14], [15].
Imitation learning was used to train policies and learn the
local controller by mimicking the centralized controller using
global information [16]. In addition, graph neural networks
(GNNs) were used to address the scaling problem. Deep
deterministic policy gradient (DDPG)-based flocking was also
recently studied and improved [17], and a brain emotional
learning-based flocking control method was applied for UAVs
with experimental validation [11].

Implementing machine learning on cyber-physical systems
(CPS) in the real world is a great challenge [18]. A popular
method is to learn policies in simulation and execute the
resulting policies experimentally. However, this approach may
not be capable of considering various uncertainties in hardware
and environment. Training on CPS can overcome this issue by
continuously learning when policies are executed on hardware.
In the trial-by-error method of reinforcement learning, because
agents learn from misbehavior by receiving a penalty and
minimizing the overall penalty scores, collision-free is critical
for learning the near-optimal policy during the learning on
CPS process. On the other hand, a collision-free condition
in a learning process is challenging due to the essential
conflict between inter-agent repulsion and the (virtual) leader
agent attraction. This conflict makes the training result highly
dependent on the reward function design and parameter tuning.
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In other words, collision-free is not guaranteed in the afore-
mentioned learning methods. Since collisions usually generate
bad effects, such as hardware damages or injuries, a guaranteed
collision-free mechanism is critical for mobile agents to utilize
machine learning methods in real-world applications.

Control barrier function (CBF) is a model-based control
design method to guarantee safety constraints in dynamic
systems [19], which was recently integrated with flocking con-
trol. For instance, a new flocking control scheme was proposed
to consider the synchronization of agents’ attitudes, in which
CBF was used for separation [20]. Recently, CBF-based
resilient flocking control was applied to collision and obstacle
avoidance of ground robots with experimental validations [21].
Furthermore, CBF was integrated into flocking control to
control a dynamic obstacle and prevent the flocking group
from entering the protection zone, which demonstrated the
capability of CBF for obstacle avoidance [22]. CBF was also
integrated with learning-based control, though not for flocking.
A CBF-based guiding control with reinforcement learning,
including DDPG and TRPO, was proposed to achieve safe and
efficient learning [18]. A matrix-variate Gaussian process was
used to learn dynamic uncertainties, which were incorporated
into robust multi-agent CBF to prevent collisions [23]. Inspired
by the aforementioned works, the research gap is identified to
achieve safety (collision-free) guaranteed constraints by using
CBF in learning-based flocking for multi-agent systems.

Thus, we propose a safety-guaranteed framework for
learning-based flocking to ensure collision-free operations of
multi-agent systems. The main contributions of this letter are
summarized as follows:

o A leader-following flocking scheme is realized through

a deep Q-network (DQN), in which the phenomena of
inter-agent collisions are unavoidable and analyzed.

o« A safety-guaranteed learning-based framework is
proposed to employ a pairwise CBF to achieve collision-
free flocking behavior.

o The proposed framework can introduce additional bene-
fits in easier or simpler reward design and tuning, thereby
enhancing learning efficiency, which was demonstrated
through online training and simulation results.

The remainder of this letter is organized as follows.
Section II provides the background of DQN and formulates
the flocking problem as the DQN. Section III introduces the
CBF and shows how it is formulated and integrated into the
learning strategy. Section IV presents the simulation results
and discusses the effectiveness and benefits of the proposed
method. Conclusions are drawn in Section V.

[I. LEARNING-BASED FLOCKING
A. Background: Deep Q-Network

The deep Q-network (DQN) [24] is a reinforcement learning
method that extends Q-learning by employing a neural network
(NN) to predict Q-values rather than relying on tabular
reward-action updates. This extended feature provides several
advantages. First, DQN can effectively handle continuous state
inputs and large state spaces. Second, DQN exhibits strong
generalization capabilities and performs well in complex
situations where traditional learning methods struggle. The
utilization of a neural network for approximating Q-values

enhances the flexibility and efficiency of the learning process,
making DQN a favorable tool for learning-based multi-agent
systems, which usually require massive amounts of state
inputs.

B. DQN-Based Flocking

A decentralized multi-agent learning scheme based on
DQN is proposed to achieve learning-based flocking. Leader-
following can be formulated as a reinforcement learning (RL)
problem within a Markov decision process (MDP) framework.
In the multi-agent system, a set of RL agents indexed as N =
{1,2, ..., n} are trained to achieve virtual leader following and
desired flocking behaviors. To represent the dynamics of the
RL agents, a particle-based double integrator model, which
is commonly used in the flocking control and multi-agent
systems literature, such as [2], [3], [4] and [25], was adopted.

{ 4 =pi 0

pi=u’

where each RL agent i € N is characterized by its position
q; € R2, velocities p; € R2, and control input u; € RZ.

The generated trajectories or references based on the
point-mass model (1), although simplified, could be applied
to tracking control of CPS through a hierarchical control
architecture, in which nonlinear model dynamics and model
uncertainties of connected and automated vehicles were han-
dled in the low-level control layer [1].

The virtual leader follows a predefined trajectory, while
the RL agents aim to learn how to track the leader with the
Reynolds’ flocking rules of maintaining separation, alignment,
and cohesion within the flock.

1) Action Space: To provide flexibility in velocity con-
trol and enable different speed profiles, three magnitudes
of acceleration are utilized: 0 (maintaining velocity), a low
acceleration denoted as ay (low acceleration), and a high accel-
eration denoted as ay (high acceleration). The action space for
selecting acceleration directions is discretized into intervals of
30 degrees, starting from the X direction. Consequently, the
action space Action can be described as a matrix in R2%25
as shown in (2), where each column represents a specific
direction and magnitude of acceleration,

|:0i| o 0 |: 30 ]
Action — 0 0 30 330 L@
ay ay ayg
0°] [30° [3300]

2) Observation Representation: In the context of multi-
agent systems, the states of RL agent i, denoted as s;, is defined
as the concatenation of its global position q; and velocity
pi. represented as s; = [q; pi]T. To facilitate information
exchange among the RL agents, inter-agent communication
and sensor networks are employed. Additionally, the state of
the virtual leader, denoted as s, = [q, py]T, is broadcast to
all RL agents. With knowledge of the states of all RL agents
and the virtual leader, the observation S; for agent i is defined
in order as follows,

Si = [si S < Sy sy]. 3)

© Si—1 Sitl
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Fig. 1. Spatial relations between different types of agents.

3) Reward Scheme: The reward scheme in the learning
setup is designed based on the Reynold’s flocking rules plus
the leader following requirements. Fig. 1 illustrates the spatial
relations where an ego w-agent has a sensing range R3. For
agent o;, any other o-agents within the sensing range of R3;
are considered as neighbors. The sensing range covers a 360-
degree field of view and forms a cyclic coverage area.

The inter-agent distance d;; between agents «; and «; is
categorized in different ranges to determine the corresponding
rewards in Fig. 1. When dj; is small (less than Ry ; in Fig. 1),
a negative reward is assigned to discourage close proximity.
When d;; is within the sensing range R3; and the agents
maintain a safe distance (larger than R; ;), a positive reward is
given to encourage the «-agents to remain together. Moreover,
a desired distance zone (R;; < djj < Rp;) is introduced to
encourage agents to maintain a compact group. Based on the
design, the reward function rld between two agents, o; and o,
is formulated as follows,

—5, djj < Ry (Separation)
d _ ] 10, Ri < djj < Ry (Desired zone) @
Y 5, Ry <d; <R3 (Cohesion)

0, d; > Rz (No interaction)

Note that the values of rg in (4) are given as examples,
which can be tuned based on the learning performance.
Furthermore, for the case of multiple neighbors, the accumu-
lating distance reward rfi of agent «; can be defined as,

= r;j Nj={jeN:i#j} (5)
JeN;

where rg is shown in (4).

In addition to position rewards described in (4) and (5), the
reward of alignment or velocity consensus for the neighbors
of an w-agent also need to be defined. An alignment reward
r? € [0, 1] is introduced based on the standard deviation of
velocities in the neighbor group, which is expressed in (6).

1
, dij <R
=11+, =7 (©6)
0, d,:,‘>R3

where o;, is the standard deviation of the velocity among
all the a-agents in the neighbor group of «; agent. Note that
only a-agents in the communication range R3 are considered
neighbors.

Furthermore, a straightforward reward for the leader fol-
lowing scheme is designed for «;, which is dependent on
the distance d;), between «; and the virtual leader y-agent as
shown in Fig. 1.
rl = —d;,. (7)

1

Finally, the total reward r; for «-agent i is expressed as,
ri= cdr;i + car! + Cyr;-/, ®)

where cq4, ¢4, and ¢, are the weights for distance reward,
alignment reward, and leader-following reward, respectively.

IIl. COLLISIONS-FREE GUARANTEED LEARNING-BASED
FLOCKING FRAMEWORK

A. Background: Control Barrier Function

This section presents a concise overview of CBF, which
forms the basis of the proposed approach for ensuring
collision-free learning among the agents. The CBF concept
serves as a vital tool in control theory for enforcing safety
constraints on dynamic systems. A mathematical framework
was presented to design controllers that maintain system
states within predefined safety bounds, see details in [19].
By incorporating CBF constraints in the control design, the
proposed method can enable the agents to navigate without
collisions and enhance overall safety and maneuverability.

The CBF approach is designed to guarantee system safety
by imposing safety constraints on the system behaviors. These
safety constraints are carefully defined to prevent undesired
behavior or violations of safety limits. Consider a control
system represented in an affine form,

X =f(x) +gu, €))

where x € R”, and the control input is represented as u € U C
R™. The functions f and g are assumed to be locally Lipschitz
continuous. Let ¥ C R” be a safe set that all agents need to
maintain. A controller u# can guarantee the forward invariance
of ¢ if, for every initial state xo € %, the state trajectory x(¢)
remains within ¢ for all ¢ > 0. In other words, regardless of
the initial condition, the system’s solutions will always remain
in the invariant set %. Assuming that the invariant set 4 can
be defined as the level set of a control barrier function,

€ = {x € R"|h(x) > 0}. 10)

Definition 1 [19]: Assuming the existence of a dynamic
system (9) and a safety set (10). Let 2 : R” — R” be a
continuously differentiable function. Suppose there exists a
locally Lipschitz extended class « function « and a set 4 C
2 C R”" such that for all x € 7,

suB[th(X) + Leh(u + a(h(x))] = 0, (11)
ue
where the first-order Lie derivative of the system (9) is
expressed as h(x) = 22(f(x) + g(x)u) = Lrh(x) + Leh(x)u, the
function A(x) is considered a Zeroing Control Barrier Function
(ZCBF) defined on 2.

In the ZCBF h(x), the set of feasible solutions as the control
input is,

K(x) = {u € UlLth(x) + Lsh(x)u + a(h(x)) = 0}.  (12)
B. CBF Formulation for Pairwise Double Integrator
Agents

Each a-agenti e N = {1, 2, ..., n} is modeled by a double
integrator dynamics in (1). The acceleration of «-agent i is
bounded by |[u;j]lcc < @max, and the velocity is limited by
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IPillcc < Bmax- AQij = q;—q; and Ap;; = p;—p; represent the
relative position and velocity, respectively, between a-agent i
and agent j.

In this letter, we adopt the pairwise CBF proposed in [25].
The inter-agent distance requires maintaining a safe distance
dg, which considers the normal ;:omponent of the relative

_ . A
velocity Ap; = [|Aq;ll = qu T Ap;; and the maximum
deceleration between «-agents i and jin (13),

||Aqu||—( By’ > dy, Vi #J, (13)
am ax

where amax can be practically understood as the saturated
actuation capabilities of actuators.

The ZCBF candidate h;;(q, p) is formulated in (14) based
on the constraint in (13).

T

1@, p) = \JAamax (1 Ayl — d5) + Ay, (14)

lAgll
and h;j(q, p) is the level set function of the pairwise safe set
%y = {(Qi, i) € RYhj(q, p) = O}, Vi # j. Furthermore, the
constraint in (15) is obtained by combining (12) and (14).

2
(a1
— Aqf Ay < yhy| Agy] - ~———5" + || apy’
| Ay
ZamaXApUAqU

15)

s Vi #j‘
" 5] - )

Finally, the pairwise safety barrier constraints are repre-
sented in the form of A;u < b;;, where

Aj=|0,...,=Aq}..... Aqj,....0], (16)
~—— ~——
agent i agent j
and
2
3 (ApgAq,-j) 2
bij = yhy| Ag;| - Taal’ + | apy|
q;
2amax APU Ag;j

a7

J4amax (|agy] —ds)

C. RL-CBF Flocking Architecture

The architecture of the multi-agent flocking system incor-
porating reinforcement learning and CBF is depicted in Fig. 2.
In this architecture, RL agent i learns a policy based on the
observation S; in (3), and its output is represented by the pre-
defined nominal control 4;, which serves as one desired control
input of a CBF controller. The CBF controller utilizes the
desired input to generate the actual control command for «;
agent, ensuring adherence to safety constraints and achieving
collision-free flocking behavior.

Inspired by [18] and [25], a quadratic programming (QP)
controller is employed in the architecture. This controller

Plant
S1, ey Sis ey Sp
(Double Integrator [—vrenarz 1w
Dynamics)
* CBF o S Agent 1
L Controller 4 Il\ffdelégf; < Observing
for Agent 1 Ag Organizer
L3 L3 L3
[ d [ d L d
L] Ld L]
* CBF i Agent i
ul i E S: 8
L Controller C Igfiflef:teg L Observing
for Agent i 8 Organizer
L3 L d L4
[ d [ d L
LJ LJ L]
2 CBF i S, Agentn
u i g
2 Controller 2 gl? dAeleflrtee x Observing
for Agent n gentn Organizer

Fig. 2. Control architecture combining the DQN controller for flocking
and the CBF controller for guaranteed free collisions during flocking.

TABLE |
SIMULATION PARAMETERS

Symbol  Parameter value | Symbol Parameter value
ai 3 m/s? ds 0.4 m
a2 5 m/s2 Amax 5 m/s2
Ry 0.8 m Cd 1
Ry 12 m Cq 10
R3 1.5 m (o 20

aims to minimize the discrepancy between the actual control
command u; and the nominal control command u;.

ZHUi—ﬁin
=1

Vi#j
VieN.

ut = argmm J(u) =
ueR2V

S.t. A,’ju < bl'j,

(18)

illoo < ai,

As a result, the resulting control command u* is equal to
the nominal control @;, when the system is in a safe state
without any predicted collisions. However, when a collision is
anticipated based on the states of the agents, the QP controller
triggers an essential behavior modification. In such cases, the
QP controller adjusts the control command to ensure collision
avoidance and maintain the safety of the multi-agent flocking

system. Ultimately, u} is substituted into (1) as the control
input.

V. SIMULATION RESULTS AND DISCUSSIONS

A ten-agent system was simulated with MATLAB/Simulink
and Reinforcement Learning Toolbox, utilizing the proposed
framework in Fig. 2. A comparison study was conducted to
compare the outcomes of a pure RL method and the RL
method with CBE. The simulation results and advantages of
the proposed framework are discussed and analyzed in this
section.

Tab. T provides detailed information about the parame-
ters of the simulations. Decentralized training using DQN
was conducted for all w-agents in the multi-agent system.
Each a-agent consisted of two fully connected layers, with
32 neurons in each layer. The training contained 1000
episodes, and each episode had 30 seconds duration. For
both cases (with and without CBF), the initial positions
of «o-agents i € N, were set as [—1 4], [—1 2],[—1 O],
[-1 =2], [-1 —4]1,[0 41, [0 2],[0 O], [0 —2], and [0, —4],
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Fig. 3. Simulation result of a pure DQN flocking at the 10007 episode. From the time-stamp section and the trajectories of the «-agents, collisions
occurred during the flocking training, highlighted in the red boxes. The circles around the agents represent the safe range with a radius of ds

10 | | | | | |
2sec 5sec 10 sec 15 sec 20 sec 25 sec 30 sec
2 :
E “ 1 1 1 M e ® ®©
1 € ®® @@ ® ¢ ®p® P o ®- g
— ® 1 e ® . o] ®e® @ 2e of ® @ ® e o e
0 0 @ @ e~ 0 ® . @
® of a®egy 3 ® :® ® : 1l @ - il & ®
1 Ca & -1 & =1 Q -1 - & °
. 1 G
5 @ 2 -2 2 -2 -2 |
2 20 24 26 30 32
E
>
- OB @_——®
- =
0 Hog——=tK"%-0
" 0@ - 2
® agent1 agent 3 ® agent5 * agent7 * agent9 *  leader
® agent2 ® agent4 * agent6 agent 8 £ agent10
5 1 1 1 | | | |
0 5 10 15 20 25 30 35
X [m]

Fig. 4. Simulation result of the DQN flocking with CBF constraints at the 1000% episode. The flocking motion was maintained collision-free during
the entire journey. The circles around the agents represent the safe range with a radius of ds.

respectively. The virtual leader traveled along the y-
axis at a constant speed of 1 m/s, starting from the
origin.

The simulation results of the last episode using the DQN
training without and with CBF are presented in Fig. 3 and
Fig. 4, respectively. To make a fair comparison, the DQN
reward design (4)-(8) and the configurations of parameters in
Tab. I are identical in both cases. In both simulations, the
virtual leader y attracted all o-agents in the early phase (before
10 second), causing them to converge within a small range.
As highlighted/labeled in Fig. 3, there are various collisions
during the flock training. In contrast, by incorporating CBF
into the learning scheme, the flocking members can success-
fully avoid inter-agent collisions from the beginning. The CBF
was continuously applied, which allowed the «-agents to avoid
inter-agent collisions in a continuous action space and remedy
the limitation of discrete control commands from the DQN
controller.

Another significant distinction between the two simulations
lies in the overall flocking performance of achieving the
desired flocking rule with smooth trajectories. Because the
introduced CBF from the beginning of the learning process
will influence both the collision results and the overall flocking
performance, the two simulations trained separately with ran-
dom sampling processes gave different trajectories of «-agents,
as shown in Fig. 3 and Fig. 4. The training with CBF was able
to achieve the desired leader-following flocking behaviors with
a smaller number of training episodes. As a result, all ¢-agents
followed the virtual leader y, maintained a safe distance,
and prevented fragmentation. In contrast, the training without
CBF exhibited inferior performance. Specifically, o4 and a7
deviated from the agent group. Additionally, o4 struggled to
track the virtual leader with a significantly large gap. The
flocking group also tended to adopt diverse trajectories toward
the end of the simulation. Furthermore, due to the reduced
penalties incurred for undesired small inter-agent distances,
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x10°
of

Average Reward

RL+CBF RL

I I L I 1 I N
0 50 100 150 200 250 300 350
Episode

Fig. 5. Comparison of average reward for both cases, when the score
averaging window length is 30 episodes. The lines indicate the mean
value of 10 w-agents’ average reward, and the patch areas represent
the range of the average reward.

DQN with CBF trained flocking behaviors with smoother
trajectories than those of the pure DQN approach. It is worth
pointing out that the neural network setup and parameter
settings remain consistent across both simulations. From this
perspective, integrating CBF into the RL-based flocking not
only ensures collision-free but also relaxes parameter tuning
and the complexity of reward function design. Unlike other
flocking control methods (e.g., [3]), no specific formation
(e.g., hexagon shapes corresponding to the minimization of
the Hamiltonian function) emerges among the «-agents during
the flocking process.

An additional benefit of integrating CBF into reinforcement
learning for flocking control is the enhanced training effi-
ciency. Fig. 5 presents a comparison of the rewards with a
moving average filter between the two simulations. By effec-
tively mitigating the high penalties arising from inter-agent
distances falling below the safety threshold and minimizing
over-repulsion due to close inter-agent distances, the reinforce-
ment learning integrated with CBF exhibits superior reward
progression throughout the training process. The advantage
was demonstrated by a higher reward over time and faster
convergence to the ‘fine-tuning’ training stage, as shown in
the solid line and the corresponding patch area in Fig. 5.

V. CONCLUSION

This letter developed a new learning-based flocking control
framework that guarantees free collisions among interacting
agents. In addition to guaranteeing safety during the learning
process and outcomes, the introduced CBF in the DQN-
based framework can also enhance the training efficiency
and relax the reward design to achieve desired flocking
behaviors. Simulation results demonstrated the effectiveness of
the proposed framework for flocking motions satisfying three
Reynolds’ flocking rules and also the leader-following rule.
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