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ABSTRACT
Machine learning (ML) is widely used to moderate online content.
Despite its scalability relative to human moderation, the use of
ML introduces unique challenges to content moderation. One such
challenge is predictive multiplicity: multiple competing models
for content classi�cation may perform equally well on average,
yet assign con�icting predictions to the same content. This multi-
plicity can result from seemingly innocuous choices made during
training, which do not meaningfully change the accuracy of the ML
model, but can nevertheless change what the model gets wrong. We
experimentally demonstrate how content moderation tools can ar-
bitrarily classify samples as “toxic,” leading to arbitrary restrictions
on speech. We use the principles set by the International Covenant
on Civil and Political Rights (ICCPR), namely freedom of expres-
sion, non-discrimination, and procedural justice to interpret the
e�ects of these �ndings in terms of Human Rights. We analyze (i)
the extent of predictive multiplicity among popular state-of-the-art
LLMs used for detecting “toxic” content; (ii) the disparate impact
of this arbitrariness across social groups; and (iii) the magnitude
of model multiplicity on content that is unanimously recognized
as toxic by human annotators. Our �ndings indicate that the up-
scaled algorithmic moderation risks legitimizing an “algorithmic
leviathan”, where an algorithm disproportionately manages human
rights. To mitigate such risks, our study underscores the need to
identify and increase the transparency of arbitrariness in content
moderation applications. Our �ndings have implications to content
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moderation and intermediary liability laws being discussed and
passed in many countries, such as the Digital Services Act in the
European Union, the Online Safety Act in the United Kingdom, and
the recent TSE resolutions in Brazil.
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1 INTRODUCTION
Algorithmic content moderation can be de�ned as the application
of algorithmic systems to classify user-generated content, leading
to governance decisions such as content removal, geoblocking, or
account takedowns [30]. In the past, content moderation protocols
relied on a combination of deterministic rules-based algorithms1
and human moderators [71].

Recently, various economic, social, and legal factors, such as
COVID-19 disinformation and online extremism, have prompted
substantial legislative changes globally. These changes have ushered
in new regulatory frameworks for online and third-party content
[46, 51] that have increased pressure on companies to expedite con-
tent moderation. Notable legislative shifts include the European
Digital Services Act (DSA) [62], which adopts a risk-based approach
1An example is an algorithm that auto-removes content that contains words in a
pre-speci�ed list of swear words.
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for Very Large Online Platforms [9], Germany’s NetzDG law [10],
which mandates rapid content removal with minimal human over-
sight, and Brazil’s Electoral Courts, which have implemented a
stringent 1-hour removal window during elections [24]. The topic
is also an ongoing debate in the United States, where states such as
Florida have enacted their own laws regarding content removal [61],
while the Federal laws regarding platforms’ duties on third-party
content have remained under intense debate [36, 42].

A natural consequence of these regulations is that companies
increasingly rely on black-box machine-learning (ML) models as a
scalable alternative to human moderation. This implies that content
moderation algorithms, which ultimately control a user’s right
to freedom of expression, will inherit any limitations intrinsic to
ML models. This implication is a growing concern in the law and
policy literature [50, 56, 64], particularly in scenarios described
as “algorithmic leviathans” [15, 43], where algorithms excessively
control the exercise of freedoms and access to resources. Recent
research showing that ML-based content moderation occurs with
limited accountability and with policies applied indiscriminately
across jurisdictions [30, 71] only adds to these concerns.

In this work, we focus on one critical limitation of ML-based
content moderation: predictive multiplicity [48] and the ensuing
arbitrariness in models that classify toxic content.2 Predictive mul-
tiplicity is the empirical observation that a collection of ML models
with indistinguishable performance can produce con�icting individ-
ual predictions. Predictive multiplicity captures arbitrariness in ML
model development, where seemingly innocuous choices made dur-
ing training, which do not meaningfully change the accuracy of the
ML model3, can nevertheless a�ect what the algorithm gets wrong.
Predictive multiplicity has been recently documented in a range of
classi�cation and prediction tasks [37, 66] and can lead to disparate
treatment of individual data points [7, 15, 48, 60]. We demonstrate
that predictive multiplicity is rampant in state-of-the-art language
models that have been proposed for toxic text classi�cation: mul-
tiple models can achieve similar average accuracy yet con�ict in
classifying individual sentences as toxic. These observations imply
that content moderation decision made using ML models lead to
outcomes that lack consistency, predictability, and adherence to
established principles or logic [16]. To explore the impact of predic-
tive multiplicity in state-of-the-art models for content moderation,
below, we detail the research questions that our work sets out to
answer along with our main contributions and �ndings.

Research Questions:We explore the role of predictive multi-
plicity in algorithmic content moderation and aim to answer the
following questions.

(RQ1) What is the extent of disagreement in state-of-the-art ML
models �ne-tuned to classify toxic content?

(RQ2) What are the disparate impacts of arbitrariness across
toxicity detection models on content targeting di�erent so-
cial groups?

(RQ3) What forms of harm stem from the results of RQ1 and
RQ2?

2We highlight that there is no single de�nition of “toxic content” and even the use of
the term “toxic” caries several limitations; see Appendix C.1 for further discussions.
3An example of such innocuous choices is the random seed used for parameter
initialization

Main �ndings: We answer our research questions by �ne-
tuning several large language models (LLMs) for toxicity detec-
tion4 in textual content and analyze the rate these models generate
arbitrary decisions.

• We �nd that arbitrary decisions are rampant in LLMs �ne-
tuned for content moderation. In our experiments, approx-
imately 30% of English statements receive moderation de-
cisions that can change by varying the random seed used
to initialize training (i.e., LLM �ne-tuning). Our results il-
lustrate how arbitrary decisions in model development in-
�uence prediction outcomes in content moderation (Table
1).

• As a consequence, we conclude that multiplicity in algorith-
mic content moderation can unduly restrict individual and
collective rights to freedom of expression via a random or
unjusti�ed model selection procedure.

• We also �nd that arbitrary content moderation decisions are
unequally distributed across di�erent demographic groups,
making the incidence of predictive multiplicity potentially
discriminatory (Figure 1).

• We conclude that by producing disparate arbitrary decisions,
predictive multiplicity breaks from a rule-based approach
to moderating speech online and infringes upon procedural
fairness.

• Finally, we also show that models can disagree in examples
where human annotators unanimously agree that it should
(or should not) be moderated, introducing additional arbi-
trariness to content moderation (Figure 2), and indicating
that it might be useful to share the responsibility of content
moderation with humans.

All code and training data used in this work is available upon email
request to the authors.

1.1 Related Work
Predictive Multiplicity: Marx et al. [48] showed the prevalence
of arbitrary decisions in classi�cation problems using tabular data
and argued that it should be measured and reported as we measure
and report test error. Follow-up work has analyzed the source
of such phenomenon [34, 44, 60], and its inevitability [54]. Creel
and Hellman [15] discussed the harms of predictive multiplicity
and arbitrary decisions, leading to the de�nition of algorithmic
leviathan, initially introduced byKönig [43]. Thework that is closest
to ours is [15], which de�nes algorithmic arbitrariness and argues
about its harms. Our paper di�ers from [15] by (i) focusing on
speci�c harms of arbitrary decisions in content moderation and (ii)
experimentally discovering and analyzing the harms of disparate
arbitrary decisions across content targeting di�erent demographic
groups. Black et al. [5] discuss how predictive multiplicity can have
discriminatory legal outcomes and the need to compare models to
reach less discriminatory outcomes.

Legal and policy aspects of content moderation: The law
and policy literature on algorithmic content moderation has focused
on procedural fairness, inconsistent restrictions of human rights,
and discrimination. Examples include the works of scholars such

4See appendix C.1 for a discussion on why toxicity detection can be used as a proxy
for legally mandated content moderation.
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as Douek [21], Gillespie [27, 28], Gorwa et al. [30]. We summarize
the main risks below.

Inconsistency in Moderation: Di�erent algorithms might pro-
duce divergent classi�cations for the same piece of content. E�ec-
tively, this means that either legal speech is being taken down or
harmful speech is tolerated. This can happen with regard to indi-
vidual expressions or groups and their speci�c dialects. Keller [39]
listed a number of studies and resources that indicate the systematic
over-removal of content for various reasons, including copyright
infringement and toxic speech content moderation. Douek [21]
explains that the process for how platforms’ enforce their rules has
shifted from a rule and proportionality-based approach to an algo-
rithmic probability-based evaluation. The policy report produced
by Duarte and Llansó [23] o�ers a useful summary of the policy
challenges in the �eld. In particular, the concern that algorithms
have very limited capability of parsing meaning from text to make
content moderation decisions.

Bias Ampli�cation: Content moderation risks having disparate
impacts across social groups. Expanding on the inconsistencies
listed above, biased and discriminatory moderation may occur if
algorithms used to moderate speech are inconsistent across di�er-
ent groups. For example, Dias Oliva et al. [20], Gonçalves et al. [29]
describe how certain social groups have been targeted by overmod-
eration due to the dialects they use. Our work demonstrates that
inconsistency and arbitrariness in algorithmic content removal can
vary with social-demographic factors.

Opacity of Policy Enforcement: Predictive multiplicity makes
enforcing a consistent content policy di�cult. We can only review
and repair harmful moderation outcomes if we have a clear under-
standing of how these models are classifying statements [27]. In this
scenario, understanding which decisions align with the platform’s
terms of service and the law becomes challenging. The di�culty
in discerning between correct decisions, errors, and arbitrary deci-
sions can make it di�cult to determine whether content was overly
restricted or not. Since restrictions to Freedom of Expression need
to be justi�ed, the opacity of arbitrary decisions poses a threat to
fundamental liberties[3].

Con�icting Jurisdictions: Each country has di�erent laws
regarding social media platforms. We list as examples the di�erent
approaches to intermediary liability pointed out by Keller [38],
Machado andAguiar [46], and the di�erent legislative approaches to
algorithmic discrimination outlined by Binns et al. [4],Wachter et al.
[65] when arguing for EU or UK legal frameworks. These laws all
require speci�c enforcement requirements for content moderation
that arbitrariness may violate.

Based on the concerns above, in Section 2 we conceptualize the
harms of arbitrariness in terms of the human rights principles of
freedom of expression, non-discrimination, and procedural fairness
to based on speci�c articles of the ICCPR. Then, in Sections 3 and
4, we experimentally investigate arbitrariness in state-of-the-art
models, as outlined in our research questions. Finally, in Section 5,
we interpret the harms of arbitrariness according to the concepts of
freedom of expression, non-discrimination, and procedural justice
laid out in Section 2.

2 JUDGES FLIPPING COINS:
CONCEPTUALIZING HARMS OF
ARBITRARINESS IN CONTENT
MODERATION

This section describes the harms identi�ed in the literature from
content moderation in terms of potential violations to principles
established by the ICCPR. We use the International Covenant on
Civil and Political Rights (ICCPR) because it is a widely rati�ed
international treaty to which 173 countries are parties [2]. Our anal-
ysis focuses on the impact of arbitrariness on freedom of expression,
non-discrimination, and procedural justice.

We are aware that international human rights laws and their
principles are primarily applicable to states and do not directly
impose obligations on private entities, including internet content
companies. Each state enforces these principles within its own ju-
risdiction, regulating how businesses will respect these rights, and
how companies should govern content in their services. Nonethe-
less companies are directly and indirectly bound to these human
right principles, either by platforms laws such as the DSA or the
UK Online Safety Act, or by international frameworks and recom-
mendations such as the UN Guiding Principles for Businesses on
Human Rights [57].

We intentionally avoid local legislation and the granular matters
of each jurisdiction to observe the overarching legal e�ects of arbi-
trariness in terms of speci�c international human rights principles.
International Human Rights Law gives us global rules and com-
mon concepts to discuss the issues related to fundamental rights in
content moderation [22]. Although these laws do not have direct
applicability to national jurisdictions, it allows us to make claims
related to multiplicity for content moderation that are transferable
to local law and policy discussions.

Building on the related work outlined in Section 1.1, we will
discuss harms due to algorithmic arbitrariness as an infringement
of three human rights and principles: Freedom of Expression, Non-
Discrimination, and Procedure (including Procedural Fairness and
Equality Before the Law). To illustrate the role content modera-
tion models play as private proxy adjudicators of speech in online
environments, we use an analogy to discuss the implications. We
compare a model’s decision to that of a judge, where arbitrariness
is the act of �ipping coins to decide the outcome of a case. Though
imperfect, we �nd this comparison makes the harms due to multi-
plicity more palpable, since the analogy emphasizes that the source
of harm is the randomness inherit to ML models. Next, we indicate
and explain the ICCPR Articles that we use as reference.

Freedom of Expression. Freedom of Expression (FoE) is de�ned
in Article 19 of the ICCPR as:

1. Everyone shall have the right to hold opinions with-
out interference.
2. Everyone shall have the right to freedom of expres-
sion; this right shall include freedom to seek, receive
and impart information and ideas of all kinds, regard-
less of frontiers, either orally, in writing or in print,
in the form of art, or through any other media of his
choice.
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3. The exercise of the rights provided for in paragraph
2 of this article carries with it special duties and re-
sponsibilities. It may therefore be subject to certain
restrictions, but these shall only be such as are pro-
vided by law and are necessary. (a) For respect of the
rights or reputations of others; (b) For the protection
of national security or of public order (order public),
or of public health or morals.

We interpret this rule in light of UN General Comment 34 [13],
which emphasizes that freedom of expression is a broad and fun-
damental human right for realizing other human rights. It encom-
passes all forms of expression, including political discourse, journal-
ism, artistic works, and religious dialogue, across various mediums
like broadcasting, the internet, and public protest. The comment un-
derscores the right to access information and recognizes the critical
role of the internet and digital media in enabling and enhancing the
exercise of freedom of expression, advocating for universal access
to these platforms. This right is expansive but not absolute and can
be subject to certain restrictions. These restrictions must be clearly
de�ned by law, serve a legitimate aim (such as protecting national
security, public order, or the rights of others), and be necessary, and
proportionate.

In the context of content moderation, the existence of predictive
multiplicity in ML algorithms calls into question their ability to
attend all requisites for a lawful restriction of freedom of expres-
sion. As an example, a ML model trained with random seed 1 could
misapply a restriction to protected speech (e.g. journalistic speech),
whereas the same model trained with random seed 42 would have
correctly tolerated the statement. Such an event would be equiva-
lent to a judge �ipping a coin to decide whether the speech should
be protected or taken down. For example, in Section 5 we observe
that varying the random seed causes �ne-tuned large language
models to assign con�icting toxic speech predictions to 34% of
statements from a large dataset.

Non-Discrimination. We adopt Article 2(1) and Article 26 of the
ICCPR as our de�nition of discrimination. They state:

Article 2 (1) Each State Party to the present Covenant
undertakes to respect and to ensure to all individuals
within its territory and subject to its jurisdiction the
rights recognized in the present Covenant, without
distinction of any kind, such as race, colour, sex, lan-
guage, religion, political or other opinion, national or
social origin, property, birth or other status.

Article 26 All persons are equal before the law and
are entitled without any discrimination to the equal
protection of the law. In this respect, the law shall pro-
hibit any discrimination and guarantee to all persons
equal and e�ective protection against discrimination
on any ground such as race, colour, sex, language,
religion, political or other opinion, national or social
origin, property, birth or other status.

These articles are intended to protect individuals from discrim-
ination based on protected characteristics. We note that content

moderation ML algorithms can illegally discriminate against spe-
ci�c individuals or groups. A biased moderation occurs when spe-
ci�c groups have an inferior or higher quality of moderation of toxic
speech depending on their characteristics. This can correlate with
the dialect and content of the statements, as identi�ed by Dias Oliva
et al. [20] with content moderation in LGBTQ discussion spaces.
Our experiments are able to infer the presence of discrimination by
analyzing the targeted group of the statements. In particular, if the
magnitude of predictive multiplicity in ML algorithms is di�erent
across groups, then such an ML algorithm is discriminatory.

In Section 5 we experimentally observe exactly this phenomena:
varying the random seed causes �ne-tuned large language models
to assign con�icting toxic speech predictions to 38% of racial-based
statements from a large scale dataset compared compared to 20%
of misogynistic/misandrist statements.

Procedural Justice. The UN Guiding Principles on Business and
Human Rights [57] emphasize that businesses should identify, pre-
vent, and mitigate human rights abuses. The human right to due
process is established by Article 14(1) of the ICCPR. We will focus
on the �rst part of the Section, which is most relevant to our work:

Article 14
(1) All persons shall be equal before the courts and
tribunals. In the determination of any criminal charge
against him, or of his rights and obligations in a suit
at law, everyone shall be entitled to a fair and public
hearing by a competent, independent and impartial
tribunal established by law. [...]

We interpret Articles 14 and 19 (aforementioned) as jointly demand-
ing that a restriction of a fundamental right be impartial, fair, and
prescribed by law. This means providing remedies through oper-
ational grievance mechanisms when harm occurs, and ensuring
processes are transparent and accountable. When we translate this
to ML models for content moderation, moderation needs to be ex-
plainable, accountable5, and have a rule-based approach for limiting
free speech. In this regard, the outcomes of ML models must attend
to these legal requirements. This interpretation includes, for exam-
ple, respecting the requirements from General Comment 34 [13](i.e.
legality, necessity, proportionality, and pursuit of a legitimate aim)
for restricting speech. This joint interpretation establishes the obli-
gation of common procedural guidelines for removing speech.

The existence of predictive multiplicity in ML algorithms calls
into question their ability to satisfy values of procedural justice. The
“decision-making process” used by ML algorithms is fundamentally
probabilistic and random. In this case, the "judges" of online speech
are making random decisions (�ipping coins) to determine whether
to restrict speech or not, and �ipping coins more often when it
comes to speech from certain social groups. This violates proce-
dural justice for three reasons. First, it does not respect a rule-based
approach to restricting speech, as it is fundamentally random. Sec-
ond, it is not impartial, as it is disparate across groups. Third, it is
not accountable because this decision-making process is concealed,
meaning we cannot know if a given prediction is an instance of

5We de�ne an accountable model as a model that can be understood, challenged,
scrutinized, and revised.
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predictive multiplicity. 6 We emphasize that, because the source
of the violation is randomness, this violation is independent of the
�nal outcome being legally correct.

Experimentally Measuring Harm. To study multiplicity using
the framework of legal harms we outlined above, we designed
experiments to measure multiplicity and its potential harms quan-
titatively. We �ne-tuned various state-of-the-art models for toxic
speech detection, tested them across di�erent datasets of toxic and
non-toxic statements, and observed the incidence of predictive mul-
tiplicity across models. We also compared disagreement in models
to disagreement in human annotation.

To quantify the extent of predictive multiplicity (RQ1), we
compute arbitrariness (De�nition 1) and pairwise disagreement (Def-
inition 2) on our competing �ne-tuned models and show the preva-
lence of arbitrary decisions in SOTA toxicity detectors (Table 1).
Aiming to assess how arbitrary decisions are spread across
demographic groups (RQ2) we compute arbitrariness and pair-
wise disagreement in sentences targeting speci�c social groups
(Figure 1). Next, we provide the necessary theoretical background
on predictive multiplicity (Section 3) and de�ne the setup for the
described experiments (Section 4). Finally, in Section 5, we display
and analyze our experimental results.

3 BACKGROUND ON PREDICTIVE
MULTIPLICITY

In this section, we discuss setup and notation, mathematically de-
�ne the set of all competing models, which in the ML and statistics
literature is called the Rashomon set, and de�ne the multiplicity
metrics of interest in this paper — pairwise disagreement and arbi-
trariness.

Preliminaries. We focus on the task of binary classi�cation of
toxic speech. Consider a dataset with= 2 N examplesD , {x8 , y8 }=8=1
where x8 is a sentence (e.g., “I love you” and “I hate you”) and
y8 2 {0, 1} is a binary label that is 1 when the sentence is “Toxic”
and 0 when it is “Not Toxic”. In the open-source datasets used in
this work, labels were generated by multiple human annotators
(see appendix C.2 for details).

We use error to measure the quality of a model. Formally, the
error of a model ⌘ 2 H over a dataset S ✓ D is

ErrS (⌘) =
1
|S|

’
x,y2S

[⌘(x) < y] , (1)

where [condition ] is the indicator function that outputs 1 if con-
dition is true and 0 otherwise. The error in training data is de�ned
as Errtrain (⌘), and similarly for testing error.

Competing Models and the Rashomon E�ect. We call a �xed (e.g.,
deployed) model for �agging toxic content a reference model and
denote it by ⌘ref — we chose ⌘ref to be a language model freely
available on HuggingFace. The reference model can be, for exam-
ple, the empirical risk minimizer over a training set or an already
deployed model. The set of all models with less than 1 + n times
the training error from ⌘ref is the Rashomon set [8, 26] denoted by
6In fact, this information is impossible to obtain even if we analyze the model alone,
as multiplicity can only be identi�ed when we compare predictions across multiple
models.

R(n,⌘ref).7 The Rashomon set can intuitively be viewed as a “dis-
agreement set” of equally-accurate models. Formally, the Rashomon
set is given by:

R(n,⌘ref) , {⌘ 2 H | Errtrain (⌘)  (1 + n) Errtrain (⌘ref)} , (2)

where n is the Rashomon parameter and measures how close the per-
formance of themodels is to the performance of the referencemodel,
see [7, 26, 37, 48] for related de�nitions. For the LLMs considered in
this work, the Rashomon set is theoretically and computationally
challenging to characterize. We resort to empirically estimating the
Rashomon set via re-running the same �ne-tuning pipeline with
di�erent random seeds. Each �ne-tuned model gives us a sample
from the Rashomon set if the model is close in performance to the
reference model. We denote these Rashomon set model samples bybR(n) when ⌘ref is clear from the context. In practice, to explore
the Rashomon set, we �x a dataset Dtrain and model architecture
H , and �ne-tune as many models on Dtrain as our computational
resources allow, each time varying the random seed. We discard
any models that are not within n of ⌘ref.

There is no standard Rashomon parameter selection method (n).
Most papers on predictivemultiplicity resort to showing how results
vary when the Rashomon parameter is changed [6, 37, 44, 48, 60].
Recently, Paes et al. [54] proposed a principled manner of choosing
the Rashomon parameter based on Clopper-Pearson con�dence
intervals. This approach — which we refer to as the CP method
— selects n based on a con�dence parameter, dataset size, and the
error of the reference model. We follow their approach using a
con�dence parameter of 95% for a conservative analysis. We also
explore di�erent con�dence values in appendix D.

Measuring Predictive Multiplicity. A classi�cation problem ex-
hibits predictive multiplicity when models in the Rashomon set as-
sign con�icting predictions to the same data point, formally de�ned
in Marx et al. [48, De�nition 2]. To measure predictive multiplicity,
we use the following two metrics: arbitrariness, which is a general-
ization of ambiguity Marx et al. [48], and pairwise disagreement
[7, 18].

While ambiguity computes the fraction of points that at least
one model in the Rashomon set disagrees with the reference model
(⌘ref), arbitrariness measures the percentage of points in the dataset
that receive con�icting predictions from any two models in the
Rashomon set (competing models) and it is formally de�ned next.

D��������� 1 (A������������). The arbitrariness on a set of in-
puts S = {x1, ..., x=} ✓ D over the Rashomon set model samplesbR(n,⌘ref) is the proportion of inputs in the set S that receive con-
�icting predictions from any two models in the Rashomon set model
samples:

bA(n) , 1
=

=’
8=1

[9⌘1,⌘2 2 bR(n) |⌘1 (x8 ) < ⌘2 (x8 )] . (3)

Pairwise disagreement is a per-sample measure that approxi-
mates the fraction of models in the Rashomon set that disagree on a
prediction. Here, we analyze average pairwise disagreement, which

7Reference [26] de�nes the Rashomon set with any arbitrary loss function evaluated
on the training data.
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averages out pairwise disagreement across samples in a dataset,
formally de�ned as follows.

D��������� 2 (A������ P������� D����������� [7, 18]). The
average pairwise disagreement is the average over all input x 2 D of
the proportion of pairs of models in the Rashomon set bR(n,⌘ref) that
disagree on their prediction:

PD(n) ,
1
=

=’
8=1

1
" (" � 1)

’
⌘,⌘0 2 bR(n )

[⌘(x) < ⌘0 (x)], (4)

where " = |bR(n) |, i.e., " is the number of models we sample from
the Rashomon set via retraining and = the number of examples in D.

We select the above metrics because they quantify two important
aspects of predictive multiplicity: (i) the fraction of samples in
a dataset for which predictions are arbitrary (Defn. 1), in that a
competing model would have assigned a di�erent prediction, and
(ii) the extent to which models disagree on individual (Defn. 2).

Given a set of models sampled from the Rashomon Set (e.g., by
varying random seeds), we quantify predictive multiplicity in two
steps. First, we measure the number of arbitrary decisions (arbitrari-
ness) made by competing models. Here, arbitrariness captures how
manymoderation decisions were not rule-based but just a consequence
of random seed selection. As discussed in Section 2, such random
decisions go against procedural fairness because they violate due
process, are not accountable, and, if the magnitude of arbitrariness
is di�erent across groups, then the impact of randomness is also
disparate. Second, we compute pairwise disagreement to estimate
the number of models that disagree on their predictions. If the
number of con�icting predictions was, on average, negligible, one
might argue that ignoring this con�icting minority is acceptable [6].
However, our experimental results show that such disagreement is
high (Table 1), especially in speci�c targeted demographic groups
(Figure 1). In the next section, we apply this measurement pipeline
to state-of-the-art toxic text detectors.

4 EXPERIMENTAL SETUP
This section outlines the datasets, ML models, and methodology
used for evaluating predictive multiplicity in content moderation.
Our goal is to describe our overall experimental approach and
provide a rationale for the choice of datasets and base LLMs.

Our experiments involve �ne-tuning state-of-the-art language
models on large-scale datasets. Fine-tuning refers to the act of
taking a general-purpose LLM trained on a large corpus of text, e.g.
RoBERTa [45], and further training it on a speci�c objective, such
as toxicity classi�cation. Typically, this training is shorter (fewer
epochs) and less intense (smaller learning rate, less updated layers)
than the original training (commonly called pre-training) — which
is what motivates the term �ne-tuning. All languagemodels referred
to in this section have been �ne-tuned for toxicity classi�cation,
meaning they take as input a piece of text and output either 0,
denoting a non-toxic, or a 1, denoting a toxic.

On state-of-the-art model selection. We identify widely used 8

state-of-the-art open-source language models that have been �ne-
tuned for toxicity detection.We test all thesemodels in four di�erent
datasets and choose to analyze the models tomh TR[33] and s-nlp
RTC[17] that are, respectively, the �rst and second best-performing
models — check Appendix C.3 for more details on model selection
and Table 3 for the considered models accuracy. Throughout this
paper we will refer to tomh TR[33] as ToxiGen-RoBERTa and s-nlp
RTC[17] as RoBERTa-Toxicity-Classi�er.

On state-of-the-art model reproduction via �ne-tuning. We repro-
duce the �ne-tuning procedure from ToxiGen-RoBERTa [33] 40
times with di�erent random seeds, leading to 40 di�erent models.
We only considered 35 out of the 40 models because they have indis-
tinguishable performance from the reference model with 95% con-
�dence using the method from [54] —- the Rashomon parameter is
n = 0.016. We repeat the same procedure for the RoBERTa-Toxicity-
Classi�er using the �ne-tuning method from [17] and retaining
18/20 models with statistically indistinguishable performance with
95% con�dence. Appendix C.4 shows hyperparameters and C.5 the
performance of �ne-tuned models.

On dataset selection. We use the publicly available datasets: Tox-
iGen [33], DynaHate [63], SBF (Social Bias Frames) [59], HateEx-
plain [49], MHS (Measuring Hate Speech) [40], and WikiDetox [70].
These datasets were chosen for two main reasons. First, they were
purposefully designed to challenge ML-based toxic text classi�ca-
tion. For example, ToxiGen and SocialBiasFrames (SBF) contain
mostly “implicit” toxic speech [33, 59]. Second, these datasets have
labels for demographic groups targeted by the text. We use this
information to quantify and compare Arbitrariness and Pairwise
Disagreement across di�erent targeted groups (Figure 1). We use
the Measuring Hate speech (MHS) [40] and the WikiDetox [70]
datasets because they add one additional dimension to our analysis:
the labels of multiple human annotators who detected toxicity for
the sentences in the dataset. This enablels us to compare human
annotators’ disagreement with model disagreement (Figure 2).

Dataset Content. In total, each row in each dataset in this work
contains: a sentence, a list of binary yes/no votes from human anno-
tators regarding the toxicity of the sentence, and the target group
for the sentence. See Appendix C.2 for further details, including
how many human annotators are in each dataset.

Having �ne-tuned ourmodels, in the next section, wewill present
how these models exhibit predictive multiplicity in accordance with
the mathematical formulation in Section 3. For each of our �nd-
ings, we also draw connections between our experimental results
and their impact on principles of procedural justice, freedom of
expression, and non-discrimination, based on the legal framework
outlined in Section 2.

5 DATA ANALYSIS
In this section, we present our experimental results and discuss
their meaning in terms of the principles de�ned in Section 2. As we
did in Section 2, we will often refer to the illustration of a judges
�ipping coins.
8We consider widely used all toxicity detectors with more than 3000 downloads in the
Hugging Face [69] platform.
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5.1 Procedural Justice, Freedom of Expression,
and Judges Flipping Coins

Technical Analysis. Our �rst experimental result regards the ex-
tent of arbitrariness (RQ1) (de�ned in (1)) and disagreement (de�ned
in (2)) in our �ne-tuned state-of-the-art toxicity detectors. Table 1
shows the prevalence of arbitrariness for the �ne-tuned Toxigen
and Jigsaw models across all tested datasets. We also observe that
for the �ne-tuned Toxigen, more than 34% of all decisions made by
the models at the test time are arbitrary, i.e., there exists another
competing model with a con�icting prediction. For the �ne-tuned
Jigsaw models, this number decreases to closer to 23%. Moreover,
both the �ne-tuned Toxigen and Jigsaw models achieved a high
number of con�icting predictions in the SBF dataset that contains
implicit toxic content — which may indicate that when the toxicity
is implicit, arbitrary decisions are more common.

Table 1 also shows a high percentage of pairwise disagreement
for the �ne-tuned Toxigen and Jigsaw models across all tested
datasets. Our experiments show that using the �ne-tuned Toxigen
models, on average, 8.3% of the pair of models disagree in their
prediction — i.e., 8.3% of total pairwise disagreement. While 6.9% of
the pair of models disagree for the �ne-tuned Jigsaw models. This
implies that, on average, for each point that models disagree, 14%
of the �ne-tuned Toxigen models made a prediction about sentence
toxicity, and 86% of the models predicted the opposite. This high
pairwise disagreement is especially relevant for methods that aim
to decrease arbitrary decisions by taking a majority vote across
�ne-tuned competing models such as [6].

A Violation of Procedure and Freedom of Expression. Using our
analogy, each ML model is an adjudicator, deciding whether to
strike down an online post or not. Recall that the models we devel-
oped and tested are part of a Rashomon set, meaning they all have
very similar accuracy and are, therefore, equally good. On aver-
age, all judges make the same number of correct rulings. However,
in 34% of court cases, at least two judges disagree on the ruling
(arbitrariness). These con�icting rulings are not a result of judges
having di�erent interpretations of the law or or having di�erent
ideologies (e.g., more or less punitive). These con�icts stem from
purely random events, e.g., in 34% of court cases the judge �ips a
coin to decide whether to take down the online post or not. Per
Section 2, such decisions are entirely detached from notions of due
process, legality, and impartiality, and hence constitute a violation
of procedure and freedom of expression. The fact that we measure

a 34% arbitrariness value due solely to random events means these
ML models, if deployed in the real world, would blatantly violate
procedure and FoE (as de�ned in Section 2 ). We emphasize that if
the 34% arbitrariness value could be attributed to clear and explain-
able di�erences in decision-making, then this value would not be
a violation of procedure and FoE. The randomness is the source of
the violation, not the magnitude of the value.

5.2 Disparate Arbitrariness: Di�erent Content
Gets Di�erent Coin Flips

Technical Analysis. Figure 1 indicates that the incidence of ar-
bitrariness is not the same across all targeted groups (RQ2). We
observe that anti-LGBTQ speech consistently receives more arbi-
trary decisions relative to misogynist /misandrist speech for both
Toxigen and Jigsaw �ne-tuned models. Across the Toxigen �ne-
tuned models, anti-LGBTQ speech receives arbitrary decisions 35%
of the time, while misogynist/misandrist speech receives arbitrary
decisions around 30% of the time. These di�erences are even greater
on Jigsaw �ne-tuned models. Moreover, racist speech has more than
twice the arbitrariness of misogynist/misandrist speech on Jigsaw
�ne-tuned models. We also note that Toxigen was created to be a
balanced dataset, i.e., all target groups have about the same number
of examples — Figure 1 shows that a balanced dataset may make
arbitrary decisions more evenly distributed.

A Violation of Non-discrimination. Returning to the judge anal-
ogy, our experimental results indicate that decisions based on coin
�ips occur more frequently in certain marginalized groups than in
others. An example would be that in 35% of court cases concern-
ing LGBTQ content, the judge �ips a coin to decide the outcome,
whereas the judge does this only 30% of the time for misogynist
and misandrist content. The fact that we measure a di�erence in
arbitrariness values across di�erent groups due solely to random
events means these ML models, if deployed in the real world, would
violate non-discrimination. Unlike Section 5.1, even if this e�ect
could be attributed to clear and explainable di�erences in model
decision-making, it would still constitute a violation of the principle
of non-discrimination. People are entitled to a rule-based and equal
evaluation on whether their speech should be restricted.

Table 1: Average pairwise disagreement and arbitrariness in testing time for the Toxigen �ne-tuned and Jigsaw �ne-tuned
models in di�erent datasets. The con�dence in the CP method from [54] was chosen to be 95% for a more conservative analysis.
95% con�dence intervals are shown using the standard error from the mean.

Toxigen Fine-Tuned Jigsaw Fine-Tuned
Dataset Pairwise Disagreement Arbitrariness Pairwise Disagreement Arbitrariness

Toxigen 6.8% ± 0.9% 28.6% ± 3.2% 4.3% ± 0.8% 15.4% ± 2.5%
DynaHate 8.4% ± 0.6% 34.1% ± 1.6% 6.0% ± 0.4% 21.8% ± 1.4%

SBF 8.7% ± 0.3% 35.7% ± 1.1% 7.2% ± 0.3% 24.4% ± 1.0%
HateExplain 8.0% ± 0.6% 31.9% ± 2.0% 8.5% ± 0.6% 29.6% ± 2.0%

Total 8.4% ± 0.2% 34.2% ± 0.8% 6.9% ± 0.2% 23.9% ± 0.7%
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(b) Jigsaw Fine-Tuned

Figure 1: Average pairwise disagreement and arbitrariness in di�erent target groups for the �ne-tuned Toxigen and Jigsaw
models. The results show the pairwise disagreement in percentage (x-axis) for the union of four di�erent datasets: DynaHate,
SBF, Toxigen, and HateExplain. The results are shown for training and test partitions of each dataset. The con�dence in the CP
methods was chosen to be 95%.
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(b) Fine-Tuned Models Jigsaw

Figure 2: Average pairwise disagreement and arbitrariness for Unambiguous and Ambiguous sentences using the Toxigen
�ne-tuned and Jigsaw �ne-tuned models. The �gure shows the pairwise disagreement estimated values along with the 95%
con�dence intervals using the standard error from the mean. We consider a sentence Ambiguous when at least one annotator
labeled the sentence di�erently than others and Unambiguous otherwise. The con�dence in the CP methods was chosen to be
95%.

5.3 Comparing Human and Machine
Arbitrariness: Who is Flipping Coins?

Finally, we compare the arbitrariness across competing ML models
in the Rashomon set and across human annotators. Our goal is to
verify if disagreements in predictions between �ne-tuned LLMs
match the disagreement observed in human annotators, in which
case ML models would be replicating disagreement already present
in the training data. As we see next, that is not the case.

Technical Analysis. From Figure 2, we observe two results. First,
model disagreement tends to be higher in sentences where humans
do not agree (i.e., ambiguous statements). This is an interesting
�nding because themodels only saw themajority vote across the an-
notators. E�ectively, this implies that models, as humans, struggle

with classifying certain statements. Our second �nding is that mod-
els in the Rashomon set can display a high level of disagreement and,
hence, arbitrariness in sentences in which humans unanimously
agreed on the toxicity (i.e., unambiguous statements). In these cases,
models output con�icting predictions when faced with evaluations
that would be obvious to human annotators. Note that WikiDetox is
part of the training data for the �ne-tuned Jigsaw models, which is
why the arbitrariness and disagreement values are noticeably small.
Even in this extreme, our �rst observation holds. This is further
evidence that there are certain statements in these datasets that
both humans and models struggle to correctly classify.

A violation of rule-based approach. This point is where our anal-
ogy (un)fortunately reaches a limitation. In real life, judges will
make similar decisions on most easy cases. The lawfulness of the
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social media post stating “Hello world” is hardly controversial. How-
ever, our �ndings indicate that ML models struggle over certain
statements that would be obvious to any human judge. In their de
facto roles of proxy adjudicators, we need to interrogate in which
situations ML can e�ectively deliver high quality classi�cation.

6 ON THE CONSEQUENCES OF
ARBITRARINESS

In this section, we discuss how selecting and deploying content
moderation models at a large scale, under predictive multiplicity,
resembles the moral dilemma of the trolley problem (RQ3). We
make this comparison to discuss the relevance of our work for law
and policy decision-makers and scholars. Finally, we o�er insights
into the path forward.

The inscrutable trolley problem. The harms of arbitrariness re�ect
a fundamental problem for the use of ML in content moderation.
We argued in Section 2 under Procedural Justice that content moder-
ation algorithms must follow a rule-based decision-making process.
ML models, however, make statistical predictions that do not follow
a clear rule-based process. Adjudicating free speech through sta-
tistical models to control the exercise of a right is only tolerable if
these models deliver similar expected outcomes and operate on the
same explainable, rule-based criteria, with due process safeguards.
We have empirically shown that is not the case. The criteria used
are often random and these stochastic e�ects are often concealed
from the end user.

Our work also identi�es the harms stemming from arbitrary
model selection (e.g., which model of the Rashomon set is chosen
and deployed). When there is no clear reason for choosing one
model over the other, an arti�cial “lottery” is created on which
data points will draw the fate of being subjected to random treat-
ment. Our results indicate that this “lottery” is not fair: di�erent
population groups targeted by the text have di�erent likelihoods
of arbitrary treatment.

If we can draw a �nal analogy, this creates a troubling scenario
where choosing ML models is an inscrutable trolley problem. The
trolley problem is a famous thought experiment in ethics and psy-
chology involving a moral dilemma where a person must choose
between actively diverting a runaway trolley to harm one person or
passively allowing it to continue on its path and harm �ve people.
Here, we do not know why and how companies choose between
equally good models, but each one of them will cause the undue
harm of di�erent individuals. This must be discussed from a law
and policy point of view in local jurisdictions.

Impact on ongoing law and policy debates on content moderation.
One important debate in the platform regulation �eld is directly
a�ected by these �ndings. It is the ongoing discussion of laws af-
fecting content moderation, such as platform liability rules [9, 46].
Legal responsibilities imposed on service providers push companies
to perform more content moderation focused on particular types
of expression. Striking the right balance between free speech and
expedited response, considering the volume and plurality of online
communication, is a hard, legal and technical task. Adding to these
challenges, copyright claims, scienti�c disinformation, electoral in-
tegrity, and online extremism are all topics that have fuelled heated

discussions on the need to prevent online harms while balancing
international human rights - or even questioning if international
human rights are su�cient to tackle this issue [22]. Our �ndings
shed light on the legal complexities intrinsic to these models.

Several statutes require companies to publish assessment reports
that include quantitative measurements such as expected accuracy
and error in algorithmic content moderation. Examples include DSA
(Article 15, Section 1(e))[62], the UK Online Safety Act (Section 22
(4) and (6))[52], and statutes currently in discussion, such as the
Brazilian AI Bill (Articles 19 - 24) and the Platform Regulation
Bill (Article 23). Our �ndings demonstrate that arbitrariness in
algorithmic content moderation carries non-negligible potential
for harm. Moreover, content moderation tasks are also becoming
increasingly complex, which may further increase arbitrariness.
For instance, in 2022 the Brazilian Electoral Courts [24] ordered
the removal of content that was “similar” to content that had a
previously been appreciated with a removal order. The time-frame
for companies to respond, in the election periods, varied between 3
hours and 1 hour. To attend to these stringent legal requirements,
companies might rely on other ML models to appreciate “similarity”
at scale (whatever that might mean).

As a way forward, reports produced by companies should also in-
clude measurements of algorithmic arbitrariness in content moder-
ation. Reporting accuracy alone is not enough, as our work demon-
strated: equally accurate models can produce con�icting moder-
ation decisions. Our paper provides a methodology on how such
measurements can be done: in Section 3, we give two precise met-
rics for quantifying arbitrariness, in Figures 1 and 2, we compute
and visualize these quantities, and in the “Technical Analysis” of
Section 5, we provide an example of what a quantitative assessment
could look like in these reports.

We encourage the ML community to develop mitigation strate-
gies to reduce algorithmic arbitrariness in content moderation. The
work of Black et al. [6] is an excellent starting point, which sug-
gests taking the majority vote across the set of essentially equally
performing models. However, we note that the �rst step in dealing
with arbitrariness is discovering, measuring, and reporting this
phenomenon.

7 FINAL DISCUSSION
Conclusion. In this paper, we show the prevalence of arbitrary

decisions in algorithmic content moderation and discuss its im-
pact on law and policy — particularly on freedom of expression,
non-discrimination, and procedural justice. Moreover, we show
that arbitrary decisions are not uniformly spread across all texts
and that they are more frequent in content that targets speci�c
demographic groups (e.g., anti-LGTBQ posts). Then, we discuss the
implications of the disparate arbitrary decisions in terms of the
principle of non-discrimination and procedural fairness. Finally,
we also show that models produce arbitrary predictions even in
content that human annotators unanimously classify as toxic or
non-toxic, signaling that it might be useful to share the responsibil-
ity of content moderation with human annotators.

Path forward. Our results reinforce that ML models are far from
perfect proxies for humans when classifying and evaluating speech.
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The use of algorithmic tools in moderation must be nuanced, ac-
countable, and transparent. First, decisions made during model
development – even as simple as the choice of random seed! – must
be scrutinized, and their impact on ensuing moderation decisions
quanti�ed, reported, and analyzed in light of company policies and
regulations. Second, developers of moderation tools should mea-
sure how arbitrariness disparately a�ects subsets of the population
and develop techniques to mitigate this impact. Finally, caution is
required when delegating decisions to algorithms. A more nuanced
approach to content moderation, where certain variables (e.g., the-
matic content, socio-demographic factors, type of illegal or harmful
speech) prompt human revision and control, is a promising way
forward.

Limitations. We only measured multiplicity across binary toxic-
ity detection. However, models that predict beyond binary toxicity
(e.g., models that predict the level of toxicity) could potentially
display di�erent levels of arbitrariness than reported here. We also
did not investigate the possibility of a statement ful�lling multi-
ple categories of toxic speech; di�erent categories may prompt
di�erent governance decisions other than simply content removal
(e.g., reducing reach and labeling). Finally, there is an emerging
application of generative language models to produce moderation
decisions [53]; however, this approach uses GPT-4, which we have
no access to model architecture, weights, or even training data,
making �nding equally good models in the same hypothesis class
impossible.

8 RESEARCH POSITIONALITY
This positionality statement aims to transparently communicate
our ethical considerations, the in�uence of our backgrounds on
our research, and our proactive steps to mitigate the risks of our
research.

Ethical considerations: In conducting our research, we ad-
dressed ethical concerns related to the collection and analysis of
potentially harmful content. We took precautions to mitigate risks
associated with exposure to toxic speech by redacting sensitive
language and analyzing data at an aggregate level. This approach
minimized the direct exposure of our research team to potentially
disturbing content. Furthermore, to ensure the integrity of our re-
search practices and maintain a clear ethical stance, our research
center operates independently, without direct funding from compa-
nies that might be in�uenced by policy discussions stemming from
our �ndings. This independence allows us to conduct our research
without potential con�icts of interest, adhering strictly to academic
and ethical standards.

Positionality: As a team linked to an American university, our
diverse backgrounds and experiences inform and shape our re-
search. The policy discussions we engage with are prominent in
Europe and North and South America. We have limited knowledge
of the state of the discussion in other continents. One of our re-
searchers is actively involved in a civil society organization focused
on tech policy in Brazil, which informs our understanding of the
implications of technology governance and views on the legislation
mentioned. In our view, the diversity of disciplinary views pro-
vides valuable insights into the socio-political dynamics that frame

technology use and regulation in di�erent regions, particularly in
emerging markets.

Adverse Impact Re�ection: While we believe our research
does not directly have adverse unintended impacts on individu-
als, we remain cautious about the potential misuse of our �ndings.
Speci�cally, the models trained to identify toxic speech have the
inherent potential to be misused to restrict the freedom of expres-
sion of certain demographic groups. Acknowledging this possibility,
we have decided to restrict access to the code, making it available
only upon request. This measure is intended to prevent misuse and
ensure that the models are used in line with ethical guidelines and
for purposes that align with our intent to promote positive social
outcomes. We continue to re�ect on the broader implications of
our research and remain committed to monitoring and addressing
any negative impacts that may arise post-publication.
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A PRELIMINARIES
In this supplementary material, we provide the following informa-
tion:

• Section B contains Figure 3, which summarizes the main
technical arguments presented in the paper along with the
policy implications.

• Section C provides further details on the datasets, Hugging
Face models evaluation, �ne-tuning procedures, and �ne-
tuned model performance.

• Section D provides a further exploration of our experiment.
Particularly, it shows (i) multiplicity metrics across di�erent
dataset partitions, (ii) pairwise disagreement and arbitrari-
ness values across di�erent datasets, and (iii) multiplicity
metrics across demographics for di�erent con�dence values
from the CP method.

B SUMMARY OF KEY ARGUMENTS
The connection between the technical aspects of ML and law, along
with the associated policy implications is illustrated in Figure 3.

C EXPERIMENT DESIGN DETAILS
In this section, we providemore details on i) whywe explore toxicity
detection, ii) the datasets used, iii) the search for state-of-the-art
models, iv) the used hyperparameter tuning procedure, and v) the
�ne-tuned models.

C.1 Toxicity Detection as a Proxy for Content
Moderation

The object of analysis of this paper is centered around the e�ects
stemming from ML models used for classi�cation. The de�nition of
what speech should be taken down is dependent on jurisdiction and
policy. We acknowledge that “toxic” does not correspond perfectly
to legal notions of illegal speech, such as hate speech. However,
we interpret our experimental results in Section 5 as evidence that
models deployed to classify illegal speech (e.g. spam, hate, copy-
right) will exhibit multiplicity. We do not expect our datasets to
be perfectly translatable from Toxic to Illegal Speech classi�cation
based on the de�nitions of the dataset. Similarly, we do not make
claims to other languages since our study was conducted using the
English language.

Moreover, many of our experimental results (e.g. Table 1) are
based on training an ML model to detect toxic speech as de�ned by
either Toxigen [33] or Jigsaw [41], then using this model to detect
toxic speech in other datasets, which use di�erent de�nitions of
toxic. We observed higher values of arbitrariness and pairwise-
disagreement when this was done. This is evidence that we should
not expect models trained to enforce speci�c policies and juris-
dictions to translate perfectly to other jurisdictions. As such, this
secondary deployment o�ers a risk to Human Rights, since it will
not be correctly applying local rules.

C.2 Further Dataset Information
We analyze the performance of text classi�cation models across
four datasets: ToxiGen [33], DynaHate [63], SocialBiasFrames [59],
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Examples of legal provisions on 
algorithmic content moderation

Mitigating systems risks 
through algorithmic 
systems and content 
moderation 
(DSA, Section 35, c and 
d) 

Duty of care of 
moderating, preventing, 
and minimizing exposure 
of illegal content through 
content moderation (UK 
Online Safety Act, 
Section 10, (2)(3)(4))

Immediately removing 
contents with AI-
manipulated 
disinformation during 
elections 
(Res. 23.732/2024, TSE– 
Brasil) 

Regulation

Effects of arbitrariness in 
ML models used for content 

moderation models

Predictive 
multiplicity: 
con�icting 
predictions across 
equally good models

Departure from 
rule-based 
decisions: 
predictive outcomes 
are arbitrary or 
random

Disparate Impact: 
The incidence of 
arbitrary decisions 
varies across 
di#erent social 
groups.

Impacts of arbitrariness in 
terms of Human Rights

Freedom of 
Expression: content 
can be unduly 
removed or upheld 
depending on 
unjusti&ed model 
selection

Procedure: content 
moderation decisions 
introduce 
randomness in the 
application process.

Discrimination: 
di#erent social 
groups are subject to 
di#erent degrees of 
arbitrary decisions

Implications for Platform 
Regulation laws, policy 

debate, and path forward

Technical community 
should develop forms 
of measuring and 
mitigating 
arbitrariness (e.g. 
majority vote, model 
ensembles)

Auditing and 
reporting should go 
beyond accuracy and 
include the e#ects of 
arbitrariness

Platform regulation 
should consider legal 
e#ects of arbitrary 
decision made 
during pre-
deployment stages

Measured Phenomena Legal Effects Implications

Implications of Algorithmic Arbitrariness in Content Moderation on Platform 
Regulation

Figure 3: Summary of the key arguments presented in this work.

and HateExplain [49]. These datasets were chosen for several rea-
sons. First, these are datasets purposefully designed to challenge
ML-based toxic text classi�cation. For example, ToxiGen and So-
cialBiasFrames contain mostly “implicit” toxic speech devoid of ex-
plicit profanity, slurs, or swearwords which could be easily �agged
[33, 59]. DynaHate uses a human-and-model-in-the-loop process
to generate a dataset designed to fool ML models. Second, these
datasets have labels for demographic groups targeted by the text.
This information enables us to quantify and compare Arbitrariness
and Pairwise Disagreement across di�erent target groups and re-
port disparities in Section 5. In addition to these datasets, we also
use the Measuring Hate speech (MHS) [40] and the WikiDetox [70]
datasets. We chose these datasets because they add an additional
dimension to our analysis: the labels of multiple human annotators
who detected toxicity in each statement in the dataset. This infor-
mation enables us to compare human annotators’ disagreement
with model disagreement in Section 5.3.

See Table 2 for a summary of all datasets used in this work.
Here, the “Unique Samples” column refers to the number of unique
sentences that appear in the corresponding datasets across train,
test, and validation. The “Human Annotators per Sample” column
refers to the number of independent human annotators that saw
each sample. For example, an entry such as “1-5” means between
1 and 5 human annotators saw every sample in the dataset. We
made a modest attempt at (i) removing non-English sentences from
each dataset, (ii) removing repeated sentences and (iii) asserting
that sentences in the training set were not in the test or validation
set. As such, the numbers reported in Table 2 will not re�ect the
numbers reported in each dataset’s respective paper.

We summarize the di�erent de�nitions of toxicity used by these
datasets. For Toxigen [33], the de�nition of toxicity is not explicitly
de�ned, instead they asked the human annotators “whether the

statement would be harmful to anyone if an AI system wrote
it (HARMFULIFAI), as well as if a human wrote it (HARM-
FULIFHUMAN)”. The annotators were asked to rate each sentence
between 1-5, with 1 meaning “not at all” harmful, 3 meaning am-
biguous, and 5 meaning “very much so”. The toxic label for this
dataset was generated by taking the max of HARMFULIFAI and
HARMFULIFHUMAN and mapping the scores into three class: non-
toxic if < 3, ambiguous if 3, and toxic if > 3. Finally, the majority
vote was taken across the three human reviewers. Note that, ac-
cording to the Toxgien paper [33], there is no signi�cant di�erence
in toxicity when using either HARMFULIFAI or HARMFULIFHU-
MAN. For our work, we map any score less than or equal to 3 to
non-toxic and any score above 3 to toxic.

In DynaHate [63], the de�nition of toxicity (which they refer to
as hate) is de�ned as “abusive speech targeting speci�c group
characteristics, such as ethnic origin, religion, gender, or
sexual orientation”. This dataset already has binary labels for
toxicity, so the only post processing we do is remove the sentences
whose target label was one of ’notgiven’, ’notargetrecorded’, ’wc’,
or ’NA’.

In SocialBiasFrames, [59], toxicity (which they refer to as “of-
fensiveness”) is not explicitly de�ned. Human annotators were ask
“Could this post be considered o�ensive, disrespectful, or
toxic to anyone/someone?”. The answer options were “Yes, this
could be o�ensive”, “Maybe, I’m not sure”, “No, this is harmless”,
and “I don’t understand the post”. We drop any sentences where any
annotator answered “I don’t understand the post”. Any sentence
where the majority of annotators answered “Yes” was labelled toxic,
else the sentence was labelled non-toxic. In particular, we assigned
the values 1, 0.5, and 0 to “Yes”, “Maybe”, and “No”, respectively.
For each sentence, the toxic label was generated by averaging the
scores across humans, and checking if the value was above 0.5.
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In HateExplain [49], they cite [19] for their de�nition of toxic
speech (which they call hate speech). Davidson de�nes hate speech
as: “language that is used to expresses hatred towards a tar-
geted group or is intended to be derogatory, to humiliate, or
to insult the members of the group”. This paper distinguishes
between hate speech and o�ensive speech, and each sentence in
this dataset is labelled as either HATEFUL (which is assigned the
value 0), NORMAL (assigned the value 1), or OFFENSIVE (assigned
the value 2). For the purposes of this work, we label both hateful
and o�ensive speech as toxic, and normal speech as non-toxic, and
take the majority vote across annotators to get the toxic label.

In Measuring Hate speech (MHS) [40, 58], toxic/hate speech is
modelled as a spectrum, and faceted Rasch measurement theory
(RMT) was used to map human responses into a continuous score
that ranges between 0 and 1. For the purposes of this work, we use
this continuous score, and sentences with a hate speech score > 0.5
was labelled as toxic, and anything else was labelled non-toxic. We
then take the majority vote across annotators to get the toxiicity
label for a given sentence. The authors of MHS have eight di�erent
forms of hate speech, where each de�nition denotes hate speech of
increasing severity. We list each de�nition, with the understanding
that all of these de�nitions together form the de�nition of toxicity
used in our experiments:

• Genocide: Support for or intention of systematically
killing all or a large number of a protected identity
group

• Violence: Threat or support of physical force or emo-
tional abuse intended to hurt or kill members of a
protected identity group

• Dehumanization:Depriving a protected group of human-
like qualities, such as comparison to an animal, insect,
or disease

• Hostility: Unfriendliness or opposition to a protected
identity group, such as through slurs, profantiy, or
insults

WikiDetox [70] contains three di�erent datasets for personal
attacks, aggression, and toxicity. “Personal attacks” are de�ned as
in the Wikipedia guidelines [67], and broadly include abuse based
on protected classes, ad hominem attacks on a�liations, ha-
rassment, threats of legal action, etc. “Toxicity” in WikiDetox is
de�ned as in the Wikipedia Online Harassment Guide [68], which
points to various U.S. centered studies and legal documents. The
most relevant is [47], which de�nes hate speech in Section V as
“speech that carries no meaning other than hatred towards
a particular minority, typically a historically disadvantaged
minority”. “Aggression”, as far as we can tell, is not de�ned in
WikiDetox, however, we found that all aggressive sentences were
also either in the attack or toxicity dataset, so we chose to ignore
the aggressive dataset all together, which did not cost us any data.
In this work, we combine all the toxicity and attack datasets into
one large dataset. We note that the toxicity and attack datasets have
overlapping sentences but are not identical. Any sentence that was
considered either as an “attack” or as “toxicity” were labelled as
toxic, else it was labelled not toxic. The majority vote was then

taken over human annotators to get the toxic label for each sen-
tence. All special newline and tab tokens were removed to avoid
confusing our ML models.

Finally, we discuss the Jigsaw dataset, which is a concatenation
from the Jigsaw 2018 competition [12] and Jigsaw 2019 competition
[11] training datasets. Note that there was a Jigsaw 2020 compe-
tition [41], but this competition had the same training data as in
previous competitions, though the goal was di�erent. Toxicity in
the Jigsaw datasets is de�ned as “rude, disrespectful or other-
wise likely to make someone leave a discussion”. Since this
dataset is already heavily curated, no other post processed was
needed. We note here that WikiDetox is a subset of the Jigsaw
dataset.

C.3 Model Search On HuggingFace
Models Considered in Study. We include a screen shot of the Hug-

gingFace platform listing the most downloaded language models
for toxicity detection as of January 1st, 2024. The purpose of this
screenshot is to keep historical proof that we tested all models
with more than 3000 downloads as of the time of writing. Note that
s-nlp/russian_toxicity_classifier and
cointegrated/rubert-tiny-toxicity are Russian languagemod-
els and hence outside the scope of this paper. For the same reason,
naot97/vietnamese-toxicity-detection_1, a Vietnamese lan-
guage model, was not considered. Moreover,
rungalileo/toxic-bert-quantized-traced is a distilled / quan-
tized version of unitary/toxic-bert, hence we opted to use only
unitary/toxic-bert. See Table 4 for the full list of selectedmodels
along with their reference.

On state-of-the-art model selection. Our �rst goal is to identify
the state-of-the-art open-source language models that have been
�ne-tuned for toxicity detection. We begin by evaluating the perfor-
mance of all Hugging Face [69] toxicity-detection language models
with more than 3000 downloads. As of January 1st, 2024, this results
in 8 models (see Appendix C.3). The best-performing model (see Ta-
ble 3) was tomh TR[33], which wewill refer to as ToxiGen-RoBERTa.
This model is the ToxDectRoBERTa [72] model �ne-tuned on the
ToxiGen dataset [33]. We �x ToxiGen-RoBERTa as our reference
model. Our second goal is to create competing models to ToxiGen-
RoBERTa, which we did by taking the base model architecture
(ToxDectRoBERTa) and �ne-tuning the model 40 times on the Tox-
iGen dataset while only varying the random seed between each
run.9 See Appendix C.4 for details on the �ne-tuning procedure. We
then discard the models that are worse than the reference model
using the CP method from [54] outlined in Section 3, using a con�-
dence of 95%. This choice enables a conservative estimate of the size
of the Rashomon set and, therefore, of multiplicity across datasets.
This results in a Rashomon parameter of n = 0.016, and us keeping
35 of the 40 models as Rashomon set samples (bR(n)). 10

9The random seed determines the weight initialization of the classi�cation head of the
language model and the shu�ing of the training data, both of which lead to a di�erent
model after �ne-tuning.
10We repeat this experiment with the second-best-performing model from Hugging-
Face to guarantee that our experimental results are not a mere artifact of model
architecture or training data selection. This model is s-nlp RTC[17], which we will
refer to as RoBERTa-Toxicity-Classi�er from here on.
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Table 2: Summary of all datasets used.

Dataset % Toxic Unique Samples # human annotators per sample

ToxiGen 42.5 6,514 3
Jigsaw 8.1 2,223,061 (130,320 used) 1-3,563

DynaHate 43.7 33,677 1-5
SocialBiasFrames 46.8 45,223 1-20

HateExplain 59.4 19,229 3
MeasuringHateSpeech 20.5 39,555 1-815

WikiDetox 7.7 197,578 8-46

Table 3: Test accuracy for all Hugging Face toxicity detection models with more than 3k downloads and ToxiGen across di�erent
datasets. The best-performing model accuracy is shown in green and the second best in blue. See Table 4 for the full list of
selected models along with their references.

Models Toxigen DynaHate SBF HateExplain

martin-ha TCM [55] 56.2% ± 3.5% 52.9% ± 1.6% 56.5% ± 1.4% 55.5 ± 2.2%
unitary TB [32] 62.5% ± 3.4% 55.2% ± 1.6% 58.2% ± 1.4% 64.1 ± 2.2%
s-nlp RTC [17] 66.9% ± 3.3% 56.9% ± 1.6% 62.4% ± 1.3% 65.9 ± 2.1%
mohsenfayyaz TC [25] 63.2% ± 3.4% 56.1% ± 1.6% 68.5% ± 1.3% 63.8 ± 2.1%
unitary UTR [32] 64.5% ± 3.3% 54.6% ± 1.6% 58.4% ± 1.4% 65.8 ± 2.1%
nicholasKluge TM [14] 58.5% ± 3.5% 55.2% ± 1.6% 56.3% ± 2.2% 62.4 ± 2.1%
unitary MTXR [32] 63.1% ± 3.3% 54.6% ± 1.6% 60.1% ± 1.4% 64.3 ± 2.1%
tomh TR [33] 83.4% ± 2.6% 58.1% ± 1.6% 64.1% ± 1.3% 67.8 ± 2.0%

C.4 Hyperparameters
The accuracy of �ne-tuned language models depends heavily on a
multitude of hyperparameters. In the main body, we retrain two
di�erent model types multiple times: the ToxiGen-RoBERTa [33]
and the RoBERTa-Toxicity-Classi�er [17]. In this section, we detail
the hyperparameters used in the main body.

ToxiGen-RoBERTa: Retraining the ToxiGen-RoBERTa model was
done by �ne-tuning the ToxDectRoBERTa model [72] (⇠ 355 million
trainable parameters) on 4,601 training examples from the human
annotated subset of the ToxiGen dataset [33]. In particular, we
trained on a subset of the ToxiGen data used by [35] that removed
prompts for which 3 annotators disagreed on the target group.More-
over, no quantization was done on the ToxDectRoBERTa model,
and all training runs were performed on a 80Gb A100 GPU. We
�xed the number of epochs to 10 and performed an extensive hyper-
parameter sweep over:

• learning rate: Logarithmically spaced values from 10�6 and
10�4.

• batchsize: Three values 2 {8, 16, 32}.
• Weight decay: Linearly spaced values from 0 and 0.1 with a
0.01 spacing.

• Warmup Steps: Linearly spaced values from 0 to 30% of an
epoch with a 5% spacing.

All other hyperparameters were set to the default that Hugging-
face’s sequence classi�cation routine uses. In particular, this means
a Linear learning rate schedule with the AdamW optimzer. The
sweep was done via the Trainer API from HuggingFace Transform-
ers with the Optuna [1] backend, which used evaluation accuracy

to prune unpromising trails early in training. In total, Optuna made
60 complete training runs (the average run took an hour and 20
minutes on an A100 GPU 80Gb). The optimal parameters were
found to be: learning rate: 1e-5, batch size: 32, weight decay: 0.09,
and warmup ratio: 0.1. The random seed used for the best run was
6. All ToxiGen �ne tuned models (i.e., those used in the multiplicity
experiments) used these hyperparameters, except for random seed.
The seeds used for the ToxiGen �ne tuned models were randomly
generated 3 and 4 digit integers sampled using [31]. See Figure 5
for a plot of the training trajectories of 10 of the random seeds.

RoBERTa-Toxicity-Classi�er. Retraining the RoBERTa-Toxicity-
Classi�er was done by �ne-tuning the base RoBERTa model [45]
(⇠ 124 million trainable parameters) on 100,000 training examples
sampled uniformly from the concatenated Jigsaw dataset [11, 12].
Moreover, no quantization was done on the RoBERTa model, and
all training runs were performed on a 80Gb A100 GPU. In practice,
the signi�cantly larger dataset size meant that �ne-tuning this
RoBERTa model was approximately 3 times slower than �ne-tuning
the Toxigen models. Due to the increased computational cost of
training these models compared to the ToxiGen models, we did
not as extensive of a hyperparameter sweep. We set the batch size
to 8 (for faster training time), and did a grid search for 4 epochs
over four learning rates {10�6, 10�5, 2 ⇥ 10�5, 10�4}. The best was
found to be 2 ⇥ 10�5. Then, we increased the batch size to as large
as our memory allowed (32), and kept all other hyperparameters
set to the default in Huggingface’s sequence classi�cation routine
(notably: weight decay:0 and no warmup steps). All Jigsaw �ne
tuned models used these hyperparameters. The seeds used for the
Jigsaw models were randomly generated 3 and 4 digit integers
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Figure 4: Screenshot of the HuggingFace platform’s most popular toxic detection models as of the writing of this paper

(a) Toxigen Fine-Tuned (b) Jigsaw Fine-Tuned

Figure 5: Training trajectories for the �ne-tuned ToxiGen and Jigsaw models over 10 randomly chosen seeds.

sampled using [31]. The average Jigsaw model took approximately
3 hours and 15 minutes to �ne tune. See Figure 5 for a plot of the
training trajectories of 10 of the random seeds.

C.5 Fine-Tuned Models Performance
In Table C.5, we show the performance of the models we �ne-tuned
and compare it against the reference models. The line Reference in
Table C.5 shows the accuracy of the reference ToxiGen-RoBERTa

Table 4: All considered Hugging face models.

Model Name and Link Reference

martin-ha/toxic-comment-model Pan [55]
unitary/toxic-bert Hanu and Unitary team [32]

s-nlp/roberta_toxicity_classifier Dale et al. [17]
mohsenfayyaz/toxicity-classifier Fayyaz [25]
unitary/unbiased-toxic-roberta Hanu and Unitary team [32]
nicholasKluge/ToxicityModel Corrêa [14]

unitary/multilingual-toxic-xlm-roberta Hanu and Unitary team [32]
tomh/toxigen_roberta Hartvigsen et al. [33]
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Table 5: Accuracy of the reference models from Hugging Face and our Fine-tuned models. The column Toxigen represents the
accuracy of the models �ne-tuned in the Toxigen dataset. The column Jigsaw represents the accuracy of the models �ne-tuned
in the Jigsaw dataset. The reference line shows the accuracy from the models deployed in Hugging Face. The lines Minimum,
Mean, and Maximum show the minimum, average, and maximum accuracies across all our �ne-tuned models.

Accuracy Data Split Toxigen Jigsaw

Reference Train 96.0% 95.7%
Test 83.4% 95.3%

Minimum Train 94.6% 93.6%
Test 83.4% 92.8%

Mean Train 98.2% 96.6%
Test 85.0% 94.1%

Maximum Train 99.8% 100%
Test 86.8% 100%

model [33] and RoBERTa-Toxicity-Classi�er [17] train and test ac-
curacies. The lines Minimum, Mean, and Maximum show the mini-
mum, average, and maximum accuracies across all our �ne-tuned
models. We observe that both the train and test performance of our
models approximates the reference models deployed in Hugging-
Face. Surprisingly, the �ne-tuned Jigsaw models perform as well
as its reference model that was trained in 10 times more data from
the same dataset.

D FURTHER EXPERIMENTAL RESULTS
In this section, we show the main results in the paper for di�erence
values for the Rashomon parameter given by the selection of con�-
dence values for the CP method [54]. Additionally, we also show
arbitrariness and pairwise disagreement across demographics for
datasets.

D.1 Arbitrariness with Di�erent Con�dences
We start by showing the pairwise disagreement and arbitrariness
values for the testing partition of Toxigen, DynaHate, SBF, and
HateExplain. We show these results for two di�erent con�dence
levels in the CP method: 50% and 1%. When con�dence is smaller,
more models are considered to be in the Rahsomon set but with a
higher probability of wrong model inclusion in the set.

Table 6 shows pairwise disagreement and arbitrariness for a
con�dence level in the CP method equal to 50% and Table 7 shows
results with con�dence 1%. We observe that, compared with Table
1, the disagreement and arbitrariness values of Tables 6 and 7 are
higher as a consequence of models with higher error being included
as samples of the Rashomon set.

D.2 Multiplicity Across Demographics
Here, we also show how arbitrariness and pairwise disagreement
vary across di�erent targeted demographic groups. Figures 6 and
7 indicate that even under higher con�dence values, arbitrariness
and disagreement are still non-uniformly distributed as showed in
Figure 1, leading to disparate algorithmic treatment.

D.3 Human vs. Model arbitrariness
We also display the arbitrariness and pairwise disagreement values
across unambiguous and ambiguous toxic content. Recall that we
consider unambiguous sentences the ones that all human annotators
agreed upon its toxicity and ambiguous when not all annotators
classi�ed the sentence toxicity equally.

Figures 8 and 9 present the same pattern of higher arbitrariness
and pairwise disagreement in ambiguous sentences while also hav-
ing a high arbitrariness and pairwise disagreement in unambiguous
sentences — and we discuss in Section 5.
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Table 6: Average pairwise disagreement and arbitrariness in testing time for the Toxigen �ne-tuned and Jigsaw �ne-tuned
models in di�erent datasets. The con�dence in the CP methods was chosen to be 50% for a more conservative analysis. 95%
con�dence intervals are shown using the standard error from the mean.

Toxigen Fine-Tuned Jigsaw Fine-Tuned
Dataset Pairwise Disagreement Arbitrariness Pairwise Disagreement Arbitrariness

Toxigen 6.8% ± 0.9% 28.8% ± 3.2% 4.5% ± 0.8% 16.2% ± 2.6%
DynaHate 8.4% ± 0.5% 34.3% ± 1.6% 6.1% ± 0.4% 22.7% ± 1.4%

SBF 8.6% ± 0.4% 35.4% ± 1.3% 7.3% ± 0.3% 25.1% ± 1.0%
HateExplain 8.0% ± 0.6% 32.3% ± 2.0% 8.8% ± 0.2% 30.7% ± 2.0%

Total 8.3% ± 0.2% 34.0% ± 0.8% 7.1% ± 0.2% 24.8% ± 0.7%

Table 7: Average pairwise disagreement and arbitrariness for the Toxigen �ne-tuned and Jigsaw �ne-tuned models in di�erent
datasets. The con�dence in the CP methods was chosen to be 1%, including all �ne-tuned models.

Dataset Toxigen Fine-Tuned Jigsaw Fine-Tuned
Pairwise Disagreement Arbitrariness Pairwise Disagreement Arbitrariness

Toxigen 6.9% ± 0.9% 29.6% ± 3.2% 4.7% ± 0.8% 16.7% ± 2.6%
DynaHate 8.6% ± 0.5% 35.1% ± 1.6% 6.3% ± 0.4% 23.6% ± 1.4%

SBF 8.7% ± 0.4% 35.9% ± 1.3% 7.5% ± 0.3% 25.6% ± 1.0%
HateExplain 8.1% ± 0.6% 32.8% ± 2.0% 9.0% ± 0.6% 31.6% ± 2.0%
WikiDetox 6.3% ± 0.1% 26.5% ± 0.4% 1.3% ± 0.1% 4.7% ± 0.2%

Total 7.2% ± 0.2% 25.4% ± 0.7% 8.4% ± 0.2% 34.6% ± 0.3%
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Figure 6: Average pairwise disagreement and arbitrariness in di�erent target groups for the �ne-tuned Toxigen and Jigsaw
models. The results show the pairwise disagreement in percentage (x-axis) for the union of four di�erent datasets: DynaHate,
SBF, Toxigen, and HateExplain. The results are shown for training and test partitions of each dataset. The con�dence in the CP
methods was chosen to be 50% containing all �ne-tuned models, leading to the selection of 38 out of 40 Roberta models in the
Rashomon set �ne-tuned in the Toxigen dataset and 17 out of 20 Jigsaw �ne-tuned models.
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(a) Toxigen Fine-Tuned
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(b) Jigsaw Fine-Tuned

Figure 7: Average pairwise disagreement and arbitrariness in di�erent target groups for the �ne-tuned Toxigen and Jigsaw
models. The results show the pairwise disagreement in percentage (x-axis) for the union of four di�erent datasets: DynaHate,
SBF, Toxigen, and HateExplain. The results are shown for training and test partitions of each dataset. The con�dence in the CP
methods was chosen to be 1% containing all �ne-tuned models, leading to the selection of 40 out of 40 Roberta models in the
Rashomon set �ne-tuned in the Toxigen dataset and 20 out of 20 Jigsaw �ne-tuned models.
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(a) Toxigen Fine-Tuned Models
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(b) Jigsaw Fine-Tuned Models

Figure 8: Average pairwise disagreement and arbitrariness for Unambiguous and Ambiguous sentences using the Toxigen
�ne-tuned and Jigsaw �ne-tuned models. The table shows the pairwise disagreement estimated values along with the 95%
con�dence intervals using the standard error from the mean. We consider a sentence Ambiguous when at least one annotator
labeled the sentence di�erently than others and Unambiguous otherwise. The con�dence in the CP methods was chosen to be
1%, including all �ne-tuned models in the above analysis.
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(a) Toxigen Fine-Tuned Models
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(b) Jigsaw Fine-Tuned Models

Figure 9: Average pairwise disagreement and arbitrariness for Unambiguous and Ambiguous sentences using the Toxigen
�ne-tuned and Jigsaw �ne-tuned models. The table shows the pairwise disagreement estimated values along with the 95%
con�dence intervals using the standard error from the mean. We consider a sentence Ambiguous when at least one annotator
labeled the sentence di�erently than others and Unambiguous otherwise. The con�dence in the CP methods was chosen to be
50%, including all �ne-tuned models in the above analysis.
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