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Abstract This research proposes a new fractional

robust data-driven control method to control a non-

linear dynamic micro-electromechanical (MEMS)

gyroscope model. The Koopman theory is used to

linearize the nonlinear dynamic model of MEMS

gyroscope, and the Koopman operator is obtained by

using the dynamic mode decomposition (DMD)

method. However, external disturbances constantly

affect the MEMS gyroscope. To compensate for these

perturbations, a fractional sliding mode controller

(FOSMC) is applied. The FOSMC has several advan-

tages, including high trajectory tracking performance

and robustness. However, one of the drawbacks of

FOSMC is generating high control inputs. To over-

come this limitation, the researchers proposed a

compound controller design that applies fractional

proportional integral derivative (FOPID) to reduce

the control efforts. The simulation results showed that

the proposed compound Koopman-FOSMC and

FOPID (Koopman-CFOPIDSMC) outperformed two

other controllers, including FOSMC and Koopman-

FOSMC, in terms of performance. Therefore, this

research proposes an effective approach to control the

nonlinear dynamic model of MEMS gyroscope.

Keywords MEMS gyroscope � Koopman theory �

DMD � Fractional sliding mode control � Fractional
PID control � Compound control

1 Introduction

One of the useful tools to measure angular velocity is

the MEMS gyroscope. By measuring the x- and y-

direction movement of the MEMS gyroscope, the

angular velocity will be obtained. This device is used

in many industries such as the automotive industry and

medicine. Themost important part of using theMEMS

gyroscope is how to control this device appropriately.

Several control methods are used to control theMEMS

gyroscope such as proportional integral derivative

(PID) controller [1], sliding mode control (SMC) [2],

and some other controllers [3, 4]. However, the

mentioned controllers were applied on a linear MEMS

gyroscope. There are a few researchers whoworked on

the nonlinear dynamicmodel ofMEMS gyroscope and

controlled it in comparison with linear MEMS gyro-

scope [5].

Linearization of the nonlinear dynamic model will

give better information on the behavior of the systems.
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This will provide some detail to better analyze the

system. Koopman’s theory is one of the strong

approaches to linearizing the nonlinear dynamic

model [6–9]. Koopman operators have infinite dimen-

sions and capture nonlinear dynamics in a lifted global

linear way. A class of linear predictors is produced by

the finite data-driven approximation of Koopman

operators, which helps create linear control of nonlin-

ear dynamical systems with minimal computing

complexity [8]. The main part of applying Koopman’s

theory on nonlinear dynamic equations is how to

approximate the Koopman operator. The DMD

method is one of the most prevalent methods in

estimating the Koopman operator [10–12]. Nathan

et al. [13] investigate using Koopman theory to solve

data-driven spatiotemporal systems and nonlinear

partial differential equations. They show that an

appropriate approximation to the nonlinear dynamics

depends on the observables selected for building the

Koopman operator. The DMD technique may be used

to compute a finite-dimensional approximation of the

Koopman operator, together with its eigenfunctions,

eigenvalues, and Koopmanmodes, if such observables

can be discovered.

Several control methods are used to control the

linearized dynamic model by Koopman theory such as

linear quadratic regulator (LQR) [14, 15] and model

predictive controller (MPC) [16, 17]. The LQR and

MPC controllers have suitable performances, but the

main drawbacks of those controllers are not robust

against external disturbances. The FOSMC is a strong

robust control method that can suppress external

perturbations. The reason that makes this controller a

strong control approach is that the fractional order

used in the sliding mode surface provides the ability to

select the fraction power of error. This issue provides

excellent flexibility to select the best sliding mode

surface. Therefore, the dynamic states of the linearized

dynamics model can suitably slide close to the normal

behavior of the system. It causes to provide the better

control performance in terms of high tracking perfor-

mance, low tracking error, and robustness.

Most of the previous works related to MEMS

gyroscopes were about the control of linear dynamics

of MEMS gyroscopes by FOSMC. However, the

FOSMC was used in combination with the other

controller to benefit from the advantages of other

controllers like reducing the chattering phenomenon

[18, 19] and improving tracking performance [20].

Based on high-gain and disturbance observers, a

dynamic backstepping sliding mode controller with a

fractional order sliding surface and a fuzzy boundary

layer is created to regulate the operation of a MEMS

gyroscope [21]. A combination of sliding mode and a

reliable nonlinear backstepping controller is applied to

suppress the system uncertainties. The sliding surface

in this model is chosen to be of fractional order to

improve the degree of freedom of the controller. In

addition to the initial sliding surface, a new dynamic

sliding surface is utilized to considerably minimize the

chattering phenomena in the control signal. Fuzzy

control theory is also used to regulate the boundary

layer. Wang and Fei [22] proposed the use of a

trajectory tracking control system with a neural

network estimator to sustain the vibrations of the

gyroscope-proof mass. A recurrent Chebyshev fuzzy

neural network with a self-evolving mechanism and a

fractional controller based on the terminal sliding

mode are both included in the suggested control

system. A self-evolving recurrent Chebyshev fuzzy

neural network is presented to reduce the need for

nonlinear functional certainty, and the fractional-order

terminal sliding mode control may guarantee the

tracking error is exponentially stable.

This paper proposes a data-driven method to

control a nonlinear MEMS gyroscope. The Koopman

theory is applied to linearize the nonlinear model of

the MEMS gyroscope. The DMD method is used to

approximate the Koopman operator. The model

uncertainty and unmodeled dynamics are unknown

parameters in a nonlinear dynamic model. Therefore,

the data-driven Koopman method will provide a high-

fidelity model by linearization of nonlinear dynamics

models. A FOSMC is applied to the nonlinear dynamic

model and linear dynamic model by the Koopman

theory to verify the better performance of the control

system after linearization in terms of high trajectory

tracking, low tracking error, and low control input

signals. A new compound control method is applied to

improve the control method of the FOSMC such as

reducing the control efforts.

The rest of this paper is organized as: Sect. 2

introduces the nonlinear MEMS gyroscope dynamic

model. Section 3 explains the FOSMC. Section 4

discusses the Koopman theory. Section 5 describes

the DMD method. Section 6 proposes Koopman-

FOSMC. Section 7 produces the new compound
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proposed controller. Section 8 demonstrates the sim-

ulation results. Section 9 describes the conclusion.

2 Nonlinear MEMS gyroscope dynamic model

The MEMS gyroscope is a small device that can

measure angular velocity. This device has been used in

many applications such as automotive and medicine

[2, 23, 24]. Most of the research considered the linear

model of the MEMS gyroscope, but we provide a

nonlinear dynamic model of the MEMS gyroscope.

Figure 1 depicts a typical z-axis MEMS gyroscope

construction.

A proof mass supported by springs, sensor mech-

anisms, and an electrostatic actuation system are all

components of a typical MEMS gyroscope design [2].

The oscillatory motion created by the electrostatic

actuation system may be used to determine the

location and speed of the proof mass. The gyroscope

rotates at a gradually increasing angular velocity Xz

while the proof mass is mounted on a frame that moves

with a constant linear velocity. Due to the small

displacements x and y, it is anticipated that the

centrifugal forces mX2
z x and mX2

z y will be negligible.

The 2mX�
z _y and 2mX�

z _x, Coriolis forces develop

parallel to the driving and rotational axes. The

following equations describe the gyroscope’s

dynamics:

m€xþ d�xx _xþ d�xy _yþ k�xxxþ k�xyyþ bx3 ¼ u�x þ 2mX�
z _y

ð1Þ

m€yþ d�xy _yþ d�yy _yþ k�xyxþ k�yyyþ by3 ¼ u�y � 2mX�
z _x

ð2Þ

Since there is no external force acting on the

system, the origin of the coordinates in Eqs. 1 and 2 is

located in the middle of the proof mass. The asym-

metric spring and damping coefficients are repre-

sented by the constants k�xy and d�xy, respectively. The

control forces in the x- and y-direction, u�x and u�y , are

often accepted despite the potential of modest

unknown deviations from their nominal values. The

damping rates, d�xx and d
�
yy, and the spring constants of

springs interacting in the x- and y-directions, k�xx and

k�yy, are also often described. Consequently, the terms

bx3 and by3 will be introduced by the positive

constants ‘‘electromechanical’’ and ‘‘mechanical’’

nonlinearity. Equations 1 and 2 might be expressed

using the vector form shown below:

€q�

q0
þ

D�

mx0

_q�

q0
þ

Ka

mx2
0

q�

q0
þ b

q�
3

q0
¼

u�

mx2
0q0

� 2
X�

x0

_q�

q0

ð3Þ

where

q� ¼
x�

y�

� �

; u ¼
u�x
u�y

� �

;X� ¼
0 �X�

z

X�
z 0

� �

;D� ¼

d�xx d�xy
d�xy d�yy

� �

;Ka ¼
k�xx k�xy
k�xy k�yy

� �

; and nondimensional

parameters as follows:

q ¼
q�

q0
dxy ¼

d�xy

mx0

Xz ¼
X�

z

x0

ð4Þ

ux ¼
u�x

mx2
0q0

uy ¼
u�y

mx2
0q0

ð5Þ

xx ¼

ffiffiffiffiffiffiffiffiffi

kxx

mx2
0

s

xy ¼

ffiffiffiffiffiffiffiffiffi

kyy

mx2
0

s

xxy ¼
kxy

mx2
0

ð6Þ

Since the reference length is q0, the natural frequency

of each axis is x0. The MEMS gyroscope’s dynamic

equations are listed below:

€q ¼ � Dþ 2Xð Þ _q� Kbq� bq3 þ uþ E ð7Þ

A possible model for an external disturbance, E, is:
Fig. 1 MEMS gyroscope structure [21]
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€q ¼ �Y _q� Pq� bq3 þ uþ E ð8Þ

P ¼ Kb, and Y ¼ ðDþ 2XÞ determine certain param-

eter variation uncertainties. As a result, Eq. (8) might

be written as:

€q ¼ � Y þ DYð Þ _q� Pþ DPð Þq� bq3 þ uþ E ð9Þ

where

q ¼
x

y

� �

; u ¼
ux

uy

� �

; X ¼
0 �Xz

Xz 0

� �

;

D ¼
dxx dxy

dxy dyy

� �

; Kb ¼
x2

x xxy

xxy x2
y

" #

Equation (9) can be shown in a variety of ways:

€q ¼ �Y _q� Pq� bq3 þ uðtÞ þ DðtÞ ð10Þ

D(t) is defined as:

D tð Þ ¼ �DY _q� DPqþ E ð11Þ

The x- and y-directions of Eq. (10)’s equation are as

follows:

€x

€y

� �

¼ �
dxx dxy

dxy dyy

� �

þ
0 �2Xz

2Xz 0

� �� �

_x

_y

� �

�
x2

x xxy

xxy x2
y

" #

x

y

� �

�
b 0

0 b

� �

x3

y3

� �

þ
1 0

0 1

� �

ux

uy

� �

þ
D tð Þx
D tð Þy

" #

ð12Þ

The following parameters will be used to convert

Eq. (12) into first-order dynamic equations:

x ¼ z1
_x ¼ z2
y ¼ z3
_y ¼ z4

8

>

<

>

:

There is also:

_z1 ¼ z2
_z2 ¼ �x2

xz1 � bz31 � dxxz2 � xxyz3 þ 2Xz � dxy
� �

z4 þ uz1 þ Dz1

_z3 ¼ z4
_z4 ¼ �xxyz1 � dxy þ 2Xz

� �

z2 � x2
yz3 � bz33 � dyyz4 þ uz3 þ Dz3

8

>

>

<

>

>

:

ð13Þ

Equation (13) demonstrates:

_z ¼ A zð Þ þ Bu ð14Þ

The following is how Eq. (14) can be stated in its

original form:

d

dt
z tð Þ ¼ f zð Þ ð15Þ

3 Fractional sliding mode control

The FOSMC is a robust control method that can

suppress external perturbations. This control method

is a flexible method that can provide fraction deriva-

tive power of error [25–27]. This issue will provide the

opportunity for choosing the suitable sliding mode

surface that is the most important part of designing

FOSMC. The fractional sliding mode surface defines

as:

s tð Þ ¼ _e tð Þ þ aDleðtÞ ð16Þ

where e tð Þ ¼ qd � q and D is fractional operator

defines as D ¼ d
dt
and l is fractional order.

The FOSMC contains two control sections: equiv-

alent control law and reaching control law. The

equivalent control can be obtained by _s tð Þ ¼ 0. Taking

derivative from Eq. (16) produces:

_s tð Þ ¼ €e tð Þ þ alDlþ1e tð Þ ¼ €qd � €qþ alDlþ1e tð Þ

ð17Þ

Equation (10) is substituted into Eq. (17) to produce.

_s tð Þ ¼ €qd þ Y _qþ Pqþ bq3 � u tð Þ � D tð Þ

þ alDlþ1e tð Þ ð18Þ

The ueq(t) can be described by _s tð Þ ¼ 0 as

ueq tð Þ ¼ €qd þ Y _qþ Pqþ bq3 � D tð Þ þ alDlþ1e tð Þ

ð19Þ

The reaching control law introduces as

urðtÞ ¼ KrsðtÞ ð20Þ

where Kr is positive constant. Therefore, the control

input is defined as

uFOSMC tð Þ ¼ ueq tð Þ þ u
r
ðtÞ ð21Þ

A powerful technique for demonstrating the stability

of the FOSMC is the Lyapunov theory [1]. It is

characterized as:
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V tð Þ ¼
1

2
sðtÞsTðtÞ ð22Þ

Taking derivative from Eq. (22) describes:

_V tð Þ ¼ sTðtÞ _sðtÞ ð23Þ

The outcome of putting Eq. (18) into Eq. (23):

_V tð Þ ¼ sT tð Þð€qd þ Y _qþ Pqþ bq3 � u tð Þ � D tð Þ

þ alDlþ1e tð ÞÞ

ð24Þ

Substituting Eq. (21) into Eq. (24) produces:

_V tð Þ ¼ sT tð Þð€qd þ Y _qþ Pqþ bq3 � ueq tð Þ � ur tð Þ

� D tð Þ þ alDlþ1e tð ÞÞ

ð25Þ

Equation (19) used into Eq. (25) results in:

_V tð Þ¼sT tð Þð€qdþY _qþPqþbq3� €qd�Y _q�Pq�bq3

þD tð Þ�alDlþ1e tð Þ�ur tð Þ�D tð Þ

þalDlþ1e tð ÞÞ

ð26Þ

Simplifying Eq. (26) produces:

_V tð Þ ¼ sTðtÞð�urðtÞÞ ð27Þ

Substituting Eqs. (20) into (27) describes:

_V tð Þ ¼ sTðtÞð�KrsðtÞÞ ð28Þ

Equation (28) shows that the _V tð Þ\0. Therefore,

the proposed controller is stable.

In this study, we employ the Grunwald–Letnikov

fractional type [28]. The Grunwald–Letnikov frac-

tional derivative of the function e(t) with respect to t is

given:

Dl
t e tð Þ ¼ limh!0h

�l
X

n

k¼0

ð�1Þk
l

k

� �

f e tð Þ � khð Þ;

ð29Þ

where

l

k

� �

¼
l l� 1ð Þ l� 2ð Þ. . .ðl� k þ 1Þ

k!

¼
C lþ 1ð Þ

k!C l� k þ 1ð Þ

The detailed explanation about the Grunwald–

Letnikov method can be found in [28]. The proposed

control method block diagram is shown in Fig. 2.

Fig. 2 The proposed controller block diagram
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4 Koopman theory

The Koopman operator theory states that to success-

fully solve a nonlinear dynamical system, the nonlin-

ear system’s initial form must be converted into an

infinite-dimensional state space, resulting in a linear

system [29]. The discrete time definition of a dynamic

is [29]:

zkþ1 ¼ F zkð Þ ð30Þ

where F is indicated by

F z t0ð Þð Þ ¼ z t0ð Þ þ

Z t0þt

t0

f z sð Þð Þds ð31Þ

The dynamics of the original system becomes linear

when the dynamics of a finite-dimensional nonlinear

system is transferred to an infinite-dimensional func-

tion space. The measurement function and observable

g is a real-valued scalar in an infinite-dimensional

Hilbert space. Based on this observable, the Koopman

operator generates as follows:

Kg ¼ g � F ð32Þ

Using a continuous system, smooth dynamics may

be constructed.

d

dt
g zð Þ ¼ Kg zð Þ ¼ rg zð Þ: f zð Þ ð33Þ

where K is the Koopman operator. Due to the

Koopman operator’s infinite dimensions, which is

important yet troublesome for operation and repre-

sentation. Applied Koopman analysis approximates

the evolution on a subspace covered by a limited

number of measurement functions rather than detail-

ing the development of all measurement functions in a

Hilbert space. By restricting the operator to an

invariant subspace, the Koopman operator may be

represented as a finite-dimensional matrix. Any com-

bination of the Koopman operator’s eigenfunctions

will cover a Koopman invariant subspace. When the

Koopman model’s eigenfunction u zð Þ fulfills

eigenvalue:

ku zð Þ ¼ u F zð Þð Þ ð34Þ

A Koopman eigenfunction (z) is defined in contin-

uous time:

d

dt
u zð Þ ¼ ku zð Þ ð35Þ

The Koopman operator must be approximated from

the application side using a finite-dimensional approx-

imation. One method that can estimate the Koopman

operator is the DMD method.

5 DMD method

DMD uses a robust numerical technique to approxi-

mate the Koopman operator.

Z0 � AZ ð36Þ

where Z0 is time shifted of matrix Z as:

Z ¼ z1 z2 . . .. . .:½ �

The A may be determined as follows using

Eq. (36):

A ¼ Z0Zþ ð37Þ

where the Moore–Penrose pseudoinverse is repre-

sented by ? . Because a normal calculation utilizing

A would necessitate a substantial amount of compu-

tation due to its enormous n, we may utilize Singular

Value Decomposition (SVD) on the snapshots to

identify the dominant characteristics of the pseudoin-

verse of Z [30].

Z � URV� ð38Þ

whereU�Rn�r,R�Rr�r, V�Rn�r, and * demonstrates the

conjugate transpose. SVD’s reduced rank for approx-

imating Z is r. The eigenvectors can be defined as:

/ ¼ Z0VR�1
W ð39Þ

where W is a set of dynamic full rank system

eigenvectors.

Let k be eigenfunction, then we will have:

KW ¼ kW ð40Þ

where K is the Koopman operator.

The demonstration of the linearized dynamic model

is as follows:

d

dt
y ¼ Kyþ Bu ð41Þ
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6 Koopman fractional sliding mode control

The fractional sliding mode surface can be defined as:

s tð Þ ¼ e tð Þ þ aDleðtÞ ð42Þ

where e tð Þ ¼ yd � y. Taking derivative from Eq. (42)

produce:

_s tð Þ ¼ _e tð Þ þ alDlþ1e tð Þ ¼ _yd � _yþ alDlþ1e tð Þ

ð43Þ

Substituting Eqs. (41) into (43) provides

_s tð Þ ¼ _yd � Ky� Buþ alDlþ1e tð Þ ð44Þ

The equivalent control can be demonstrated by _s ¼

0 as:

ueqðtÞ ¼ B�1ð _yd � Kyþ alDlþ1e tð ÞÞ ð45Þ

The reaching control law defines as:

urðtÞ ¼ KrsðtÞ ð46Þ

The Koopman-FOSMC can be demonstrated as:

uKoopman�FOSMC tð Þ ¼ ueq tð Þ þ ur tð Þ ð47Þ

The stability of the Koopman-FOSMC controller

can be proved by using the Lyapunov theory as:

V tð Þ ¼
1

2
sðtÞsTðtÞ ð48Þ

Taking derivative from Eq. (48) results,

_V tð Þ ¼ sTðtÞ _sðtÞ ð49Þ

Substituting Eqs. (44) into (49) provides:

_V tð Þ ¼ sTðtÞð _yd � Ky� Buþ alDlþ1e tð ÞÞ ð50Þ

Equation (47) is substituted into Eq. (50) to

produce:

_V tð Þ ¼ sTðtÞð _yd � Ky� Bueq tð Þ � Bur tð Þ

þ alDlþ1e tð ÞÞ ð51Þ

Substituting Eqs. (45) into (51) provides:

_V tð Þ ¼ sTðtÞð _yd � Ky� BðB�1ð _yd � Ky

þ alDlþ1e tð ÞÞÞ � Bur tð Þ þ alDlþ1e tð ÞÞ

ð52Þ

Simplifying Eq. (52) produces:

_V tð Þ ¼ sTðtÞð�Bur tð ÞÞ ð53Þ

Substituting Eqs. (46) into (53) provides

_V tð Þ ¼ sTðtÞð�BKrsðtÞÞ ð54Þ

The _V tð Þ\0 according to Eq. (54). The suggested

controller is hence stable.

7 The proposed control method

Most of the controllers have some disadvantages. The

Koopman-FOSMC controller provides robustness and

FOPID has high tracking performance. By combining

the Koopman-FOSMC and FOPID controllers, the

new compound controller will be obtained which

Fig. 3 The position tracking of x- and y-directions under the

proposed controllers
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benefits the advantages of both controllers. The pro-

posed control method defines as:

uKoopman�CFOPIDSMC tð Þ ¼ uKoopman�FOSMC tð Þ
� uFOPID tð Þ ð55Þ

where uFOPID tð Þ can be defined as:

uFOPID tð Þ ¼ Kpe tð Þ þ K iD
�le tð Þ þ KdD

le tð Þ ð56Þ

where are the Kp;K i and Kd are the FOPID con-

troller’s gains.

8 Simulation results

This research applies a new compound control method

to control nonlinear MEMS gyroscope dynamics. The

simulations are done in MATLAB software. The

proposed controller parameters are as follows:

a ¼ diag 10; 10f g l ¼ 0:75 Kr ¼ diag 10; 10f g
Kp ¼ diag 100; 100f g Ki ¼ diag 40; 40f g Kd ¼ diag 70; 70f g

The initial values of position are q0x ¼ 0:4 and

q0y ¼ 0:6. Also, the initial velocity values are as _q0x ¼

0 and _q0y ¼ 0. The desired trajectory tracking for x-

axis is qdx ¼ sinð4:17tÞ and y-axis is qdy ¼

1:2sinð5:11tÞ:

Figure 3 shows the position tracking of x-axis and

y-axis under FOSMC, Koopman-FOSMC and Koop-

man-CFOPIDSMC. The conventional FOSMC con-

troller has a low tracking trajectory in comparison with

two other controllers such as the Koopman-FOSMC

and Koopman-CFOPIDSMC. It illustrates that the

data-driven Koopman method affects highly

Fig. 4 The position tracking error of x- and y-direction under

the proposed controllers Fig. 5 Velocity of x- and y-axis under the proposed controllers
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improving tracking performance. Figure 4 illustrates

the position tracking error of the x- and y-axis under

FOSMC, Koopman-FOSMC and Koopman-CFO-

PIDSMC. The proposed controller has a low tracking

error in comparison with the FOSMC and Koopman-

FOSMC. Figure 5 shows the velocity of the x- and

y-axis under the proposed controllers. Figure 6 shows

the input control efforts under the FOSMC, Koopman-

FOSMC and Koopman-CFOPIDSMC controllers. The

control input under conventional FOSMC reached 200

(N.m) in some cases. When the Koopman method was

used, the control inputs were significantly reduced.

Also, the main benefit of the compound controller

(Koopman-CFOPIDSMC) is reducing the control

input signals. A small part of the figures was magni-

fied to show the reduction of the control input by

implementing the Koopman-CFOPIDSMC controller.

9 Conclusions

This paper proposed a compound controller based on

the data-driven Koopman method. First, a conven-

tional FOSMC is applied on a nonlinear MEMS

gyroscope dynamic model. Then, the Koopman theory

is used to linearize the nonlinear dynamic model of the

MEMS gyroscope. The main problem with using the

Koopman theory is how to obtain the Koopman

operator. The DMD method was used to obtain the

Koopman operator. When the model was linearized by

the Koopmanmethod, the FOSMCwas used to control

the x- and y-axis of the linearized model of the MEMS

gyroscope. The results illustrated that using the

Koopman method will significantly improve the

controller performance. Finally, a compound con-

troller is proposed to improve trajectory tracking and

reduce the control inputs. Simulation results verified

the performance of the Koopman-CFOPIDSMC was

better than the FOSMC and Koopman-FOSMC.
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