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A B S T R A C T   

Natural hazards such as hurricanes, floods, and wildfires cause devastating socio-economic impacts on communities. In South Florida, most of these hazards are 
becoming increasingly frequent and severe because of the warming climate, and changes in vulnerability and exposure, resulting in significant damage to infra-
structure, homes, and businesses. To better understand the drivers of these impacts, we developed a bottom-up impact-based methodology that takes into account all 
relevant drivers for different types of hazards. We identify the specific drivers that co-occurred with socio-economic impacts and determine whether these extreme 
events were caused by single or multiple hydrometeorological drivers (i.e., compound events). We consider six types of natural hazards: hurricanes, severe storm/ 
thunderstorms, floods, heatwaves, wildfire, and winter weather. Using historical, socio-economic loss data along with observations and reanalysis data for hydro-
meteorological drivers, we analyze how often these drivers contributed to the impacts of natural hazards in South Florida. We find that for each type of hazard, the 
relative importance of the drivers varies depending on the severity of the event. For example, wind speed is a key driver of the socio-economic impacts of hurricanes, 
while precipitation is a key driver of the impacts of flooding. We find that most of the high-impact events in South Florida were compound events, where multiple 
drivers contributed to the occurrences and impacts of the events. For example, more than 50% of the recorded flooding events were compound events and these 
contributed to 99% of total property damages and 98% of total crop damages associated with flooding in Miami-Dade County. Our results provide valuable insights 
into the drivers of natural hazard impacts in South Florida and can inform the development of more effective risk reduction strategies for improving the preparedness 
and resilience of the region against extreme events. Our bottom-up impact-based methodology can be applied to other regions and hazard types, allowing for more 
comprehensive and accurate assessments of the impacts of compound hazards.   

1. Introduction 

Natural hazards such as floods, hurricanes, heatwaves, and wildfires 
cause significant economic losses as well as a high number of fatalities 
worldwide (World Economic Forum, 2023; NOAA 2023; WMO 2023). 
Natural hazards are environmental phenomena causing societal and 
environmental impacts, while hydrometeorological variables are 
defined as the drivers that may cause natural hazards (FEMA n.d.). 
Natural hazards are often caused by hydrometeorological drivers which 
may include processes, variables, and phenomena in the climate and 
weather domain and can span over multiple spatial and temporal scales. 
Since 1980, the United States has experienced more than 330 weather 
and climatic disasters exceeding USD 1 billion in damage each, tallying 
to more than USD 2.275 trillion in direct insured and uninsured costs 

(NOAA NCEI, 2022). NOAA’s Billion-Dollar events include indirect 
losses, flood insurance payouts, and more. However, hazards and di-
sasters, including compound events, do not need to exceed the arbitrary 
one-billion-dollar threshold to be catastrophic to a community. A more 
conservative estimate of direct hazard losses alone, still shows a tally of 
nearly USD 1.2 trillion in direct losses, nearly 35,300 fatalities, and over 
252,000 injuries since 1960 in the United States—across all types of 
natural hazards (CEMHS 2022). Many of these events as well as the 
billion-dollar disasters might be compound events meaning a combi-
nation of multiple drivers and/or hazards that collectively cause 
extreme and/or catastrophic damage to society and the environment 
(McPhillips et al., 2018; Zscheischler et al., 2018). The share of com-
pound events especially among high-impact events, though, is unknown 
at this point. 
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In the United States, the socio-economic cost of weather- and 
climate-related disasters has significantly grown over the last 50 years 
(NOAA NCEI, 2023). In coastal areas such as Florida, with low-lying and 
densely populated coastal cities, climate-related hazards can be cata-
strophic as the devastating impacts of Hurricane Ian underscored. 
Hurricane Ian (2022) made landfall as category 4, being the 
third-costliest ever weather disaster on record globally, and was the 
deadliest hurricane to hit the state of Florida since the 1935 Labor Day 
hurricane (Masters and Henson, 2023). 

In the near future, Florida may see more hurricanes and severe 
weather. The 6th Assessment Report of the Intergovernmental Panel on 
Climate Change (IPCC) projects future changes in mean sea level, 
extreme temperatures, extreme precipitation, river flow, fire weather, 
tropical cyclone activity, and severe winds, among others, in Florida 
(Seneviratne et al., 2022). In a warming climate, the dependence and 
hence interaction effects between different climatic drivers may change 
(Yaddanapudi et al., 2022; Zscheischler et al., 2018), and because of 
these expected future changes, it is essential to develop a baseline un-
derstanding of disaster risks, particularly for high-impact compound 
extreme events. As a result, it is critical to understand the processes 
driving these extreme events, as well as how various hydrometeoro-
logical drivers combine to contribute to the associated socio-economic 
impacts. Traditional risk assessments study the intensity, frequency, 
and impact of singular hazards and/or climate drivers, such as tem-
perature, precipitation, river discharge, sea level, wind, etc. (Chen et al., 
2022; Deng and Ritchie, 2019; Hirabayashi et al., 2021; Kharin et al., 
2013; Klaus et al., 2016; Lenderink et al., 2007; Perkins and Alexander, 
2013; Veatch and Villarini, 2020; Ward et al., 2020). The univariate 
approach leads at best to uncertainty in the risk assessment outcomes, 
and at worst to a systematic underestimation of potential impacts, which 
consequently results in ineffective, maladaptive, and/or under-designed 
risk mitigation action (Zscheischler et al., 2018; Schipper, 2020). Thus, 
the design and implementation of the right-sized and effective adapta-
tion strategies rely on a comprehensive understanding of the climatic 
and meteorological drivers relevant to a particular area and their com-
pounding effects. 

Compound events are complex multivariate phenomena with non- 
linear interactions between varying spatial and temporal physical and 
societal mechanisms. Hence, their impacts are often amplified relative to 
the impacts from those same climate events occurring separately or 
univariately (Raymond et al., 2020a,b). Impacts from hurricanes, for 
example, typically result from concurrent hazards such as extreme 
precipitation, winds, and high storm surge. For instance, Hurricane Ian 
(2022) caused more than 20 inches (~51 cm) of total precipitation in 
some places, maximum sustained winds of 155 mph (~250 km/h), and 
storm surge heights of 12–18 feet (3.66–5.5 m) in Florida, leading to 
economic losses of at least USD 113 billion and killing at least 152 
people (NOAA NCEI, 2023). Severe damage can also result from a series 
of smaller magnitude (or extreme) weather events that exacerbate sys-
tem vulnerability or result in disproportionate impacts (Moftakhari 
et al., 2019; Bevacqua et al., 2022a,b). For instance, in 2022, the U.S. 
experienced a billion-dollar disaster related to flooding in Missouri and 
Kentucky. The flooding was caused by a series of storms that dumped 
record amounts of rain in the region in March 2022. The flooding 
affected more than 1.5 million people and damaged or destroyed over 
20,000 homes (NOAA NCEI 2022). Capturing these complex in-
terrelationships is a challenge for current physics-based modeling ap-
proaches, scenario-building techniques, and statistical analyses 
(Zscheischler et al., 2018). A recently proposed typology of compound 
events underscores the necessity for impact-based methods that identify 
multiple weather and climatic drivers leading to socio-economic risk 
(Zscheischler et al., 2020). Applications within the disaster risk reduc-
tion cycle usually fail to take into account compound drivers and im-
pacts, which can result in a misrepresentation of risk, ineffective 
emergency response, or improper adaptation of multiple actions across 
the disaster risk management cycle (Matanó et al., 2022; Simpson et al., 

2023; van den Hurk et al., 2023). To overcome this shortcoming, 
innovative approaches are emerging that couple risks from multiple 
threats (Sadegh et al., 2018). Most of these approaches, though, repre-
sent advances in statistical risk modeling and risk estimation with the 
likelihood of hazard(s) occurrence as the central focus. The necessity to 
analyze compound hazards, their drivers, and their impacts has recently 
been highlighted in the literature (AghaKouchak et al., 2020; Ward 
et al., 2022). 

Previous studies on compound events have applied statistical and 
probabilistic methods to obtain the joint dependence between pre- 
defined combinations of drivers, which implies certain subjectivity 
(Bevacqua et al., 2021; Camus et al., 2022; Hao et al., 2018; Leonard 
et al., 2014; Ridder et al., 2022; Wahl et al., 2015). Statistical depen-
dence has been found between multiple hazards and climate drivers 
such as precipitation and wind extremes (Martius et al., 2016), river 
discharge and surge (Moftakhari et al., 2019; Serafin et al., 2019) as well 
as precipitation and temperature (Bevacqua et al., 2022a,b; Rashid and 
Wahl, 2022), the latter leading to a negative correlation that potentially 
results in drought, heatwaves, and fires (Matthews and Marston, 2019; 
Raymond et al., 2020a,b; Sutanto et al., 2020; Zscheischler and Sen-
eviratne, 2017). Other dependencies have also been identified between 
flooding drivers such as heavy rainfall and storm surge over different 
spatial scales (Bevacqua et al., 2019; Hendry et al., 2019; van den Hurk 
et al., 2015; Wu et al., 2018), with previous works showing that 
neglecting even weak dependencies can result in the underestimation of 
coastal extreme water levels (Ikeuchi et al., 2017; Zheng et al., 2014) 
leading to a miscalculation of flooding risk (Lian et al., 2013; Zheng 
et al., 2013). 

The characteristics of hydrometeorological hazards (frequency, 
magnitude) and climate drivers change spatially, and so do their de-
pendencies. Thus, site-specific analysis is needed. For example, Couas-
non et al. (2020) analyzed the correlation between storm surge and river 
discharge globally using simulated data. They found a significant posi-
tive correlation in many regions including the Miami-Dade County area 
in southeast Florida (our case study). Jane et al. (2020) also found sig-
nificant correlation between extreme rainfall, ocean water level (tide +
non-tidal residual), and groundwater level from in-situ observations in 
Miami-Dade. For most catchments in southeast Florida, the combination 
of heavy rainfall and high antecedent soil moisture is the major 
flood-generating process (Berghuijs et al., 2016; Jane et al., 2020). In 
addition, Zscheischler and Seneviratne (2017) assessed the 
co-occurrence of hot and dry summers globally and found a high 
negative correlation between temperature and precipitation over the 
warmest three months in many regions across the globe, including South 
Florida. These findings point at an urgency that current risk assessment 
and management procedures are adjusted to consider potential combi-
nations of high-impact drivers, in the face of a growing number of 
compound extreme events. 

This paper moves beyond joint distribution functions and instead 
uses atmospheric re-analysis and historical observational data for hy-
drometeorological drivers of natural hazards along with empirical loss 
information including property and crop damage as well as injuries and 
fatalities to link all hydrometeorological drivers to impactful events in 
Miami-Dade County. The goal of this study is to analyze: a) what role 
compound events played in generating historic socio-economic losses, 
and b) which hydrometeorological drivers created these compound 
events and their associated adverse effects. More specifically for Miami- 
Date County, we investigate, for example, if flooding events occurred as 
a result of excessive precipitation alone or in combination with addi-
tional hazards and drivers like storm surge, river discharge, and soil 
moisture. We also assess how much damage compound flood events 
caused compared to the univariate events and which drivers were 
involved in creating compound events. By using site-specific exposure 
data, we implicitly account for the built environment of the area. Results 
provide guidance on the multi-driver association and high-impact events 
thereby establishing a baseline to identify and monitor future changes. 
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Going forward, this novel methodology can be applied in any location to 
understand the contributions of different drivers to the impacts of nat-
ural hazards, and the results may enable stakeholders to make science- 
informed decisions when planning disaster response and adaptation 
measures. 

2. Study area 

Miami-Dade County (Fig. 1), a low-lying coastal county located in 
southeast Florida, is the 9th largest county in the United States with a 
population of more than 2.7 million (as of the 2020 census) (United 
States Census Bureau, 2021). The most populous county in the State of 
Florida, Miami-Dade is projected to reach 3.2 million inhabitants by 
2030 (Seijas et al., 2011). 

Miami-Dade’s costliest flood event (in the SHELDUS database; see 
section 3.1 for more information on SHELDUS) on record (which was a 
declared disaster) occurred in October of 2000. A tropical storm system 
produced a 10-mile-wide swath of 10–20 inches of rain across southeast 
Florida (NOAA, 2022) resulting in direct losses exceeding USD 662 
million in property damage and USD 752 million in crop damage 
(CEMHS, 2020). Also, during the devastating 2003 Atlantic hurricane 
season, flooding damage to critical infrastructure and properties topped 
USD 100 billion across the impacted region, with Miami-Dade County 
among the most affected areas (Lawrence et al., 2005). 

In 2007, the Organization for Economic Cooperation and Develop-
ment (OECD) identified Miami-Dade County as the area with the highest 
amount of vulnerable assets exposed to coastal flooding by the 2070s 
globally, with projected annual costs of approximately USD 3.5 trillion 
(Nicholls et al., 2007). In a warming world, Miami-Dade County will 
likely experience not only sea-level rise but also changes in precipitation 
patterns and temperature extremes (Karl et al., 2009; Nakićenović and 
Swart, 2000; Seneviratne et al., 2022). This increases the likelihood of 
flooding, heatwaves, and droughts with detrimental effects on humans, 
the environment, and built infrastructure. Sea-level rise alone, which is 
one of the most certain consequences of a warming climate, is expected 
to lead to an increase in the frequency of high tide flooding, storm surge 
damage, population displacement, damage to infrastructure, saltwater 
intrusion, and the spread of infectious diseases. Furthermore, the com-
bination of storm surge inundation and high wind impacts from tropical 
storms poses additional challenges for coastal areas such as Miami-Dade 
County. 

3. Data 

3.1. Socio-economic impact data 

This study leverages direct loss information from the Spatial Hazard 
Events and Losses Database for the United States (SHELDUS Version 19) 
(CEMHS, 2020). Direct loss information includes property damage, crop 
damage, injuries, and fatalities caused by natural hazards. Loss records 
are georeferenced to county-level. SHELDUS Version 19 comprises 
nearly 926,000 records spanning 1960–2019. While loss estimates of 
many hydrometeorological hazard events originate from NOAA’s Na-
tional Centers for Environmental Information (NCEI) Storm Events re-
ports, SHELDUS conducts post-processing on multi-county events 
(either reported as a list of affected counties or so-called forecast zones) 
to assign losses (or loss shares) to affected counties (CEMHS, 2022). For 
Miami-Dade County, SHELDUS reported 335 loss events associated with 
11 distinct types of hazards (Table 1). All property and crop damages 
were inflation-adjusted to 2019 U.S. dollars up to 2 decimal places. Note 

Fig. 1. (a) State of Florida map showing all counties, and the study area, Miami-Dade County (shown in green color), and (b) all locations where hydrometeoro-
logical information are available within the study area (shown in blue color). 

Table 1 
List of SHELDUS hazards along with indication (“Yes”/“No”) of their occurrence 
in Miami-Dade County and whether they are considered in the analysis. 
Numbers in brackets indicate the total number of events of this particular hazard 
between 1979 and 2019.  

Hazards in 
SHELDUS 

Hazards in 
Miami-Dade 
County 

Included in 
analysis 

Included as 
hazard 

Included as 
driver 

Flood Yes (37) Yes Yes No 
Hurricane/ 

Tropical storm 
Yes (24) Yes Yes No 

Drought N/A (0) N/A N/A N/A 
Severe storm/ 

Thunderstorm 
Yes (67)a Yes Yes No 

Wildfire Yes (4) Yes Yes No 
Heat Yes (4) Yes Yes No 
Coastal Yes (43) No No No 
Winter weather Yes (9)b Yes Yes No 
Tornado Yes (29)c Yes No Yes 
Hail Yes (6)d Yes No Yes 
Fog N/A N/A N/A N/A 
Lightning Yes (68) Yes No Yes 
Wind Yes (65)e Yes No Yes  
a In some cases, Wind and Hail were also reported.. 
b In two cases, Wind was also reported.. 
c In one instance, Wind was also reported.. 
d In a few cases, Wind and Severe Storm/Thunderstorm were also reported. 
e In some cases, Severe Storm/Thunderstorm, Hail, Winter Weather and 

Tornado were also reported.. 
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that SHELDUS underreports the direct losses (property and crop dam-
age) since it takes the lower value of the range of loss if the loss estimate 
was reported as a range in the original data source. In addition, when an 
event impacted more than one county, SHELDUS distributes losses 
equally across the affected counties including injuries and fatalities; that 
sometimes results into a fraction of injuries and fatalities. Hurricanes 
inherently incorporate drivers like precipitation and river discharge, 
both of which can also be associated with flooding events. The distinc-
tion between such overlapping events is firmly rooted in the SHELDUS 
database’s specifications. SHELDUS ensures that there are no over-
lapping entries for both hurricane and flooding events. This means that 
even if a hurricane might physically cause flooding due to its associated 
precipitation and river discharge, SHELDUS categorizes and records it 
distinctly as a hurricane event and not as a flood. This established 
classification in the SHELDUS database ensures that there is no 
double-counting or ambiguity in event categorization. 

Given the focus of this study, impactful events associated with haz-
ards that are always caused by just one driver were excluded, namely: 
wind, lightning, hail, and tornado. While those are classified as distinct 
hazard types in SHELDUS, they are also drivers that contribute to other 
types of hazards (for instance, wind is a driver within a hurricane). 
Hence, they are included here in the set of hydrometeorological drivers 
but not investigated as individual hazards. As a result, we obtained 144 
impact entries for six types of hazards (flooding, wildfire, severe storm/ 
thunderstorm, hurricane/tropical storm, winter weather, and heat) for 
Miami-Dade. Those 144 loss events occurred between 1979 and 2019. 
Table 2 shows the temporal coverage of hydrometeorological drivers, 
which is mostly identical to the temporal coverage of loss events. 

SHELDUS did not report any loss events for droughts, earthquakes, 
tsunamis, or landslides for our study area. Loss events classified as 
“coastal hazards” in SHELDUS were excluded from this study as those 
records were mostly univariate events caused by high surf or rip ocean 
currents, resulting in injuries or fatalities on beaches rather than prop-
erty and crop damage. Rip current impacts (i.e., injuries and/or fatal-
ities) are mostly the product of human behavior and less so the 
consequence of hydrometeorological drivers; hence, we did not consider 
“Coastal” as a hazard or driver in the analysis. 

3.2. Hydrometeorological data 

The data sources for historical observations and atmospheric rean-
alysis data of 12 hydrometeorological drivers are listed in Table 2. We 
selected data from 1979 to 2019 due to the limited availability of 
continuous hydrometeorological data before 1979. The datasets origi-
nate from nine different sources with variable spatial and temporal 
resolutions though they all cover the entire study area (Table 2). 

Eight of the hydrometeorological drivers are obtained from different 
reanalysis datasets. Wind speed (at 10 m), soil moisture (volume of 
water in soil layer 1: 0–7 cm), and relative humidity are retrieved from 
ERA5, the fifth generation of the European Centre for Medium-range 

Weather Forecast (ECMWF) global reanalysis. ERA5 covers the period 
from 1979 to present at an hourly resolution and with a spatial resolu-
tion of 0.25◦ × 0.25◦. We use Global Flood Awareness Systems (GLoFAS) 
reanalysis from ECMWF to obtain daily river discharge data from 1979 
to 2020 at 0.1◦ × 0.1◦ spatial resolution. Temperature (daily maximum 
and minimum) is collected from the gridMET climatology lab, which 
includes daily surface temperature reanalysis data from 1979 to present 
at 0.042◦ × 0.042◦ spatial resolution. Daily precipitation is obtained 
from Pierce et al. (2021) for the period 1979 to 2018, gridded at a spatial 
resolution of 0.0625◦ × 0.0625◦. This is a revised version of the (Livneh 
et al., 2013) precipitation dataset that omits the time adjustment and is 
shown to perform significantly better in reproducing extreme precipi-
tation metrics (Pierce et al., 2021). Fire Weather Index (FWI) data is 
obtained from the Copernicus Emergency Management Service (CEMS), 
which is developed based on the Canadian Fire Weather Index Rating 
System and the ECMWF ERA5 reanalysis dataset (Vitolo et al., 2020). 
The FWI is a numerical measure of potential frontal fire intensity that is 
a combination of the initial spread index and the build-up index. The 
FWI system uses temperature, relative humidity, wind speed, and 24-hr 
precipitation data. Storm surge information is obtained from the Coastal 
Dataset for the Evaluation of Climate Impact (CoDEC) (Muis et al., 
2020). CoDEC is produced by forcing the third-generation Global Tide 
and Surge Model (GTSM v3.0) with meteorological fields from the ERA5 
climate reanalysis (Hersbach et al., 2018) for 1979 to 2018. The model 
has a resolution of 2.5 km along the U.S. coastline but hourly still water 
levels are only output for approximately 18,000 locations along the 
global coastline, which is approximately every 50 km along a smoothed 
coastline (see Muis et al. (2020) for more details). Compound flood as-
sessments typically focus on the meteorological surge component 
(instead of still water levels) since there are generally dependencies 
between storm surge and other drivers though not between tide and 
other weather-related variables (Eilander et al., 2022; Nasr et al., 2021). 

Hail information at daily resolution is retrieved from the National 
Centers for Environmental Information (NCEI) NOAA radar-based 
dataset, with a 0.75◦ × 0.75◦ spatial coverage. Hail data contains in-
formation of a storm’s probability of producing severe sized (diameter 
1.9 cm or bigger) hail, the storm’s probability of producing hail of any 
size, and the maximum expected size of that hail, as well as storm lo-
cations. Tornado data is acquired from NOAA’s Storm Prediction Center. 
Tornado strength is presently evaluated using the Enhanced Fujita Scale 
(adopted from the basic Fujita Scale in 2007), which assigns a rating of 
0–5 based on expected wind speeds and the severity of the damage. 
Lightning data is obtained from the United States National Lightning 
Detection Network (NLDN), a lightning detection network operated by 
Vaisala company, and data archived by NOAA’s National Centers for 
Environmental Information (NCEI). It provides the number of cloud-to- 
ground lightning strikes measured for each day for all counties and 
states in the U.S. 

All hydrometeorological variables are interpolated to a common grid 
with a resolution of 0.0625◦ × 0.0625◦ (i.e., approximately 6 km2) to 

Table 2 
Summary of hydrometeorological data and their sources.  

Variable Spatial resolution Temporal resolution Time coverage Source 
1. River discharge 0.1◦ × 0.1◦ Daily 1979–2019 GLoFAS ECMWF (Harrigan et al., 2021) 
2. Wind 0.25◦ × 0.25◦ Hourly 1979–2019 ERA5 ECMWF (Hersbach et al., 2018) 
3. Maximum temperature 0.042◦ × 0.042◦ Daily 1979–2019 gridMET (Abatzoglou, 2013) 
4. Minimum temperature 0.042◦ × 0.042◦ Daily 1979–2019 gridMET (Abatzoglou, 2013) 
5. Precipitation 0.0625◦ × 0.0625◦ Daily 1979–2018 Non-split Livneh (Pierce et al., 2021) 
6. Soil moisture 0.25◦ × 0.25◦ Hourly 1979–2019 ERA5 ECMWF (Hersbach et al., 2018) 
7. Fire weather index 0.25◦ × 0.25◦ Daily 1979–2019 CEMS ECMWF (Vitolo et al., 2020) 
8. Storm surge 2.5-kma Hourly 1979–2018 CODEC (Muis et al., 2020) 
9. Lightning – Count 1987–2019 U.S. National Lightning Detection Network (NLDN) 
10. Hail 0.75◦ × 0.75◦ Daily 1995–2019 NCEI NOAA 
11. Tornado – Event-based 1980–2019 NOAA Storm Prediction Center 
12. Relative humidity 0.25◦ × 0.25◦ Hourly 1979–2019 ERA5 ECMWF (Hersbach et al., 2018)  
a Resolution of 2.5 km along the global coast (1.25 km in Europe), resulting in 18,000 model points. 
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match the scales of the higher resolutions of precipitation, minimum 
temperature, maximum temperature, and river discharge (<10 km) 
which is critical at the county level and to ensure consistency in our 
analysis that allow for comparisons between different variables. In 
addition, all offshore grids points are removed. This results in a total of 
134 grid points and hence 134 time series for each hydrometeorological 
variable for Miami-Dade County. Hourly time series of wind, soil 
moisture, storm surge, and relative humidity are converted to daily 
maxima. Because information on hurricanes, lightning, storm surge, and 
hail are not provided in a uniform spatial format, data for those variables 
are not re-mapped. 

4. Methodology 

A bottom-up impact-based approach is developed that identifies the 
drivers that have led to socio-economic impacts in Miami-Dade County 
and determines which extreme events were caused by multiple hydro-
meteorological drivers (i.e., whether they were compound or univariate 
extreme events). First, we identify all relevant hydrometeorological 
drivers (Table 2) composing each hazard (Table 1) based on expert 
knowledge and previous studies (AghaKouchak et al., 2020; Bevacqua 
et al., 2021; Camus et al., 2022; Raymond et al., 2020a,b; Wahl et al., 
2015; Zscheischler et al., 2018, 2020) (see Fig. 2). By doing so, we 

eliminate spurious correlations between the drivers and unrelated haz-
ard types. For instance, in a wildfire event, hydrometeorological drivers 
such as river discharge, storm surge, or precipitation are irrelevant and 
should not be used as predictor variables, despite possibly showing high 
values somewhere in our study area during the time when an impact was 
recorded. Note that loss data are only available at the county level and 
no detailed information is available on where exactly within the county 
an impact occurred. However, hydrometeorological data have a greater 
spatial resolution, which provides us with more than one time-series 
location of each hazard within a county. This means that certain 
drivers could be extreme somewhere within the county but unrelated to 
the impact event. The minimum soil moisture is not included as a driver 
of heat because the heat did not cause any crop and property damage in 
our study area; but if a similar analysis is conducted elsewhere, where 
heat created property or crop losses, it would be an interesting driver to 
include. 

Fig. 3 shows the different analysis steps in the proposed framework. 
Steps (a) and (b) include data acquisition and data processing steps as 
described above. Subsequently, the percentiles were calculated for each 
hydrometeorological driver considering the individual time series data 
for each grid point in our study area for the entire time period, except for 
hurricanes, lightning, tornado, and hail which are not continuous time- 
series. Instead, hurricane category, lightning strike count, f-scale of 

Fig. 2. An overview of all relevant hydrometeorological drivers associated with different types of hazards.  
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tornadoes, and severe hail probability, respectively are used. All data are 
presented as percentiles instead of absolute magnitudes to represent the 
relative extremeness of the event at each site, thus implicitly acknowl-
edging the adaptabilities and susceptibilities of the built environments 
and socio-economic conditions in diverse areas. For instance, in a region 
where high-intensity rainfalls are relatively more frequent, the built 
environment might be better adapted with superior drainage systems, 
and the socio-economic systems might have evolved to minimize dis-
ruptions from such events. Conversely, in a location where such rainfalls 
are rare, even a lower magnitude might result in significant disruptions 
due to the lack of appropriate infrastructure and socio-economic adap-
tations. By representing the data in percentiles, we are essentially 
normalizing the events based on their relative frequency and extreme-
ness in each location, which implicitly captures the varying adaptabil-
ities and susceptibilities of different sites, dictated by their built 
environments and socio-economic conditions. For wildfires, minimum 
soil moisture is used instead of maximum, i.e., the highest percentiles of 
soil moisture correspond to the lowest soil moisture content. 

We then introduce a SHELDUS derived impact measure to identify 
when a hazard loss event has occurred (Step c). The impact period, 
recorded in SHELDUS, is extended by one day in each direction to ac-
count for cases where a driver was extreme on one day, but the impact 
was recorded the next day, and vice versa. Soil moisture is an exception 
where the time window extends only to one day before the impact since 
soil moisture is a pre-condition for flooding events (Mahdi El Khalki 
et al., 2020; Tramblay et al., 2021). Our selection of the ±1 day window 
was based on both the spatial and temporal characteristics of the hy-
drometeorological drivers under study and previous scientific literature. 
Many hydrometeorological phenomena can significantly influence the 
environment within this timeframe, and this choice was also guided by 
research indicating that a 1-day window is a common time frame for 
examining concurrent weather phenomena (for instance, Zhang et al., 
2021; Song et al., 2023). 

For each impact entry, the maximum percentiles of all relevant 
drivers (according to Fig. 2) are estimated (Step d) within the extended 
impact time window for all grid points. That leads to 134 percentile 

values within the study domain for each relevant variable. Next, the 
percentiles of all the relevant hydrometeorological variables at all grid 
points are summed up (Step e) and the grid point with the highest sum of 
percentiles is selected (Step f). In the absence of sub-county impact lo-
cations, we assume that impacts registered in SHELDUS occurred in the 
vicinity of the grid point with the highest sum of percentiles for the 
drivers linked to the particular hazard. For example, in the case of 
flooding, four hydrometeorological drivers were identified which can 
lead or contribute to flooding: precipitation, river discharge, soil mois-
ture, and storm surge (for instance, see Fig. 8). For the first three, we 
have gridded data across the study area. We add their percentiles at each 
grid point and assume that the flooding impact occurred where the sum 
is highest. This summed percentile approach not only highlights regions 
with the most extreme individual drivers but also underscores locations 
where the combined influence of multiple drivers can contribute to 
heightened event severity, even if not all drivers surpass the 95th 
percentile. For storm surge, we selected the percentile value from the 
nearest coastal grid point that is spatially aligned with the location 
displaying the highest combined percentiles of the other three hydro-
meteorological drivers for flooding. 

For the purpose of this study, we consider an event to be compound 
when at least two of the hydrometeorological drivers linked to a given 
hazard type exceeded their respective 95th percentile thresholds. In Step 
(g), all impactful extreme events are analyzed to determine if they were 
compound or univariate events. Note that hurricane category and 
tornado’s f-scale are not included in defining the compound events. 
Rather, we utilize these metrics to illustrate the impact of various hur-
ricane categories on the region and to gauge the severity of any tor-
nadoes using the f-scale. A sensitivity analysis is also performed using 
the 90th and 99th percentile thresholds to define compound events (in 
addition to the 95th). 

5. Results 

As described previously, a total of six hazard types were identified for 
Miami-Dade County based on the hazard selection criteria: flooding, 

Fig. 3. Framework outlining the steps involved in the proposed methodology.  
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wildfire, heat, hurricane/tropical storm, winter weather, and severe 
storm/thunderstorm. Each hazard type was linked to their most relevant 
hydrometeorological drivers (Fig. 2) out of 12 candidate variables: river 
discharge, precipitation, soil moisture, storm surge, wind, fire weather 
index, maximum temperature, minimum temperature, relative humidi-
ty, hail, lightning, and tornado. 

Between 1979 and 2019, hurricanes resulted in the highest economic 
losses in Miami-Dade County with at least USD 13.53 billion (USD 12.04 
billion property damage and USD 1.49 billion crop damage), followed 
by flooding with a total of at least USD 1.905 billion (USD 821M 
property damage and USD 1.08B crop damage), and winter weather 
with a total of at least USD 381.3M (USD 36.58M property damage and 
USD 344.72M crop damage). Fig. 4 provides a summary of all property 
and crop damage as well as injuries and fatalities caused by the six types 
of hazards in Miami-Dade County from 1979 to 2019. Hurricanes caused 
the highest property and crop losses as well as the highest number of 
fatalities in Miami-Dade County; however, heat resulted in the highest 
number of injuries. On the other hand, flooding caused more crop losses 
than property damage. 

Figs. 5 and 6 show heatmap charts of flood-induced property and 
crop losses, respectively. For each flood event, the charts show the 
percentiles of all relevant hydrometeorological drivers (according to 
Fig. 2) and the damages caused in US Dollars. Heatmap charts for all 
other types of hazards are included in the Supplementary Material. 
Subsequent sections detail flood-related results only. 

There were 30 property-damaging flood events in Miami-Dade 
County, of which 15 are found to be compound (Fig. 5) based on the 
95th percentile threshold for hydrometeorological drivers that define 
compound events. The two most damaging events are compound events 
and collectively account for more than 99% of total property damage 
(~USD 800M). For these events, the percentiles of all four flooding 
drivers were very high as well (above the 98th percentile). Discharge 
and precipitation are found to largely drive compound flooding events – 
precipitation and discharge exceeded the 95th percentile threshold five 
times. In the case of univariate events, precipitation was the main 
contributor to flooding, which exceeded the 95th percentile threshold in 
almost all univariate flood events except for only one case, where 
discharge was the only driver that exceeded the 95th percentile, causing 
USD 12,036 of property damage (Fig. 5). According to the NOAA Storm 
Events database, this event happened in October 2008, when intense 
rainfall occurred for over 4 h causing significant ponding of water and 
flooding. Poor drainage caused by clogged drains contributed to the 
flooding (NOAA NCEI 2021). Storm surge and soil moisture do not result 
in flooding themselves, but they were compounded with other flooding 
drivers. 

The storm surge surpassed the threshold during five flooding events 

and was always coincident with other drivers. High levels of soil mois-
ture are not a univariate precondition; however, they can enhance the 
probability and severeness of flooding during extreme rainfall events. 
Soil moisture contributed to nine flooding events, but always in 
conjunction with other drivers (Fig. 5). 

In addition, we assess whether flooding events were still causing 
property and crop damage when none of the drivers exceeded their in-
dividual 95th percentile thresholds. Two events, occurring in October 
1991 and May 2000, had lower than 95th percentiles across all relevant 
drivers (rows marked with (N) in Fig. 5), but these events caused USD 
47,570 and USD 7520 property damage, respectively. 

Fig. 6 depicts a heatmap chart for crop damage caused by flooding in 
Miami-Dade County. Five events caused crop damage and four of those 
were compound events, causing 98.2% of the total losses. Precipitation 
was the primary contributor to all flooding events. One univariate event 
occurred in December 2000, where precipitation was the only variable 
above the 95th percentile threshold. In all four compound flooding 
events, discharge combined with precipitation to cause agricultural 
damage. Soil moisture was high in three of the events. There was only 
one instance where storm surge exceeded the threshold, and that 
happened when all other flooding drivers were also high. This event was 
Tropical Storm Leslie in October 2000, which caused by far the largest 
amount of crop damage. 

5.1. Contributions of hydrometeorological drivers to compound events 
and their losses 

Next, the contribution of each hydrometeorological driver to the 
identified compound events was assessed, for the six predominant haz-
ard types responsible for the majority of losses in Miami-Dade County. 
Fig. 7 shows the total number of hazards, the number of events identified 
as compound, and how often different hydrometeorological drivers 
contributed to compound events. Results are shown for all events that 
caused socio-economic losses (property and crop damage, injuries, and 
fatalities) combined. Note that lightning, hail, and tornadoes are also 
included in Fig. 7 for hurricane, severe storm/thunderstorm, and winter 
weather; for the compound events in those hazard categories, we report 
the number of times lightning or tornadoes were present, as well as how 
often hail exceeded the severe probability threshold of 20%. 

5.1.1. Flooding 
Out of the 31 flood events, 16 were compound events (51.61%) and 

precipitation was a driver for each event (Fig. 7). The most frequent 
combination of compound drivers leading to flooding consisted of pre-
cipitation and river discharge (93.75%). In cases of univariate events (N 
= 13), precipitation was the most frequent driver (92.3%) leading to 

Fig. 4. Summary of direct losses, including property and crop damages as well as injuries and fatalities from all impactful events in Miami-Dade County corre-
sponding to each hazard type (Data source: SHELDUS). 
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flooding events, except for one event where river discharge was the only 
driver exceeding the threshold. River discharge contributed to 15 of the 
compound events, soil moisture to 10, and storm surge to 5 of them. 

5.1.2. Hurricane/tropical storm 
All hurricane/tropical storm events recorded in SHELDUS for Miami- 

Dade County (N = 24) were compound events according to our defini-
tion (SI Figs. 2–4). Wind was the main contributor and often combined 
with river discharge (87.5%). Wind, river discharge, and storm surge 
compounded each other in 75% of the cases. Seven tornados occurred 
during hurricane events. One was above the Fujita scale of EF1 and six 
were above the Fujita scale of EF0. Lightning was present during 21 of 
the events. In 13 of those cases, the number of lightning strikes was 

above 100. 

5.1.3. Wildfire and heat 
Four wildfire events were reported in SHELDUS and three of them 

were compound (SI Figs. 12 and 13). Soil moisture played a role in all of 
them, indicating the relevance of the pre-existing conditions for wild-
fires. Two of the three cases were composed of a high fire weather index 
(FWI) and low soil moisture. Conversely, only one out of four loss 
causing heat events were identified as compound (SI Figs. 10 and 11), 
where the maximum temperature and relative humidity both exceeded 
the threshold. There was no property or crop damage recorded for these 
heat events, but they did result in injuries and fatalities. 

Fig. 5. Percentiles (in colored cells) of hydrometeorological variables (x-axis) corresponding to all flooding events that caused property losses (y-axis) in Miami-Dade 
County during 1979–2018. Events are sorted in descending order of property damage (in the left grey column). The letters C, U and N indicate compound events, 
univariate events, and events where none of the drivers exceeded the 95th percentile threshold, respectively. The color coding shows percentiles from 0.95 to 1. 
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5.1.4. Severe storms/thunderstorms 
Severe storms/thunderstorms were compound in 23 events out of 63 

(SI Figs. 6–9). Precipitation was the main contributor to these compound 
events (19 times), followed by river discharge (16 times). A tornado was 
reported during one of the compound events and lightning was present 
in 22 cases (note that lightning data is missing for one compound event). 
Soil moisture and wind surpassed the threshold 11 times during com-
pound events and hail was present in 10 instances (note that hail data is 
missing for 6 of the compound events). 

5.1.5. Winter weather 
Nine winter weather events were reported in Miami-Dade County. 

Eight of them were compound events where both minimum temperature 
and wind always exceeded their respective thresholds. 

6. Discussion 

Damage resulting from natural hazards is influenced by hydrome-
teorological drivers and exposure, with drivers such as precipitation, 
temperature, and wind contributing to the severity of an event while 
exposure determines the extent of damage. The vulnerability of an area 
and its inhabitants to natural hazards is also critical in determining 
damage incurred. Matano et al. (2022) analyzed the socio-hydrological 
dynamics between drought and flood events using qualitative and 
semi-qualitative methods such as literature review, time series data 
analysis, stakeholder online survey, and semi-structured stakeholder 
interview. Our study does not estimate direct damage resulting from 
different hazards but primarily focuses on assessing the contributions of 
hydrometeorological drivers to the socio-economic losses of compound 
extreme events, and it does not consider dynamic changes in exposure 
and vulnerability. While these are important factors that may contribute 
to the impacts of extreme events, it is beyond the scope of our study. 
Nonetheless, we believe that our study provides valuable insights into 
the complex interplay between drivers and impacts, which can inform 
future research and practice in disaster risk reduction and climate 
adaptation. 

Our analysis shows the contributions of different hydrometeorolog-
ical drivers to the socio-economic impacts of six different hazard types in 
Miami- Dade County, Florida. This information is used to determine 
whether events were compound (i.e., multiple drivers exceeded their 
95th percentiles simultaneously) or univariate. We found six types of 
natural hazards that have resulted in impacts in our study area. Pre-
cipitation was the major driver of flooding events which led to property 
and crop damage in Miami-Dade County. During the first two (from top) 
flooding events (i.e., October 2000 and October 1999) shown in Figs. 5 
and 6, which were responsible for the highest property and crop dam-
ages, all hydrometeorological drivers were above their 98th percentiles 
(except for storm surge in the second most impactful crop damage 
event). These two flooding disasters resulted in the highest amount of 

property loss in Miami-Dade County, as well as the highest crop loss. The 
flooding event of December 2000 also resulted in significant crop loss 
(USD 19.56 million), while property damage was much lower (USD 
150.5K). All flooding occurrences that resulted in crop losses also added 
to property losses, albeit in different extents of damage. 

We compare the locations identified in our analysis with the reports 
found in NOAA Storm Data publications. In the first event, on October 2/ 
3, 2000, a broad low-pressure system off the southeast Florida coast 
moved northeast across central Florida and eventually became tropical 
storm Leslie off the northeast Florida coast. A band of heavy rain became 
nearly stationary across southeast Florida and produced a 10-mile-wide 
swath of 10–20 inches of rain in Miami-Dade County and southeast 
Broward County. Flooding of poorly drained urban areas quickly fol-
lowed during the evening of October 3 and lasted into midday October 4 
(NOAA Storm Events Database). Some floodwaters lingered for up to a 
week. Damage was particularly severe in the communities of Sweet-
water, West Miami, Hialeah, Opa Locka and Pembroke Park (based on 
NOAA NCEI). Our results are consistent with the impact location re-
ported in NOAA’s National Centers for Environmental Information 
(NCEI) Storm Events reports. For the second event, there was wide-
spread flooding from hurricane Irene that inundated most of the 
metropolitan areas of Miami-Dade, Broward, and Palm Beach counties 
and caused the second highest crop and property damages in Miami- 
Dade County. During this flooding event, precipitation, river 
discharge, and soil moisture were above their thresholds, while storm 
surge reached the 78th percentile. The grid point we identified with our 
framework as the most likely impact location is in the same area of 
damage described in the NOAA Storm Events Database. Out of the 31 
flooding events in our study area, we found descriptive information on 
impact locations (including longitude/latitude values) in the NOAA’s 
database for 16 events, and our results showed that 10 out of those 16 
events were within 5 miles of the impacts reported in the NOAA data-
base with an average of 10 miles considering all 16 events. Considering 
that impacts do not just occur at one single point, but typically across 
larger spatial areas, these results highlight the ability of our methodol-
ogy to pinpoint the most likely area where impacts recorded in SHEL-
DUS actually occurred. 

It can be argued that river discharge and precipitation most often co- 
occur as a compound event. However, Fig. 8 shows that high precipi-
tation and river discharge do not always occur together at the same 
location. For the costliest flooding event in Miami-Dade County (in the 
SHELDUS database), we found that sites of maximum percentiles of 
precipitation and river discharge are different from each other. It has 
also been shown that they are sometimes but not always significantly 
correlated with each other (Nasr et al., 2021). 

We identify two events where none of the hydrometeorological 
drivers exceeded the 95th percentile threshold. One of them (the 14th 
event from the top in Fig. 5, which caused approximately USD 47,570 in 
property damage) occurred in October 1991 and according to the 

Fig. 6. Same as Fig. 5 but for crop damage.  

J. Ali et al.                                                                                                                                                                                                                                       



Weather and Climate Extremes 42 (2023) 100625

10

Fig. 7. Contributions of different hydrometeorological drivers to compound extreme events in Miami-Dade County, FL. The charts show the overall number of events 
and total compound events for six different types of hazards (as classified in SHELDUS) that caused direct losses. The total number of compound events at the 95th 
percentile threshold is provided inside the charts. The numbers in the colored sections of the graphs show how often each driver surpassed the defined threshold 
(95th percentile) during compound events. Lightning, hail, and tornadoes are included in the case of Hurricane, Severe Storm/Thunderstorm, and Winter weather as 
the number of times lightning and tornadoes were present during compound events, as well as how often hail surpassed the severe probability of 20% during 
compound events. The numbers in brackets associated with Hail and Lightning indicate how many times data for hail and lightning were missing during com-
pound events. 
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description in NOAA Storm Events Database, heavy rain fell mostly in a 
narrow band from central Broward County across northern Miami-Dade 
County over a short time period of only a few hours, accumulating to 
7–13 inches in southern Broward County, with lesser amounts in central 
Broward and northern Miami-Dade County, that resulted in flooded 
roads and homes. Although precipitation from that event did not exceed 
the 95th percentile threshold in Miami-Dade County, it was still high 
(~92nd percentile). It is also noted that we use daily precipitation data, 
which means that short-lived extreme events may not be captured well 
in these instances. 

This paper proposes and implements a novel approach to analyze the 
contributions of different hydrometeorological drivers to the socioeco-
nomic impacts of compound extreme events. Our results are consistent 
with previous studies that have analyzed the contributions of drivers to 
specific hazards such as flooding (e.g., Berghuijs et al., 2016; Tarasova 
et al., 2019). Our study expands on the previous research by considering 
a wider range of drivers and hazards and examining their compound 
effects on the resulting losses. By using a comprehensive dataset and a 
percentile-based approach to identify extreme events, our study pro-
vides valuable insights into the complex interplay between different 
drivers and their contributions to the socioeconomic impacts of com-
pound extreme events. 

The results provided in this work depend on the definition of 
“compound extreme”, which in this case is the simultaneous exceedance 
above the 95th percentile. A sensitivity analysis was performed using 

lower-end (90th) and higher-end (99th) percentile thresholds, to eval-
uate how the numbers of compound events and contributions of their 
drivers change (Table 3, SI Figs. 18 and 19). The sensitivity analysis was 
carried out for all events and for all locations in our study area. Fig. 5 
shows two cases where none of the drivers were above the threshold (i. 
e., 95th percentile) but if we lower the threshold to the 90th percentile 
one becomes a univariate event and the other a compound event. For 
flooding, we identify 16 compound events if we consider the 95th 
percentile threshold, however, if we change the threshold to the 90th 
percentile the number of compound flooding events increases to 24. 
However, if the threshold is increased to the 99th percentile, the number 
of compound events decreases to 11. For example, the flooding event of 
October 1991 discussed above would in fact be considered a compound 
event if the 90th percentile threshold was used since precipitation and 
soil moisture values exceeded this threshold; this also shows that pre-
cipitation was the primary cause of this flooding event. 

A sensitivity analysis using a lower-end (90th) percentile threshold 
and a higher-end (99th) percentile threshold to define compound events 
was carried out for all hazards. As expected, the number of identified 
compound events is sensitive to the choice of the threshold, but even 
when the threshold is increased to the 99th percentile (i.e., two drivers 
have to exceed that threshold to be classified as a compound event), we 
still find a significant percentage (more than 35% of total flooding 
events) of compound events (SI Fig. 19). For some hazard types, such as 
heat, wildfire, and winter weather, no compound events are identified 

Fig. 8. Sites of maximum percentiles of flood drivers, (a) precipitation, (b) soil moisture, (c) river discharge, and (d) storm surge, during the costliest flooding event 
in Miami-Dade County in October 2000. The red circles indicate the sites of the maximum percentiles for each flood driver during the event. 
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when considering the 99th percentile threshold. 
When a high-end threshold (99th percentile) was used, the contri-

butions of hydrometeorological drivers change making river discharge 
as the main driver exceeding the threshold in all compound events (N =
11) followed by precipitation in case of flooding hazard. Soil moisture 
contributed to 4 of the compound events, and storm surge to 3 of them. 
With a low-end threshold (90th percentile), however, precipitation is 
the dominant driver that exceeds the threshold in all compound flood 
events (N = 24), followed by river discharge that surpasses the threshold 
in 22 compound events. Soil moisture contributed to 13 of the com-
pound events, and storm surge to 6 of them. 

7. Conclusions 

In this study, we developed a new bottom-up impact-based frame-
work that combines historical socio-economic loss data from natural 
hazards reported in the SHELDUS database with multiple hydrometeo-
rological datasets to assess the role of compound events in creating 
impacts. We also explored how different hydrometeorological drivers 
contribute to various types of climatic compound events. 

The results show that over 50% of events from six types of natural 
hazards that occurred in Miami-Dade County were compound extreme 
events; these events account for over 80% of the recorded property and 
crop damages since 1979. Furthermore, based on our analysis, for three 
types of hazards: hurricanes, winter storms, and wildfires, nearly all 
events that caused damage were compound events. In contrast to past 
analyses, which typically explain compound events based on the 
dependence between two specific co-occurring variables, we show that 
historical compound extreme events in Miami-Dade County were often 
the result of more than two drivers and of different combinations of 
drivers. 

The findings have broad-reaching implications from various per-
spectives. It provides crucial insights into which types of compound 
events are most prevalent as it relates to impacts in Miami-Dade County. 
We identify which drivers contribute to past natural hazards and their 
socio-economic losses. Compound events increase the challenge of 
climate adaptation for planners and decision-makers, as they often 
require different adaptation strategies than univariate events (e.g., a 
coastal flood barrier can prevent storm surge flooding but can also trap 
river discharge). In this context, our results provide information on the 
relative importance of compound events and which driver combinations 
most often led to impacts in the past. Furthermore, our results highlight 
the benefit of assessing compound extreme events from the perspective 
of recorded historical socio-economic impact data (rather than hy-
pothesized models and/or assumptions), considering all relevant 
drivers, to quantify their contributions to past high-impact events. This 
can guide better disaster risk management and robust adaptation plan-
ning, as different types of hazards may require different types of 
solutions. 

While our analysis uses the latest hindcast and reanalysis data 
available, it may not accurately represent observed climate extremes (e. 
g., extreme winds, river discharge) in all instances due to the spatial and 
temporal resolution. In addition, the SHELDUS dataset is known to un-
derreport losses which could underestimate or overestimate the contri-
bution of some events/drivers to the total reported damages. In the 

future, it would be interesting to analyze how often two or more drivers 
of a particular hazard were extreme during time periods where no im-
pacts were reported; this could be one way to assess underreported 
losses in the SHELDUS database. The framework that is introduced in 
this paper is transferable (where similar impact information is available) 
and scalable with the potential to further improve our understanding of 
compound events and their impacts. 
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