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Abstract This research proposes a new fractional
robust data-driven control method to control a non-
linear dynamic micro-electromechanical (MEMS)
gyroscope model. The Koopman theory is used to
linearize the nonlinear dynamic model of MEMS
gyroscope, and the Koopman operator is obtained by
using the dynamic mode decomposition (DMD)
method. However, external disturbances constantly
affect the MEMS gyroscope. To compensate for these
perturbations, a fractional sliding mode controller
(FOSMC) is applied. The FOSMC has several advan-
tages, including high trajectory tracking performance
and robustness. However, one of the drawbacks of
FOSMC is generating high control inputs. To over-
come this limitation, the researchers proposed a
compound controller design that applies fractional
proportional integral derivative (FOPID) to reduce
the control efforts. The simulation results showed that
the proposed compound Koopman-FOSMC and
FOPID (Koopman-CFOPIDSMC) outperformed two
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other controllers, including FOSMC and Koopman-
FOSMC, in terms of performance. Therefore, this
research proposes an effective approach to control the
nonlinear dynamic model of MEMS gyroscope.
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1 Introduction

One of the useful tools to measure angular velocity is
the MEMS gyroscope. By measuring the x- and y-
direction movement of the MEMS gyroscope, the
angular velocity will be obtained. This device is used
in many industries such as the automotive industry and
medicine. The most important part of using the MEMS
gyroscope is how to control this device appropriately.
Several control methods are used to control the MEMS
gyroscope such as proportional integral derivative
(PID) controller [1], sliding mode control (SMC) [2],
and some other controllers [3, 4]. However, the
mentioned controllers were applied on a linear MEMS
gyroscope. There are a few researchers who worked on
the nonlinear dynamic model of MEMS gyroscope and
controlled it in comparison with linear MEMS gyro-
scope [5].

Linearization of the nonlinear dynamic model will
give better information on the behavior of the systems.
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This will provide some detail to better analyze the
system. Koopman’s theory is one of the strong
approaches to linearizing the nonlinear dynamic
model [6-9]. Koopman operators have infinite dimen-
sions and capture nonlinear dynamics in a lifted global
linear way. A class of linear predictors is produced by
the finite data-driven approximation of Koopman
operators, which helps create linear control of nonlin-
ear dynamical systems with minimal computing
complexity [8]. The main part of applying Koopman’s
theory on nonlinear dynamic equations is how to
approximate the Koopman operator. The DMD
method is one of the most prevalent methods in
estimating the Koopman operator [10-12]. Nathan
et al. [13] investigate using Koopman theory to solve
data-driven spatiotemporal systems and nonlinear
partial differential equations. They show that an
appropriate approximation to the nonlinear dynamics
depends on the observables selected for building the
Koopman operator. The DMD technique may be used
to compute a finite-dimensional approximation of the
Koopman operator, together with its eigenfunctions,
eigenvalues, and Koopman modes, if such observables
can be discovered.

Several control methods are used to control the
linearized dynamic model by Koopman theory such as
linear quadratic regulator (LQR) [14, 15] and model
predictive controller (MPC) [16, 17]. The LQR and
MPC controllers have suitable performances, but the
main drawbacks of those controllers are not robust
against external disturbances. The FOSMC is a strong
robust control method that can suppress external
perturbations. The reason that makes this controller a
strong control approach is that the fractional order
used in the sliding mode surface provides the ability to
select the fraction power of error. This issue provides
excellent flexibility to select the best sliding mode
surface. Therefore, the dynamic states of the linearized
dynamics model can suitably slide close to the normal
behavior of the system. It causes to provide the better
control performance in terms of high tracking perfor-
mance, low tracking error, and robustness.

Most of the previous works related to MEMS
gyroscopes were about the control of linear dynamics
of MEMS gyroscopes by FOSMC. However, the
FOSMC was used in combination with the other
controller to benefit from the advantages of other
controllers like reducing the chattering phenomenon
[18, 19] and improving tracking performance [20].
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Based on high-gain and disturbance observers, a
dynamic backstepping sliding mode controller with a
fractional order sliding surface and a fuzzy boundary
layer is created to regulate the operation of a MEMS
gyroscope [21]. A combination of sliding mode and a
reliable nonlinear backstepping controller is applied to
suppress the system uncertainties. The sliding surface
in this model is chosen to be of fractional order to
improve the degree of freedom of the controller. In
addition to the initial sliding surface, a new dynamic
sliding surface is utilized to considerably minimize the
chattering phenomena in the control signal. Fuzzy
control theory is also used to regulate the boundary
layer. Wang and Fei [22] proposed the use of a
trajectory tracking control system with a neural
network estimator to sustain the vibrations of the
gyroscope-proof mass. A recurrent Chebyshev fuzzy
neural network with a self-evolving mechanism and a
fractional controller based on the terminal sliding
mode are both included in the suggested control
system. A self-evolving recurrent Chebyshev fuzzy
neural network is presented to reduce the need for
nonlinear functional certainty, and the fractional-order
terminal sliding mode control may guarantee the
tracking error is exponentially stable.

This paper proposes a data-driven method to
control a nonlinear MEMS gyroscope. The Koopman
theory is applied to linearize the nonlinear model of
the MEMS gyroscope. The DMD method is used to
approximate the Koopman operator. The model
uncertainty and unmodeled dynamics are unknown
parameters in a nonlinear dynamic model. Therefore,
the data-driven Koopman method will provide a high-
fidelity model by linearization of nonlinear dynamics
models. A FOSMC is applied to the nonlinear dynamic
model and linear dynamic model by the Koopman
theory to verify the better performance of the control
system after linearization in terms of high trajectory
tracking, low tracking error, and low control input
signals. A new compound control method is applied to
improve the control method of the FOSMC such as
reducing the control efforts.

The rest of this paper is organized as: Sect. 2
introduces the nonlinear MEMS gyroscope dynamic
model. Section 3 explains the FOSMC. Section 4
discusses the Koopman theory. Section 5 describes
the DMD method. Section 6 proposes Koopman-
FOSMC. Section 7 produces the new compound
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proposed controller. Section 8 demonstrates the sim-
ulation results. Section 9 describes the conclusion.

2 Nonlinear MEMS gyroscope dynamic model

The MEMS gyroscope is a small device that can
measure angular velocity. This device has been used in
many applications such as automotive and medicine
[2, 23, 24]. Most of the research considered the linear
model of the MEMS gyroscope, but we provide a
nonlinear dynamic model of the MEMS gyroscope.
Figure 1 depicts a typical z-axis MEMS gyroscope
construction.

A proof mass supported by springs, sensor mech-
anisms, and an electrostatic actuation system are all
components of a typical MEMS gyroscope design [2].
The oscillatory motion created by the electrostatic
actuation system may be used to determine the
location and speed of the proof mass. The gyroscope
rotates at a gradually increasing angular velocity €,
while the proof mass is mounted on a frame that moves
with a constant linear velocity. Due to the small
displacements x and y, it is anticipated that the
centrifugal forces mQ?x and mQﬁy will be negligible.
The 2mQ’y and 2mQ X, Coriolis forces develop
parallel to the driving and rotational axes. The

following equations describe the gyroscope’s
dynamics:
kyy /= dy,
k-\‘-\' k.\'.\'
AN\ — —AN\—
m
Tl Tl
1 1
)% d\'.\' d\ X
k\ V T d\ Y
X
Q:

Fig. 1 MEMS gyroscope structure [21]

mi + dy ¥ + diy + kx4 kyy + px’ = ul + 2mQ}y

(1)
my + dy,y + dy,y + kx + Ky + By’ = uy — 2mQx
(2)

Since there is no external force acting on the
system, the origin of the coordinates in Eqs. 1 and 2 is
located in the middle of the proof mass. The asym-
metric spring and damping coefficients are repre-
sented by the constants &, and d,, respectively. The
control forces in the x- and y-direction, u} and uj, are
often accepted despite the potential of modest
unknown deviations from their nominal values. The
damping rates, d, and d)*,),, and the spring constants of
springs interacting in the x- and y-directions, &, and
k’;v, are also often described. Consequently, the terms
px® and By’ will be introduced by the positive
constants “electromechanical” and “mechanical”
nonlinearity. Equations 1 and 2 might be expressed

using the vector form shown below:

T D K gam w00
qo Mmoqy mawgdgo 9o  mwuqo o 9o
(3)
where
x* ut N 0o -
o S P e P
y* u, Qz 0

d: d*\} {k* k*} . .
XL K, =, Y|, and nondimensional
[ dyy  dyy O

parameters as follows:

q* d: QF
g=" dy= Yo == (4)
q0 mao o
u* u
Uy = ’5 Uy = § (5)
ma)qu mwoqo
K kyy Ky
“=Amg O \meg w9

Since the reference length is gy, the natural frequency
of each axis is wg. The MEMS gyroscope’s dynamic
equations are listed below:

j=—(D+2Q)¢4—Kpg— P> +u+E (7)

A possible model for an external disturbance, E, is:
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G=-Y§—Pqg—Pg +u+E (8)

P =K, and Y = (D + 2Q) determine certain param-
eter variation uncertainties. As a result, Eq. (8) might
be written as:

G=—(Y+AY)§— (P+AP)g—Pg +u+E (9)

where

q = ) u= b Q = )
y u, Q 0

D [dxx dxy} K, wf wx;
dyy dyy Oy O

Equation (9) can be shown in a variety of ways:

G=—Yj—Pq—pqg’ +ult)+ D(1) (10)
D(t) is defined as:
D(t) = —AY4— APg+ E (11)

The x- and y-directions of Eq. (10)’s equation are as
follows:

e el b D
e[l
R R

D(1)
The following parameters will be used to convert
Eq. (12) into first-order dynamic equations:

X

(12)

X =21
X=2
y=23
y=24

There is also:
i1=2
Z’Z = _w)zle - ﬁz? - dxxz2 — W33 + (ZQZ - dx)‘)z4 + Uz, + DZ|
B3=2
i = =0y — (dy +2Q:) 20 — 0023 — ff — dyyza + 1wz, + Dy

(13)
Equation (13) demonstrates:

7=A(z) + Bu (14)

@ Springer

The following is how Eq. (14) can be stated in its
original form:

22 =102 (15)

3 Fractional sliding mode control

The FOSMC is a robust control method that can
suppress external perturbations. This control method
is a flexible method that can provide fraction deriva-
tive power of error [25-27]. This issue will provide the
opportunity for choosing the suitable sliding mode
surface that is the most important part of designing
FOSMC. The fractional sliding mode surface defines
as:

s(t) = é(t) + aD"e(r) (16)
where e(f) =g, —q and D is fractional operator
defines as D = % and u is fractional order.

The FOSMC contains two control sections: equiv-
alent control law and reaching control law. The
equivalent control can be obtained by s(7) = 0. Taking
derivative from Eq. (16) produces:

s(t) = é(t) + oauD"e(t) = G, — G+ auD" ()
(17)
Equation (10) is substituted into Eq. (17) to produce.
$(t) = Ga+ Y4+ Pq+ fg’ — u(r) — D(r)
+ auD"e(t) (18)

The u,,(t) can be described by s(r) = 0 as
Ueg(t) = g+ Y+ Pq + Bg° — D(t) + ouD*e(t)
(19)

The reaching control law introduces as

uy(t) = K,s(t) (20)

where K, is positive constant. Therefore, the control

input is defined as

uposmc (1) = tteq (1) + u, (1) (21)

A powerful technique for demonstrating the stability
of the FOSMC is the Lyapunov theory [1]. It is
characterized as:
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V(1) = Es(t)sT(t) 22) VO =s5(0(-ul) (27)
Substituting Egs. (20) into (27) describes:
Taking derivative from Eq. (22) describes: ) ;
, V(1) = 5" (t)(—K,s(1)) (28)
Vi(t) = s7(1)s(7) (23)

The outcome of putting Eq. (18) into Eq. (23):
V(1) = s"(1)(a + Y4+ Pg + Bg’ — u(r) — D(1)
+ auD"e(t))
(24)

Substituting Eq. (21) into Eq. (24) produces:

V(1) = s"(1)(qa + Y4 + Pq + Ba’ — tteq (1) — (1)
— D(t) + auD"e(1))

(25)
Equation (19) used into Eq. (25) results in:
V()=s"(1)(Gg+Yd+Pa+Pa’ —G,—Y§—Pa—Ba’
+D(t)—ouD*e(t)—u,(t)—D(t)
+auD"e(t))
(26)
Simplifying Eq. (26) produces:

Equation (28) shows that the V() <0. Therefore,
the proposed controller is stable.

In this study, we employ the Grunwald-Letnikov
fractional type [28]. The Grunwald-Letnikov frac-
tional derivative of the function e(z) with respect to ¢ is
given:

De(t) = limy_oh™" Z (- ( Z ) fle(t) — kh),
k=0

(29)
where
(u _pu—=1)(r=2)..(p—k+1)
k k!
_ Iu+1)
SHT(u—k+1)

The detailed explanation about the Grunwald-
Letnikov method can be found in [28]. The proposed
control method block diagram is shown in Fig. 2.

®uKoopman-FOS.\1C +

UK oopman-CFOPIDSMC | L inearized y

U,

Uropm

- MEMS

-

Koopman
eory

=
=

MD

Method

m
22 FE

Nonlinear
MEMS

Fig. 2 The proposed controller block diagram
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i
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4 Koopman theory

The Koopman operator theory states that to success-
fully solve a nonlinear dynamical system, the nonlin-
ear system’s initial form must be converted into an
infinite-dimensional state space, resulting in a linear
system [29]. The discrete time definition of a dynamic
is [29]:

Zert = Fz) (30)
where F is indicated by
to+t

fz(7))dr (31)

o

F(z(t)) = z(to) +

The dynamics of the original system becomes linear
when the dynamics of a finite-dimensional nonlinear
system is transferred to an infinite-dimensional func-
tion space. The measurement function and observable
g is a real-valued scalar in an infinite-dimensional
Hilbert space. Based on this observable, the Koopman
operator generates as follows:

Kg=goF (32)

Using a continuous system, smooth dynamics may
be constructed.

58() = Ks(z) = Vg(2). f(2) (33)
where K is the Koopman operator. Due to the
Koopman operator’s infinite dimensions, which is
important yet troublesome for operation and repre-
sentation. Applied Koopman analysis approximates
the evolution on a subspace covered by a limited
number of measurement functions rather than detail-
ing the development of all measurement functions in a
Hilbert space. By restricting the operator to an
invariant subspace, the Koopman operator may be
represented as a finite-dimensional matrix. Any com-
bination of the Koopman operator’s eigenfunctions
will cover a Koopman invariant subspace. When the

Koopman model’s eigenfunction ¢(z) fulfills
eigenvalue:
Ap(z) = o(F(z)) (34)

A Koopman eigenfunction (z) is defined in contin-
uous time:

@ Springer

d )
59 = 20() (35)

The Koopman operator must be approximated from
the application side using a finite-dimensional approx-
imation. One method that can estimate the Koopman

operator is the DMD method.

5 DMD method

DMD uses a robust numerical technique to approxi-
mate the Koopman operator.

7! =~ AZ (36)
where Z/ is time shifted of matrix Z as:

Z=|z z2 ....]

The A may be determined as follows using
Eq. (36):

A=2z21Z" (37)

where the Moore—Penrose pseudoinverse is repre-
sented by + . Because a normal calculation utilizing
A would necessitate a substantial amount of compu-
tation due to its enormous n, we may utilize Singular
Value Decomposition (SVD) on the snapshots to
identify the dominant characteristics of the pseudoin-
verse of Z [30].

Z~ USV* (38)

where UeR"*",ZeR"™", VeR™ ", and * demonstrates the
conjugate transpose. SVD’s reduced rank for approx-
imating Z is r. The eigenvectors can be defined as:

é=2zvE v (39)
where W is a set of dynamic full rank system
eigenvectors.

Let A be eigenfunction, then we will have:
KW = 2W (40)

where K is the Koopman operator.
The demonstration of the linearized dynamic model
is as follows:

d
Ey:KerBu (41)
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6 Koopman fractional sliding mode control

The fractional sliding mode surface can be defined as:
s(t) = e(t) + aD"e(t) (42)

where e(f) = y; — y. Taking derivative from Eq. (42)
produce:

s(t) = é(1) + oc,uD’”le(t) =y, —y+ ocuD’”le(t)
(43)

Substituting Eqgs. (41) into (43) provides

s(t) = y; — Ky — Bu + ouD**e(r) (44)

The equivalent control can be demonstrated by s =
0 as:

tteq (1) = B~ (4 — Ky + D" e(1)) (45)
The reaching control law defines as:

u-(t) = K,s(t) (46)
The Koopman-FOSMC can be demonstrated as:

UK oopman—FOSMC (1) = tteq (1) 4 u, (1) (47)

The stability of the Koopman-FOSMC controller
can be proved by using the Lyapunov theory as:

V() = 35057 () (48)
Taking derivative from Eq. (48) results,
V(1) = s"(1)s(r) (49)

Substituting Eqs. (44) into (49) provides:
V(t) = sT(1) (¥, — Ky — Bu + auD""e(r)) (50)

Equation (47) is substituted into Egq. (50) to
produce:

V(1) = 5" (1) (Vg — Ky — Buteg (1) — Buy (1)
+ oauD" e (1)) (51)

Substituting Egs. (45) into (51) provides:

V(1) =" (1)(g — Ky — BB~ (, — Ky
+ oD e(1)) — Bu, (1) + ouD**e(1))
(52)
Simplifying Eq. (52) produces:

V(1) = s (1) (~Buy (1)) (53)

Substituting Egs. (46) into (53) provides
V(t) = sT(t)(—BK,s(t)) (54)

The V() <0 according to Eq. (54). The suggested
controller is hence stable.

7 The proposed control method

Most of the controllers have some disadvantages. The
Koopman-FOSMC controller provides robustness and
FOPID has high tracking performance. By combining
the Koopman-FOSMC and FOPID controllers, the
new compound controller will be obtained which

xd
- - —FOSMC
Koopman-FOSMC
Koopman-CFOPIDSMC

Position tracking of x-axis

Time (sec)

yd
- - —FOSMC
PR 2 Y B R A T B O B T b Koopman-FOSMC
Koopman-CFOPIDSMC

R
X
? 05
>
ks
j=2}
£
5 0
Y
c
o
Z .05t
o
o

AF

1.5

Time (sec)

Fig. 3 The position tracking of x- and y-directions under the
proposed controllers
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benefits the advantages of both controllers. The pro-
posed control method defines as:

UK oopman—CFOPIDSMC (t) = UKoopman—FOSMC (t)
— upopip (1) (55)

where upopp (f) can be defined as:
MFOPID(t) = er(l) + Kl‘Di‘ue(l‘) + KdD”e(t) (56)
where are the K,,K; and K, are the FOPID con-

troller’s gains.
8 Simulation results

This research applies a new compound control method
to control nonlinear MEMS gyroscope dynamics. The

------- Koopman-FOSMC
Koopman-CFOPIDSMC

Position tracking error of x-axis
. .

Time (sec)

- - —FOsSMC
————— Koopman-FOSMC
Koopman-CFOPIDSMC

Position tracking error of y-axis

Time (sec)

Fig. 4 The position tracking error of x- and y-direction under

the proposed controllers

@ Springer

simulations are done in MATLAB software. The
proposed controller parameters are as follows:

o = diag{10,10} w=0.75 K, = diag{10,10}
K, = diag{100,100} K; = diag{40,40} K, = diag{70,70}

The initial values of position are g, = 0.4 and
qoy = 0.6. Also, the initial velocity values are as g, =
0 and ¢, = 0. The desired trajectory tracking for x-
axis is g, =sin(4.17t) and y-axis is g, =
1.2sin(5.117).

Figure 3 shows the position tracking of x-axis and
y-axis under FOSMC, Koopman-FOSMC and Koop-
man-CFOPIDSMC. The conventional FOSMC con-
troller has a low tracking trajectory in comparison with
two other controllers such as the Koopman-FOSMC
and Koopman-CFOPIDSMC. It illustrates that the

data-driven Koopman method affects highly
80
- — —FOSMC
————— Koopman-FOSMC
60 Koopman-CFOPIDSMC
40
2
3
% 20
=
o
%‘ P .~ ,~ S S N
ke] 0 rid ~7 ~7 <7 - - -
<
-20
-40
-60 !
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
100
- = =FOSMC
soF  me——— Koopman-FOSMC
Koopman-CFOPIDSMC
60
40
2
s 20
>
G 0 PIaN > AN N i MRN > P
> N N ~7 N - N7 Y2
3
3 -20
>
-40
-60
-80
100 . , . . . , . . . )
0 1 2 3 4 5 6 7 8 9 10
Time (sec)

Fig. 5 Velocity of x- and y-axis under the proposed controllers
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Fig. 6 Control input of x- and y-direction under the proposed
controllers

improving tracking performance. Figure 4 illustrates
the position tracking error of the x- and y-axis under
FOSMC, Koopman-FOSMC and Koopman-CFO-
PIDSMC. The proposed controller has a low tracking
error in comparison with the FOSMC and Koopman-
FOSMC. Figure 5 shows the velocity of the x- and
y-axis under the proposed controllers. Figure 6 shows
the input control efforts under the FOSMC, Koopman-
FOSMC and Koopman-CFOPIDSMC controllers. The
control input under conventional FOSMC reached 200
(N.m) in some cases. When the Koopman method was
used, the control inputs were significantly reduced.
Also, the main benefit of the compound controller
(Koopman-CFOPIDSMC) is reducing the control
input signals. A small part of the figures was magni-
fied to show the reduction of the control input by
implementing the Koopman-CFOPIDSMC controller.

9 Conclusions

This paper proposed a compound controller based on
the data-driven Koopman method. First, a conven-
tional FOSMC is applied on a nonlinear MEMS
gyroscope dynamic model. Then, the Koopman theory
is used to linearize the nonlinear dynamic model of the
MEMS gyroscope. The main problem with using the
Koopman theory is how to obtain the Koopman
operator. The DMD method was used to obtain the
Koopman operator. When the model was linearized by
the Koopman method, the FOSMC was used to control
the x- and y-axis of the linearized model of the MEMS
gyroscope. The results illustrated that using the
Koopman method will significantly improve the
controller performance. Finally, a compound con-
troller is proposed to improve trajectory tracking and
reduce the control inputs. Simulation results verified
the performance of the Koopman-CFOPIDSMC was
better than the FOSMC and Koopman-FOSMC.
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