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Abstract—We investigate the problem of representing infor-

mation measures in terms of the moments of the underlying

random variables. First, we derive polynomial approximations

of the conditional expectation operator. We then apply these

approximations to bound the best mean-square error achieved

by a polynomial estimator—referred to here as the PMMSE.

In Gaussian channels, the PMMSE coincides with the minimum

mean-square error (MMSE) if and only if the input is either

Gaussian or constant, i.e., if and only if the conditional expecta-

tion of the input of the channel given the output is a polynomial

of degree at most 1. By combining the PMMSE with the I-MMSE

relationship, we derive new formulas for information measures

(e.g., differential entropy, mutual information) that are given

in terms of the moments of the underlying random variables.

As an application, we introduce estimators for information

measures from data via approximating the moments in our

formulas by sample moments. These estimators are shown to

be asymptotically consistent and possess desirable properties,

e.g., invariance to affine transformations when used to estimate

mutual information.

Index Terms—Polynomials, Hilbert space, AWGN channels,

Estimation theory, Probability.

I. INTRODUCTION

A
FUNDAMENTAL formula in information theory is the
I-MMSE relation [1], which shows that in Gaussian

channels the mutual information is the integral of the minimum
mean-square error (MMSE):

I(X;
p
�X +N) =

1

2

Z
�

0
mmse

⇣
X |

p
tX +N

⌘
dt. (1)

Here, X has finite variance and N is a standard normal
random variable independent of X. In this paper, we build on
this relation to express information measures of two random
variables X and Y as functions of their moments. For exam-
ple, whenever X and Y are continuous with finite moment-
generating functions around the origin, there is a sequence of
rational functions {⇢n}n2N—each completely determined by
finitely many moments of X and Y —such that the mutual
information is

I(X;Y ) = lim
n!1

Z

R
⇢n(t) dt. (2)

We derive the new expression (2) and a similar formula for
differential entropy in three steps. First, we produce polyno-
mial approximations of conditional expectations. Second, we
apply these approximations to bound the mean-square error
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of reconstructing a hidden variable X from an observation Y
using an estimator that is a polynomial in Y . We call this
approximation the PMMSE, in short for Polynomial MMSE.
Finally, we use the PMMSE in the I-MMSE relation (1) to
approximate mutual information (as in (2)) and differential
entropy.

A. Overview of Main Results
The crux of our work is the study of polynomial approxi-

mations of conditional expectations. A surprising result that
motivates this study is a negative answer to the question:
If X and N ⇠ N (0, 1) are independent random variables,
can y 7! E[X | X + N = y] be a nonlinear polynomial?
Proposition 1, stated below, shows that if X is integrable (i.e.,
E[|X|] < 1), the only way that E[X | X + N ] can be a
polynomial is if X is Gaussian or constant. In other words, if
y 7! E[X | X +N = y] is a polynomial, then it is of degree
at most 1.

Proposition 1 ([2, Theorem 1]). For Y = X+N where X is
an integrable random variable and N ⇠ N (0, 1) independent
of X , the conditional expectation E[X | Y ] cannot be a
polynomial in Y with degree greater than 1. Therefore, the
MMSE estimator in a Gaussian channel with finite-variance
input is a polynomial if and only if the input is Gaussian or
constant.

Despite the negative result in Proposition 1, we produce
a sequence of polynomials converging to the conditional
expectation E[X | Y ], provided that X has finite variance and
Y is light-tailed. For each n 2 N, we consider the orthogonal
projection of X onto the subspace1 Pn(Y ) ⇢ L2(PY ) of
polynomials in Y with real coefficients and of degree at
most n, where it is assumed that E[X2],E[Y 2n] < 1. The
standard theory of orthogonal projections in Hilbert spaces
yields that the orthogonal projection of X onto Pn(Y ), which
we denote by En[X | Y ], exists and is unique; indeed, being
finite-dimensional, the subspace Pn(Y ) is closed. Further,
it is well-known that the orthogonal projection En[X | Y ]
is the unique best polynomial approximation of both X and
E[X | Y ] in the L2(PY ) norm (see, e.g., [3, Section 4.4]).
From an estimation-theoretic point of view, the operators
En are natural generalizations of the linear minimum mean-
square error (LMMSE) estimate. Hence, we call this process
polynomial minimum mean-square (PMMSE) estimation. We

1Throughout, we fix a probability space (⌦,F , P ), over which random
variables are defined. For q � 1, the Banach space Lq(P ) consists of all
q-integrable random variables Z, i.e., kZkq :=

�R
⌦ |Z|q dP

�1/q
< 1. The

inner product of the Hilbert space L2(P ) is denoted by h · , · i. The Borel
probability measure on R induced by Y is denoted by PY . The Banach
subspace Lq(PY ) ⇢ Lq(P ) consists of �(Y )-measurable and q-integrable
random variables.
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collect these observations in the following definition, in which
we denote the random vector Y (n) := (1, Y, · · · , Y n)T .

Definition 1 (Polynomial MMSE). Fix n 2 N and two random
variables X and Y satisfying E

⇥
X2
⇤
< 1 and E

⇥
Y 2n

⇤
< 1.

We define the n-th order polynomial minimum mean-square
error (PMMSE) for estimating X given Y by

pmmse
n
(X | Y ) := min

c2Rn+1
E
⇣

X � c
T
Y

(n)
⌘2�

. (3)

We define the n-th order PMMSE estimate of X given Y by
En[X | Y ] := c

T
Y

(n)
2 Pn(Y ) for any minimizer c 2

Rn+1 in (3).

The PMMSE estimate is the unique minimizer (in L2(PY ))
of the following two minimization problems

En[X | Y ] = argmin
q(Y )2Pn(Y )

E
⇥
(q(Y )� E[X | Y ])2

⇤
(4)

= argmin
q(Y )2Pn(Y )

E
⇥
(q(Y )�X)2

⇤
. (5)

Furthermore, we have that the PMMSE satisfies the equality
pmmse

n
(X | Y ) = E[(X � En[X | Y ])2]. We show in the

following result that the PMMSE indeed converges to the
MMSE, provided that Y is light-tailed, and we also give an ex-
plicit formula for the PMMSE. Recall that Y is said to satisfy
Carleman’s condition if

P1
n=1 E

⇥
Y 2n

⇤�1/(2n)
= 1, which

holds if, e.g., Y has a moment-generating function (MGF) [4,
Sec. 4.2]. For n 2 N, we denote the n-th order Hankel matrix2

of moments of Y by MY,n :=
�
E
⇥
Y i+j

⇤�
0i,jn

.

Theorem 1. If X has finite variance and Y satisfies Car-
leman’s condition, then, as n ! 1, we have the con-
vergences En[X | Y ] ! E[X | Y ] in L2(PY )-norm
and pmmse

n
(X | Y ) & mmse(X | Y ). Further, for

each n 2 N, if |supp(Y )| > n then En[X | Y ] =
E [(X,XY, · · · , XY n)] M

�1
Y,n

(1, Y, · · · , Y n)T .

Proof. We may assume Y has infinite support, for other-
wise we would have E[X | Y ] 2 P|supp(Y )|�1(Y ) and
E[X | Y ] = En[X | Y ] for every n � |supp(Y )| � 1.
Since Y satisfies Carleman’s condition, polynomials are dense
in L2(PY ) [4, Sec. 4.2]. Let {pj(Y ) 2 Pj(Y )}j2N be
the complete orthonormal set in L2(PY ) that results from
applying Gram-Schmidt orthonormalization to the monomials
{Y j

}j2N. By definition of En[X | Y ] as the orthogonal
projection of E[X | Y ] onto Pn(Y ), we have that En[X |

Y ] =
P

n

j=0hE[X | Y ], pj(Y )ipj(Y ). The L2(PY )-norm
convergence En[X | Y ] ! E[X | Y ] follows. Furthermore,
by the orthogonality principle of E[X | Y ], we have that

pmmse
n
(X, t)�mmse(X, t)

= E
h
(En[X | Y ]� E[X | Y ])2

i
.

(6)

Since P0(Y ) ⇢ P1(Y ) ⇢ · · · , we deduce the monotone
convergence pmmse

n
(X | Y ) & mmse(X | Y ) from the

L2(PY ) convergence En[X | Y ] ! E[X | Y ]. Finally, the
formula for En[X | Y ] is shown in Lemma 1.

2Hankel matrices are square matrices with constant skew diagonals.

Remark 1. The convergences in Theorem 1 are stated for
Y that is not necessarily a Gaussian perturbation of X . In
general, when stating the results of this paper we do not make
an implicit assumption on the relationship between X and Y .

We investigate the PMMSE in more detail in the case when
Y is the output of a Gaussian channel whose input is X , i.e.,
Y =

p
tX + N where N ⇠ N (0, 1) is independent of X

and t � 0 is constant. In this case, we show the following
rationality of the PMMSE in signal-to-noise ratio (SNR), t.
We use the shorthand

pmmse
n
(X, t) := pmmse

n
(X |

p
tX +N). (7)

Theorem 2. Fix n 2 N>0 and a random variable X satisfying
E
⇥
X2n

⇤
< 1. The mapping t 7! pmmse

n
(X, t) over [0,1)

is a rational function, with leading coefficients given by

pmmse
n
(X, t) =

�2
X
G(n+ 2) + · · ·+ (detMX,n)tdn�1

G(n+ 2) + (�2
X
G(n+ 2)dn) t+ · · ·+ (detMX,n)tdn

,

(8)

where dn :=
�
n+1
2

�
and G(k) :=

Q
k�2
j=1 j! (for integers k � 1)

is the Barnes G-function [5]. Further, each coefficient in the
numerator or denominator of pmmse

n
(X, t) is a multivariate

polynomial in (E[X], · · · ,E[X2n]).

Proof. See Section III-A and Appendix B.

Remark 2. The PMMSE definition naturally generalizes to
random vectors, where orthogonal projection is then done over
spaces of multivariate polynomials. In this case, if X is an
m-dimensional random vector that is independent of N ⇠

N (0, Im), the leading terms in the PMMSE formula become

pmmse
n
(X, t) =

(tr ⌃X) detMN ,n + · · ·+ (tr ⌃N ) (detMX,n) tdn,m�1

detMN ,n + · · ·+ (detMX,n) tdn,m
,

(9)

where ⌃X and ⌃N are the covariance matrices and dn,m =
m
�
n+m

m+1

�
; the matrices MX,n and MN ,n are also natural

generalizations of the real-valued case, see Appendix D for
the details.

The intermediate terms in the rational function
pmmse

n
(X, t) can also be given explicitly via Theorem 1.

For example, if X is zero-mean and unit-variance, denoting
Xk = E[Xk], we have the formula

pmmse2(X, t) =
2 + 4t+ (X4 � X

2
3 � 1)t2

2 + 6t+ (X4 + 3)t2 + (X4 � X 2
3 � 1)t3

.

(10)
For a general n 2 N, the coefficients in both the numerator
and denominator of the PMMSE in (8) are “homogeneous”
polynomials in the moments of X (i.e., for a single coefficient
c(X) there is a kc 2 N such that c(↵X) = ↵kcc(X)).

The expression (8) of the PMMSE in terms of moments
gives a simple yet powerful method for approximating the
MMSE. Figure 1 shows an example of how the PMMSE
approximates the MMSE for a random variable X that takes
the values 1 and �1 equiprobably, where we are also using
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Figure 1. Comparison of the graphs of the functions t 7! pmmsen(X, t)
(solid lines) against the function t 7! mmse(X, t) (dashed black line) for
n 2 {1, 5, 10} and X ⇠ Unif({±1}).

the shorthand mmse(X, t) := mmse(X |
p
tX + N) for

N ⇠ N (0, 1) independent of X . In this case, the MMSE
is given by

mmse(X, t) = 1�
1

p
2⇡

Z

R
tanh(z

p
t)2e�(z+

p
t)2/2 dz, (11)

whereas the functions pmmse
n
(X, t) are rational in t, e.g.,

for n = 1 we have the LMMSE pmmse1(X, t) = 1/(1 + t),
and for n = 5 we have the 5-th degree PMMSE3

pmmse5(X, t) =

45 + 360t+ 675t2 + 300t3

45 + 405t+ 1035t2 + 1005t3 + 450t4 + 96t5 + 8t6
.

(12)

Comparing the curves in Figure 1 hints that the convergence
pmmse

n
(X, t) & mmse(X, t) is uniform in the SNR t; note

that the corresponding pointwise convergence is an immediate
corollary of Theorem 1. We show in the following result
that the PMMSE indeed converges uniformly to the MMSE
provided that X has a MGF (i.e., its MGF is finite over a
neighborhood of the origin). We also show, under additional
assumptions on the distribution of X , that for fixed t the
pointwise-convergence rate of pmmse

n
(X, t) & mmse(X, t)

is faster than any polynomial in n.

Theorem 3. If the MGF of a random variable X exists,4 then
we have the uniform and monotone convergence

sup
t�0

pmmse
n
(X, t)�mmse(X, t) & 0 (13)

as n ! 1. If, in addition, X has a probability density function
or a probability mass function pX that is compactly-supported,

3In general, pmmse5(Z, t) is a ratio of a degree-14 polynomial by a
degree-15 polynomial as in equation (8). In the special case of a Rademacher
random variable, significant cancellations occur and we obtain equation (12).

4The assumption that the MGF of X exists is imposed so that
p
tX +

N satisfies Carleman’s condition (for N ⇠ N (0, 1) independent of X and
t � 0 fixed), which holds because

p
tX + N will then have a MGF. It is

not true in general that Carleman’s condition is satisfied by the sum of two
independent random variables each satisfying Carleman’s condition, see [6,
Proposition 3.1].

even, and decreasing over [0,1) \ supp(pX), then for all
k, t � 0 we have that

lim
n!1

nk
· (pmmse

n
(X, t)�mmse(X, t)) = 0. (14)

Proof. See Section III-B and Appendix C.

Remark 3. By the orthogonality property of the conditional
expectation, we have the equality of approximation errors

pmmse
n
(X, t)�mmse(X, t) =

E
⇣

En[X |
p
tX +N ]� E[X |

p
tX +N ]

⌘2�
,

(15)

where N ⇠ N (0, 1) is independent of X . Thus, the conver-
gence rate (14) is equivalent to

lim
n!1

nkE
⇣

En[X |
p
tX +N ]� E[X |

p
tX +N ]

⌘2�
= 0.

(16)

Equipped with the PMMSE functional, we are able to derive
new formulas for differential entropy and mutual information
in terms of moments. A corollary of the I-MMSE relation
states that the differential entropy of a finite-variance contin-
uous random variable X can be expressed in terms of the
MMSE as [1]

h(X) =
1

2

Z 1

0
mmse(X, t)�

1

2⇡e+ t
dt. (17)

Naturally, we consider the functionals obtained by replacing
the MMSE with the PMMSE, which we show converge to the
differential entropy monotonically from above.

Theorem 4. Let X be a continuous m-dimensional random
vector whose MGF exists. Consider the functionals

hn(X) :=
1

2

Z 1

0
pmmse

n
(X, t)�

m

2⇡e+ t
dt (18)

for each n 2 N>0. Then, we have a decreasing sequence

h(N (0,⌃X)) =
1

2
log ((2⇡e)m det⌃X) (19)

= h1(X) � h2(X) � · · · � h(X) (20)

converging to the differential entropy, hn(X) & h(X).

Proof. See Section IV and Appendix E-B.

Figure 2 illustrates how hn(X) approximates h(X), where
X has a chi distribution with two degrees of freedom (com-
monly denoted by �2). It is evident from the figure that
hn(X) approximates the differential entropy of X mono-
tonically more accurately as n grows; indeed, this is true
in general in view of the monotonicity of the convergence
pmmse

n
(X | Y ) & mmse(X | Y ) as in Theorem 1.

A noteworthy implication of Theorem 4 is that it gives
a formula for the differential entropy h(X) that, in view
of Theorem 2, is entirely in terms of the moments of X .
Furthermore, closure properties of polynomial subspaces un-
der affine transformations imply that the PMMSE behaves
under affine transformations exactly as the MMSE does: if
E[X2],E[Y 2n] < 1 then

pmmse
n
(aX + b | cY + d) = a2 pmmse

n
(X | Y ) (21)
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Figure 2. Comparison of the values of hn(X) (green dots) against the true
value h(X) (dashed blue line) for n 2 {1, · · · , 10} and X ⇠ �2. We have
that h(X) < h10(X) < h(X) + 6 · 10�4.

for all constants a, b, c, and d such that c 6= 0 (Lemma 2).
Thus, the distribution functionals hn behave under affine
transformations exactly as differential entropy does, namely,
if E[X2n] < 1 then

hn(aX + b) = hn(X) + log |a| (22)

for a 6= 0 (Corollary 2).
The moment-based differential entropy formula in Theo-

rem 4 gives rise to formulas of mutual information primarily
in terms of moments.

Theorem 5. If the mutual information I(X;Y ) exists (but
possibly infinite), then it can be written in terms of the
underlying moments in the following two cases:

1) Suppose X is discrete with finite support, and Y is con-
tinuous whose MGF exists and that satisfies h(Y ) > �1.
Then, letting Y (x) denote the random variable obtained
from Y by conditioning on {X = x}, we have

I(X;Y ) =
1

2
lim

n!1

Z 1

0
pmmse

n
(Y, t)

� EX

h
pmmse

n
(Y (X), t)

i
dt.

(23)

2) Suppose that X and Y are continuous whose MGFs exist
and that satisfy h(X), h(Y ) > �1. Suppose also that
I(X;Y ) < 1 or else (X,Y ) is not continuous. Then,

I(X;Y ) =
1

2
lim

n!1

Z 1

0
pmmse

n
(X, t) + pmmse

n
(Y, t)

� pmmse
n
((X,Y ), t) dt.

(24)

Proof. See Section IV and Appendix E-C.

One result that helps in the proof of Theorem 5 in the
second scenario is the following generalization of the MMSE
dimension to random vectors.

Theorem 6. Fix two square-integrable continuous m-
dimensional random vectors X and N that are independent.

Suppose that pN is bounded and 5 pN (z) = O
�
kzk

�(m+2)
�

as kzk ! 1. Then, we have that

lim
t!1

t ·mmse
⇣
X |

p
tX +N

⌘
= tr ⌃N . (25)

Proof. This result follows by a straightforward extension of
the proof for the one-dimensional case given in [7]; see [8,
Appendix I] for the full details.

We introduce new estimators of information measures by
approximating the PMMSE in (8) via plugging in sample
moments in place of moments. If {Xj}

m

j=1 are i.i.d. samples
taken from the distribution of X, then a uniform random
variable over the samples U ⇠ Unif({Xj}

m

j=1) provides an
estimate pmmse

n
(U, t) for pmmse

n
(X, t). The moments of

U converge to the moments of X by the law of large numbers.
Further, using pmmse

n
(U, t) to estimate pmmse

n
(X, t) is

a consistent estimator by the continuous mapping theorem,
as the PMMSE is a continuous function of the moments.
The same can be said of hn(U) as an estimate of hn(X),
or of In(U ;V ) as an estimate of I(X;Y ) when (U, V ) ⇠

Unif({(Xj , Yj)}mj=1) where {(Xj , Yj)}mj=1 are i.i.d. samples
drawn according to the distribution of (X,Y ) (where In is
the functional given by the expressions inside the limits in
Theorem 5). These estimators also satisfy some desirable prop-
erties. For example, the behavior of the PMMSE under affine
transformations (21) implies that the estimate of the PMMSE
from data is robust to (injective) affine transformations, the
functionals hn behave under affine transformations exactly as
differential entropy does, and the same is true for In and I .

The rest of the paper is organized as follows. We introduce
the PMMSE, provide an explicit formula for it, prove its
convergence to the MMSE (Theorem 1), and exhibit some of
its properties in Section II. A more detailed treatment of the
Gaussian-channel case occupies Section III. Specifically, we
show rationality of the PMMSE (Theorem 2) in Section III-A,
then prove the uniform convergence of the PMMSE to the
MMSE and bound the pointwise-convergence rate (Theorem 3)
in Section III-B. Building on the derived results about the
PMMSE, we prove new moments-based formulas for differ-
ential entropy and mutual information in Section IV. Our
formulas then give rise to a new estimator that we introduce
in Section V, where simulations also illustrate the estimator’s
performance.

B. Related Literature
The mutual information between the input and output of the

Gaussian channel is known to have an integral relation with the
MMSE, referred to in the literature as the I-MMSE relation.
This connection was made in the work of Guo, Shamai,
and Verdú in [1]. Extensions of the I-MMSE relation were
investigated in [9–17], and applications have been established,
e.g., in optimal power allocation [18] and monotonicity of non-
Gaussianness [19]. Our work is inscribed within this literature.

We introduce the PMMSE approximation of the MMSE,
derive new representations of distribution functionals in terms

5The exponent m+ 2 in the decay rate may be replaced with m+ 1 + "
for any " > 0, see [3, Section 3.2]
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of moments, and introduce estimators based on these new rep-
resentations. We note that utilizing higher-order polynomials
as proxies of the MMSE has appeared, e.g., in approaches
to denoising [20]. Works such as [21] and [22] show some
impossibility results for estimating the MMSE in the general
case. Recent work by Diaz et al. [23] gives lower bounds for
the MMSE via estimating by neural networks. Also, studying
smoothed distributions, e.g., via convolutions with Gaussians,
has generated recent interest in the context of information
theory [24, 25] and learning theory [26, 27].

At the heart of our work is the Bernstein approximation
problem, on which a vast literature exists within approxi-
mation theory. The original Bernstein approximation problem
extends Weierstrass approximation to the whole real line by
investigating whether polynomials are dense in L1(µ) for a
measure µ that is absolutely continuous with respect to the
Lebesgue measure. Works such as those by Carleson [28] and
Freud [29], and eventually the more comprehensive solution
given by Ditzian and Totik [30]—which introduces moduli of
smoothness, a natural extension of the modulus of continuity—
show that tools used to solve the Bernstein approximation
problem can be useful for the more general question of
denseness of polynomials in Lp(µ) for all p � 1 (see [31]
for a comprehensive survey). In particular, the case p = 2
has a close relationship with the Hamburger moment problem,
described next.

The Hamburger moment problem asks whether a countably-
infinite sequence of real numbers corresponds uniquely to the
moments of a positive Borel measure on R. A connection be-
tween this problem and the Bernstein approximation problem
is that if the Hamburger moment problem has a positive answer
for the sequence of moments of µ then polynomials are dense
in L2(µ), see [32]. In the context of information theory, the
application of the Bernstein approximation problem and the
Hamburger moment problem has appeared in [33].

The denominator of the PMMSE in Gaussian channels,
which is given by detMp

tX+N,n
, as well as the leading coef-

ficient of both the numerator and the denominator, detMX,n,
can be seen as generalizations of the Selberg integral. Denote

In(') =

Z

Rn+1

Y

0i<jn

(yi�yj)
2

nY

i=0

'(yi) dy0 · · · dyn. (26)

If ' is the PDF of a Beta distribution or a standard normal
distribution, then In(') is the Selberg integral or the Mehta
integral, respectively (both with parameter � = 1) [34]. For a
continuous random variable Y whose PDF is pY ,

detMY,n =
1

(n+ 1)!
In(pY ). (27)

The Vandermonde-determinant power
Q

i<j
(yi � yj)2 in the

integrand in (26) bears a close connection with the quantum
Hall effect [35, 36]. The connection arises via expanding
powers of the Vandermonde determinant and investigating
which of the ensuing monomials have nonzero coefficients.

We quantify the rate of convergence of the PMMSE to the
MMSE in Theorem 3, for which the key ingredient is the
bound in Lemma 9 on the derivatives of the conditional expec-
tation. The first-order derivative of the conditional expectation

in Gaussian channels has been treated in [37]. We note that
in parallel to this work the authors were made aware that the
higher-order derivative expressions in Proposition 3 were also
derived in [38]. We also extend the proofs for the MMSE
dimension in the continuous case as given in [7] to higher
dimensions.

Distribution functionals, such as mutual information, are
popular metrics for quantifying associations between data
(e.g., [39–41]), yet reliably estimating distributional functions
directly from samples is a non-trivial task. The naive route
of first estimating the underlying distribution is generally im-
practical and imprecise. To address this challenge, a growing
number of distribution functionals’ estimators have recently
been proposed within the information theory and computer
science communities (see, e.g., [42–46]). The estimators pro-
posed in this paper satisfy desirable properties, such as shift
invariance and scale resiliency, without the need to estimate
the underlying distributions.

C. Notation
Throughout, we fix a probability space (⌦,F , P ). For

q � 1, the Banach space Lq(P ) consists of all q-times
integrable real-valued random variables with norm denoted by
k · kq . The Borel probability measure induced by a random
variable Y is denoted by PY . The subspace Lq(PY ) ⇢ Lq(P )
consists of q-times integrable and �(Y )-measurable random
variables. The inner product of L2(P ) is denoted by h · , · i.
The Banach space Lq(R) consists of all q-times Lebesgue
integrable functions from R to itself, with norm denoted by
k · kLq(R). We say that Y has a moment-generating function
(MGF) if E[etY ] < 1 over some nonempty interval t 2

(��, �). We let supp(Y ) denote the support of Y . We denote
the cardinality of a set S by |S|, and say that Y has infinite
support if |supp(Y )| = 1. If E

⇥
Y 2n

⇤
< 1, we denote the

Hankel matrix of moments by MY,n :=
�
E
⇥
Y i+j

⇤�
0i,jn

.
We denote the random vector Y

(n) := (1, Y, · · · , Y n)T .
Note that MY,n is the expectation of the outer product of
Y

(n), i.e., MY,n = E
h
Y

(n)
�
Y

(n)
�T i

. Therefore, MY,n

is a rank-1 perturbation of the covariance matrix of Y
(n),

denoted ⌃Y (n) . We let Pn denote the collection of all
polynomials of degree at most n with real coefficients, and
we set Pn(Y ) := {q(Y ) ; q 2 Pn}. For n 2 N, we set
[n] := {0, 1, · · · , n}. Vectors are denoted by boldface letters,
in which case subscripted regular letters refer to the entries.
The n⇥n identity matrix is denoted by In. The closure of a set
S will be denoted by S. We use the shorthand Xk := E

⇥
Xk
⇤
,

and the notation Yk is defined analogously.

II. POLYNOMIAL MMSE

We give in this section a brief overview of the Polynomial
MMSE (PMMSE). The PMMSE, introduced in Definition 1,
can be characterized in two equivalent ways: it is the orthog-
onal projection onto subspaces of polynomials of bounded
degree, and it is also a natural generalization of the Linear
MMSE (LMMSE) to higher-degree polynomials. Recall that
standard results on orthogonal projections in Hilbert spaces
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(see, e.g., [3, Section 4.4]) yield that the minimum in (3) is
always attained, and that the polynomials c

T
Y

(n) represent
the same element of Pn(Y ) for all minimizers c of (3). In
other words, the PMMSE estimate En[X | Y ] as given by
Definition 1 is a well-defined element in Pn(Y ) ⇢ L2(PY ).6

Unlike the case of the MMSE, working with the PMMSE
is tractable and allows for explicit formulas. For instance,
the PMMSE in Gaussian channels is a rational function in
the SNR; more precisely, the formula for t 7! pmmse

n
(X |

p
tX +N) stated in Theorem 2 reveals that this mapping is a

rational function of t (where N ⇠ N (0, 1) is independent
of X). In addition, as shown in Theorem 1, we have the
strong convergence (i.e., in the strong operator topology)
of orthogonal projection operators En[ · | Y ] ! E[ · | Y ]
provided that polynomials in Y are dense in L2(PY ).

A. PMMSE Formula

We show next explicit PMMSE formulas. We build on
these formulas in the next section to prove the rationality
of t 7! pmmse

n
(X, t) stated in Theorem 2, which in turn

will simplify the proof of consistency of the estimators for
information measures introduced in Section V.

Lemma 1. Fix n 2 N, and let X and Y be random variables
such that E

⇥
X2
⇤
,E
⇥
Y 2n

⇤
< 1. We have that MY,n is

invertible if and only if |supp(Y )| > n. Further, if it is the
case that |supp(Y )| > n, then the PMMSE estimator is given
by

En[X | Y ] = E
h
XY

(n)
iT

M
�1
Y,n

Y
(n), (28)

and the PMMSE by

pmmse
n
(X | Y ) = E

⇥
X2
⇤
�E

h
XY

(n)
iT

M
�1
Y,n

E
h
XY

(n)
i
,

(29)
which then satisfy the relation

pmmse
n
(X | Y ) = E

⇥
X2
⇤
� E [XEn[X | Y ]] . (30)

Proof. See Appendix A-A.

To expound on the formulas given by Lemma 1, we in-
stantiate them next for the cases n 2 {1, 2}. By definition
of the PMMSE, these expressions recover the LMMSE and
“quadratic” MMSE. Polynomial regression is also shown
below to be an instantiation of the PMMSE.

Example 1. For n = 1, if E[X2],E[Y 2] < 1 and
|supp(Y )| > 1, we have from (28) that

E1[X | Y ] = (E[X],E[XY ])

✓
1 E[Y ]

E[Y ] E
⇥
Y 2
⇤
◆�1✓

1
Y

◆
.

(31)

6Uniqueness of the minimizing polynomial En[X | Y ] should not be
confused with the possible non-uniqueness of the vector c 2 Rn+1 in the
relation En[X | Y ] = cTY (n). For example, if Y is binary and n = 2, then
Y 2 = Y , so for any c0, c1, c2 2 R for which E2[X | Y ] = c0+c1Y +c2Y 2

we also have E2[X | Y ] = c0+(c1�1)Y +(c2+1)Y 2. In particular, there
is no unique quadratic p 2 P2 for which E2[X | Y ] = p(Y ). Nevertheless,
in the problems of interest to us, uniqueness of c is also attained (e.g., if Y
is continuous); in fact, c is unique if and only if |supp(Y )| > n holds.

Computing the matrix inverse and multiplying out, we obtain

E1[X | Y ] = E[X] +
cov(X,Y )

�2
Y

(Y � E[Y ]) , (32)

where cov(X,Y ) := E[XY ] � E[X]E[Y ] is the covariance
between X and Y. Formula (32) indeed gives the LMMSE
estimate. Via the relation in (30), we recover

pmmse1(X | Y ) = �2
X
�

cov(X,Y )2

�2
Y

= �2
X
· (1� ⇢2

X,Y
),

(33)
with ⇢X,Y := cov(X,Y )/(�X�Y ) the Pearson correlation
coefficient between X and Y (when �X 6= 0). Formula (33)
verifies that pmmse1(X | Y ) is the LMMSE.

Example 2. We will use the notation Yk := E
⇥
Y k
⇤

for short.
For n = 2, and assuming E[X2],E[Y 4] < 1 and |supp(Y )| >
2, Lemma 1 gives the quadratic E2[X | Y ] = ↵0

�
+ ↵1

�
Y +

↵2
�
Y 2 where

↵0 = (Y2Y4 � Y
2
3 )E[X] + (Y2Y3 � Y1Y4)E[XY ]

+ (Y1Y3 � Y
2
2 )E[XY 2] (34)

↵1 = (Y2Y3 � Y1Y4)E[X] + (Y4 � Y
2
2 )E[XY ]

+ (Y1Y2 � Y3)E[XY 2] (35)
↵2 = (Y1Y3 � Y

2
2 )E[X] + (Y1Y2 � Y3)E[XY ]

+ (Y2 � Y
2
1 )E[XY 2] (36)

and
� = Y2Y4 � Y

2
1Y4 � Y

3
2 � Y

2
3 + 2Y1Y2Y3. (37)

Note that � = detMY,2 6= 0 by Lemma 1. Relation (30) then
yields the formula

pmmse2(X | Y ) = E
⇥
X2
⇤
� ��1

2X

k=0

↵kE
⇥
XY k

⇤
. (38)

Example 3. Finding the PMMSE estimate can be seen as
a generalization of modeling via polynomial regression. The
goal of single-variable polynomial regression is to model a
random variable X as a polynomial in a random variable Y ,
i.e., X = �0 + �1Y + · · · + �nY n + " for a modeling-error
random variable " and constants �j to be determined from
data. Given access to samples {(xi, yi)}mi=1, this model leads
to the equation X = Y ��� + """, where X = (x1, · · · , xm)T ,
Y = (yj

i
)i2{1,··· ,m},j2[n], """ = ("1, · · · , "m)T where the "j are

samples from ", and ��� = (�0, · · · ,�n)T . It is assumed that
the number of distinct yi is strictly larger than n, so Y has
full column-rank. A value of ��� that minimizes k"""k is known
from polynomial regression to be ���T = X

T
Y (Y T

Y )�1.
This formula follows from the PMMSE estimate formula in
Lemma 1. Indeed, minimizing k"""k in polynomial regression
amounts to finding the PMMSE estimate En[U | V ], where
(U, V ) ⇠ Unif({(xi, yi)}mi=1). By the PMMSE formula in
Lemma 1, we have that

���T = E
h
UV

(n)
iT

M
�1
V,n

(39)

By definition of (U, V ), we also have that X
T
Y =

mE
⇥
UV

(n)
⇤T

and (Y T
Y )�1 = 1

m
M

�1
V,n

. Multiply-
ing the latter two equations together, we obtain ���T =
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X
T
Y (Y T

Y )�1 in view of (39). To sum up, the polynomial
regression approach solves the restricted problem of finding
the PMMSE En[X 0

| Y 0] when both X 0 and Y 0 are discrete
with PMFs that evaluate to rational numbers, i.e., when
the distribution of (X 0, Y 0) is uniform over a finite dataset
{(x0

i
, y0

i
)}m

i=1.

Remark 4. We note that En[ · | Y ] is not in general a
conditional expectation operator, i.e., there are some n 2 N
and Y 2 L2n(P ) such that for every sub-�-algebra ⌃ ⇢ F

we have En[ · | Y ] 6= E[ · | ⌃]. One way to see this is
that En[ · | Y ] might not preserve positivity. For example,
if X ⇠ Unif(0, 1) and Y = X + N for N ⇠ N (0, 1)
independent of X, we have that E1[X | Y ] = (Y + 6)/13
(see (32)). Therefore, the probability that E1[X | Y ] < 0
is PY ((�1,�6)) > 0. In other words, although X is non-
negative, E1[X | Y ] is not; in contrast, E[X | ⌃] is non-
negative for every sub-�-algebra ⌃ ⇢ F .

Remark 5. We may define the pointwise PMMSE estimate
En[X | Y = y] for y 2 supp(Y ) by the equation En[X | Y =
y] :=

P
j2[n] cjy

j where c = (c0, · · · , cn)T is any minimizer
in (3), and a direct verification shows that this makes En[X |

Y = y] well-defined.

Remark 6. The PMMSE, as we introduce it in Definition 1,
can be equivalently written in vector LMMSE notation as
pmmse

n
(X | Y ) = lmmse(X | Y

(n)). However, even when
the channel producing Y from X is additive, the same might
not be true of that producing Y

(n) from X . For example, if
Y = X +N , then Y 2 contains the cross term XN . For this
reason, we use the introduced PMMSE notation in place of
the vector LMMSE notation.

B. PMMSE Properties

We investigate next the behavior of the PMMSE under affine
transformations, and exhibit a few additional properties of the
PMMSE that parallel those of the MMSE. The behavior of
the PMMSE under affine transformations, shown in Lemma 2
below, has desirable implications on the moments-based ap-
proximations of differential entropy and mutual information
that we introduce in Section IV. For example, recall that
differential entropy satisfies h(aY + b) = h(Y ) + log |a| for
any a, b 2 R with a 6= 0. Because of Lemma 2, the same
property holds for the approximations hn (as given by (18)),
i.e., hn(aY + b) = hn(Y ) + log |a|.

For random variables X and Y such that E[X2] < 1

and constants ↵,�, �, � 2 R such that � 6= 0, one has
mmse(↵X + � | �Y + �) = ↵2mmse(X | Y ) (see, e.g., [1]).
This property of the MMSE holds because mmse( · | Y )
measures the distance to L2(PY ), which is a space that is
invariant under (injective) affine transformations of Y . A sim-
ilar reasoning yields an analogous property for the PMMSE.

Lemma 2. Let X and Y be two random variables and n 2 N,
and assume that both E

⇥
X2
⇤

and E
⇥
Y 2n

⇤
are finite. For any

↵,�, �, � 2 R such that � 6= 0, we have that pmmse
n
(↵X +

� | �Y + �) = ↵2pmmse
n
(X | Y ).

Proof. This property follows from the fact that Pn(aY +b)�
c = Pn(Y ) for a, b, c 2 R with a 6= 0.

We show next that the operator En[ · | Y ] satisfies several
properties analogously to the conditional expectation E[ · | Y ].
Note that the properties we derive for the PMMSE cannot
be straightforwardly deduced from analogous properties that
the conditional expectation satisfies, since En[ · | Y ] is not
in general a conditional expectation operator (see Remark 4).
Nevertheless, we have the following PMMSE operator prop-
erties.

Lemma 3. For n 2 N and random variables X,Y, and Z
such that �X ,�Y ,E[Z2n] < 1, the following hold:

(i) Linearity: En[aX+bY | Z] = aEn[X | Z]+bEn[Y | Z]
for any a, b 2 R.

(ii) Invariance: En[p(Z) | Z] = p(Z) for any p 2 Pn.
(iii) Idempotence: En [En [X | Z] | Z] = En[X | Z].
(iv) Contractivity: kEn[X | Z]k2  kXk2.
(v) Self-Adjointness: E [En[X | Z]Y ] = E [XEn[Y | Z]],

i.e., En[ · | Z] is self-adjoint.
(vi) Orthogonality: E[(X � En[X | Z])p(Z)] = 0 for p 2

Pn, and En[Y | Z] = 0 if and only if Y 2 Pn(Z)?.
(vii) Total expectation: E[En[X | Z]] = E[X].

(viii) Independence: If X and Z are independent, then En[X |

Z] = E[X].
(ix) Markov Chain: If X—Y —Z forms a Markov chain, then

En [E[X | Y ] | Z] = En[X | Z].

Proof. Properties (i)–(vi) follow immediately from the char-
acterization of En[ · | Z] as an orthogonal projection from
L2(P ) onto Pn(Z). Property (vii) follows from the first
part of (vi) via linearity of expectation by choosing the
constant polynomial p ⌘ 1. If X and Z are independent, then
X � E[X] 2 Pn(Z)?, so we deduce (viii) from the second
part of (vi) by choosing Y = X � E[X]. Finally, (ix) is a
restatement of X�E[X | Y ] 2 Pn(Z)?, which can be easily
seen to hold when X—Y —Z forms a Markov chain.

Remark 7. In view of properties (vii)–(viii), one may define
the unconditional version of En as En[X] := E[X] for X 2

L2(P ). With this definition, the total expectation property (vii)
becomes En[En[X | Z]] = En[X], and the independence
property (viii) becomes En[X | Z] = En[X] for independent
X and Z. This definition of En[X] is also consistent with
defining it as En[X | 1], because E[X] is the closest constant
to X in L2(P ).

We also show that the PMMSE estimate satisfies the “tower
property” similarly to the conditional expectation. This prop-
erty is relegated Proposition 6 in Appendix D-B, where we
extend our results on the PMMSE to multiple dimensions.

Next we show that, if X and Z are symmetric random
variables7 that are independent, then the polynomial in X+Z
closest to X is always of odd degree or is a constant.

Lemma 4. For k 2 N�1 and symmetric and independent
random variables X and Z satisfying E

⇥
Z2
⇤
,E
⇥
X4k

⇤
< 1

7A random variable Y is symmetric if PY �a = P�(Y �a) for some a 2 R.
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and |supp(X + Z)| > 2k, we have that E2k[X | X + Z] =
E2k�1[X | X + Z].

Proof. See Appendix A-B.

Finally, we show that the pointwise PMMSE estimate
En[X | Y = y] (see Remark 5) satisfies the following
convergence theorems.

Lemma 5 (Convergence Theorems). Fix a sequence of square-
integrable random variables {Xk}k2N, and let n 2 N and
the random variable Y be such that E

⇥
Y 2n

⇤
< 1 and

|supp(Y )| > n. For every y 2 R, the following hold:
(i) Monotone Convergence: If {Xk}k2N is monotone with

square-integrable pointwise limit X = limk!1 Xk, and
either Y � 0 or Y  0 holds almost surely, then

En[X | Y = y] = lim
k!1

En [Xk | Y = y] . (40)

(ii) Dominated Convergence: If there is a square-integrable
random variable M such that sup

k2N |Xk|  M, and if
the pointwise limit X := limk!1 Xk exists, then

En[X | Y = y] = lim
k!1

En [Xk | Y = y] . (41)

Proof. See Appendix A-C.

III. PMMSE IN GAUSSIAN CHANNELS

We focus in this section on the case Y =
p
tX + N

for t � 0 and N ⇠ N (0, 1) independent of X . We prove
rationality of the PMMSE (Theorem 2), uniform convergence
of the PMMSE to the MMSE, and a pointwise-convergence
rate bound (Theorem 3). Investigating the PMMSE in Gaussian
channels allows us to extrapolate—via the I-MMSE relation—
new formulas for differential entropy and mutual information
primarily in terms of moments in the next section, which
then pave the way for new estimators for these information
measures in Section V. We write

pmmse
n
(X, t) := pmmse

n
(X |

p
tX +N), (42)

mmse(X, t) := mmse(X |
p
tX +N), (43)

lmmse(X, t) := lmmse(X |
p
tX +N). (44)

Omitted proofs of results stated in this section can be found
in Appendix B (for Section III-A) and Appendix C (for
Section III-B).

A. Rationality of the PMMSE: Proof of Theorem 2
Fix an integer n > 0, and let X be a random variable

such that E[X2n] < 1. We denote the moments of X by
Xk := E

⇥
Xk
⇤
, where X0 := 1. We begin by rewriting the

PMMSE as

pmmse
n
(X, t) =

pmmse
n
(X, t) detMp

tX+N,n

detMp
tX+N,n

, (45)

where N ⇠ N (0, 1) is independent of X . With some algebra,
one can show that the above expresses the PMMSE as a
rational function.

Lemma 6. Fix n 2 N, N ⇠ N (0, 1), and a random variable
X that is independent of N and which satisfies E

⇥
X2n

⇤
< 1.

Over t 2 [0,1), the function t 7! detMp
tX+N,n

is a
polynomial of degree at most dn :=

�
n+1
2

�
, whose coefficient

of tdn is detMX,n, coefficient of t is �2
X
G(n + 2)dn, and

constant term is G(n+2), where G(n+2) :=
Q

n

k=1 k! is the
Barnes G-function. In addition, over t 2 [0,1), the function
t 7! pmmse

n
(X, t) detMp

tX+N,n
is a polynomial of degree

at most dn� 1, whose constant term is �2
X
G(n+2). Further-

more, each coefficient in either of these two polynomials stays
unchanged if X is shifted by a constant.

Proof. See Appendix B-A.

According to Lemma 6, we may define constants an,j
X

and
bn,j
X

by the polynomial identities

pmmse
n
(X, t) detMp

tX+N,n
=

X

j2[dn�1]

an,j
X

tj , (46)

detMp
tX+N,n

=
X

j2[dn]

bn,j
X

tj , (47)

and taking the ratio of these two polynomials yields the
following rational expression for the PMMSE

pmmse
n
(X, t) =

P
j2[dn�1] an,j

X
tj

P
j2[dn]

bn,j
X

tj
. (48)

Lemma 6 also derives a subset of the desired coefficients
values8
⇣
an,0
X

, bn,0
X

, bn,1
X

, bn,dn

X

⌘
=

�
�2
X
G(n+ 2), G(n+ 2),�2

X
G(n+ 2)dn, detMX,n

�
,

(49)

so it only remains to derive the value of an,dn�1
X

.

Remark 8. We give fully-expanded formulas for each of the
an,j
X

and bn,j
X

in Appendix B-B, expressing them as integer-
coefficient multivariate polynomials in the first 2n moments
of X . Examining these expressions gives a strengthening of
Theorem 2 in which the specific moments that could appear
in any of the an,j

X
or bn,j

X
are further restricted.

To complete the proof, we show that the value of the leading
term in the numerator in (48) is given by

an,dn�1
X

= detMX,n. (50)

We prove (50) next for continuous X , then generalize for every
random variable X .

Assume for now that X is continuous. In particular,
|supp(X)| = 1, so detMX,n 6= 0 according to Lemma 1.
In view of bn,dn

X
= detMX,n (see (49)), showing an,dn�1

X
=

detMX,n becomes equivalent to showing pmmse
n
(X, t) ⇠

1/t as t ! 1 (see (48)). In addition, the PMMSE is bounded
by the LMMSE and the MMSE,

mmse(X, t)  pmmse
n
(X, t)  lmmse(X, t). (51)

We have that lmmse(X, t) ⇠ 1/t as t ! 1. Further, the
assumption of continuity of X implies that mmse(X, t) ⇠ 1/t

8Note that Lemma 6 also shows that an,j
X+s = an,j

X and bn,`
X+s = bn,`

X
for each (j, `, s) 2 [dn � 1] ⇥ [dn] ⇥ R, which is a stronger result than
shift-invariance of the PMMSE (see Lemma 2); however, we do not utilize
this fact in the remainder of the proof.
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too [7]. Thus, by (51), we obtain pmmse
n
(X, t) ⇠ 1/t as

t ! 1. We have thus shown the desired equation (50) when
X is continuous.

We now return to the general case (i.e., not necessarily
continuous X). Note that the quantity an,dn�1

X
� detMX,n

is a multivariate polynomial in the first 2n moments of X .
By showing an,dn�1

X
= detMX,n in the previous paragraph

for every continuous X , we have established the vanishing
of a multivariate polynomial in the first 2n moments of
every continuous 2n-times integrable random variable X . We
show in Proposition 2 below that such a set of zeros is
in fact too large to be contained in the zero-locus of any
nonzero polynomial, i.e., that such a polynomial must vanish
identically (equivalently, an,dn�1

X
= detMX,n must hold even

when X is not continuous). For the proof of the latter claim,
we first derive a moment-approximation intermediate result.

Lemma 7. Fix m 2 N>0, set ` = bm/2c and µ0 = 1, and let
(µ1, · · · , µm) 2 Rm be such that (µi+j)(i,j)2[`]2 is positive
definite. For every " > 0, there exists a continuous random
variable Z such that

��E
⇥
Zk
⇤
� µk

�� < " for every k 2 [m].

Proof. Since (µi+j)(i,j)2[`]2 is assumed to be positive definite,
the solution to the truncated Hamburger moment problem im-
plies that there is a finitely-supported discrete random variable
W such that E

⇥
W k
⇤
= µk for each k 2 [2` + 1] (see [47,

Theorem 3.1, items (iii) and (v)]). Let U ⇠ Unif(0, 1) be inde-
pendent of W , and consider the continuous random variables
Z⌘ = W + ⌘U for ⌘ > 0. For each k 2 [m], Zk

⌘
! W k

in distribution as ⌘ ! 0+. Further, the set {Zk

⌘
}0<⌘1 is

uniformly integrable since |Zk

⌘
|  (|W | + 1)k 2 L1(P ).

By the Lebesgue-Vitali theorem [48, Theorem 4.5.4], we get
E[Zk

⌘
] ! E[W k] = µk for each k 2 [m] as ⌘ ! 0+. Hence,

for each " > 0, we may choose ⌘ > 0 small enough so that
|E[Zk

⌘
]�µk| < " for every k 2 [m], completing the proof.

In the other direction, if µ0 = 1 and (µ1, · · · , µ2`) 2 R2`

come from a continuous random variable Z, i.e., E
⇥
Zk
⇤
= µk

for each k 2 [2`], then it must be that the Hankel matrix H =
(µi+j)(i,j)2[`]2 is positive definite. Indeed, since |supp(Z)| =

1, we have that v
T
Hv =

���
P

k2[`] vkZ
k

���
2

2
> 0 for every

nonzero real vector v = (v0, · · · , v`)T .
For each integer m � 2, let Rm ⇢ Lm(P ) be

the set of all continuous random variables X such that
E[|X|

m] < 1. Consider the set Cm ⇢ Rm defined by
Cm = {(E[X], · · · ,E[Xm]) ; X 2 Rm}. We have the
following result.

Proposition 2. Let p be a polynomial in m variables with real
coefficients. If p (E[X], · · · ,E[Xm]) = 0 for every continuous
random variable X satisfying E[|X|

m] < 1, then p is the
zero polynomial.

Proof. See Appendix B-C.

Proposition 2 completes the proof of Theorem 2. Indeed,
since an,dn�1

X
�detMX,n = p

�
E[X], · · · ,E[X2n]

�
for some

multivariate polynomial p, and since we have shown above
that p vanishes over Cm, we conclude from Proposition 2
that p vanishes identically. In other words, the equation

an,dn�1
X

= detMX,n holds for any random variable X satis-
fying E[X2n] < 1 (regardless of whether X is continuous).9
This completes the proof of Theorem 2.

We note the following corollary of Theorem 2.

Corollary 1. For a random variable X satisfying E
⇥
X2n

⇤
<

1, we have that pmmse
n
(X, 0) = �2

X
, for every t > 0 we

have the inequalities

pmmse
n
(X, t) 

�2
X

1 + �2
X
t
<

1

t
, (52)

and the function t 7! pmmse
n
(X, t) is real-analytic at each

t 2 [0,1). If X also satisfies |supp(X)| > n, then as t ! 1

we have the asymptotic

pmmse
n
(X, t) =

1

t
+O(t�2). (53)

Proof. That pmmse
n
(X, 0) = �2

X
follows by setting t = 0

in (8) or in the definition of the PMMSE. The inequali-
ties in (52) follow since pmmse

n
(X, t)  lmmse(X, t) =

�2
X
/(1 + �2

X
t). In addition, a rational function is analytic

at each point in its domain. For each t � 0, |supp(
p
tX +

N)| = 1 where N ⇠ N (0, 1) independent of X . Therefore,
Mp

tX+N
is invertible for every t � 0, i.e., the denominator

in (8) is never zero for t � 0, so we infer analyticity of
pmmse

n
(X, t). Finally, if |supp(X)| > n then detMX,n 6=

0, so (53) follows from (8).

B. Convergence of PMMSE to MMSE: Proof of Theorem 3
In Appendix C-A we give the proof of the uniform conver-

gence in (13), namely, that as n ! 1 we have

sup
t�0

pmmse
n
(X, t)�mmse(X, t) & 0 (54)

for X having a MGF. In a nutshell, the proof follows from
Cantor’s intersection theorem in view of continuity of the
PMMSE and the MMSE in the SNR, t, and monotonicity of
the PMMSE in the polynomial degree, n.

In this subsection, we prove the asymptotic convergence rate
stated in (14). Specifically, let D denote the set of all PDFs or
PMFs p that are compactly-supported, even, and decreasing
over [0,1) \ supp(p). Suppose that X is continuous or
discrete, with PDF or PMF pX 2 D . We prove next that for
any fixed k, t � 0 we have

lim
n!1

nk
· (pmmse

n
(X, t)�mmse(X, t)) = 0. (55)

Let N ⇠ N (0, 1) be independent of X , and set Y = X +N .
The proof of the convergence rate in (14) relies on results on

the Bernstein approximation problem in weighted Lp spaces.
In particular, we consider the Freud case [31, Definition 3.3],
where the weight is of the form e�Q for Q of polynomial
growth, e.g., a Gaussian weight.

Definition 2 (Freud Weight, [31, Definition 3.3]). A function
W : R ! (0,1) is called a Freud Weight, and we write
W 2 F , if it is of the form W = e�Q for Q : R ! R
satisfying:

9In [8, Appendix L], an alternative proof of an,dn�1
X = detMX,n is

given via a self-contained algebraic argument.
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(1) Q is even,
(2) Q is differentiable, and Q0(y) > 0 for y > 0,
(3) y 7! yQ0(y) is strictly increasing over (0,1),
(4) yQ0(y) ! 0 as y ! 0+, and
(5) there exist �, a, b, c > 1 such that for every y > c we

have a 
Q

0(�y)
Q0(y)  b.

One may associate to each Freud weight W = e�Q its
Mhaskar–Rakhmanov–Saff numbers an(Q), defined next.

Definition 3. If Q : R ! R satisfies conditions (2)–(4) in
Definition 2, and if yQ0(y) ! 1 as y ! 1, then the n-
th Mhaskar–Rakhmanov–Saff (MRS) number an(Q) of Q is
defined as the unique positive root an of the equation

n =
2

⇡

Z 1

0

antQ0(ant)
p
1� t2

dt. (56)

Remark 9. The condition yQ0(y) ! 1 as y ! 1 in
Definition 3 is satisfied if e�Q is a Freud weight. Indeed,
in view of properties (2)–(3) in Definition 2, the quantity
` := limy!1 yQ0(y) is well-defined and it belongs to (0,1].
If ` 6= 1, then because limy!1 �yQ0(�y) = ` too, prop-
erty (5) would imply that a  1/�  b contradicting that
�, a > 1. Therefore, ` = 1.

For example, the Gaussian weight W (y) = e�y
2

is a Freud
weight for which Q(y) = y2, and it has the MRS numbers
an(Q) =

p
n since

R 1
0 t2/

p
1� t2 dt = ⇡

4 .
We apply the following Jackson-type theorem.

Theorem 7 ([31, Corollary 3.6]). Fix W 2 F , and let u be
an r-times continuously differentiable function such that u(r)

is absolutely continuous. Let an = an(Q) where W = e�Q,
and fix 1  s  1. Then, for some constant D(W, r, s) and
every n � max(r � 1, 1)

inf
q2Pn

k(q � u)WkLs(R)  D(W, r, s)
⇣an
n

⌘r
ku(r)WkLs(R).

(57)

We will apply the polynomial approximation result stated
in Theorem 7 for the L2(PY ) norm, i.e., we set s = 2, W =
p
pY , and u(y) = E[X | Y = y] in Theorem 7. To this end,

we will establish the following three facts:
(i) p

pY 2 F ,
(ii) an(�

1
2 log pY ) = OpX (

p
n), and

(iii) k(dr/dyr)E[X | Y = y]k2 = Or(1).
The former two facts are established in the following lemma.

Lemma 8. If X ⇠ p for some p 2 D , and N ⇠ N (0, 1)
is independent of X , then ps

X+N
is a Freud weight for any

fixed constant s > 0. Further, suppose M > 0 is such that
supp(p) ⇢ [�M,M ], and denote Q = � log pX+N . Then, for
each integer n � 1 and real s > 0, we have the bound

an(sQ) 
⇣
2M +

p
2
⌘p

n/s. (58)

Proof. See Appendix C-B.

Next, we derive a bound on k(dr/dyr)E[X | Y = y]k2 that
depends only on r. We will need the following result showing
that the higher-order derivatives of the conditional expectation
are given by the conditional cumulants.

Proposition 3 ([2, Proposition 1], [38, Proposition 7]). Fix
an integrable random variable X and an independent N ⇠

N (0, 1), and let Y = X + N . For each integer r � 1 and
real y, we have the formula

dr�1

dyr�1
E [X | Y = y] = r(X | Y = y), (59)

where r(X | Y = y) := @
r

@⌧r logE
⇥
e⌧X | Y = y

⇤��
⌧=0

is the
r-th conditional cumulant of X given {Y = y}.

Using Proposition 3, we obtain the following bound on
the second moment of the derivatives of the conditional
expectation via Hölder’s inequality.

Lemma 9. Fix an integrable random variable X and an
independent N ⇠ N (0, 1), let Y = X + N , and fix an
integer r � 2. Denote the constants qr := b(

p
8r + 9�3)/2c,

�r := (2rqr)!1/(4qr), and

Cr =
rX

k=1

(k � 1)!
kX

j=0

(�1)j
✓
r

j

◆⇢
r � j

k � j

�
, (60)

where
�
r

k

 
denotes Stirling’s number of the second kind.10 We

have the bound
����
dr�1

dyr�1
E[X | Y = y]

����
2

 2rCr min
�
�r, kXk

r

2rqr

�
.

(61)

Proof. See Appendix C-C.

Remark 10. For 2  r  7, we obtain the first few values of
qr as 1, 1, 1, 2, 2, 2, and we have qr ⇠

p
2r as r ! 1 (see

Remark 18 at the end of the proof in Appendix C-C for a
way to reduce qr). The first few values of Cr (for 2  r  7)
are given by 1, 1, 4, 11, 56, 267, and as r ! 1 we have the
asymptotic Cr ⇠ (r � 1)!/↵r for some constant ↵ ⇡ 1.146
(see [49]). The crude bound Cr < rr can also be seen by a
combinatorial argument.

We now apply the results of Lemmas 8–9 in Theorem 7 to
complete the proof of the convergence rate in (14). Fix a real
k � 0, set r = dk + 1e, and let n � max(r � 1, 1) be an
integer. We apply Theorem 7 for the conditional expectation
function u(y) = E[X | Y = y], the weight W =

p
pY , and

the exponent s = 2. By our choice of weight, kvWkL2(R) =
kv(Y )k2 for any Borel function v : R ! R; in particular,
this holds for the choice v(y) = q(y) � E[X | Y = y] for
any q 2 Pn, and also for v(y) = d

r

dyrE[X | Y = y]. Recall
from (4) that En[X | Y ] minimizes kq(Y )� E[X | Y k2 over
q(Y ) 2 Pn(Y ). Hence, with our choice of W and u, we have

kEn[X | Y ]� E[X | Y ]k2 = inf
q2Pn

k(q � u)Wk
L2(R) . (62)

By Lemma 8, W =
p
pY is a Freud weight, and we have a

bound an(Q) = OpX (
p
n) where W = e�Q. In addition, by

Lemma 9, we have a bound k
d
r

dyr E[X | Y = y]k2 = Or(1).

10The integer
�r
k

 
equals the number of unordered set-partitions of an r-

element set into k nonempty subsets. The integer Cr equals the number of
cyclically-invariant ordered set-partitions of an r-element set into subsets of
sizes at least 2, see sequence A032181 at [49].
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Therefore, by Theorem 7, we obtain a constant D0(pX , k)
(depending on D(

p
pY , r, 2), see (57)) such that

kEn[X | Y ]� E[X | Y ]k2 
D0(pX , k)

ndk+1e/2 . (63)

From (63), we conclude

nk
kEn[X | Y ]� E[X | Y ]k22 

D0(pX , k)2

n
. (64)

Further, by the orthogonality principle of E[X | Y ], we have
that (see (6))

pmmse
n
(X, 1)�mmse(X, 1) = kEn[X | Y ]� E[X | Y ]k22.

(65)
Hence, we conclude from (64) that

lim
n!1

nk (pmmse
n
(X, 1)�mmse(X, 1)) = 0. (66)

Finally, note that the premises of the theorem are also satisfied
by

p
tX for any t > 0, so we have

lim
n!1

nk

⇣
pmmse

n
(
p
tX, 1)�mmse(

p
tX, 1)

⌘
= 0. (67)

Also, one straightforwardly obtains from Lemma 2 that

pmmse
n
(X, t)�mmse(X, t)

=
1

t

⇣
pmmse

n
(
p
tX, 1)�mmse(

p
tX, 1)

⌘
.

(68)

Thus, we conclude from (67) the desired asymptotic result
that nk (pmmse

n
(X, t)�mmse(X, t)) ! 0 as n ! 1 for

any fixed reals k, t � 0 (note that the limit trivially holds for
t = 0 since then both the PMMSE and the MMSE are equal
to �2

X
).

Remark 11. The convergence rate proved in Theorem 3 is
an asymptotic one, and obtaining a finitary version hinges on
having explicit characterization of the constants D(W, r, s) in
Theorem 7. However, no explicit formula for D(W, r, s) exists
in the literature, to the best of our knowledge. To give more
details, note that we show in (63) a bound for finite n. Namely,
for k � 0, r = dk + 1e, and n � max(r � 1, 1) we have the
bound

kEn[X | X +N ]� E[X | X +N ]k2 
D0(pX , k)

nr/2
, (69)

where the constant D0(pX , k) can be chosen as, e.g., with
supp(pX) ⇢ [�M,M ],

D0(pX , k) = D(
p
pX+N , r, 2) ·

⇣
2
⇣p

2M + 1
⌘⌘r

· 2rCr min(�r,M
r).

(70)

Thus, to make explicit the constant of interest to us, D0(pX , k),
it suffices to have an explicit bound on D(

p
pX+N , r, 2).

However, this latter result, to the best of our knowledge, does
not exist in the literature; further, distilling an explicit form
for D(W, r, s) from existing proofs is a nontrivial matter.
The constants D(W, r, s) carry over from [31, Corollary 3.6],
a result that was first proved in [50] (specifically, it is the
combination of Theorem 1.2 and Corollary 1.8 in [50]).
The constant D(W, r, s) is a universal constant in the sense
that Theorem 7 is a Jackson-type theorem, i.e., it gives a
polynomial-approximation bound that holds uniformly for all

admissible functions u that are to be approximated (although
the weight W is fixed). Thus, making D(W, r, s) explicit is in
fact a significant improvement on the general approximation-
theoretic problem. Note that we do not need to utilize this
universality for our PMMSE convergence-rate analysis, since
we only need to apply the bound in Theorem 7 for the
specific choice of u being the conditional expectation func-
tion. This in particular implies the potential of the constant
D(

p
pX+N , r, 2) being improved for our purposes. Yet, we

note that the closely related Jackson-type theorem shown
in [51, Theorem 4.1.1] can potentially lead to explicit constants
more easily; this result derives inequality (57) in Theorem 7,
but with the MRS number an replaced with the Freud number
qn (the positive solution to qnQ0(qn) = n), and it is also
premised on a few assumptions on Q00. Finally, since we are
interested in guaranteeing convergence in n, the derivation
in Theorem 3 is sufficient for our PMMSE analysis. See
Remark 13 for further discussion.

Remark 12. Examining the proof of the asymptotic conver-
gence rate in Theorem 3 reveals that it is possible to show that
the same convergence rate holds beyond Gaussian channels.
Specifically, the following is a blueprint for showing that

lim
n!1

nk

⇣
pmmse

n
(X |

p
tX + Z)�mmse(X |

p
tX + Z)

⌘

= 0 (71)

for every k, t � 0, where Z a (non-necessarily Gaussian)
continuous noise that is independent of X:

1) Suppose that the random variable Y =
p
tX +Z is such

that the conditional PDFs pY |X=x form an exponential
family. From [52, Proposition 3], the higher-derivative
formulas d

r�1

dyr�1E[X | Y = y] = r(X | Y = y) (as in
Proposition 3) carries over to this case.

2) The proof of Lemma 9 carries over verbatim to obtain a
bound

��� d
r�1

dyr�1E[X | Y = y]
���
2
 2rCrkXk

r

2rqr .

3) Assume that pZ is a Freud weight, say pZ = e�Q for
Q(z) ⇠ z` as z ! 1 for some fixed ` > 1. Then, the
proof of Lemma 8 can be adapted to show that (if, e.g.,
pX 2 D , where D is as defined in the beginning of this
subsection) the PDF pY is also a Freud weight with MRS
number of order n1/`.

4) Applying the Bernstein approximation result stated in
Theorem 7, we obtain an upper bound on the approx-
imation error pmmse

n
(X | Y ) � mmse(X | Y ) of

order n�k(1�1/`) as n ! 1. As this is true for every
k � 0, we conclude the asymptotic rate of convergence
nk

· (pmmse
n
(X | Y )�mmse(X | Y )) ! 0 for every

k � 0 and every t � 0.

IV. NEW FORMULAS FOR INFORMATION MEASURES IN
TERMS OF MOMENTS

We apply the derived PMMSE results in the I-MMSE rela-
tion to express the differential entropy and mutual information
in terms of moments. For example, combining Theorems 2
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and 4 shows that for any continuous random variable X that
has a MGF, we may express differential entropy as (see (8))

h(X) =
1

2
lim
n!1

Z 1

0
�

1

2⇡e+ t
+

�2
X
G(n+ 2) + · · ·+ (detMX,n)tdn�1

G(n+ 2) + (�2
X
G(n+ 2)dn) t+ · · ·+ (detMX,n)tdn

dt,

(72)

where the coefficients of the integrand are all multivariate
polynomials in the moments of X . The starting point in
deriving this formula is the I-MMSE relation, which we briefly
review first.

Theorem 8 (I-MMSE relation, [1]). For any square-integrable
random variable X, an independent N ⇠ N (0, 1), and � > 0,
we have that

I(X;
p
�X +N) =

1

2

Z
�

0
mmse(X, t) dt. (73)

The I-MMSE relation directly yields the following formula
for differential entropy: for a square-integrable continuous
random variable X we have that [1]

h(X) =
1

2
log
�
2⇡e�2

X

�
�

1

2

Z 1

0

�2
X

1 + �2
X
t
�mmse(X, t) dt.

(74)
Since

R1
0

a

1+at
�

b

1+bt
dt = log a

b
for any a, b > 0, we may

simplify (74) to become

h(X) =
1

2

Z 1

0
mmse(X, t)�

1

2⇡e+ t
dt. (75)

We further extend the representation in (75) to higher dimen-
sions.

Lemma 10. If the m-dimensional continuous random vector
X has a finite covariance matrix, then

h(X) =
1

2

Z 1

0
mmse(X, t)�

m

2⇡e+ t
dt. (76)

Proof. See Appendix E-A.

The MMSE term in the expression for h(X) given in
Lemma 10 can be approximated by the PMMSE, resulting
in an expression for differential entropy as a function of
moments of X . From (74) and (75), and since mmse(X, t) 
lmmse(X, t), replacing the MMSE with the LMMSE gives
the upper bound on differential entropy h(X)

h(X)  h1(X) :=
1

2

Z 1

0
lmmse(X, t)�

1

2⇡e+ t
dt (77)

=
1

2
log
�
2⇡e�2

X

�
= h(N (0,�2

X
)), (78)

which is the maximum possible differential entropy for a
continuous random variable with a prescribed variance of �2

X
.

We take this a step further and introduce for each integer n � 1
(assuming only E[X2n] < 1) the functional

hn(X) :=
1

2

Z 1

0
pmmse

n
(X, t)�

1

2⇡e+ t
dt. (79)

By the monotonicity pmmse1(X, t) � pmmse2(X, t) �

· · · � mmse(X, t), we also have a monotone sequence

h1(X) � h2(X) � · · · � h(X) for a random variable
X having moments of all orders. As stated in Theorem 4,
which we prove next in the 1-dimensional case, if X also
has a MGF then hn(X) & h(X). The proof for arbitrary
dimensions requires extending our PMMSE results to higher
dimensions (which we give in Appendix D), hence we relegate
it to Appendix E-B.

Proof of Theorem 4 (for the 1-dimensional case). The func-
tions gn(t) := lmmse(X, t)� pmmse

n
(X, t) are nonnegative

and nondecreasing. By Theorem 3, gn % g pointwise, where
g(t) := lmmse(X, t)�mmse(t). Therefore, by the monotone
convergence theorem,

R1
0 gn(t) dt %

R1
0 g(t) dt. Adding and

subtracting 1/(2⇡e + t) to each integrand, and noting that
t 7! lmmse(X, t) � 1/(2⇡e + t) is absolutely integrable, we
conclude that hn(X) & h(X).

Remark 13. It remains a topic of ongoing investigation to
derive the convergence rate of the limit hn(X) & h(X) shown
in Theorem 4. Note that we may write the convergence error
as

hn(X)� h(X) =
1

2

Z 1

0
pmmse

n
(X, t)�mmse(X, t) dt.

(80)
Hence, the convergence rate of hn(X) & h(X) can be
shown if one has the convergence rate of pmmse

n
(X, t) &

mmse(X, t) as a function of t. However, the asymptotic
convergence rate bound we show in Theorem 3 does not
depend on the parameter t. As discussed in Remark 11, finer
characterization of the PMMSE convergence rate hinges on
having explicit bounds on the constant D(W, r, s) (see the
statement of Theorem 7). This constant is only given implicitly
in [50], which is likely due to the universality it enjoys,
i.e., the approximation error in Theorem 7 is controlled by
D(W, r, s) for a fixed W and every function u that is to be
approximated by polynomials. In our case, however, we need
another type of universality. Precisely, we need to control
the best-polynomial error when approximating the class of
functions ut(y) := E[X |

p
tX + N = y] in their respective

weighted Hilbert spaces with weights Wt := ppp
tX+N

for
every t � 0. To the best of our knowledge, no such universality
result where the weight can vary parametrically exists in the
literature.

The behavior of the PMMSE under affine transformations
shown in Lemma 2 implies that each approximation hn

behaves under (injective) affine transformations exactly as
differential entropy does.

Corollary 2. If X is a random variable satisfying E[X2n] <
1, and (↵,�) 2 R2 with ↵ 6= 0, then we have

hn(↵X + �) = hn(X) + log |↵|. (81)

In addition, if X and Y are independent with finite 2n-th
moments, then hn(X,Y ) = hn(X) + hn(Y ).

The moments-based formula for differential entropy shown
in Theorem 4 yields moments-based formulas for mutual infor-
mation in view of the expansions I(X;Y ) = h(Y )�h(Y | X)
in the discrete-continuous case and h(X,Y ) = h(X)+h(Y )�
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h(X,Y ) in the purely continuous case. The proof of these
formulas, stated in Theorem 5, is given in Appendix E-C.
We discuss here a few implications. If X is discrete and Y
is continuous, and if they satisfy the assumptions in the first
case of Theorem 5, then we denote the functionals

In(X;Y ) :=
1

2

Z 1

0
pmmse

n
(Y, t)

� EX

h
pmmse

n
(Y (X), t)

i
dt.

(82)

Recall that we denote by Y (x) the random variable obtained
from Y by conditioning on {X = x}. If X and Y are
continuous satisfying the premises of the second case of
Theorem 5, then we denote the functional

In(X;Y ) :=
1

2

Z 1

0
pmmse

n
(X, t) + pmmse

n
(Y, t)

� pmmse
n
((X,Y ), t) dt.

(83)

The statement of Theorem 5 is that In(X;Y ) ! I(X;Y ) as
n ! 1.

The functionals In enjoy properties that resemble those for
the mutual information. First, the behavior of the PMMSE
under affine transformations exhibited in Lemma 2 implies that
In(X;Y ) is invariant under injective affine transformations of
Y . Indeed, this can be seen immediately from the behavior of
hn in Corollary 2. Also, the approximations In(X;Y ) detect
independence exactly.

Corollary 3. Suppose X and Y are random variables satisfy-
ing the premises of Theorem 5 (in either case 1 or case 2). For
any constants (↵,�) 2 R2 with ↵ 6= 0, and for any n 2 N,
we have

In(X;↵Y + �) = In(X;Y ). (84)

In addition, if X and Y are independent, then In(X;Y ) = 0
for every n.

We give full expressions for the first two approximants of
mutual information that are generated by the LMMSE and
quadratic MMSE, in the discrete-continuous case.

Example 4. When n = 1, we obtain

I1(X;Y ) = log �Y � EX [log �Y (X) ] , (85)

which is the exact formula for I(X;Y ) when both Y is
Gaussian and each Y (x) (for x 2 supp(X)) is Gaussian;
indeed, in such a case, the MMSE is just the LMMSE.

Example 5. For n = 2, we obtain the formula

I2(X;Y ) =
1

6
log

b2,3
Y

Q
x2supp(X)

⇣
b2,3
Y (x)

⌘PX(x)

+
1

2

Z 1

0

a2,1
Y

t

2 + b2,1
Y

t+ b2,2
Y

t2 + b2,3
Y

t3

� EX

"
a2,1
Y (X) t

2 + b2,1
Y (X) t+ b2,2

Y (X) t2 + b2,3
Y (X) t3

#
dt

(86)

where we may compute for any R 2 L4(P )

b2,3
R

:=

������

1 E[R] E[R2]
E[R] E[R2] E[R3]
E[R2] E[R3] E[R4]

������
(87)

= �2
R
E[R4] + 2E[R]E[R2]E[R3]� E[R2]3 � E[R3]2,

(88)

which is strictly positive when |supp(R)| > 2, and

b2,2
R

= �4E[R]E[R3] + 3E[R2]2 + E[R4] (89)

b2,1
R

= 6�2
R

(90)

a2,1
R

= 4E[R]4 � 8E[R]2E[R2] +
8

3
E[R]E[R3] + 2E[R2]2

�
2

3
E[R4]. (91)

V. APPLICATION: ESTIMATION OF INFORMATION
MEASURES FROM DATA

The approximations introduced in the previous sections
naturally motivate estimators for information measures. These
estimators are based on (i) approximating moments with sam-
ple moments, then (ii) plugging the sample moments into the
formulas we have developed for information measures. Since
the formulas for information measures depend continuously on
the underlying moments, the resulting estimators are asymptot-
ically consistent. Moreover, the estimators also behave as the
target information measure under affine transformations, being
inherently robust to, for example, rescaling of the samples.

We estimate h(X) from i.i.d. samples X1, · · · , Xm as
hn(U) for U ⇠ Unif({X1, · · · , Xm}). More precisely, we
introduce the following estimator of differential entropy.

Definition 4. Let X,X1, · · · , Xm be i.i.d. continuous random
variables, and denote S = {Xj}

m

j=1. We define the n-
th estimate bhn(S) of the differential entropy h(X) as the
functional that takes the value hn(X) if the first 2n moments
of X are replaced by their respective sample moments. In
other words, with U ⇠ Unif(S), we set bhn(S) := hn(U).

The estimator of mutual information I(X;Y ) between a
discrete X and a continuous Y is defined next. We utilize
Theorem 5. We will need to invert the Hankel matrices of
moments (E[V i+j

| U = u])i,j2[n] for each u 2 supp(U),
where (U, V ) is uniformly distributed over the samples S =
{(Xj , Yj)}mj=1. These Hankel matrices are invertible if and
only if for each u 2 {Xj}

m

j=1 there are more than n distinct
samples (Xj , Yj) for which Xj = u; equivalently, the size
of the support set of the random variable V conditioned on
U = u exceeds n. Thus, we remove all values u that appear
at most n times in the samples S. In other words, we replace
S with the subset

S
(n) := {(X 0, Y 0) 2 S ; |{1  i  m ; Xi = X 0

}| > n} .
(92)

Definition 5. Let (X,Y ), (X1, Y1), · · · , (Xm, Ym) be i.i.d. 2-
dimensional random vectors such that X is discrete with finite
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support and Y is continuous, and denote S = {(Xj , Yj)}mj=1.
Define S

(1)
◆ S

(2)
◆ · · · by

S
(n) := {(X 0, Y 0) 2 S ; |{1  i  m ; Xi = X 0

}| > n} .
(93)

For each n � 1 such that S(n) is nonempty, let (U (n), V (n)) ⇠
Unif(S(n)). We define the n-th estimate bIn(S) of the mutual
information I(X;Y ) by bIn(S) := In(U (n);V (n)).

We show in this Appendix F how to implement the proposed
estimators numerically. In this section, we prove that the
estimators are consistent, and discuss their sample complexity.
We end the section by empirically comparing the estimators’
performance with other estimators from the literature.

A. Consistency

As sample moments converge almost surely to the moments,
and as our expressions for differential entropy and mutual
information depend continuously on the moments, the contin-
uous mapping theorem yields that the estimators of differential
entropy and mutual information introduced in the beginning
of this section are consistent.

Theorem 9. Let X be a continuous random variable that has
a MGF. Let {Xj}

1
j=1 be i.i.d. samples drawn according to PX .

Then, for every n 2 N, we have the almost-sure convergence

lim
m!1

bhn

�
{Xj}

m

j=1

�
= hn(X). (94)

Furthermore, we have that

h(X) = lim
n!1

lim
m!1

bhn

�
{Xj}

m

j=1

�
(95)

where the convergence in m is almost-sure convergence.

Proof. See Appendix G-A.

Corollary 4. Let X be discrete random variable with finite
support, and Y be a continuous random variable with a
MGF and satisfying h(Y ) > �1. Let {(Xj , Yj)}1j=1 be i.i.d.
samples drawn according to PX,Y . For every n 2 N, we have
the almost-sure convergence

lim
m!1

bIn
�
{(Xj , Yj)}

m

j=1

�
= In(X;Y ). (96)

Furthermore,

I(X;Y ) = lim
n!1

lim
m!1

bIn
�
{(Xj , Yj)}

m

j=1

�
(97)

where the convergence in m is almost-sure convergence.

Proof. See Appendix G-B.

B. Sample Complexity

When X is a continuous random variable of bounded
support, we may derive the following sample complexity of
the estimator of differential entropy in Definition 4 from
Hoeffding’s inequality.

Proposition 4. Fix a bounded-support continuous random
variable X 2 L2n(P ). There is a constant C = C(X,n)

such that, for all small enough ", � > 0, any collection S of
i.i.d. samples drawn according to PX of size

|S| >
C

"2
log

1

�
(98)

must satisfy

Pr
n���bhn(S)� hn(X)

��� < "
o
� 1� �. (99)

Proof. See Appendix H.

Remark 14. The sample complexity bound may be rearranged
as follows. With m = |S| denoting the sample size, we have
that

Pr

(���bhn(S)� hn(X)
��� �

C1

p
log(1/�)
p
m

)
 �, (100)

where C1 is a constant depending only on pX and n. There
are existing results on the sample complexity rates for es-
timators that are minimax optimal (see the analysis on the
modified Kernel Density Estimator, KDE, in [53]) or near-
optimal (see the analysis of the fixed k-nearest neighbor,
k-NN, estimator in [54]). These analyses show an upper

bound on the root mean-square error E
⇣
bh(S)� h(X)

⌘2�1/2

that is roughly of the order (m logm)�s/(s+d) + m�1/2

or m�s/(s+d) logm + m�1/2; here, X is a d-dimensional
random vector satisfying certain regularity assumptions that
are controlled by the smoothness parameter s 2 (0, 2], S is
a set of m i.i.d. samples drawn according to PX , and bh is
the modified KDE or k-NN estimator. When d = 1 and s < 1
(roughly, X is compactly supported and either does not vanish,
or does not vanish smoothly, at the boundary), then the first
terms in either of these bounds dominates the m�1/2 term. Our
bound in (100) contains the relevant asymptotic term m�1/2,
but it is given instead in terms of probability. Nevertheless,
it may be converted to a root mean-square bound of orderp
(logm)/m (by choosing � = 1/m) under the assumption

that the probability that the samples S are well-spaced is not
too small, since then one may bound bhn(S) almost surely
and apply the reverse Markov inequality. It is worth noting
that the sample complexity bound we give in Proposition 4
and (100) holds for all (compactly-supported) PDFs without
any regularity assumptions of any kind. However, we also note
that the constant in this bound is PDF-dependent.

From Proposition 4, we may also obtain a sample complex-
ity result for the estimate bIn in Definition 5.

Proposition 5. Fix a finitely-supported discrete random vari-
able X and a bounded-support continuous random variable
Y 2 L2n(P ). There is a constant C = C(X,Y, n) such that,
for all small enough ", � > 0, any collection S of i.i.d. samples
drawn according to PX,Y of size

|S| >
C

"2
log

1

�
(101)

must satisfy

Pr
n���bIn(S)� In(X;Y )

��� < "
o
� 1� �. (102)

Proof. See Appendix H-D.
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C. Numerical Results

We compare via synthetic experiments the performance
of our estimators11 against some of the estimators in the
literature.

Our proposed estimator for differential entropy is bh10, i.e.,
given samples S of X we estimate h(X) by bh10(S) as given
by Definition 4, for a large sample size (e.g., |S| > 600),
and it is bh5 for a smaller sample size (e.g., |S|  600).
We compare this estimator with two estimation methods: k-
Nearest-Neighbors (k-NN), and Kernel Density Estimation
(KDE). The k-NN-based method we compare against is as
provided by the Python package ‘entropy estimators’ [56],
which we will refer to in this section as KSG. The kernel
used for the KDE method is Gaussian, and it is obtained by
computing from a set of samples {Xj}

m

j=1 a kernel � via the
Python function ‘scipy.stats.gaussian kde’ [57]; then, the
estimate for differential entropy will be �1

m

P
m

j=1 log�(Xj).
The parameters for the KSG and the KDE estimators are the
default parameters, namely, k = 3 for the KSG estimator,
and the bandwidth for the KDE estimator is chosen according
to Scott’s rule (i.e., m�1/(d+4) for a set of m samples of a
d-dimensional random vector). We note that a more recent
iteration of KDE has been proposed by Han et al. in [53],
which improves the estimation for the non-smooth part of a
PDF.

The mutual information is estimated using bI5, i.e., given
samples S of (X,Y ) our estimate for I(X;Y ) will be bI5(S)
as given by Definition 5. This estimator is compared against
the partitioning estimator and the Mixed KSG estimator [46]
(which is a k-NN-based estimator); we utilize the implemen-
tation in [46] for both estimators. In particular, the parameters
are fixed throughout, namely, we utilize the parameters used
in [46] (k = 5 for the Mixed KSG, and 8 bins per dimension
for the partitioning estimator).

We perform 250 independent trials for each experiment and
each fixed sample size, then plot the absolute error as a per-
centage of the true value (except for the last experiment, where
the ground truth is 0, so we plot the absolute error) against
the sample size. The sample sizes chosen for our experiments
parallel those in [46], namely, {800, 1600, 2400, 3200, 4000}.
To illustrate the smaller sample size regime, we repeat our
Experiment 1 (estimating the differential entropy of Wigner’s
semicircle law) for sample sizes among {100, 200, 400, 600}.
Since the PMMSE theory we developed in this paper applies
only to light-tailed distributions (e.g., those with MGFs), we
restrict our experiments to such distributions.

We note that we also performed the mutual information
experiments for the Noisy KSG estimator based on the es-
timator in [42] (with noise strength � = 0.01 as in [46]), but
its performance was much worse than the other estimators, so
we do not include it in the plots.

Remark 15. There is a trade-off between the approximation
error hn(X)�h(X) and the estimation error |bhn(S)�hn(X)|
as the choice of the polynomial degree n varies. Indeed, as n
increases, the approximation error vanishes, since we know

11A Python code can be found at [55].

that hn(X) & h(X) by Theorem 4. On the other hand, the
estimation error is expected to increase for large n, since the
quality of estimating moments via sample moments deterio-
rates for higher moments and a fixed sample size. Evidently,
similar trade-offs can be observed for other estimators in the
literature, e.g., for the k-NN estimator one has bias-variance
trade-off as k varies. Proposition 4 gives a characterization of
the estimation error. To fully understand the best choice of n,
one would need both a finer characterization of the constant
C(X,n) in Proposition 4 (namely, its dependence on n), and
also a convergence rate refinement for hn(X) & h(X) in
Theorem 4 (see Remark 13). Note that the approximation error
can be efficiently numerically computed for a given X and n
(see Figure 2), and we report this value for the experiments we
perform in this section. These experiments show that n = 5
gives a favorable estimation error compared to state-of-the-
art estimators for moderate sample sizes (m  600) and
similarly n = 10 for larger support sizes (m > 600). We note
that the compute time it takes to estimate h(X) by bh5(S) is
comparable to that of both the k-NN and KDE estimators (in
the order of seconds on a commercial laptop), and the compute
time for bh10(S) is in the order two minutes.

Experiment 1. We estimate the differential entropy of a ran-
dom variable X distributed according to Wigner’s semicircle
distribution, i.e.,

pX(x) :=
2

⇡

p
1� x2 · 1[�1,1](x). (103)

The ground truth is h(X) ⇡ 0.64473 nats. We generate a
set S of i.i.d. samples distributed according to PX . The size
of S ranges from 800 to 4000 in increments of 800, and
for each fixed sample size we independently generate 250
such sets S (so we generate a total of 1250 sets of samples).
The differential entropy h(X) is estimated by three methods:
the moments-based estimator that we propose bh10, the k-NN-
based estimator implemented in [56] (which we refer to as
the KSG estimator), and the Gaussian KDE estimator. For the
proposed estimator, we use bh10(S) as an estimate for h(X).
For the KSG estimator, we use the default setting, for which
k = 3. We also use the default setting for the Gaussian KDE
estimator; in particular, the bandwidth is chosen according
to Scott’s Rule as m�1/(d+4) where m = |S| and d = 1
is the dimensionality of X. The percentage relative absolute
error in the estimation (e.g., 100 · |bh10(S)/h(X) � 1|, in %)
is plotted against the sample size for the three estimators
in Figure 3. The solid lines in Figure 3 are the means of
the errors, i.e., the mean in the 250 independent trials of
the percentage relative absolute error for each fixed sample
size in {800, 1600, 2400, 3200, 4000}. Via bootstrapping, we
infer confidence intervals, which are indicated by the shaded
areas around the solid lines in Figure 3. We see that the
proposed estimator outperforms the KSG estimator and the
KDE estimator for this experiment. We note that we have
the true value of the functional h10(X) ⇡ 0.64632 nats
(i.e., this is the value if we use the true first 20 moments
of X instead of the corresponding sample moments ob-
tained from i.i.d. samples). Hence, the approximation error is
h10(X)�h(X) ⇡ 0.00159 nats, i.e., h10(X) is approximately
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Figure 3. Estimation of differential entropy for a semicircle distribution as in
Experiment 1. The vertical axis shows the percentage relative absolute error in
the estimation, e.g., for the proposed estimator it is 100 · |bh10(S)/h(X)�1|
(%) where S is the set of samples and h(X) ⇡ 0.64473 nats is the ground
truth. The horizontal axis shows |S|, the sample size. The proposed estimator
bh10 outperforms the k-NN-based estimator (denoted KSG) and the Gaussian
KDE estimator for this experiment.

Figure 4. Estimation of differential entropy for a semicircle distribution as
in Experiment 1 for the small sample size regime (100  m  600). In
this regime, the plotted proposed estimator curve refers to the estimation of
differential entropy using bh5, i.e., n = 5. The proposed estimator outperforms
both the KSG and the KDE estimators for this experiment in the small sample
size regime too.

99.75% accurate when approximating the ground truth h(X)
(so 100 � 100 · (h10(X) � h(X))/h(X) ⇡ 99.75). For the
sake of illustrating the case of smaller sample sizes, we
further carry out this experiment with sample sizes in the set
{100, 200, 400, 600}. In this regime, we choose n = 5, i.e.,
our estimator is bh5. The results are illustrated in Figure 4.
We also notice that the proposed estimator outperforms both
the KSG and KDE estimators in this regime. In this case,
h5(X) ⇡ 0.6509 nats, so h5(X) � h(X) ⇡ 0.00617 nats,
giving h5(X) a 99.04% accuracy as an approximation for
h(X).

Experiment 2. We estimate the differential entropy h(X)
of a random vector X = (X1, X2)T where X1 and X2 are
i.i.d. distributed according to Wigner’s semicircle distribution,

Figure 5. Estimation of differential entropy for a 2-dimensional semicircle
distribution as in Experiment 2. The proposed estimator bh10 outperforms both
the KSG and the KDE estimators for this experiment.

namely, X has the PDF

pX(x, y) =
4

⇡2

p
(1� x2)(1� y2) · 1[�1,1]⇥[�1,1](x, y).

(104)
The ground truth is h(X) ⇡ 1.28946 nats. The same numer-
ical setup as in Experiment 1 is performed here. The results
are plotted in Figure 5, where we see a similar behavior to the
comparison in the 1-dimensional case; in particular, the pro-
posed estimator outperforms the KSG estimator and the KDE
estimator for this experiment. By independence of X1 and X2,
we know that h(X) = 2h(X1) and h10(X) = 2h10(X1).
Thus, we get the same relative approximation errors as in
Experiment 1, namely, h10(X) � h(X) ⇡ 0.00318 nats so
h10(X) is approximately 99.75% accurate in approximating
h(X).

Experiment 3. We estimate the differential entropy h(X) of
a Gaussian mixture X whose PDF is given by

pX(x) =
4X

i=1

pip
2⇡�2

i

e�(x�µi)
2
/(2�2

i ), (105)

where

p = (0.1, 0.2, 0.3, 0.4) (106)
µµµ = (�2, 0, 1, 5) (107)
��� = (1.5, 1, 2, 1). (108)

The ground truth is h(X) ⇡ 2.34249 nats. The same numerical
setup in Experiments 1 and 2 is used here. The results
are plotted in Figure 6. For this experiment, the proposed
estimator outperforms the KSG estimator, and it is essen-
tially indistinguishable from the KDE estimator. Note that
it is expected that the KDE estimator performs well in this
Gaussian mixture experiment, since it is designed specifically
to approximate densities by Gaussian mixtures. We have the
true value h10(X) ⇡ 2.34817 nats, so the approximation
error is h10(X) � h(X) ⇡ 0.00568 nats, making h10(X)
approximately 99.76% accurate in approximating the true
differential entropy h(X).
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Figure 6. Estimation of differential entropy for a Gaussian mixture as
in Experiment 3. The proposed estimator bh10 outperforms both the KSG
and KDE estimators for this experiment. The plot of the KDE estimator’s
performance is omitted to avoid cluttering, as it lies just above the line for
the proposed estimator but overlaps significantly with its uncertainty region.

Experiment 4. We estimate the differential entropy h(X) of a
random vector X that is a mixture of two Gaussians, namely,
X has the PDF

pX(x) =
1

4⇡
p

det(A)
e�(x�µµµ)TA�1(x�µµµ)/2

+
1

4⇡
p
det(B)

e�(x�⌫⌫⌫)TB�1(x�⌫⌫⌫)/2,
(109)

where we have the means µµµ = (�1,�1)T and ⌫⌫⌫ = (1, 1)T ,
and the covariance matrices

A =

✓
1 1/2

1/2 1

◆
(110)

and B = I2. The ground truth is h(X) ⇡ 3.22406
nats. The same numerical setup as in Experiments 1–3 is
performed here. The results are plotted in Figure 7. As
in the 1-dimensional case in Experiment 3, the proposed
estimator outperforms the KSG estimator for this experiment.
Further, the proposed estimator also outperforms the KDE
estimator in this 2-dimensional setting. We have the true
value h5(X) ⇡ 3.22846 nats, so the approximation error is
h5(X)� h(X) ⇡ 0.0044 nats, making h5(X) approximately
99.86% accurate in approximating the true differential entropy
h(X).

Experiment 5. We replicate the mixture-distribution part of
the zero-inflated Poissonization experiment of [46]. In detail,
we let Y ⇠ Exp(1), and let X = 0 with probability 0.15 and
X ⇠ Pois(y) given that Y = y with probability 0.85. The
quantity to be estimated is the mutual information I(X;Y ),
and the ground truth is I(X;Y ) ⇡ 0.25606 nats. We generate
a set of i.i.d. samples S according to the distribution PX,Y ,
where S has size in {800, 1600, 2400, 3200}. We estimate
I(X;Y ) via the proposed estimator by bI5(S), and we also
consider the estimates given by the Mixed KSG estimator
and the partitioning estimator, both as implemented in [46]
(including the parameters used therein). This estimation pro-
cess is repeated independently 250 times. The comparison

Figure 7. Estimation of differential entropy for a vector Gaussian mixture as
in Experiment 4. The proposed estimator bh10 outperforms both the KSG and
KDE estimators for this experiment.

of estimators’ performance is plotted in Figure 8. The solid
lines indicate the mean percentage relative absolute error,
and the shaded areas indicate confidence intervals obtained
via bootstrapping. We see in Figure 8 that the proposed
estimator outperforms the other considered estimators for this
experiment. We note that we have the true value I5(X;Y ) ⇡
0.24677 nats, which gives an approximation error |I5(X;Y )�
I(X;Y )| ⇡ 0.00929 nats, i.e., I5(X;Y ) is approximately
96.37% accurate in approximating I(X;Y ). We also test
the affine-transformation invariance property of the proposed
estimator. In particular, we consider estimating the mutual
information from the scaled samples S

0 obtained from S via
scaling the Y samples by 104, i.e.,

S
0 := {(A, 104B) ; (A,B) 2 S}. (111)

Plotted in Figure 9 is a comparison of the same estimators
using the same samples as those used to generate Figure 8, but
where Y is processed through this affine transformation. The
ground truth stays unchanged, and so do our estimator and the
partitioning estimator, but the Mixed KSG estimates change.
This experiment illustrates the resiliency of the proposed
estimator to affine transformations. In fact, the computed
numerical values in the modified setting by the proposed
estimator differ by no more than 10�15 nats from those
numerically computed in the original setting for each of the
1000 different sets of samples S; in theory, these pairs of
values are identical, and the less than 10�15 discrepancy is
an artifact of the computer implementation. Finally, we note
that although the setup is more general than the assumptions
we prove our results under in this paper (as X here is not
finitely supported), the proposed estimator outperformed the
other estimators.

Experiment 6. We test for independence under the following
settings. We consider independent X ⇠ Bernoulli(0.5) and
Y ⇠ Unif([0, 2]). We estimate I(X;Y ), whose true value is
I(X;Y ) = 0. We employ the same estimation procedure as
in Experiment 5. The results are plotted in Figure 10, which
shows that the proposed estimator predicted independence
more accurately than the other estimators for the same sample
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Figure 8. Percentage relative absolute error vs. sample size for unscaled
zero-inflated poissonization in Experiment 5. The proposed estimator bI5
outperforms both the k-NN-based estimator (denoted Mixed KSG) and the
partitioning estimator.

Figure 9. Percentage relative absolute error vs. sample size for the scaled
zero-inflated poissonization in Experiment 5. To generate these plots, we use
the same samples that yield the plots in Figure 8, but we process them through
an affine transformation. Specifically, each sample (A,B) is replaced with
(A, 104B). Then the samples are passed to the three estimators. We see that
the proposed estimator bI5 is resilient to scaling, i.e., the same performance
line in Figure 8 is observed here too. This is in contrast to the performance of
the Mixed KSG estimator. The partitioning estimator is resilient to scaling, but
its performance is not favorable in this experiment (with above 25% relative
absolute error).

size. Note that in this case the plot shows the absolute error (in
nats) rather than the relative absolute error, as the ground truth
is zero. In this case, the true value of I5(X;Y ) is exactly equal
to I(X;Y ), i.e., I5(X;Y ) is 100% accurate in approximating
I(X;Y ).

VI. CONCLUSION

We investigate in this work the interplay between infor-
mation measures and moments. Via developing the PMMSE,
we give polynomial approximations of the conditional ex-
pectation. The PMMSE in turn yields new formulas for the
differential entropy and mutual information in terms of the
underlying moments. These formulas gave rise to a new
estimator from data, where simply the moments are estimated
from sample moments. The estimator is illustrated in several
experiments that indicate a favorable performance as compared

Figure 10. Absolute error (in nats) vs. sample size for the independence
testing in Experiment 6. The proposed estimator bI5 outperforms the Mixed
KSG and the partitioning estimators in this experiment.

to the Gaussian KDE and k-NN estimators. For future work, it
is worth investigating the finitary version of the convergence
rate of the PMMSE to the MMSE, which would naturally
yield convergence rates for the functionals hn and In to
the differential entropy and mutual information, and these
in turn would tighten the sample complexity analysis. The
proposed estimator’s performance could also be compared
with more recently developed estimators. It is interesting also
to apply the PMMSE to the problem of estimating Fisher
information, which is tightly related to the MMSE via Brown’s
identity [58]. Finally, the I-MMSE relation has been extended
beyond Gaussian channels (e.g., Poisson channels [59]), and
it remains to be seen how the framework we develop in this
paper can shed light on those channels.

APPENDIX A
PROOFS OF SECTION II

A. PMMSE Formula: Proof of Lemma 1

The matrix MY,n is symmetric. We show that it is positive-
semidefinite, and that it is positive-definite if and only if
|supp(Y )| > n. For any d 2 Rn+1, we have the inequality

d
T
MY,nd = d

T E

Y

(n)
⇣
Y

(n)
⌘T �

d (112)

= E

d
T
Y

(n)
⇣
Y

(n)
⌘T

d

�
(113)

= E
���dT

Y
(n)
���
2
�
� 0, (114)

so MY,n is positive-semidefinite. Furthermore, the equality
case E

h��dT
Y

(n)
��2
i
= 0 holds if and only if

��dT
Y

(n)
��2 = 0,

and this latter relation holds if and only if dT
Y

(n) = 0. There-
fore, MY,n is positive-definite if and only if d

T
Y

(n) = 0
implies d = 0, i.e., Y

(n) does not lie almost surely in a
hyperplane in Rn+1. Finally, Y

(n) lies almost surely in a
hyperplane in Rn+1 if and only if |supp(Y )|  n. Therefore,
the desired result that MY,n is invertible if and only if
|supp(Y )| > n follows.



19

Next, assume that |supp(Y )| > n, so by what we have
shown above, MY,n is invertible. Let M1/2

Y,n
denote the lower-

triangular matrix in the Cholesky decomposition of MY,n,
i.e., M1/2

Y,n
is the unique lower-triangular matrix with positive

diagonal entries that satisfies M
1/2
Y,n

⇣
M

1/2
Y,n

⌘T
= MY,n, and

denote M
�1/2
Y,n

:=
⇣
M

1/2
Y,n

⌘�1
. We show that the entries of

the vector V = M
�1/2
Y,n

Y
(n) comprise an orthonormal basis

for Pn(Y ). We have that

E
⇥
V V

T
⇤
= E


M

�1/2
Y,n

Y
(n)
⇣
Y

(n)
⌘T ⇣

M
�1/2
Y,n

⌘T �
(115)

= M
�1/2
Y,n

MY,n

⇣
M

�1/2
Y,n

⌘T
= In+1. (116)

Hence, the entries of the vector V form an orthonormal subset
of Pn(Y ). Since {1, Y, · · · , Y n

} spans Pn(Y ), and M
�1/2
Y,n

is invertible, we conclude that the entries of V also span
Pn(Y ). Hence, the entries of V form an orthonormal basis
of Pn(Y ).

Then, the general expansion of orthogonal projections yields
the formula En[X | Y ] = E

⇥
XV

T
⇤
V . Substituting V =

M
�1/2
Y,n

Y
(n) we obtain (28). Then, expanding the PMMSE

formula pmmse
n
(X | Y ) = E[(X �En[X | Y ])2], we obtain

(29). The proof of the lemma is thus complete.
We note that an alternative proof of this lemma, once one

obtains the invertibility of MY,n, is via differentiation under
the integral sign with respect to the polynomial coefficients in
En[X | Y ] in the same way as the LMMSE is usually derived.

B. PMMSE for Symmetric random variables: Proof of
Lemma 4

We may assume that X and Z are symmetric around 0,
since Em[X+a | X+Z+ b] = a+Em[X | X+Z] for every
m 2 N and a, b 2 R. Then, E[Xj ] = E[Zj ] = 0 for every
odd j 2 N. Set Y = X + Z and n = 2k. Then, E[Y j ] = 0
for every odd j 2 N, and E[XY `] = 0 for every even ` 2 N.
Then, the coefficient of Y n in En[X | Y ] is

1

detMY,n

X

`2[n]
` odd

E
⇥
XY `

⇤ h
M

�1
Y,n

i

`,n

, (117)

where
h
M

�1
Y,n

i

`,n

denotes the (`, n)-th entry of M�1
Y,n

. Fix an

odd ` 2 [n]. Let T (`,n)
n denote the set of permutations of [n]

that send ` to n. We have that
h
M

�1
Y,n

i

`,n

= �

X

⇡2T
(`,n)
n

sgn(⇡)
Y

r2[n]\{`}

E
h
Y r+⇡(r)

i
.

(118)
We have that, for every ⇡ 2 T (`,n)

n ,
P

r2[n]\{`} r + ⇡(r) =
n(n+1)� `�n, which is odd. Therefore, for at least one r 2

[n] \ {`}, the integer r+⇡(r) is odd. Hence, E[Y r+⇡(r)] = 0,

implying that
h
M

�1
Y,n

i

`,n

= 0. As this is true for every odd

` 2 [n], we conclude that the coefficient of Y n in En[X | Y ]
is 0. In other words, we have E2k[X | X + Z] = E2k�1[X |

X + Z], and the proof is complete.

C. PMMSE Convergence Theorems: Proof of Lemma 5
Note that in (i) the sequences {XkY j

}k2N, for each fixed
j 2 [n], are monotone almost surely. Also, X0 is integrable, as
we are assuming that X0 2 L2(F). Note also that in (ii) each
sequence {XkY j

}k2N, for j 2 [n], is dominated by M |Y |
j ,

which is integrable since both M and Y j are square-integrable.
Thus, monotone convergence and dominated convergence both
hold in L1(F) for each of the sequences {XkY j

}k2N, where
j 2 [n] is fixed. In addition, the formula

En [Xk | Y = y] = E
h
XkY

(n)
iT

M
�1
Y,n

(1, y, · · · , yn)T

=
nX

j=0

cjE
⇥
XkY

j
⇤

(119)

expresses En [Xk | Y = y] as an R-linear combination of
{XkY j

}j2[n] (where the cj do not depend on k). Thus, the
convergence theorems in (i) and (ii) also hold.

Remark 16. A version of Fatou’s lemma that holds for a
subset of values of y is also derivable. Namely, suppose that
there is a random variable M 2 L1(F) such that XkY j

�

�M for every (k, j) 2 N ⇥ [n], and that lim infk!1 Xk is
square-integrable. Then, the same argument in the proof of
Lemma 5 shows that

lim inf
k!1

En[Xk | Y = y] � En


lim inf
k!1

Xk

���� Y = y

�
(120)

for every y 2 R such that M
�1
Y,n

(1, y, · · · , yn)T consists
of non-negative entries. For example, when n = 1, Fatou’s
lemma holds for y � E[Y ] if E[Y ]  0, and it holds for
y 2 [E[Y ],E[Y 2]/E[Y ]] if E[Y ] > 0.

APPENDIX B
RATIONALITY OF THE PMMSE (THEOREM 2): PROOFS OF

SECTION III-A
A. Proof of Lemma 6

We introduce the following functions. Recall that we denote
Xk = E[Xk]. For k 2 [n], we define the function vX,k :
[0,1) ! R at each t � 0 by

vX,k(t) := E

X
⇣p

tX +N
⌘k�

. (121)

For example, vX,0(t) = X1, vX,1(t) =
p
tX2, and vX,2(t) =

tX3 + X1 if X 2 L3(P ). Define the vector-valued function
vX,n : [0,1) ! Rn+1 via

vX,n := (vX,0, · · · , vX,n)
T . (122)

In view of Lemma 1, we may represent the PMMSE as

pmmse
n
(X, t) = E

⇥
X2
⇤
� vX,n(t)

T
M

�1p
tX+N,n

vX,n(t).
(123)

Therefore, defining FX,n : [0,1) ! [0,1) by

FX,n(t) := vX,n(t)
T
M

�1p
tX+N,n

vX,n(t), (124)

we have the equation

pmmse
n
(X, t) = E

⇥
X2
⇤
� FX,n(t). (125)



20

The functions FX,n are non-negative because the matrices
Mp

tX+N,n
are positive-definite (see Lemma 1). In view

of (125), PMMSE is fully characterized by FX,n, so we focus
on this function.

We introduce the following auxiliary polynomials, where R
is a random variable independent of N . For ` even, we set

eR,X,`(t) := E

R
⇣p

tX +N
⌘`�

, (126)

and for ` odd we set (for t > 0)

oR,X,`(t) := t�1/2E

R
⇣p

tX +N
⌘`�

. (127)

That eR,X,` and oR,X,` are polynomials in t can be seen as
follows. Recall that E[Nr] = 0 for odd r 2 N. If ` is even
then expanding the right hand side of (126) yields

eR,X,`(t) =
X

k2[`]
k even

✓
`

k

◆
tk/2E

⇥
RXk

⇤
E
⇥
N `�k

⇤
, (128)

whereas if ` is odd then the right hand side of (127) yields

oR,X,`(t) =
X

k2[`]
k odd

✓
`

k

◆
t(k�1)/2E

⇥
RXk

⇤
E
⇥
N `�k

⇤
. (129)

Both expressions on the right hand sides of (128) and (129) are
polynomials of degree at most b`/2c. Further, the coefficient
of tb`/2c in either polynomial is E

⇥
RX`

⇤
.

Let S[n] denote the symmetric group of permutations on the
n+1 elements of [n]. We utilize the following auxiliary result
on the parity of i+ ⇡(i) for a permutation ⇡ 2 S[n].

Lemma 11. For any permutation ⇡ 2 S[n], there is an even
number of elements i 2 [n] such that i+ ⇡(i) is odd, i.e., the
following is an even integer

�(⇡) := |{i 2 [n] ; i+ ⇡(i) is odd}| . (130)

Proof. The integer i + ⇡(i) is odd if and only if i and ⇡(i)
have opposite parities. Thus, the desired result follows from
the following more general characterization. For any partition
[n] = A [B, the cardinality of the set

I := {i 2 [n] ; (i,⇡(i)) 2 (A⇥B) [ (B ⇥A)} (131)

is even. The desired result follows by letting A and B be even
and odd integers, respectively, in [n]. Now, we show that the
general characterization holds.

Let A⇡ ⇢ A denote the subset of elements of A that get
mapped by ⇡ into B, i.e.,

A⇡ := {i 2 A ; ⇡(i) 2 B}, (132)

and define B⇡ similarly. Then, I = A⇡ [B⇡ is a partition. As
|A⇡| = |B⇡|, we get that |I| = 2|A⇡|, and the desired result
that |I| is even follows.

We show first that the function t 7! detMp
tX+N,n

is a
polynomial in t, and show that the coefficient of tdn in it is
detMX,n. By Leibniz’s formula,

detMp
tX+N,n

=
X

⇡2S[n]

sgn(⇡)
Y

r2[n]

E
⇣p

tX +N
⌘r+⇡(r)

�
.

(133)

With the auxiliary polynomials e1,X,` and o1,X,` as defined
in (126) and (127) (i.e., with R = 1), and � as defined in (130),
we may write
detMp

tX+N,n
=

X

⇡2S[n]

sgn(⇡)t�(⇡)/2
Y

i2[n]
i+⇡(i) odd

o1,X,i+⇡(i)(t)
Y

j2[n]
j+⇡(j) even

e1,X,j+⇡(j)(t),

(134)
thereby showing that detMp

tX+N,n
is a polynomial in t by

evenness of each �(⇡) (Lemma 11). Furthermore, for each
permutation ⇡ 2 S[n],

deg

0

@t�(⇡)/2
Y

i+⇡(i) odd

o1,X,i+⇡(i)(t)
Y

j+⇡(j) even

e1,X,j+⇡(j)(t)

1

A


�(⇡)

2
+
X

i+⇡(i) odd

i+ ⇡(i)� 1

2
+

X

j+⇡(j) even

j + ⇡(j)

2
(135)

=
1

2

nX

k=0

k + ⇡(k) =
n(n+ 1)

2
= dn. (136)

Therefore, we also have deg
⇣
detMp

tX+N,n

⌘
 dn. Finally,

taking the terms of highest degrees in
p
t in (133), we obtain

that the coefficient of tdn in detMp
tX+N,n

is
X

⇡2S[n]

sgn(⇡)
Y

r2[n]

Xr+⇡(r), (137)

which is equal to detMX,n by the Leibniz determinant
formula. This coefficient is non-negative because MX,n

is positive-semidefinite, and it is nonzero if and only if
|supp(X)| > n by Lemma 1.

The same approach can be used to show that the mapping
t 7! FX,n(t) detMp

tX+N,n
is a polynomial in t and to

characterize its leading coefficient. In this case, we utilize
eX,X,` and oX,X,` (i.e., R = X).

For each (i, j) 2 [n]2 let the subset T (i,j)
n ⇢ S[n] denote

the collection of permutations sending i to j, i.e.,

T (i,j)
n

:=
�
⇡ 2 S[n] ; ⇡(i) = j

 
. (138)

We define, for each (i, j) 2 [n]2, the cofactor functions c(i,j)
X,n

:

[0,1) ! R and the products d(i,j)
X,n

: [0,1) ! R by

c(i,j)
X,n

(t) :=
X

⇡2T
(i,j)
n

sgn(⇡)
Y

k2[n]
k 6=i

⇣
Mp

tX+N,n

⌘

k,⇡(k)
, (139)

d(i,j)
X,n

(t) := vX,i(t) c
(i,j)
X,n

(t) vX,j(t). (140)

Here,
⇣
Mp

tX+N,n

⌘

a,b

is the (a, b)-th entry of Mp
tX+N,n

,

i.e.,
⇣
Mp

tX+N,n

⌘

a,b

= E
⇣p

tX +N
⌘a+b

�
. (141)

Note that c(i,j)
X,n

(t) is the (i, j)-th cofactor of Mp
tX+N,n

.
The cofactor matrix CX,n : [0,1) ! R(n+1)⇥(n+1) of
t 7! Mp

tX+N,n
is given by

CX,n :=
⇣
c(i,j)
X,n

⌘

(i,j)2[n]2
. (142)
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We define the function DX,t : [0,1) ! R by

DX,n := v
T

X,n
CX,nvX,n. (143)

We have the following two relations. First, DX,n is the sum
of the d(i,j)

X,n

DX,n(t) =
X

(i,j)2[n]2

d(i,j)
X,n

(t). (144)

Second, by Cramer’s rule, and because symmetry of the matrix
Mp

tX+N,n
implies that its cofactor is equal to its adjugate,

we have the formula

M
�1p
tX+N,n

=
1

detMp
tX+N,n

CX,n. (145)

Therefore, we obtain

FX,n(t) =
DX,n(t)

detMp
tX+N,n

=

P
(i,j)2[n]2 d

(i,j)
X,n

(t)

detMp
tX+N,n

. (146)

Hence, it suffices to study the d(i,j)
X,n

.

We start with a characterization of the cofactors c(i,j)
X,n

.

Namely, we show that if i + j is even then c(i,j)
X,n

(t) is a
polynomial in t, and if i + j is odd then

p
tc(i,j)

X,n
(t) is a

polynomial in t. If i+ j is even, then

c(i,j)
X,n

(t)

=
X

⇡2T
(i,j)
n

sgn(⇡)t�(⇡)/2
Y

k2[n]
k+⇡(k) odd

o1,X,k+⇡(k)(t)
Y

r2[n], r 6=i

r+⇡(r) even

e1,X,r+⇡(r)(t),

(147)

whereas if i+ j is odd then

c(i,j)
X,n

(t)

=
X

⇡2T
(i,j)
n

sgn(⇡)t
�(⇡)�1

2

Y

k2[n], k 6=i

k+⇡(k) odd

o1,X,k+⇡(k)(t)
Y

r2[n]
r+⇡(r) even

e1,X,r+⇡(r)(t).

(148)

Thus, evenness of �(⇡) for each ⇡ 2 S[n] implies that each
c(i,j)
X,n

(t) is a polynomial when i + j is even and that each
p
tc(i,j)

X,n
(t) is a polynomial when i + j is odd. Further, the

degree of c(i,j)
X,n

for even i+ j is upper bounded by

�(⇡)

2
+

X

k+⇡(k) odd

k + ⇡(k)� 1

2
+

X

r+⇡(r) even ; r 6=i

r + ⇡(r)

2

=
n(n+ 1)

2
�

i+ j

2
,

(149)

whereas the degree of
p
tc(i,j)

X,n
and for odd i + j is upper

bounded by

�(⇡)

2
+

X

k+⇡(k) odd ; k 6=i

k + ⇡(k)� 1

2
+

X

r+⇡(r) even

r + ⇡(r)

2

=
n(n+ 1)

2
�

i+ j � 1

2
.

(150)

We note that both upper bounds are equal to

n(n+ 1)

2
�

�
i+ j

2

⌫
. (151)

Finally, considering the terms of highest order, we see that the
term X

⇡2T
(i,j)
n

sgn(⇡)
Y

k2[n]\{i}

Xk+⇡(k) (152)

is the coefficient of t
n(n+1)

2 �b i+j
2 c in c(i,j)

X,n
when i+ j is even

and in
p
tc(i,j)

X,n
when i+ j is odd.

Now, to show that DX,n is a polynomial, it suffices to check
that each d(i,j)

X,n
is. We consider separately the parity of i + j

and build upon the characterization of c(i,j)
X,n

. If i+ j is even,
so i and j have the same parity, then

E

X
⇣p

tX +N
⌘i�

E

X
⇣p

tX +N
⌘j�

is a polynomial in t of degree at most (i + j)/2 with the
coefficient of t(i+j)/2 being Xi+1Xj+1. If i + j is odd, so i
and j have different parities, then

t�1/2E

X
⇣p

tX +N
⌘i�

E

X
⇣p

tX +N
⌘j�

is a polynomial in t of degree at most (i+ j � 1)/2 with the
coefficient of t(i+j�1)/2 being Xi+1Xj+1.

Thus, from the characterization of c(i,j)
X,n

, regardless of the
parity of i+j we obtain that d(i,j)

X,n
(t) is a polynomial in t of de-

gree at most n(n+1)/2 = dn. Thus, from (146), the function
t 7! FX,n(t) detMp

tX+N,n
is a polynomial of degree at most

dn. Further, note that pmmse
n
(X, t)  lmmse(X, t) ! 0 as

t ! 1. Thus, writing

pmmse
n
(X, t) =

(X2 � FX,n(t)) detMp
tX+N,n

detMp
tX+N,n

(153)

and recalling that we have shown that detMp
tX+N,n

is a
polynomial in t of degree at most dn, we conclude that the
numerator t 7! pmmse

n
(X, t) detMp

tX+N,n
is a polyno-

mial of degree at most dn � 1.
Next, we derive the constant terms. Denote by an,0

X

and bn,0
X

the constant terms of the polynomials t 7!

pmmse
n
(X, t) detMp

tX+N,n
and t 7! detMp

tX+N,n
, re-

spectively. The formulas for an,0
X

and bn,0
X

follow simply by
setting t = 0. Indeed, if N ⇠ N (0, 1) is independent of X,
then

FX,n(0) = X
2
1 E

h
N

(n)
iT

M
�1
N,n

E
h
N

(n)
i
= X

2
1 (154)

because E
⇥
N

(n)
⇤

is the leftmost column of MN,n. Therefore,

an,0
X

= �2
X
detMN,n = �2

X
bn,0
X

. (155)

Further, by direct computation or using the connection be-
tween Hankel matrices and orthogonal polynomials [60, Ap-
pendix A] along with the fact that the probabilist’s Hermite
polynomials qk satisfy the recurrence xqk(x) = qk+1(x) +
kqk�1(x), it follows that detMN,n =

Q
n

k=1 k! = G(n + 2)
where G is the Barnes G-function.
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Next, we show the last statement in the lemma, namely, that
each coefficient in either of the two considered polynomials
stays unchanged if X is shifted by a constant. This property
will allow us to prove the claim that the coefficient of t
in detMp

tX+N,n
is �2

X
G(n + 2)dn. By what we have

shown thus far, we may define constants an,j
X

and bn,j
X

by
the polynomial identities

pmmse
n
(X, t) detMp

tX+N,n
=

X

j2[dn�1]

an,j
X

tj , (156)

detMp
tX+N,n

=
X

j2[dn]

bn,j
X

tj . (157)

Fix s 2 R. For any i.i.d. random variables Z,Z0, · · · , Zn,
we have that (see, e.g., [60, Appendix A])

detMZ,n =
1

(n+ 1)!
E

2

4
Y

0i<jn

(Zi � Zj)
2

3

5 . (158)

From equation (158), since (Zi + s) � (Zj + s) = Zi � Zj ,
we obtain that

detMZ+s,n = detMZ,n. (159)

Let N ⇠ N (0, 1) be independent of X. Then, for every t 2
[0,1), considering Z =

p
tX +N in (159), we obtain

detMp
t(X+s)+N,n

= detMp
tX+N,n

. (160)

As both sides of (160) are polynomials in t, we obtain
that bn,j

X+s
= bn,j

X
for every j 2 [dn]. Since we also have

pmmse
n
(X + s, t) = pmmse

n
(X, t), it follows that

t 7!
X

j2[dn�1]

an,j
X

tj = pmmse
n
(X, t)

X

j2[dn]

bn,j
X

tj (161)

is also invariant under shifting X, so we also obtain an,j
X+s

=
an,j
X

.
By the shift-invariance of bn,1

X
, we may assume that X1 =

0 (so X2 = �2
X

). Now, as each entry in Mp
tX+N,n

is a
polynomial in

p
t, we see that we may drop any term of order

(
p
t)3 or above for the sake of finding bn,1

X
(which is the

coefficient of t in detMp
tX+N,n

). In other words,

bn,1
X

= det

✓✓
i+ j

2

◆
�2
X
E
⇥
N i+j�2

⇤
t+ E

⇥
N i+j

⇤◆

(i,j)2[n]2
.

(162)
By Leibniz’s formula, we conclude

bn,1
X

= �2
X

X

⇡2S[n]

k2[n]

sgn(⇡)

✓
k + ⇡(k)

2

◆
E
h
Nk+⇡(k)�2

i
⇥

Y

i2[n]\{k}

E
h
N i+⇡(i)

i
.

(163)

But, for any non-negative integer m
✓
m

2

◆
E
⇥
Nm�2

⇤
=

m

2
E [Nm] . (164)

Therefore, (163) simplifies to

bn,1
X

=
�2
X

2

X

⇡2S[n]

k2[n]

sgn(⇡)(k + ⇡(k))
Y

i2[n]

E
h
N i+⇡(i)

i
. (165)

Evaluating the summation over k for each fixed ⇡, we obtain
that

bn,1
X

=

✓
n+ 1

2

◆
�2
X

X

⇡2S[n]

sgn(⇡)
Y

i2[n]

E
h
N i+⇡(i)

i
. (166)

Finally, by Leibniz’s formula for detMN,n, we obtain that

bn,1
X

=

✓
n+ 1

2

◆
�2
X
detMN,n, (167)

as desired. This completes the proof of Lemma 6.

B. Expanded Formulas for the Coefficients in (48)

As stated in Remark 8, we give here fully-expanded formu-
las for the coefficients an,j

X
and bn,j

X
, which will yield further

restrictions on which moments can appear in any of these
coefficients. Recall that we set Xk = E[Xk].

We have the expansion (see (133))

detMp
tX+N,n

=
X

⇡2S[n]

sgn(⇡)
Y

r2[n]

E
⇣p

tX +N
⌘r+⇡(r)

�

(168)
by the Leibniz formula. In the expressions that follow, we
denote the tuple k = (k0, · · · , kn). Expanding the powers
inside the expectation and computing the expectation, we get
a formula of the form

detMp
tX+N,n

=
X

⇡2S[n]

kr2[r+⇡(r)], 8r2[n]

t(k0+···+kn)/2Xk0 · · · Xkn�⇡;k,

(169)
where the �⇡;k are integers given by12

�⇡,k := sgn(⇡)
Y

r2[n]

✓
r + ⇡(r)

kr

◆
E[Nr+⇡(r)�kr ]. (170)

By Lemma 6, only the summands for which the integer k0 +
· · · + kn is even can be non-trivial, because detMp

tX+N,n

is a polynomial in t. Thus, we have

detMp
tX+N,n

=
X

j2[dn]

tj
X

⇡2S[n]

kr2[r+⇡(r)], 8r2[n]
k0+···+kn=2j

�⇡;kXk0 · · · Xkn .

(171)

12From this formula, one may deduce an alternative proof that t 7!
detMp

tX+N,n is a polynomial. The term �⇡;k is nonzero if and only if all
the differences r+⇡(r)�kr are even. Suppose, for the sake of contradiction,
that this is true for some fixed permutation ⇡ 2 S[n] and naturals k0, · · · , kn
for which k0+ · · ·+kn is odd. Then, there is an odd number of odd numbers
kr. But, by Lemma 11, there is an even number of odd numbers r + ⇡(r).
Therefore, there is an r 2 [n] for which r + ⇡(r) and kr have different
parities, contradicting evenness of r + ⇡(r)� kr.
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Because the coefficients bn,j
X

were defined by equality of
polynomials detMp

tX+N,n
=
P

j2[dn]
bn,j
X

tj (see (47)), we
obtain that for each j 2 [dn]

bn,j
X

=
X

⇡2S[n]

kr2[r+⇡(r)], 8r2[n]
k0+···+kn=2j

�⇡;kXk0 · · · Xkn . (172)

The coefficient an,j
X

may be expanded similarly to obtain the
following formula. Define the integers

�i,⇡,k,w,z =(�1)i+⇡(i)sgn(⇡)

✓
i

w

◆✓
⇡(i)

z

◆
E[N i�w]⇥

E[N⇡(i)�z]
Y

r2[n]\{i}

✓
r + ⇡(r)

kr

◆
E[Nr+⇡(r)�kr ],

(173)

and the restricted sums

si(k) =
X

r2[n]\{i}

kr. (174)

Then, we have the formula

an,j
X

=
X

⇡2S[n]

kr2[r+⇡(r)], 8r2[n]
k0+···+kn=2j

�⇡;k0,··· ,knX2Xk0 · · · Xkn

�

X

(i,⇡)2[n]⇥S[n]

(w,z)2[i]⇥[⇡(i)]
kr2[r+⇡(r)], 8r2[n]\{i}

w+z+si(k)=2j

�i,⇡,k,w,zXw+1Xz+1

Y

r2[n]\{i}

Xkr .

(175)

From the formulas for an,j
X

and bn,j
X

in (175) and (172), we
obtain the following restrictions on how they can contain any
of the moments of X . We need to define the following set of
homogeneous polynomials in the moments of X . We use the
notation ��� = (�1, · · · ,�m)T 2 Nm.

Definition 6. For (`,m, k) 2 N3, let ⇧`,m,k denote
the set of unordered partitions of ` into at most m
parts each of which not exceeding k, i.e., ⇧`,m,k :=�
��� 2 Nm ; k � �1 � · · · � �m, ���T1 = `

 
. We define the

set of homogeneous integer-coefficient polynomials with
weighted-degree ` and width at most m in the first k moments
X1, · · · ,Xk of X as

H`,m,k(X) :=

8
<

:
X

���2⇧`,m,k

c���

mY

i=1

X�i ; c��� 2 Z

9
=

; . (176)

If ⇧`,m,k = ;, we set H`,m,k(X) = Z.

Remark 17. An element q(X) 2 H`,m,k(X) will be an
integer linear combination of terms

Q
m

i=1 X�i . Each of these
terms is a product of at most m of the moments of X (hence
the terminology width). The highest moment that can appear
is Xk, because ��� 2 ⇧`,m,k. Suppose ⇧`,m,k 6= ;. Then,
each summand shares the property that

P
m

i=1 �i = `. Further,
looking at each Xj as an indeterminate of “degree” j, we may
view q(X) as a “homogeneous” polynomial in the moments of
X of “degree” `. In other words, for any constant c, q(cX) =

c`q(X); in fact, this homogeneity holds for each term in the
sum defining q,

Q
m

i=1 E
⇥
(cX)�i

⇤
= c`

Q
m

i=1 E
⇥
X�i

⇤
.

Example 6. The partitions of the integer 6 into at most 3
parts each of which not exceeding 4 are given by ⇧6,3,4 =
{(4, 2, 0), (4, 1, 1), (3, 3, 0), (3, 2, 1), (2, 2, 2)}. Note the re-
semblance between the elements of ⇧6,3,4 and the terms
appearing in the expression for detMX,2, namely, (see (37))

detMX,2 = X4X2 �X4X
2
1 �X

2
3 + 2X3X2X1 �X

3
2 . (177)

A term
Q3

i=1 X�i with �1 � �2 � �3 appears in detMX,2

if and only if ��� = (�1,�2,�3) is in ⇧6,3,4. In particular,
detMX,2 2 H6,3,4(X). Leibniz’s formula for the determi-
nant can be used to show that, in general, detMX,n 2

Hn(n+1),n+1,2n(X).

From (175) and (172), we have that the constants an,j
X

and
bn,j
X

satisfy

an,j
X

2 H2j+2,min(n,2j)+2, ⌧n(j) (X) (178)

bn,j
X

2 H2j,min(n+1,2j), 2min(n,j) (X), (179)

with H`,m,k(X) as given in Definition 6 and ⌧n(j) 

2min(n, j + 1) is defined by

⌧n(j) =

8
>><

>>:

2 if j = 0,
2j + 1 if 1  j  n

2 ,
2j if n+1

2  j  n,
2n if j > n.

(180)

C. Proof of Proposition 2

We proceed by induction on m. The case m = 1 follows
because then by assumption on p we have that p(k) = 0 for
every positive integer k as can be seen by taking X ⇠ N (k, 1),
but the only polynomial with infinitely many zeros is the zero
polynomial. Now, assume that the statement of the proposition
holds for every polynomial in m� 1 variables, where m � 2.

Fix a polynomial p in m variables, and assume that
p|Cm = 0. Regarding p as a polynomial in one of the variables
with coefficients being polynomials in the remaining m � 1
variables, we may write

p(u1, · · · , um) =
X

j2[d]

pj(u1, · · · , um�1)u
j

m
, (181)

for some polynomials p0, · · · , pd in m � 1 variables, where
d is the total degree of p. We show that p = 0 identically
by showing that each pj vanishes on Cm�1 and using the
induction hypothesis to obtain pj = 0 identically.

Fix µµµ = (µ1, · · · , µm�1) 2 Cm�1. Let µm be a variable,
and set ` = bm/2c. We have that ` = (m� 1)/2 if m is odd,
and ` = m/2 if m is even. Set H = (µi+j)(i,j)2[`]2 . If m is
even, then detH = ↵µm + � for some constants ↵,� 2 R
determined by µµµ, with ↵ = det(µi+j)(i,j)2[`�1]2 > 0. In the
case m is even, we set t = ��/↵, and in the case m is odd,
we set t = 0. Then, H is positive definite whenever µm > t.

For each integer k � 1 and real " > 0, Lemma 7 yields a
random variable Xk," 2 Rm satisfying

�k,`(") := E[X`

k,"
]� µ` 2 (�", ") (182)
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for each ` 2 {1, · · · ,m� 1} and

�k,m(") := E[Xm

k,"
]� (t+ k) 2 (�", "). (183)

Then, by assumption on p, for every " > 0 and k 2 N�1,
X

j2[d]

pj
⇣
µµµ+ (�k,`("))1`m�1

⌘
(t+ k + �k,m("))j = 0.

(184)

Taking the limit "! 0+, we deduce that
X

j2[d]

pj(µ1, · · · , µm�1)(t+ k)j = 0. (185)

Considering the left-hand side in (185) as a univariate poly-
nomial in k, and noting that the vanishing in (185) holds at
infinitely many values of k, we deduce that

pj(µ1, · · · , µm�1) = 0 (186)

for every j 2 [d]. This holds for every (µ1, · · · , µm�1) 2

Cm�1, i.e., the premise of the proposition applies to
each pj (namely, for every X 2 Rm�1 we have
pj(E[X], · · · ,E[Xm�1]) = 0). By the induction hypothesis,
we obtain pj = 0, as polynomials, for every j 2 [d]. Therefore,
p = 0, and the proof is complete.

APPENDIX C
CONVERGENCE OF THE PMMSE TO THE MMSE IN
GAUSSIAN CHANNELS (THEOREM 3): PROOFS OF

SECTION III-B

We derive in Appendix C-A the uniform convergence
sup

t�0 pmmse
n
(X, t) � mmse(X, t) & 0 stated in equa-

tion (13). Lemma 8 regarding Freud weights is derived in
Appendix C-B, and the bound on the higher-order derivatives
of the conditional expectation given in Lemma 9 is shown in
Appendix C-C.

A. Uniform Convergence of PMMSE to MMSE (13)

We start the proof by obtaining from Theorem 1 pointwise
convergence. Let N ⇠ N (0, 1) be independent of X . The
MGF of

p
tX + N exists (it is the product of the MGFs

of
p
tX and N ) and this implies that

p
tX + N satisfies

Carleman’s condition [4, Sec. 4.2]. Hence, by Theorem 1,
we have limn!1 pmmse

n
(X, t) = mmse(X, t) pointwise for

each fixed t � 0. Now, we show that the convergence is in
fact uniform in t.

For each n 2 N and t 2 [0,1), write gn(t) :=
pmmse

n
(X, t)�mmse(X, t). We will show that

lim
n!1

sup
t2[0,1)

gn(t) = 0. (187)

The limit pmmse
n
(X, t) & mmse(X, t) as n ! 1 says that

gn(t) & 0 as n ! 1 for every fixed t � 0. In addition,
the asymptotics given in Corollary 1 imply that for each fixed
n 2 N, gn(t) ! 0 as t ! 1. Note that {gn}n2N is a pointwise
decreasing sequence of nonnegative functions. We finish the
proof via Cantor’s intersection theorem.

Fix " > 0. For each n 2 N, let C",n = g�1
n

([",1)), where
g�1
n

denotes the set-theoretic inverse. As {gn}n2N is decreas-
ing, C",1 ◆ C",2 ◆ · · · is decreasing too. As each gn is contin-
uous, each C",n is closed. Further, limt!1 g1(t) = 0 implies
that C",1 is bounded, hence each C",n is bounded. Thus, each
C",n is compact. But, the intersection

T
n2N C",n is empty,

for if t0 were in the intersection then lim infn!1 gn(t0) � "
violating that limn!1 gn(t0) = 0. Hence, by Cantor’s inter-
section theorem, it must be that the C",n are eventually empty,
so there is an m 2 N such that sup

t2[0,1) gn(t)  " for every
n > m. This is precisely the uniform convergence in (187),
and the proof is complete.

B. Proof of Lemma 8

Write Y = X + N and pY = e�Q. To see that ps
Y

is a
Freud weight, it suffices to show that pY is a Freud weight,
since it can be easily seen that the conditions in Definition 2
hold for ps

Y
if they hold for pY . First, we note that Q0(y) is

equal to E[N | Y = y].

Lemma 12. Fix a random variable X and let Y = X + N
where N ⇠ N (0, 1) is independent of X. Writing pY = e�Q,
we have that Q0(y) = E[N | Y = y].

Proof. We have that pY (y) = E[e�(y�X)2/2]/
p
2⇡. Differ-

entiating this equation, we obtain that p0
Y
(y) = E[(X �

y)e�(y�X)2/2]/
p
2⇡, where the exchange of differentiation

and integration is warranted since t 7! te�t
2
/2 is bounded.

Now, Q = � log pY , so Q0 = �p0
Y
/pY , i.e.,

Q0(y) = y �
E[Xe�(y�X)2/2]

E[e�(y�X)2/2]
= y � E [X | Y = y] . (188)

The proof is completed by substituting X = Y �N.

In view of Lemma 12, that p is even and non-increasing over
[0,1) \ supp(p) imply that Q satisfies conditions (1)–(4) of
Definition 2. It remains to show that property (5) holds. To this
end, we show that if supp(p) ⇢ [�M,M ] and � = M + 2,
then for every y > M + 4 we have that

1 <
M2 + 5M + 8

2(M + 2)


Q0(�y)

Q0(y)


M2 + 7M + 8

4
. (189)

First, since Q0(y) = y�E[X | Y = y] (see (188)), we have the
bounds y�M  Q0(y)  y+M for every y 2 R. Therefore,
y > M and � > 1 imply that

�y �M

y +M


Q0(�y)

Q0(y)

�y +M

y �M
. (190)

Further, since y > M + 4 and � = M + 2, we have

M2 + 5M + 8

2(M + 2)
< ��

M(M + 3)

y +M
=
�y �M

y +M
(191)

and
�y +M

y �M
= �+

M(M + 3)

y �M


M2 + 7M + 8

4
. (192)

The fact that 1 < M
2+5M+8
2(M+2) follows since the discriminant of

M2 + 3M + 4 is �7 < 0. Therefore, pY is a Freud weight.
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Next, we derive the bound on an(sQ) stated in (58). By
definition of an, we have that an(sQ) = an/s(Q). Thus, it
suffices to show an(Q)  (2M +

p
2)
p
n. By Lemma 12,

Q0(y) = E[N | Y = y] = y � E[X | Y = y]. (193)

Therefore X  M implies that, for any constant z � 0, we
have

Z 1

0

ztQ0(zt)
p
1� t2

dt =
⇡

4
z2 � z

Z 1

0

t
p
1� t2

E
h
Xe�(X�zt)2/2

i

E
⇥
e�(X�zt)2/2

⇤ dt

(194)

�
⇡

4
z2 �Mz. (195)

We have ⇡z2/4 � Mz > n for z = (2M +
p
2)
p
n. Since

y 7! yQ0(y) is strictly increasing over (0,1) (condition (3)
of Definition 2), we conclude that an(Q)  (2M +

p
2)
p
n.

This completes the proof of Lemma 8.

C. Proof of Lemma 9

We use the formula of the conditional expectation deriva-
tive given in Proposition 3, with the conditional cumulant
being expanded in terms of conditional moments using Bell
polynomials, then apply Hölder’s inequality to each ensuing
summand. We use the following notation. The set of all finite-
length tuples of non-negative integers is denoted by N⇤. For
every integer r � 2, let ⇧r be the set of unordered integer
partitions r = r1 + · · · + rk of r into integers rj � 2. We
encode ⇧r via a list of the multiplicities of the parts as

⇧r := {(�2, · · · ,�`) 2 N⇤ ; 2�2 + · · ·+ `�` = r} . (196)

In (196), ` � 2 is free, and trailing zeros are ignored (i.e.,
�` > 0). For a partition (�2, · · · ,�`) = ��� 2 ⇧r having m =
�2 + · · ·+ �` parts, we denote

c��� :=
1

m

✓
m

�2, · · · ,�`

◆✓
r

2, · · · , 2| {z }
�2

; · · · ; `, · · · , `| {z }
�`

◆
(197)

and e��� := (�1)m�1c���. Set C 0
r

:=
P

���2⇧r
c���. For each

(y, k) 2 R⇥ N, denote f(y) := E[X | Y = y] and

gk(y) := E
h
(X � E[X | Y ])k | Y = y

i
. (198)

For ` � 2 and (�2, · · · ,�`) = ��� 2 N`�1, denote g
��� :=Q

`

i=2 g
�i
i

, with the understanding that g0
i
= 1. Using Propo-

sition 3, and expanding r(X | Y = y) in terms of the
conditional moments E[Xk

| Y = y], we obtain (see [2,
Proposition 1])

f (r�1) =
X

���2⇧r

e���g
���. (199)

Fix (�2, · · · ,�`) = ��� 2 ⇧r. By the generalization of
Hölder’s inequality stating k 1 · · · kk1 

Q
k

i=1 k ikk, we
have that

���g���(Y )
���
2

2
=

������

Y

�i 6=0

g2�i
i

(Y )

������
1



Y

�i 6=0

���g2�i
i

(Y )
���
s

(200)

where s is the number of nonzero entries in ���. By Jensen’s
inequality for conditional expectation, for each i such that
�i 6= 0, we have that

���g2�i
i

(Y )
���
s

 kX � E[X | Y ]k2i�i
2i�is

. (201)

Now, r =
P

`

i=2 i�i �
P

s+1
i=2 i =

(s+1)(s+2)
2 � 1, so we have

that s2 + 3s� 2r  0, i.e., s  qr. Further, i�i  r for each
i. Hence, monotonicity of norms and inequalities (200) and
(201) imply the uniform (in ���) bound

���g���(Y )
���
2
 kX � E[X | Y ]kr2rqr . (202)

Observe that kX � E[X | Y ]kk  2min
�
(k!)1/(2k), kXkk

�

(see [12]). Therefore, applying the triangle inequality in (199)
we obtain

���f (r�1)(Y )
���
2


X

���2⇧r

c���
���g���(Y )

���
2

(203)

 2rC 0
r
min

�
�r, kXk

r

2rqr

�
, (204)

where �r = (2rqr)!1/(4qr).
It only remains then to note that C 0

r
= Cr. The integer c���

(as defined in (197)) can be easily seen to be equal to the
number of cyclically-invariant ordered set-partitions of an r-
element set into m = �2+· · ·+�` subsets where, for each k 2

{2, · · · , `}, exactly �k parts have size k. Hence, the integer
C 0

r
equals the total number of cyclically-invariant ordered set-

partitions of an r-element set into subsets of sizes at least 2,
which is given by sequence A032181 at [49]. The formula for
C 0

r
stated in [49] coincides with our definition of Cr in (60)

in the statement of the lemma, from which we obtain C 0
r
=

Cr. Finally, since the formula in [49] is stated without proof,
we provide a proof here for completeness. Using the notation
of [61], we have that

C 0
r
=

rX

k=1

(k � 1)!

⇢
r

k

�

�2

(205)

where
�
r

k

 
�2

denotes the number of partitions of an r-element
set into k subsets each of which contains at least 2 elements
(note that there are (k�1)! cyclically-invariant arrangements of
k parts). The exponential generating function of the sequence
r 7!

�
r

k

 
�2

is (ex � 1� x)k/k!. Now, we may write

(ex � 1� x)k =
X

a+bk

✓
k

a, b

◆
(�1)k�axb

X

t2N

(ax)t

t!
. (206)

Therefore, the coefficient of xr in (ex � 1� x)k/k! is

1

r!

⇢
r

k

�

�2

=
X

a+bk

(�1)k�aar�b

a!b!(k � a� b)!(r � b)!
(207)

=
1

r!

kX

b=0

✓
r

b

◆ k�bX

a=0

(�1)k�a
ar�b

a!(k � a� b)!
(208)

=
1

r!

kX

b=0

✓
r

b

◆⇢
r � b

k � b

�
(�1)b, (209)

which when combined with (205) gives C 0
r
= Cr in view

of (60). This completes the proof of the lemma.
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Remark 18. A closer analysis reveals that i�is in (201) cannot
exceed �r := t2

r
(tr +1/2) where tr := (

p
6r + 7� 1)/3. For

r ! 1, we have rqr/�r ⇠ 33/2/2 ⇡ 2.6. The reduction
when, e.g., r = 7, is from rqr = 14 to �r = 10.

APPENDIX D
GENERALIZATIONS TO ARBITRARY BASES AND MULTIPLE

DIMENSIONS

We extend our approximation results for the conditional ex-
pectation from the polynomial-basis setting to arbitrary bases,
and from conditioning on random variables to conditioning
on arbitrary �-algebras. An extension to the multidimensional
case is also presented, which straightforwardly yields an
approximation theorem for differential entropy of random
vectors. Another byproduct of the multidimensional general-
ization is the expression for mutual information between two
continuous random variables completely in terms of moments,
as given in Theorem 5.

A. Arbitrary Bases and �-Algebras
Up to here, our exposition dealt with the polynomial basis

of L2(PY ). However, our results can be extended to a more
general setup. Recall that we have defined

MY,n = E

Y

(n)
⇣
Y

(n)
⌘T �

, (210)

and derived

E[X | Y ] = lim
n!1

E
h
XY

(n)
i
M

�1
Y,n

Y
(n) (211)

in Theorem 1 under two requirements: Y satisfies Carleman’s
condition, and |supp(Y )| = 1. Along similar lines, we derive
a generalization where the set of polynomials of Y is replaced
with any linearly-independent subset of L2(⌃) having a dense
span, where ⌃ ⇢ F is any �-algebra, and L2(⌃) denote the
subset of L2(P ) consisting of ⌃-measurable random variables.
Denseness replaces Carleman’s condition, while linear inde-
pendence replaces the infinite-support requirement.

Theorem 10. Fix a �-algebra ⌃ ⇢ F and a set { k}k2N =
S ⇢ L2(⌃). For each n 2 N, define the random vector    (n) =
( 0, · · · , n)T and the matrix of inner products

MS,n := E

   (n)

⇣
   (n)

⌘T �
. (212)

If S is linearly independent and span(S) is dense in L2(⌃),
then

E[X | ⌃] = lim
n!1

E
h
X   (n)

iT
M

�1
S,n

   (n) (213)

in L2(⌃) for any random variable X 2 L2(P ).

For the proof of Theorem 10, we will need the following
formula for the closest element in a finite-dimensional sub-
space of L2(P ) to a random variable X 2 L2(P ), which
will also be used for the extension of our results to random
vectors later in this appendix. The following formula is simply
an instantiation of the fact that, in a separable Hilbert space,
the orthogonal projection onto a closed subspace is the unique
closest element.

Lemma 13. For any fixed finite-dimensional subspace V ⇢

L2(P ) having a basis {V0, V1, · · · , Vn}, denoting V =
(V0, V1, · · · , Vn)T , we have that for every X 2 L2(P )

E [XV ]T E
⇥
V V

T
⇤�1

V = argmin
V 2V

kX � V k2 . (214)

In view of Lemma 13, we introduce the following notation.

Definition 7. Fix a random variable X 2 L2(P ), a �-algebra
⌃ ⇢ F , and a linearly-independent set {✓j}j2N = ⇥ ⇢

L2(⌃). Write ✓✓✓(n) = (✓0, · · · , ✓n)T for each n 2 N. We define
the n-th approximation of E[X | ⌃] with respect to ⇥ by

En,⇥ [X | ⌃] := E
h
X✓✓✓(n)

i
E

✓✓✓(n)

⇣
✓✓✓(n)

⌘T ��1

✓✓✓(n). (215)

Note that En,⇥[X | ⌃] belongs to span({✓j}j2[n]). Further,
according to Lemma 13, En,⇥[X | ⌃] is the unique closest
element in span({✓j}j2[n]) to X ,

En,⇥[X | ⌃] = argmin
V 2 span({✓j}j2[n])

kX � V k2 . (216)

If Y 2 L2n(P ), ⇥ = {Y j
}j2N, and ⌃ = �(Y ), then the

estimate reduces to En,⇥[X | ⌃] = En[X | Y ].
The central claim in Theorem 10 is that if span(⇥) is dense

in L2(⌃) then we have the limit

E[X | ⌃] = lim
n!1

En,⇥[X | ⌃]. (217)

The proof of Theorem 1 can be adapted mutatis mutandis to
derive the above limit, so we omit the details.

B. The Multidimensional PMMSE

We extend our results on the PMMSE of random variables
to random vectors. We begin with some notation. The Hilbert
space of q-integrable m-dimensional random vectors is de-
noted by Lq(Rm, P ), with norm also denoted by k · kq .
The subspace of ⌃-measurable random vectors is denoted
by Lq(Rm,⌃). We keep the notations Lq(R,⌃) = Lq(⌃)
and Lq(R, PY ) = Lq(PY ). By a generalization of Hölder’s
inequality, for any Y = (Y1, · · · , Ym)T 2 L�(Rm, P ),
we also have that Y ↵1

1 · · ·Y ↵m
m

2 L1(P ) for any constants
↵1, · · · ,↵m � 0 such that ↵1 + · · ·+ ↵m  �.

We extend the notation Y
(n) to random vectors as follows.

For an m-dimensional random vector Y = (Y1, · · · , Ym)T ,
we let Y

(n,m) denote the random vector whose entries are
monomials in the Yj of total degree at most n, ordered first
by total degree then reverse-lexicographically in the exponents.
For example, if m = 3 so Y = (Y1, Y2, Y3)T , then for n = 2

Y
(2,3) = (1, Y1, Y2, Y3, Y

2
1 , Y1Y2, Y1Y3, Y

2
2 , Y2Y3, Y

2
3 )

T

(218)
because we are taking the totally ordered set of exponents
( {v 2 N3

| 1T
v  2} , < ) to have the order13

(0, 0, 0) < (1, 0, 0) < (0, 1, 0) < (0, 0, 1) < (2, 0, 0)

< (1, 1, 0) < (1, 0, 1) < (0, 2, 0) < (0, 1, 1) < (0, 0, 2).

13Note that this ordering is not the same as the degree reverse lexicograph-
ical order nor its reverse.
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A straightforward stars-and-bars counting argument reveals
that the length of Y (n,m) is

�
n+m

m

�
.

Let Pn,m denote the set of polynomials in m variables
with real coefficients of total degree at most n. For a
fixed m-dimensional random vector Y , denote Pn,m(Y ) :=
{p(Y ) ; p 2 Pn,m}. Note that Pn,1 = Pn. Also, the nota-
tion Y

(n,1), while avoided, is disambiguated by interpreting it
as Y

(n), i.e., Y (n,1) = (1, Y, · · · , Y n)T where the subscript
on Y1 is dropped. We denote the product sets of Pn,m(Y ) by
P`

n,m
(Y ), and consider their elements as vectors rather than

tuples. In other words, we denote the set of length-` vectors
whose coordinates are multivariate polynomial expressions of
an m-dimensional random vector Y with total degree at most
n by

P`

n,m
(Y ) =

�
(p1(Y ), · · · , p`(Y ))T ; p1, · · · , p` 2 Pn,m

 
.

(219)
The multivariate generalization of the PMMSE is defined

as follows.

Definition 8 (Multivariate Polynomial MMSE). Fix positive
integer `,m, and n. Fix an `-dimensional random vector
X 2 L2(R`, P ) and an m-dimensional random vector Y 2

L2n(Rm, P ), and set k =
�
n+m

m

�
. We define the n-th order

PMMSE for estimating X given Y by

pmmse
n
(X | Y ) := min

C2R`⇥k

���X �CY
(n,m)

���
2

2
, (220)

and the n-th order PMMSE estimate of X given Y by

En[X | Y ] := CY
(n,m)

2 P`

n,m
(Y ) (221)

for any minimizing matrix C 2 R`⇥k in (220).

Remark 19. For any minimizer C in (220), the `-dimensional
random vector CY

(n,m) is the unique orthogonal projection
of X onto P`

n,m
(Y ); in particular, En[X | Y ] is well-defined

by (221).

Denote, for Y 2 L2n(Rm, P ),

MY ,n := E

Y

(n,m)
⇣
Y

(n,m)
⌘T �

. (222)

For n 2 N and an `-dimensional random vector
(X1, · · · , X`)T = X 2 L2(R`, P ), if MY ,n is invertible,
Lemma 13 yields that

En[X | Y ] =

0

B@
En[X1 | Y ]

...
En[X` | Y ]

1

CA (223)

=

0

BBBB@

E
⇥
X1Y

(n,m)
⇤T

M
�1
Y ,n

Y
(n,m)

...

E
⇥
X`Y

(n,m)
⇤T

M
�1
Y ,n

Y
(n,m)

1

CCCCA
. (224)

We say that the Yj do not satisfy a polynomial relation if
the monomials

Q
m

j=1 Y
↵j

j
, for ↵1, · · · ,↵m 2 N, are linearly

independent, i.e., if the mapping

' :
[

n2N
Pn,m !

[

n2N
Pn,m(Y ), '(p) = p(Y ) (225)

is an isomorphism of vector spaces.
Generalizing our results on random variables to random

vectors can be done in view of the following polynomial
denseness result.

Theorem 11 ([62]). For any m-dimensional random vector
Y = (Y1, · · · , Ym)T and q > 1, if we have the densenessS

n2N Pn(Yj) = Lq(PYj ) for each j 2 {1, · · · ,m}, then
we have the denseness

S
n2N Pn,m(Y ) = Lr(PY ) for every

r 2 [1, q).

Since kZk
r

r
=
P

j
kZjk

r

r
, this inferred denseness in The-

orem 11 over Lr(PY ) may be extended to denseness over
Lr(Rm, PY ), i.e., we have the following immediate corollary.

Corollary 5. Fix an integer m � 1 and an m-dimensional
random vector Y = (Y1, · · · , Ym)T . If each of the random
variables Y1, · · · , Ym satisfies Carleman’s condition, then the
set of vectors of polynomials

S
n2N Pm

n,m
(Y ) is dense in

Lq(Rm, PY ) for any q � 1.

We deduce the following result on the convergence of the
multivariate PMMSE to the MMSE.

Theorem 12. Fix an m-dimensional random vector Y =
(Y1, · · · , Ym)T and an `-dimensional random vector X 2

L2(R`, P ). If each Yj satisfies Carleman’s condition, and if
the Yj do not satisfy a polynomial relation, then we have the
L2(R`, PY )-limit

E[X | Y ] = lim
n!1

En[X | Y ]. (226)

Proof. Since the Yj do not satisfy a polynomial relation, the
matrix MY ,n is invertible for each n 2 N. Further, the entries
of Y

(n,m) are linearly independent for each n. Then, by
Lemma 13, equation (224) follows, i.e., the PMMSE estimate
En[X | Y ] is the `-dimensional random vector whose k-th
entry is E

⇥
XkY

(n,m)
⇤T

M
�1
Y ,n

Y
(n,m). By Corollary 5, since

each Yj satisfies Carleman’s condition, the set of vectors of
polynomials

S
n2N Pm

n,m
(Y ) is dense in L2(Rm, PY ). In par-

ticular,
S

n2N Pn,m(Y ) is dense in L2(PY ). By Theorem 10,
we have the L2(PY ) limits

E[Xk | Y ] = lim
n!1

E
h
XkY

(n,m)
iT

M
�1
Y ,n

Y
(n,m) (227)

for each k 2 {1, · · · , `}. We conclude that En[X | Y ] !
E[X | Y ] in L2(R`, PY ), as desired.

The approach for showing the rationality of t 7!

pmmse
n
(X, t) for a random variable X 2 L2n(P ) in

Theorem 2 may be generalized to deduce rationality of
t 7! pmmse

n
(X, t) for an m-dimensional random vector

X 2 L2n(Rm, P ). Here, we are denoting pmmse
n
(X, t) :=

pmmse
n
(X |

p
tX + N), where N ⇠ N (0, Im) is inde-

pendent of X. For brevity, we give a blueprint of how this
generalization of rationality can be obtained. First, Lemma 6
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may be generalized to yield that detMp
tX+N is a polyno-

mial in t of degree at most dn,m which is given by

dn,m :=
X

k2[n]

k · |{(�1, · · · ,�m) 2 Nm ; �1 + · · ·+ �m = k}|

(228)

=
X

k2[n]

k

✓
k +m� 1

m� 1

◆
(229)

=
X

k2[n]

m

✓
k +m� 1

m

◆
= m

✓
n+m

m+ 1

◆
. (230)

Further, the coefficient of tdn,m in detMp
tX+N is detMX .

Note that dn,1 = dn. Then, the PMMSE expression in
Theorem 2 may be generalized to give

pmmse
n
(X, t) =

(tr ⌃X) detMN ,n + · · ·+ (tr ⌃N ) (detMX,n) tdn,m�1

detMN ,n + · · ·+ (detMX,n) tdn,m
.

(231)
To deduce (231), the multidimensional MMSE dimension re-
sult in Theorem 6 is used, as follows. Note that tr⌃N = m for
N ⇠ N (0, Im). By Theorem 6, we have that mmse(X, t) ⇠
m/t. It is also true that lmmse(X, t) ⇠ m/t. Therefore,
pmmse

n
(X, t) ⇠ m/t for every integer n � 1. Note that

pmmse
n
(X, 0) = tr ⌃X . Expression (231) follows via the

same proof technique for Theorem 2.
With the definition of the multivariate PMMSE at hand,

we show that the PMMSE estimate satisfies a tower property
similar to the conditional expectation.

Proposition 6 (Tower Property). Fix n 2 N and three random
variables X 2 L2(P ) and Y1, Y2 2 L2n(P ). Suppose that
|supp(Y1)|, |supp(Y2)| > n. Then

En [En[X | Y1] | Y1, Y2] = En[X | Y1], (232)

and
En [En[X | Y1, Y2] | Y2] = En[X | Y2]. (233)

Proof. Set Y = (Y1, Y2)T . Equation (232) is straightfor-
ward: since En[X | Y1] 2 Pn(Y1) ⇢ Pn,2(Y ), the
projection of En[X | Y1] onto Pn,2(Y ) is En[X | Y1]
again. Equation (233) also follows by an orthogonal projection
argument. There is a unique representation X = p1,2 + p?1,2
for (p1,2, p?1,2) 2 Pn,2(Y ) ⇥ Pn,2(Y )?. There is also a
unique representation p1,2 = q2+q?2 for (q2, q?2 ) 2 Pn(Y2)⇥
Pn(Y2)?. The projection of X onto Pn,2(Y ) is p1,2, whose
projection onto Pn(Y2) is q2, i.e.,

En [En[X | Y1, Y2] | Y2] = q2. (234)

Furthermore, we have the representation X = q2+(q?2 +p?1,2),
for which (q2, q?2 + p?1,2) 2 Pn(Y2)⇥ Pn(Y2)?. Hence, the
projection of X onto Pn(Y2) is q2 too, i.e.,

En[X | Y2] = q2. (235)

From (234) and (235) we get (233). Equation (233) can also
be deduced from the formula of W := E[X | Y ]. Denote
Y

(n)
2 = (1, Y2, · · · , Y n

2 )T . We have that

W = E
h
XY

(n,2)
iT

M
�1
Y ,n

Y
(n,2) (236)

and

En[W | Y2] = E
h
WY

(n)
2

iT
M

�1
Y2,n

Y
(n)
2 . (237)

For k 2 [n], let �(k) 2
⇥�

n+2
2

�
� 1
⇤

be the index of the entry
in Y

(n,2) that equals Y k

2 . Then,

E
h
Y k

2 Y
(n,2)

i
= MY ,ne�(k), (238)

where e0, · · · , e(n+2
2 )�1 are the standard basis vectors of

R(
n+2
2 ). Therefore, plugging (236) into (237), we obtain

En[W | Y2] = E
h
XY

(n)
2

iT
M

�1
Y2,n

Y
(n)
2 , (239)

which is just En[X | Y2], as desired.

APPENDIX E
INFORMATION MEASURES IN TERMS OF MOMENTS:

PROOFS OF SECTION IV

A. Proof of Lemma 10

By finiteness of ⌃X , we get that h(X) is well defined and
less that 1, but it could be �1. First, the case that det⌃X =
0 follows since both sides of (76) would then equal �1, which
can be seen as follows. That h(X) = �1 follows by a limit-
ing argument starting from 0  Dkl (PXkN (0,⌃X + "Im)),
and inferring that h(X)  1

2 log ((2⇡)
m det (⌃X + "Im)) +

1
2 rank(⌃X) for all " > 0, then taking "! 0+. That the right-
hand side of (76) equals �1 follows from mmse(X, t) 

lmmse(X, t) and lmmse(X, t) ⇠
rank(⌃X)

t
. So, we may

assume det⌃X 6= 0.
In the same way that (74) is derived in [1] (see Lemma 7

and Theorem 14 therein), one may obtain

h(X) =
1

2
log ((2⇡e)m det⌃X)

�
1

2
lim
�!1

"
log (det (�⌃X + Im))

�

Z
�

0
mmse(X, t) dt

#
.

(240)

Building on (240), we infer via the monotone convergence
theorem that, with the eigenvalues of ⌃X denoted by
�1, · · · ,�m,

h(X) =
1

2
log

 
(2⇡e)m

mY

i=1

�i

!

+
1

2

Z 1

0
mmse(X, t)�

mX

i=1

�i
1 + �it

dt.

(241)

This equation yields the desired result h(X) =
1
2

R1
0 mmse(X, t) � m

2⇡e+t
dt since log ((2⇡e)m

Q
m

i=1 �i) =R1
0

P
m

i=1
�i

1+�it
�

m

2⇡e+t
dt, completing the proof of the

lemma.
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B. Proof of Theorem 4
We derive the multidimensional version of Theorem 4 here.

Fix an m-dimensional random vector V . We may assume
det⌃V 6= 0, for otherwise the result follows immediately
from hn(V ) = h(V ) = �1 for all n. In view of monotonic-
ity of pmmse

n
(V , t) in n, and since h1(V ) is finite, it suffices

by the monotone convergence theorem and the equation

h(V ) =
1

2

Z 1

0
mmse(V , t)�

m

2⇡e+ t
dt (242)

to show that pmmse
n
(V , t) ! mmse(V , t) as n ! 1. Let

N ⇠ N (0, Im) be independent of V . A simple application
of the triangle inequality yields that it suffices to prove the
convergence

En

h
V |

p
tV +N

i
! E

h
V |

p
tV +N

i
. (243)

We deduce (243) from Theorem 12, as follows.
Denote Z

(t) :=
p
tV +N , and let Z(t)

j
be the j-th entry of

Z
(t). Fix t � 0. To apply Theorem 12, we only need to show

that the Z(t)
j

do not satisfy a nontrivial polynomial relation.
We show this by induction on m. The case m = 1 follows
since Z(t)

1 is continuous. Assume that we have shown that
Z(t)
1 , · · · , Z(t)

m�1 do not satisfy a nontrivial polynomial rela-
tion, and that m � 2. Suppose, for the sake of contradiction,
that q is a polynomial in m variables such that q(Z(t)) =
0. Write q(u1, · · · , um) =

P
k2[d] qk(u1, · · · , um�1)uk

m
for

some polynomials qk in m � 1 variables such that qd 6= 0.
Squaring q(Z(t)) = 0 and taking the conditional expectation
with respect to Nm we obtain

0 = E

q
⇣
Z

(t)
⌘2����Nm

�
=
X

k2[2d]

�kN
k

m
(244)

for some real constants �k with the leading constant �2d :=
kqd(Z

(t)
1 , · · · , Z(t)

m�1)k
2
2. Since Nm is continuous, equa-

tion (244) cannot be a nontrivial polynomial relation for Nm.
Thus, we must have �2d = 0, i.e., qd(Z

(t)
1 , · · · , Z(t)

m�1) = 0.
By the induction hypothesis, qd = 0 identically, a contradic-
tion. Therefore, no nontrivial polynomial relation q(Z(t)) = 0
can hold, and the inductive proof is complete. Finally, applying
Theorem 12, we deduce the limit in (243), thereby completing
the proof of the theorem.

C. Proof of Theorem 5
Consider the first case, namely, X is discrete with finite

support and Y is continuous whose MGF exists and for which
h(Y ) > �1. The existence of the MGF of Y implies the
existence of the MGFs of Y (x) for each x 2 supp(X). Since
�2
Y

< 1, we have that h(Y ) is finite. In addition, for each
x 2 supp(X), we infer from �2

Y (x) < 1 the existence of the
differential entropy h(Y | X = x) and that h(Y | X = x) <
1. If minx2supp(X) h(Y | X = x) > �1, then I(X;Y ) =
h(Y )�h(Y | X); this latter equation also holds if h(Y | X =
x) = �1 for some x 2 supp(X). Therefore, Theorem 4
implies (23).

Now, consider the second case instead, so both X and Y
are continuous random variables whose MGFs exist and that

satisfy h(X), h(Y ) > �1. We also assume that I(X;Y ) <
1 or else (X,Y ) is not continuous. From these assumptions,
we conclude that both h(X) and h(Y ) are finite and h(X,Y )
exists. Thus, we obtain I(X;Y ) = h(X) + h(Y )� h(X,Y ).
By Theorem 4, we have that hn(X) ! h(X) and hn(Y ) !
h(Y ) as n ! 1. Finally, note that the MGF of (X,Y ) exists
by the assumption that the MGFs of X and Y exist. Thus,
by Theorem 4, we have that hn(X,Y ) ! h(X,Y ) too. The
desired result (24) follows.

APPENDIX F
ESTIMATOR IMPLEMENTATION

We show in this appendix how to implement the proposed
estimators numerically. Note that pmmse

n
(X, t) contains

roughly n2 terms, and that numerically integrating this rational
function can be done efficiently using built-in quadrature
methods. Precomputing the function t 7! pmmse10(X, t)
takes a couple of minutes on a commercial laptop, whereas
querying this rational function can be done in constant time.
However, we need to develop the expressions of our approxi-
mations of differential entropy further to avoid possible issues
that could arise from numerically computing the improper
integral over [0,1). To illustrate this issue, consider the
expression for h2(X). For convenience, define the function
�X,n : (0,1) ! [0,1) by

�X,n(t) := detMp
tX+N,n

(245)

for a 2n-times integrable random variable X. Recall that �X,n

is the denominator of pmmse
n
(X, · ). Recall from (10) that

a zero-mean unit-variance random variable X satisfies

pmmse2(X, t) =
2 + 4t+ (X4 � X

2
3 � 1)t2

2 + 6t+ (X4 + 3)t2 + (X4 � X 2
3 � 1)t3

.

(246)
For example, when X ⇠ Unif([�

p
3,
p
3]), so

(X1,X2,X3,X4) =

✓
0, 1, 0,

9

5

◆
, (247)

we obtain

pmmse2(X, t) =
5 + 10t+ 2t2

5 + 15t+ 12t2 + 2t3
. (248)

Now, consider the expression for h2(X) in (79), namely,

h2(X) =
1

2

Z 1

0

5 + 10t+ 2t2

5 + 15t+ 12t2 + 2t3
�

1

2⇡e+ t
dt. (249)

The integral in (249) converges, but a numerical computation
might not be able to capture this convergence as the expression
for the integrand is a difference of non-integrable functions
that both decay as 1/t. To avoid this possible issue, we subtract
a 1/t term from both of these non-integrable functions. More
precisely, denoting differentiation with respect to t by a prime,
we write

pmmse2(X, t) =
5 + 10t+ 2t2 � 1

3�
0
X,2(t) +

1
3�

0
X,2(t)

�X,2(t)

=
2t

5 + 15t+ 12t2 + 2t3
+

1

3

d

dt
log �X,2(t)
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and
1

2⇡e+ t
=

d

dt
log(2⇡e+ t). (250)

The integrand pmmse2(X, t)� 1/(2⇡e+ t) now becomes

2t

5 + 15t+ 12t2 + 2t3
+

d

dt
log

�X,2(t)1/3

2⇡e+ t
. (251)

The advantage in having the integrand in this form is that the
first term is well-behaved (it decays as 1/t2), and the second
term’s integral can be given in closed form
Z 1

0

✓
log

�X,2(t)1/3

2⇡e+ t

◆0

dt = log

 
2⇡e

✓
2

5

◆1/3
!
. (252)

Therefore, equation (249) becomes

h2(X) =
1

2
log

2⇡e

(5/2)1/3
+

Z 1

0

t

5 + 15t+ 12t2 + 2t3
dt.

(253)
We use equation (253) instead of (249) for numerical compu-
tation. Note that this resolves the same numerical instability
issue when estimating from data: if S = {Xj}

m

j=1 is a
multiset of i.i.d. samples distributed according to PX , and if
U ⇠ Unif(S), we compute the estimate bh2(S) = h2(U) of
h2(X) via an expression analogous to that in (253) where X
is replaced with U.

The procedure of obtaining expression (253) from (249) can
be carried out for a general X and n such that E[X2n] < 1

and |supp(X)| > n, as follows. Let ✓X,n : [0,1) ! [0,1)
be the polynomial that is the numerator of pmmse

n
(X, t), i.e.,

✓X,n(t) := �X,n(t) · pmmse
n
(X, t). Thus, we have that

pmmse
n
(X, t) =

✓X,n(t)

�X,n(t)
. (254)

We define the function ⇢X,n : [0,1) ! R by

⇢X,n(t) :=
✓X,n(t)� d�1

n
�0
X,n

(t)

2�X,n(t)
, (255)

where dn =
�
n+1
2

�
. By the analysis of the coefficients in

pmmse
n
(X, t) proved in Theorem 2, we have that ⇢X,n(0) =

0 and
⇢X,n(t) = O

�
t�2
�

(256)

as t ! 1. In particular, ⇢X,n is integrable over [0,1).
The following formula for differential entropy directly follows
from the definition of hn in (79).

Lemma 14. For any random variable X satisfying E[X2n] <
1 and |supp(X)| > n, we have the formula

hn(X) =
1

2
log

 
2⇡e

✓
detMX,n

detMN,n

◆1/dn
!

+

Z 1

0
⇢X,n(t) dt,

(257)
where dn =

�
n+1
2

�
, N ⇠ N (0, 1), and ⇢X,n is as defined

in (255).

A similar conclusion holds for mutual information.

Lemma 15. Fix a discrete random variable X with finite sup-
port, and a 2n-times integrable continuous random variable
Y. We have that

In(X;Y ) =
1

n(n+ 1)
log

detMY,n

Q
x2supp(X)

�
detMY (x),n

�PX(x)

+

Z 1

0
⇢Y,n(t)� EX

⇥
⇢Y (X),n(t)

⇤
dt,

(258)

where for each x 2 supp(X) we denote by Y (x) the random
variable Y conditioned on {X = x}.

Note that in Lemmas 14 and 15, the determinants detMA,n

and the rational functions ⇢n(A; t), for A 2 {X,Y } or A 2

{Y (x) ; x 2 supp(X)}, are completely determined by the first
2n moments of A. To obtain the estimates bhn and bIn given
samples, the moments of A are replaced with their respective
sample moments in formulas (257) and (258).

APPENDIX G
PROOFS OF SUBSECTION V-A: CONSISTENCY

A. Proof of Theorem 9: Consistency of the Differential Entropy
Estimator

We use the formula for hn given in Lemma 14,

hn(X) =
1

2
log

 
2⇡e

✓
detMX,n

detMN,n

◆1/dn
!

+

Z 1

0
⇢X,n(t) dt,

(259)
where dn =

�
n+1
2

�
and N ⇠ N (0, 1). We may assume

that N is independent of X and the Xj . For each m 2 N,
let Sm := {Xj}j2[m], and consider the sequence {Um ⇠

Unif(Sm)}m2N. For each m 2 N, let Em be the event that
X0, · · · , Xm are distinct, and let E be the event that the Xj ,
for j 2 N, are all distinct. Whenever m � n and Em occurs,
we have by Definition 4 of bhn and formula (259) for hn the
following estimate

bhn (Sm) =
1

2
log

 
2⇡e

✓
detMUm,n

detMN,n

◆1/dn
!

+

Z 1

0
⇢Um,n(t) dt.

(260)

Since X is continuous, we have that P (Em) = 1 for every
m 2 N. Further, E0 � E1 � · · · and E =

T
m2N Em, hence

P (E) = 1. Therefore, for the purpose of proving the almost-
sure limit bhn (Sm) ! hn(X), we may assume that E occurs.
We first treat convergence of the integral part. We show that
the integral part is a continuous function of the moments, then
the continuous mapping theorem yields that

Z 1

0
⇢Um,n(t) dt !

Z 1

0
⇢X,n(t) dt (261)

almost surely as m ! 1 because sample moments converge
almost surely to the moments. A similar method is then applied
to the convergence of the log detMX,n part.
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We fix n 2 N�1, and assume m � n throughout the proof.
We use the following notation. The 2n-dimensional random
vector µµµ(m) consists of the first 2n moments of Um

µµµ(m) :=

 P
m

j=0 Xj

m+ 1
, · · · ,

P
m

j=0 X
2n
j

m+ 1

!T

. (262)

Let µ(m)
k

be the k-th coordinate of µµµ(m), so µµµ(m) =⇣
µ(m)
1 , · · · , µ(m)

2n

⌘T
. We write Xk := E

⇥
Xk
⇤

for k 2 N,
and consider the constant vector

XXX := (Xk)1k2n . (263)

By the strong law of large numbers, we have the almost-sure
convergence µ(m)

k
! Xk for each 1  k  2n. Then, µµµ(m)

!

XXX almost surely as m ! 1. We show next that the function
XXX 7!

R1
0 ⇢X,n(t) dt is continuous.

By definition of ⇢X,n (see (255)), there are polynomials
A1, · · · , Adn�2 and B1, · · · , Bdn in 2n variables such that

⇢X,n(t) =

P
dn�2
j=1 Aj(XXX ) tj

cn +
P

dn

j=1 Bj(XXX ) tj
(264)

where cn :=
Q

n

k=1 k! (we are subsuming the 1/2 factor
in (255) in the numerator, so we have the equality �X,n(t) =
cn +

P
dn

j=1 Bj(XXX )tj). Being polynomials, each of the Aj

and the B` is continuous over R2n. Then, by the continuous
mapping theorem, we have the almost-sure convergences

Aj

⇣
µ

(m)
⌘
! Aj(XXX ) and B`

⇣
µ

(m)
⌘
! B`(XXX ) (265)

as m ! 1 for each 1  j  dn � 2 and 1  `  dn. Denote

A(XXX ) := (Aj(XXX ))1jdn�2 , (266)

B(XXX ) := (Bj(XXX ))1jdn
. (267)

We show next that the there is an open set O ⇢ Rdn containing
the point B(XXX ) such that the mapping f : Rdn�2

⇥ O ! R
defined by

f(p1, · · · , pdn�2, q1, · · · , qdn) :=

Z 1

0

P
dn�2
j=1 pjtj

cn +
P

dn

j=1 qjt
j
dt

(268)
is continuous at the point (A(XXX ), B(XXX )). To this end, we
shall show first that the mapping in (268) is well-defined on
an open neighborhood of (A(XXX ), B(XXX )). In other words, the
denominator of the integrand t 7! cn+

P
dn

j=1 qjt
j cannot have

a root t 2 [0,1) for any q 2 O, and the rational function
integrand has to be integrable. For integrability, we will restrict
the set O to contain only points having qdn > 0, so showing
that the integrand’s denominator is strictly positive over t 2
[0,1) will be enough to deduce integrability in (268).

We consider the subset G ⇢ Rdn defined by

G :=

(
g 2 Rdn ; gdn > 0,

dnX

`=1

gjt
j > �cn for all t � 0

)

(269)
where in this definition and the subsequent argument we set
g = (g1, · · · , gdn)

T . Note that B(XXX ) 2 G. Indeed, since X is
continuous, Bdn(XXX ) = detMX,n > 0; similarly, for every t 2

[0,1), continuity of
p
tX+N implies that detMp

tX+N
> 0

(recall that cn +
P

dn

j=1 Bj(XXX )tj = detMp
tX+N

). We show
that G is an open set. Fix g 2 G and "1 2 (0, gdn) . We have
that the polynomial

P
dn

j=1(gj � "1)tj is eventually increasing
and approaches infinity as t ! 1. Let t0 > 1 be such that
for every t > t0 we have

dnX

`=1

(gj � "1)t
j > �cn. (270)

Being continuous, the polynomial
P

dn

j=1 gjt
j attains its mini-

mum over the compact set [0, t0]. Let s denote this minimum,
and note that s > �cn. Let " 2 (0, 1) be defined by

" :=
1

2
min

 
"1,

(s+ cn)(t0 � 1)

t0(t
dn
0 � 1)

!
. (271)

As " < "1, inequality (270) yields that for every t > t0

dnX

j=1

(gj � ")tj > �cn. (272)

In addition, for any t 2 [0, t0],

dnX

j=1

(gj � ")tj =
dnX

j=1

gjt
j
� "

dnX

j=1

tj � s� "
dnX

j=1

tj0

> s�
(s+ cn)(t0 � 1)

t0(t
dn
0 � 1)

dnX

j=1

tj0

= s� (s+ cn) = �cn. (273)

Thus, combining (272) and (273) we obtain

dnX

j=1

(gj � ")tj > �cn (274)

for every t 2 [0,1). Hence, for any (�j)1jdn =: � 2 Rdn

such that k�k2 < ", we have that for all t 2 [0,1)

dnX

j=1

(gj � �j)t
j
�

dnX

j=1

(gj � k�k2)t
j
�

dnX

j=1

(gj � ")tj > �cn.

(275)
In other words, the open ball {q 2 Rdn ; kq � gk < "}
lies within G. This completes the proof that G is open. Then,
the function f given by (268) is well-defined on the open set
Rdn�2

⇥ G. We will replace G with an open box O ⇢ G to
simplify the notation for the proof of continuity of f.

By openness of G, there is an ⌘1 2 (0, Bdn(XXX )) such that
the open box

O1 :=
dnY

j=1

(Bj(XXX )� ⌘1, Bj(XXX ) + ⌘1) ⇢ G (276)

contains B(XXX ). Since O1 ⇢ G, we have by the definition of
G in (269) that for any g 2 O1 the lower bound

cn +
dnX

`=1

g`t
` > 0 (277)
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holds for every t � 0. In particular, with ⌘ := ⌘1/2, the set

O :=
dnY

j=1

(Bj(XXX )� ⌘, Bj(XXX ) + ⌘) ⇢ O1 ⇢ G (278)

is an open set containing B(XXX ), and the point (Bj(XXX ) �
⌘)1j2n lies inside G. Then, the function f : Rdn�2

⇥O ! R
given by (268) is well-defined, and for any g 2 O we have
the lower bound (over t 2 [0,1))

cn +
dnX

`=1

g`t
`
� cn +

dnX

`=1

(B`(XXX )� ⌘)t` > 0. (279)

From (279), Lebesgue’s dominated convergence shows conti-
nuity of f at (A(XXX ),B(XXX )), as follows.

Let w := (u,v) 2 Rdn�2
⇥O be such that kwk2 < ⌘. The

integrand in f at (A(XXX ),B(XXX ))� (u,v) may be bounded as
�����

P
dn�2
j=1 (Aj(XXX )� uj)tj

cn +
P

dn

`=1(B`(XXX )� v`)t`

����� =

���
P

dn�2
j=1 (Aj(XXX )� uj)tj

���

cn +
P

dn

`=1(B`(XXX )� v`)t`

(280)



P
dn�2
j=1 (|Aj(XXX )|+ ⌘)tj

cn +
P

dn

`=1(B`(XXX )� ⌘)t`
.

(281)

The bound in (281) is uniform in w, and the upper bound
is integrable over [0,1) as the denominator’s degree exceeds
that of the numerator by at least 2 and the denominator is
strictly positive by (279). Hence, by Lebesgue’s dominated
convergence

lim
kwk!0

f ((A(XXX ),B(XXX ))�w) = f (A(XXX ),B(XXX )) , (282)

i.e., f is continuous at (A(XXX ),B(XXX )), as desired. Denote

A
(m) :=

⇣
Aj(µ

(m))
⌘

1jdn�2
, (283)

B
(m) :=

⇣
B`(µ

(m))
⌘

1`dn

. (284)

We have the formulas

f(A(m),B(m)) =

Z 1

0
⇢Um,n(t) dt (285)

and
f(A(XXX ),B(XXX )) =

Z 1

0
⇢X,n(t) dt. (286)

Since (A(m),B(m)) ! (A(XXX ),B(XXX )) almost surely, con-
tinuity of f at (A(XXX ),B(XXX )) implies by the continuous
mapping theorem that

f(A(m),B(m)) ! f(A(⌫),B(⌫)) (287)

almost surely as m ! 1, i.e., (261) holds.
Now, for the convergence of the logarithmic part, recall that

we have the almost sure convergence

detMUm,n = Bdn(µ
(m)) ! Bdn(XXX ) = detMX,n (288)

as m ! 1. As the mapping R>0 ! R defined by q 7! log q
is continuous, the continuous mapping theorem yields that

log detMUm,n ! log detMX,n (289)

almost surely as m ! 1. Combining (287) and (289), we
obtain that

bhn (Sm) ! hn(X) (290)

almost surely as m ! 1. Finally, (95) follows from (290) by
Theorem 4.

B. Proof of Corollary 4: Consistency of the Mutual Informa-
tion Estimator

Denote Sm = {(Xj , Yj)}j2[m], and consider the empirical
measure

bPm(x) :=
X

j2[m]

�x(Xj)

m+ 1
. (291)

Let Dm be the event that for each x 2 supp(X) there is a
subset of indices Jx ⇢ [m] of size at least n + 1 such that:
i) Xj = x for each j 2 Jx, and ii) the Yj , for j 2 Jx, are
distinct. If Dm occurs, then we may write

bIn(Sm) = bhn(Am)�
X

x2supp(X)

bPm(x) bhn(Bm,x), (292)

where Am := {Yj}j2[m] and Bm,x := {Yj ; j 2 [m], Xj =
x}. By the assumption of continuity of Y, it holds with
probability 1 that the Yj , for j 2 N, are all distinct. In addition,
we have that PX(x) > 0 for each x 2 supp(X). Therefore,
P (Dm) ! 1 as m ! 1. Note that D0 ⇢ D1 ⇢ · · · .

Let C be the event that limm!1 bhn(Am) = hn(Y ) and,
for each x 2 supp(X), limm!1 bhn(Bm,x) = hn(Y (x)). By
Theorem 9 and finiteness of supp(X), for each integer m0

�

(n + 1)|supp(X)|, we have that P (C | Dm0) = 1. Let F be
the event that the empirical measure bPm converges to PX , i.e.,
that for each x 2 supp(X) the limit bPm(x) ! PX(x) holds
as m ! 1. By the strong law of large numbers, P (F) = 1.
Therefore,

P
⇣

lim
m!1

bIn(Sm) = In(X;Y )
⌘
� P (C \ F \Dm0)

� P (F) + P (C \Dm0)� 1

= P (Dm0). (293)

Taking m0
! 1, we deduce that bIn(Sm) ! In(X;Y ) almost

surely.

APPENDIX H
PROOFS OF SUBSECTION V-B: SAMPLE COMPLEXITY

A. Proof of Proposition 4: Differential Entropy

Suppose supp(X) ⇢ [p, q] ⇢ (0,1), and write S =
{Xj}

m

j=1; note that we may assume, without loss of generality,
that X is strictly positive because hn is shift-invariant. We use
the same notation in Appendix G. In particular, Xk = E[Xk],
and XXX = (X1, · · · ,X2n)T . Let U ⇠ Unif(S). Let Em be
the event that X1, · · · , Xm are distinct. From (259)–(260), if
m > n and Em holds, then we have that

bhn(S)� hn(X) =
1

2dn
log

detMU,n

detMX,n

+

Z 1

0
⇢U,n(t) � ⇢X,n(t) dt.

(294)
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By the assumption of continuity of X, we have that P (Em) =
1 for every m. Therefore, for the purpose of proving a sample
complexity bound, we may assume that m > n and that Em

occurs.
We will consider the determinant part and the integral part

in (294) separately, but the proof technique will be the same.
Let Aj and B` be the polynomials as defined by (264) in
Appendix G, so

⇢X,n(t) =

P
dn�2
j=1 Aj(XXX ) tj

cn +
P

dn

j=1 Bj(XXX ) tj
(295)

where cn :=
Q

n

k=1 j!. We split each of the polynomials Aj

and B` into a positive part and a negative part. More precisely,
we collect the terms in Aj that have positive coefficients
into a polynomial A(+)

j
, and the terms in Aj with negative

coefficients into a polynomial �A(�)
j

(so A(�)
j

has positive
coefficients, and Aj = A(+)

j
� A(�)

j
). Define B(+)

`
and B(�)

`

from B` similarly. By positivity of X, each moment Xk is
(strictly) positive. Then, we may write

⇢X,n(t) =
fX(t)� gX(t)

uX(t)� vX(t)
(296)

with the polynomials in t

fX(t) :=
dn�2X

j=1

A(+)
j

(XXX )tj (297)

gX(t) :=
dn�2X

j=1

A(�)
j

(XXX )tj (298)

uX(t) := cn +
dnX

`=1

B(+)
`

(XXX )t` (299)

vX(t) :=
dnX

`=1

B(�)
`

(XXX )t`, (300)

having all non-negative coefficients. We note that we have
suppressed the dependence on n in the notation used for these
polynomials for readability. For q 2 {f, g, u, v}, let qU be the
random variable whose value is what is obtained via qX when
the moments of X are replaced with the sample moments
obtained from the samples S, e.g.,

fU (t) :=
dn�2X

j=1

A(+)
j

✓Pm

i=1 Xi

m
, · · · ,

P
m

i=1 X
2n
i

m

◆
tj . (301)

Note that uU (t) � vU (t) = detMp
tU+N,n

> 0, where N ⇠

N (0, 1) is independent of X,X1, · · · , Xm. Then the function

⇢U,n(t) =
fU (t)� gU (t)

uU (t)� vU (t)
(302)

is well-defined over t 2 [0,1). By the homogeneity properties
proved in Theorem 2, we know that the total degree of Aj is at

most 2j+2, and the total degree of B` is at most 2`. Therefore,
for any ⌘ 2 (0, 1) and ⇠⇠⇠ 2 R2n

�0, we have the inequalities

(1� ⌘)2j+2A(±)
j

(⇠⇠⇠)  A(±)
j

((1� ⌘)⇠⇠⇠) (303)

A(±)
j

((1 + ⌘)⇠⇠⇠)  (1 + ⌘)2j+2A(±)
j

(⇠⇠⇠) (304)

(1� ⌘)2`B(±)
`

(⇠⇠⇠)  B(±)
`

((1� ⌘)⇠⇠⇠) (305)

B(±)
`

((1 + ⌘)⇠⇠⇠)  (1 + ⌘)2`B(±)
`

(⇠⇠⇠) (306)

for every 1  j  dn � 2 and 1  `  dn.
For each ⌘ 2 (0, 1), we denote the event

An,⌘(S) :=

⇢
1� ⌘ 

P
m

i=1 X
k

i

mXk

 1 + ⌘ for all k 2 [2n]

�
,

(307)
Hoeffding’s inequality yields that, for any z > 0 and 1  k 

2n,

P

 �����Xk �
1

m

mX

i=1

Xk

i

����� � z

!
 2e�2mz

2
/(qk�p

k)2 . (308)

Setting z = ⌘Xk � ⌘pk > 0 for ⌘ 2 (0, 1) yields that

P

 
(1� ⌘)Xk <

1

m

mX

i=1

Xk

i
< (1 + ⌘)Xk

!

� 1� 2e�2m⌘
2
/((q/p)k�1)2 .

(309)

Therefore, the union bound yields that

P (An,⌘(S)) � 1� 4ne�2m⌘
2
/((q/p)2n�1)2 . (310)

If An,⌘(S) occurs, we show a bound on the estimation error
that is linear in ⌘

bhn(S)� hn(X) = OX,n(⌘), (311)

independent of the number of samples m, for all small enough
⌘. Then, we choose ⌘ to be linear in the error " to conclude
the proof.

We may bound ⇢U,n(t) (see (302)) via the bounds in (303)–
(306) under the assumption that An,⌘(S) occurs. If (1 �

⌘)Xk 
1
m

P
m

i=1 X
m

i
 (1 + ⌘)Xk holds for every 1  k 

2n, then by (303)–(306) we have that for every t � 0 and
⌘ 2 (0, 1)

(1� ⌘)2fX((1� ⌘)2t)� (1 + ⌘)2gX((1 + ⌘)2t)

uX((1 + ⌘)2t)� vX((1� ⌘)2t)


fU (t)� gU (t)

uU (t)� vU (t)
= ⇢U,n(t).

(312)

For an analogous upper bound, we first verify the positivity

uX((1� ⌘)2t)� vX((1 + ⌘)2t) > 0 (313)

for every small enough ⌘. Let

µX := sup
t2[0,1)

vX(t)

uX(t)
. (314)

We show that µX < 1. We have the limit

⇠X := lim
t!1

vX(t)

uX(t)
=

B(�)
dn

(XXX )

B(+)
dn

(XXX )
. (315)
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Recall that B(+)
dn

(XXX ) � B(�)
dn

(XXX ) = Bdn(XXX ) = detMX,n >

0 and both B(+)
dn

(XXX ) and B(�)
dn

(XXX ) are non-negative, hence
B(+)

dn
(XXX ) > 0. Then, ⇠X < 1. Thus, there is a t0 � 0 such

that vX(t)/uX(t) < (1+⇠X)/2 < 1 whenever t > t0. Further,
by the extreme value theorem, there is a t1 2 [0, t0] such that
vX(t)/uX(t)  vX(t1)/uX(t1) < 1 for every t 2 [0, t0].
Therefore, µX  max((1 + ⇠X)/2, vX(t1)/uX(t1)) < 1, as
desired. Note that if µX = 0 then vX ⌘ 0 identically, in
which case (313) trivially holds by positivity of uX . So, for
the purpose of showing (313), it suffices to consider the case
µX 2 (0, 1). Denote

⌫ :=

✓
1 + ⌘

1� ⌘

◆2

. (316)

Now, since vX is a polynomial of degree at most dn, we
have that vX(↵⌧)  ↵dnvX(⌧) for every ↵ � 1 and ⌧ � 0.
Therefore, for every 1  ⌫ < µ�1/dn

X
and t � 0, we have that

vX((1 + ⌘)2t)

uX((1� ⌘)2t)


✓
1 + ⌘

1� ⌘

◆2dn

·
vX((1� ⌘)2t)

uX((1� ⌘)2t)
(317)

 ⌫dnµX < 1, (318)

i.e., inequality (313) holds. Therefore, for every 1  ⌫ <
µ�1/dn

X
(if µX = 0, we allow 1  ⌫ < 1), inequalities (303)–

(306) imply the bound

⇢U,n(t) =
fU (t)� gU (t)

uU (t)� vU (t)
(319)


(1 + ⌘)2fX((1 + ⌘)2t)� (1� ⌘)2gX((1� ⌘)2t)

uX((1� ⌘)2t)� vX((1 + ⌘)2t)
.

(320)

Combining (312) and (320), then integrating with respect to
t over [0,1) and performing a change of variables from t to
(1� ⌘)2t, we obtain the bounds
Z 1

0

fX(t)� ⌫gX(⌫t)

uX(⌫t)� vX(t)
dt 

Z 1

0
⇢U,n(t) dt (321)



Z 1

0

⌫fX(⌫t)� gX(t)

uX(t)� vX(⌫t)
dt.

(322)

Next, we further develop these bounds. For any s 2 (0, 1),
denote

⌫X,n,s :=

✓
1� sµX

1� s

◆1/dn

. (323)

Consider the functions

'X(t; ⌫) :=
uX(t)� vX(t)

uX(t)� vX(⌫t)
, (324)

 X(t; ⌫) :=
uX(t)� vX(t)

uX(⌫t)� vX(t)
. (325)

We show in Appendix H-B that, for any constants s 2 (0, (1�
µX)/(1 + µX)) and 1  ⌫  ⌫X,n,s, the uniform bounds

1� s   X(t; ⌫)  1  'X(t; ⌫)  1 + s (326)

hold over t 2 [0,1). Fix s 2 (0, (1 � µX)/(1 + µX)) and
1  ⌫  ⌫X,n,s.

Now, the integrand in the upper bound in (322) can be
rewritten as
⌫fX(⌫t)� gX(t)

uX(t)� vX(⌫t)

= 'X(t; ⌫)

✓
fX(t)� gX(t)

uX(t)� vX(t)
+
⌫fX(⌫t)� fX(t)

uX(t)� vX(t)

◆
.

(327)

The integrand in the lower bound in (321) can be rewritten as

fX(t)� ⌫gX(⌫t)

uX(⌫t)� vX(t)

=  X(t; ⌫)

✓
fX(t)� gX(t)

uX(t)� vX(t)
+

gX(t)� ⌫gX(⌫t)

uX(t)� vX(t)

◆
.

(328)

By the bounds in (326), we have that for every t � 0

0  'X(t; ⌫)� 1  s. (329)

Hence, by non-negativity of fX and gX , we deduce

('X(t; ⌫)� 1) ·
fX(t)� gX(t)

uX(t)� vX(t)
 s ·

fX(t)

uX(t)� vX(t)
, (330)

i.e., the inequality

'X(t; ⌫)
fX(t)� gX(t)

uX(t)� vX(t)


fX(t)� gX(t)

uX(t)� vX(t)
+s

fX(t)

uX(t)� vX(t)
(331)

hold of all t � 0. In addition, since fX(⌫t)  ⌫dn�2fX(t)
over t 2 [0,1), inequality (329) implies that

'X(t; ⌫) ·
⌫fX(⌫t)� fX(t)

uX(t)� vX(t)


(1 + s)(⌫dn�1
� 1)fX(t)

uX(t)� vX(t)
.

(332)
Therefore, applying inequalities (331) and (332) in for-
mula (327), we deduce in view of the upper bound in (322)
the inequality
Z 1

0
⇢U,n(t)� ⇢X,n(t) dt


�
(1 + s)⌫dn�1

� 1
� Z 1

0

fX(t)

uX(t)� vX(t)
dt.

(333)

Similarly, we derive a lower bound on (328). By (326), we
have that for every t � 0

s � 1�  X(t; ⌫) � 0. (334)

Hence, by non-negativity of fX and gX ,

s ·
fX(t)

uX(t)� vX(t)
� (1�  X(t; ⌫))

fX(t)� gX(t)

uX(t)� vX(t)
, (335)

i.e., the inequality

 X(t; ⌫)
fX(t)� gX(t)

uX(t)� vX(t)
�

fX(t)� gX(t)

uX(t)� vX(t)
�s

fX(t)

uX(t)� vX(t)
(336)

holds for all t � 0. In addition, from  X(t; ⌫)  1  ⌫ and
gX(⌫t)  ⌫dn�2gX(t) for t � 0, we deduce

 X(t; ⌫) ·
gX(t)� ⌫gX(⌫t)

uX(t)� vX(t)
�  X(t; ⌫) ·

(1� ⌫dn�1)gX(t)

uX(t)� vX(t)

�
�
1� ⌫dn�1

� gX(t)

uX(t)� vX(t)
.

(337)
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Therefore, applying inequalities (336) and (337) in for-
mula (328), the lower bound in (321) yields the bound

Z 1

0
⇢U,n(t)� ⇢X,n(t) dt

� �s

Z 1

0

fX(t)

uX(t)� vX(t)
dt

�
�
⌫dn�1

� 1
� Z 1

0

gX(t)

uX(t)� vX(t)
dt.

(338)

In particular, (338) implies that
Z 1

0
⇢U,n(t)� ⇢X,n(t) dt

� �
�
⌫dn�1

� (1� s)
� Z 1

0

fX(t) + gX(t)

uX(t)� vX(t)
dt.

(339)

Now, note that (1+s)⌫dn�1
�1 � ⌫dn�1

�(1�s). Therefore,
combining the upper bound in (333) and the lower bound
in (339), we deduce that
����
Z 1

0
⇢U,n(t)� ⇢X,n(t) dt

����


�
(1 + s)⌫dn�1

� 1
� Z 1

0

fX(t) + gX(t)

uX(t)� vX(t)
dt.

(340)

The upper bound in (340) may be made as small as needed
by choosing a small s then choosing a small ⌫.

The second part of the proof, given in Appendix H-C,
derives the following error bound for estimating log detMX,n

from samples. If B(�)
dn

(XXX ) > 0, we denote

⌧X,n :=

 
B(+)

dn
(XXX )/B(�)

dn
(XXX ) + 1

2

!1/(n+1)

2 (1,1) (341)

and
⌘X,n := min

✓
1

2
,
⌧X,n � 1

⌧X,n + 1

◆
2 (0, 1/2]. (342)

If B(�)
dn

(XXX ) = 0, then we set ⌧X,n = 1 and ⌘X,n = 1/2.
We show that for all ⌘ 2 (0, ⌘X,n), if An,⌘(S) holds, then we
have the bound
����
1

2dn
log

detMU,n

detMX,n

���� 
6⌘

n
·
B(+)

dn
(XXX ) +B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )
. (343)

To finish the proof, we choose ⌘ so that the desired accuracy
is achieved with high probability. Recall from (310) that

P (An,⌘(S)) � 1� 4ne�m⌘
2
↵X,n (344)

where we denote the constant

↵X,n := 2 ·

 ✓
q

p

◆2n

� 1

!�2

. (345)

In addition, from (340) and (343), we know that if s 2 (0, (1�
µX)/(1 + µX)), ⌫ 2 [1, ⌫X,n,s], ⌘ 2 (0, ⌘X,n), and An,⌘(S)
occurs, then
���bhn(S)� hn(X)

���  ⌘ · �X,n +
�
(1 + s)⌫dn�1

� 1
�
· �X,n

(346)

where we denote the constants

�X,n :=
6

n
·
B(+)

dn
(XXX ) +B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )
, (347)

�X,n :=

Z 1

0

fX(t) + gX(t)

uX(t)� vX(t)
dt. (348)

Consider the constant "X,n 2 (0, 2min(�X,n,�X,n)] defined
by

"X,n := min

✓
2�X,n ·

1� µX

1 + µX

, 2�X,n

◆
. (349)

Fix " 2 (0, "X,n), set s := "/(6�X,n) 2 (0, 1/3], denote

X,n := min

 
3, ⌧X,n,

✓
1� sµX

1� s

◆ 1
2dn

,
1 + "/(2�X,n)

1� "/(2�X,n)

!
,

(350)
and fix ⌘ 2 (0, (X,n � 1)/(X,n + 1)). Since X,n  3,
we obtain ⌘ < 1/2. In addition, X,n  ⌧X,n, hence ⌘ <
(X,n � 1)/(X,n + 1) implies that ⌘ < ⌘X,n. Note that, for
a 2 (0, 1) and b > 1, the inequality a  (b � 1)/(b + 1) is
equivalent to (1 + a)/(1� a)  b. By definition,

X,n 

✓
1� sµX

1� s

◆1/(2dn)

, (351)

hence we have

(1 + s)⌫dn = (1 + s)

✓
1 + ⌘

1� ⌘

◆2d

< (1 + s)2d
X,n

(352)

 (1 + s) ·
1� sµX

1� s


1 + s

1� s
(353)


1 + s+ s(1� 3s)

1� s
= 1 + 3s. (354)

In addition, since

X,n 
1 + "/(2�X,n)

1� "/(2�X,n)
, (355)

and since we assume ⌘ < (X,n � 1)/(X,n + 1), we deduce
the inequality ⌘ < "/(2�X,n). Applying the two inequalities
⌘ < "/(2�X,n) and (1 + s)⌫dn  1 + 3s (see (354)) into
inequality (346), we conclude that
���bhn(S)� hn(X)

���  ⌘ · �X,n +
�
(1 + s)⌫dn�1

� 1
�
· �X,n


"

2
+
"

2
= " (356)

whenever An,⌘(S) occurs.
Now, fix � 2 (0, 1/(4n)). Set

⌘ :=
1

2
·
X,n � 1

X,n + 1
. (357)

We show that ⌘ � "cX,n, where we define the constant cX,n

by

cX,n := min

✓
1

8�X,n

,
⌧X,n � 1

4�X,n(⌧X,n + 1)
,

1� µX

72�X,ndn
,

1

4�X,n

◆
.

(358)
In this definition of cX,n, the term involving ⌧X,n is removed
if ⌧X,n = 1. We assume that

m �
2/(c2

X,n
↵X,n)

"2
log

1

�
. (359)
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From ⌘ � "cX,n and (359), it follows that the probability that
the event An,⌘(S) does not occur is bounded as

P (An,⌘(S)
c)  4ne�m⌘

2
↵X,n  �. (360)

Note that this would conclude the proof, as then we would
have that

P
⇣���bhn(S)� hn(X)

���  "
⌘

� P
⇣���bhn(S)� hn(X)

���  "
��� An,⌘(S)

⌘
P (An,⌘(S))

= P (An,⌘(S)) > 1� �. (361)

The rest of the proof is devoted to showing that ⌘ � "cX,n

holds.
Let ⇢ = (1� µX)/(6dn). We will show that

✓
1� sµX

1� s

◆1/(2dn)

�
1 + s⇢

1� s⇢
. (362)

Inequality (362) is equivalent to

(1� sµX)(1� s⇢)2dn � (1 + ⇢s)2dn(1� s). (363)

By Bernoulli’s inequality, since 0  s⇢  1, we have that
(1�s⇢)2dn � 1�2dn⇢s. In addition, the inequality 1+2az �

eaz � (1 + a)z for a, z � 0 satisfying az  log 2 implies, in
view of 2dn⇢s  1/9 < log 2, that

1 + 4dn⇢s � (1 + ⇢s)2dn . (364)

Therefore, to show (363), it suffices to show that

(1� sµX)(1� 2dn⇢s) � (1 + 4dn⇢s)(1� s). (365)

Now, using the definition ⇢ = (1 � µX)/(6dn), inequal-
ity (365) follows as

(1� sµX)(1� 2dn⇢s)

= (1� sµX)(1� s(1� µX)/3)

= (1 + 2(1� µX)s/3)(1� s) + s2(1� µX)(µX + 2)/3

� (1 + 2(1� µX)s/3)(1� s) = (1 + 4dn⇢s)(1� s).

Since (365) holds, we conclude that inequality (362) holds.
Now, by the definition of X,n in (350) there are four

possible values X,n can take. First, if X,n = 3, then

⌘ =
1

4
= " ·

1

4"
� " ·

1

8�X,n

� "cX,n (366)

since " < "X,n  2�X,n. Now, if X,n = ⌧X,n (so
B(�)

dn
(XXX ) > 0), then

⌘ =
1

2
·
⌧X,n � 1

⌧X,n + 1
�

"

4�X,n

·
⌧X,n � 1

⌧X,n + 1
(367)

since " < 2�X,n. Next, suppose that

X,n =

✓
1� sµX

1� s

◆1/(2dn)

. (368)

By (362) and (368), we deduce that

X,n �
1 + s⇢

1� s⇢
. (369)

Recall that, for 0 < a < 1 < b, the inequalities (1 + a)/(1�
a)  b and (b � 1)/(b + 1) � a are equivalent. Therefore,

the definition of ⌘ in (357) yields from (369) that ⌘ � s⇢/2.
Plugging in the definitions of s and ⇢, we conclude that

⌘ � " ·
1� µX

72�X,ndn
� "cX,n. (370)

Finally, when

X,n =
1 + "/(2�X,n)

1� "/(2�X,n)
, (371)

the definition of ⌘ implies that ⌘ � "/(4�X,n) � "cX,n.
Combining these four cases, we conclude that we must have
⌘ � "cX,n independently of the value of X,n. The proof is
thus complete.

B. Proof of the Uniform Bounds (326)
Being polynomials of degree at most dn with non-negative

coefficients, the functions uX and vX satisfy uX(⌫t) 

⌫dnuX(t) and vX(⌫t)  ⌫dnvX(t) for every ⌫ � 1 and
t � 0. Note also that both uX and vX are nondecreasing.
In addition, we have vX(t) < uX(t) for every t � 0, because
uX(t) � vX(t) = detMp

tX+N,n
> 0. We have also shown

that µX < 1, where µX is defined in (314) as

µX := sup
t2[0,1)

vX(t)

uX(t)
. (372)

These facts will be enough to deduce the bounds in (326).
We show first the bounds on 'X in (326). It suffices to con-

sider the case µX > 0, for otherwise vX vanishes identically
and 'X ⌘ 1 identically. We show that for every s > 0 and 1 

⌫  ⌫0
X,n,s

, where ⌫0
X,n,s

:= ((1/s+ 1/µX)/(1/s+ 1))1/dn ,
the uniform bound 1  'X(t; ⌫)  1 + s in (326) holds.

Consider the lower bound on 'X . For every 1  ⌫ <
µ�1/dn

X
, we have the uniform bound

vX(⌫t)

uX(t)

⌫dnvX(t)

uX(t)
 ⌫dnµX < 1 (373)

over t 2 [0,1). In particular,

uX(t)� vX(⌫t) > 0 (374)

for every 1  ⌫ < µ�1/dn

X
and t � 0. Since vX is nondecreas-

ing, we conclude that 'X(t; ⌫) = (uX(t)� vX(t))/(uX(t)�
vX(⌫t)) � 1 whenever 1  ⌫ < µ�1/dn

X
. Note that

⌫0
X,n,s

< µ�1/dn

X
for every s > 0 since µX 2 (0, 1).

Next, we show the upper bound on 'X . Fix s > 0 and
⌫ 2 [1, ⌫0

X,n,s
]. Since vX(t)/µX  uX(t), we have for every

t � 0 the bound

vX(⌫t)  ⌫dnvX(t) 
1/s+ 1/µX

1/s+ 1
· vX(t) (375)


vX(t)/s+ uX(t)

1/s+ 1
= vX(t) +

uX(t)� vX(t)

1/s+ 1
.

(376)

Rearranging (376), we obtain the bound

�1

1/s+ 1


vX(t)� vX(⌫t)

uX(t)� vX(t)
. (377)

Adding 1 to both sides of (377) then inverting, we obtain
'X(t; ⌫)  1+ s; for this step, we used the fact that uX(t)�
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vX(⌫t) > 0, which follows by (374) since ⌫  ⌫0
X,n,s

<

µ�1/dn

X
.

Next, we prove the bounds on  X in (326). We do not
assume µX > 0. The upper bound  X(t; ⌫)  1 follows for
every ⌫ � 1 by monotonicity of uX . For the lower bound on
 X , we show that for every s 2 (0, 1) and 1  ⌫  ⌫X,n,s,
where ⌫X,n,s := ((1� sµX)/(1� s))1/dn , the uniform bound
 X(t; ⌫) � 1 � s holds over t 2 [0,1). We have, for every
s 2 (0, 1) and ⌫ 2 [1, ⌫X,n,s], the bound

uX(⌫t)  ⌫dnuX(t) 
1� sµX

1� s
· uX(t) (378)


uX(t)� svX(t)

1� s
=

uX(t)� vX(t)

1� s
+ vX(t)

(379)

over t 2 [0,1). Rearranging (379), we obtain  X(t; ⌫) �

1� s, as desired.
Finally, note that ⌫X,n,s  ⌫0

X,n,s
is equivalent to s  (1�

µX)/(1 + µX). This concludes the proof that, for every s 2

(0, (1�µX)/(1+µX)) and ⌫ 2 [1, ⌫X,n,s], the uniform bounds
in (326)

1� s   X(t; ⌫)  1  'X(t; ⌫)  1 + s (380)

hold over t 2 [0,1).

C. Proof of Inequality (343)
Recall that

detMX,n = Bdn(XXX ) = B(+)
dn

(XXX )�B(�)
dn

(XXX ). (381)

We bound the error when estimating log detMX,n from
the samples S. Denote the random vector µµµ :=⇣Pm

i=1 Xi

m
, · · · ,

Pm
i=1 X

2n
i

m

⌘
, and note that

detMU,n = Bdn(µµµ) = B(+)
dn

(µµµ)�B(�)
dn

(µµµ). (382)

We assume that m > n. Let ⌘X,n be as defined by (341)
and (342), and fix ⌘ 2 (0, ⌘X,n). Then we show that under
An,⌘(S)
����
1

2dn
log

detMU,n

detMX,n

���� 
6⌘

n
·
B(+)

dn
(XXX ) +B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )
. (383)

By (179) in the proof of Theorem 2, each term in the
polynomials B(±)

dn
is a product of at most n + 1 monomials.

Thus,

(1� ⌘)n+1B(±)
dn

(XXX )  B(±)
dn

(µµµ)  (1 + ⌘)n+1B(±)
dn

(XXX ).
(384)

It suffices to consider the case when B(�)
dn

is not the zero
polynomial, for if B(�)

dn
is the zero polynomial then we obtain

from (384) the bound
����
1

2dn
log

detMU,n

detMX,n

���� =
1

2dn

�����log
B(+)

dn
(µµµ)

B(+)
dn

(XXX )

����� (385)


max (± log(1± ⌘))

n
(386)

=
� log(1� ⌘)

n
<

2⌘

n
(387)

where the last inequality follow because � log(1�z) < 2z for
z 2 (0, 1/2), which can be verified by checking the derivative.
Note that the bound 2⌘/n in (387) is stronger than the bound
in (383). Assume that B(�)

dn
does not vanish identically, so

positivity of X yields that B(�)
dn

(XXX ) > 0.
From (384), we have that

log
B(+)

dn
(XXX )� ⌫

n+1
2 B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )
+ (n+ 1) log(1� ⌘)

 log
detMU,n

detMX,n

(388)

and

log
detMU,n

detMX,n

 log
B(+)

dn
(XXX )� ⌫�

n+1
2 B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )
+ (n+ 1) log(1 + ⌘)

(389)

where we used our assumption that

⌫
n+1
2 =

✓
1 +

2

1/⌘ � 1

◆n+1

<
1

2

 
B(+)

dn
(XXX )

B(�)
dn

(XXX )
+ 1

!
(390)

<
B(+)

dn
(XXX )

B(�)
dn

(XXX )
. (391)

Now, for every (w, z, r) 2 R3 such that w > z > 0 and
w/z > r > 1, rearranging r + 1/r > 2 we have that

w � z/r

w � z
<

w � z

w � rz
. (392)

Setting (w, z, r) = (B(+)
dn

(XXX ), B(�)
dn

(XXX ), ⌫(n+1)/2), we obtain
that

1 <
B(+)

dn
(XXX )� ⌫�

n+1
2 B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )
(393)

<
B(+)

dn
(XXX )�B(�)

dn
(XXX )

B(+)
dn

(XXX )� ⌫
n+1
2 B(�)

dn
(XXX )

. (394)

Therefore,

0 < log
B(+)

dn
(XXX )� ⌫�

n+1
2 B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )
(395)

<

�����log
B(+)

dn
(XXX )� ⌫

n+1
2 B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )

����� . (396)

Applying (395)–(396) in (389) and combining that with (388),
we obtain (since log(1 + ⌘) < � log(1� ⌘)) the bound
����log

detMU,n

detMX,n

����

 log
B(+)

dn
(XXX )�B(�)

dn
(XXX )

B(+)
dn

(XXX )� ⌫
n+1
2 B(�)

dn
(XXX )

+ (n+ 1) log
1

1� ⌘
.

(397)
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Now, we may write

B(+)
dn

(XXX )�B(�)
dn

(XXX )

B(+)
dn

(XXX )� ⌫
n+1
2 B(�)

dn
(XXX )

=

 
1�

B(�)
dn

(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )

⇣
⌫

n+1
2 � 1

⌘!�1

.

(398)

The proof of (383) (or, (343)) is completed by showing that
for (w, z, r) 2 R3

>0 such that (1 + z)r < 1 + 1
2w we have

� log (1� w ((1 + z)r � 1))  (2w + 1)rz. (399)

Before showing that (399) holds, we note how it completes
the proof. Setting

(w, z, r) =

 
B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )
,

2⌘

1� ⌘
, n+ 1

!
, (400)

we obtain that

log
B(+)

dn
(XXX )�B(�)

dn
(XXX )

B(+)
dn

(XXX )� ⌫
n+1
2 B(�)

dn
(XXX )


B(+)

dn
(XXX ) +B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )
· (n+ 1) ·

2⌘

1� ⌘

(401)

since (see (390))

⌫
n+1
2 <

1

2

 
B(+)

dn
(XXX )

B(�)
dn

(XXX )
+ 1

!
. (402)

Then � log(1� ⌘) < 2⌘ yields from (397) and (401) that

1

2dn

����log
detMU,n

detMX,n

���� 
B(+)

dn
(XXX ) +B(�)

dn
(XXX )

B(+)
dn

(XXX )�B(�)
dn

(XXX )
·

2⌘

n(1� ⌘)
+
2⌘

n
.

(403)
Then (403) yields the desired inequality (343) as ⌘ 2 (0, 1/2).

Finally, to see that (399) holds, we consider for fixed w, r >
0

f(z) := (2w + 1)rz + log (1� w ((1 + z)r � 1)) (404)

over 0  z < (1+1/(2w))1/r�1. Inequality (399) is restated
as f(z) � 0 for every 0 < z < (1 + 1/(2w))1/r � 1, which
follows since f is continuous, f(0) = 0, f 0(0+) = (w+1)r >
0, and

f 0(z) = (2w + 1)r �
wr(1 + z)r�1

1� w((1 + z)r � 1)
(405)

> (2w + 1)r �
wr(1 + z)r

1� w((1 + z)r � 1)
(406)

> (2w + 1)r �
wr(1 + 1/(2w))

1� w((1 + 1/(2w))� 1)
= 0 (407)

for every 0  z < (1 + 1/(2w))1/r � 1.

D. Proof of Proposition 5: Mutual Information

Let {(Xj , Yj)}j2N be i.i.d. samples drawn according to
PX,Y . Denote Sm = {Xj}

m

j=1. By continuity of Y, we may
assume that all the Yj , for j 2 N, are distinct. For each
x 2 supp(X), let Jx := {1  j  m ; Xj = x}. Let
Dm be the event that, for every x 2 supp(X), we have that
|Jx| > n. We use Hoeffding’s inequality to obtain a lower
bound on the probability

P (Dm) = P

✓
min

x2supp(X)
|Jx| > n

◆
. (408)

Let bPm be the empirical measure, i.e., define bPm(x) :=
m�1

P
m

j=1 �x(Xj). Note that |Jx| = m bPm(x).
Let x0 2 supp(X) be such that PX(x0) is minimal, set

⇣ := PX(x0)/2, and suppose m � ⇣�1n. Then, the union
bound and ⇣  PX(x)� ⇣ for each x 2 supp(X) yield that

P

✓
n � min

x2supp(X)
|Jx|

◆

 P

✓
m⇣ � min

x2supp(X)
|Jx|

◆
(409)



X

x2supp(X)

P (m⇣ � |Jx|) (410)



X

x2supp(X)

P (m(PX(x)� ⇣) � |Jx|) (411)

=
X

x2supp(X)

P
⇣
PX(x)� bPm(x) � ⇣

⌘
. (412)

Since E[ bPm(x)] = PX(x) for each x 2 supp(X), Hoeffding’s
inequality yields that P

⇣
PX(x)� bPm(x) � ⇣

⌘
 e�2⇣2

m.

Therefore,

P

✓
n � min

x2supp(X)
|Jx|

◆
 |supp(X)| · e�2⇣2

m. (413)

In other words, for every m � 2n/PX(x0), we have the bound

P (Dm) � 1� |supp(X)| · e�mPX(x0)
2
/2. (414)

Denote ⇡X := 4/PX(x0)2 and

�X,n := min

✓
1

4|supp(X)|
, e�PX(x0)n/2

◆
. (415)

We conclude from (414) that, for every � 2 (0, �X,n), if m �

⇡X log(1/�) then P (Dm) > 1� �/4.
Consider the event Pm," that the empirical measure bPm is

pointwise "-close to the true measure PX , i.e.,

Pm," :=

⇢
max

x2supp(X)

��� bPm(x)� PX(x)
��� < "

�
. (416)

By the union bound, we have that

P
�
Pc

m,"

�


X

x2supp(X)

P
⇣��� bPm(x)� PX(x)

��� � "
⌘
. (417)

By Hoeffding’s inequality, for each x 2 supp(X), we have
that

P
⇣��� bPm(x)� PX(x)

��� � "
⌘
 2e�2m"

2

. (418)
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Therefore, we obtain the bound

P (Pm,") > 1� 2|supp(X)|e�2m"
2

. (419)

In particular, if � 2 (0, 1/(4|supp(X)|)), then m �

(1/"2) log(1/�) implies P (Pm,") > 1� �/2.
Recall that, if Dm occurs, then we may write

bIn(Sm) = bhn(Am)�
X

x2supp(X)

bPm(x) bhn(Bm,x), (420)

where Am := {Yj}
m

j=1 and Bm,x := {Yj ; 1  j  m,Xj =
x}. Then,
���bIn(Sm)� In(X;Y )

���



���bhn(Am)� hn(Y )
���

+
X

x2supp(X)

bPm(x)
���bhn(Bm,x)� hn(Y

(x))
���

+

✓
max

x2supp(X)

��� bPm(x)� PX(x)
���
◆ X

x2supp(X)

|hn(Y
(x))|.

(421)

Denote HX,Y,n :=
P

x2supp(X) |hn(Y (x))|. Consider the
events

Fx," :=
n���bhn(Bm,x)� hn(Y

(x))
��� <

"

3

o
(422)

F0
"
:=
n���bhn(Am)� hn(Y )

��� <
"

3

o
. (423)

Set F" :=
T

x2supp(X) Fx,". From Proposition 4, we know that
there is a constant CX,Y,n such that for every small enough
", � > 0, if m � (CX,Y,n/"2) log(1/�) then P (Fx," | Dm) �
1��/(8|supp(X)|) for each x 2 supp(X) and P (F0

"
| Dm) >

1 � �/8. Then, P (F" \ F0
"
| Dm) � 1 � �/4. We conclude,

possibly after increasing CX,Y,n, that P (F"\F0
"
\Dm) � 1�

�/2. Also, P (Pm,"/(3HX,Y,n)) > 1� �/2, where we increase
CX,Y,n, if necessary, to exceed 9H2

X,Y,n
. Then, P (F" \ F0

"
\

Dm\Pm,"/(3HX,Y,n)) � 1� �. But under the event F"\F0
"
\

Dm \Pm,"/(3HX,Y,n), we have from (421) the bound
���bIn(Sm)� In(X;Y )

��� <
"

3
+
"

3
+
"

3
= ", (424)

and the proof is complete.
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