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Abstract—The development of reinforcement learning (RL)
algorithms has created a paradigm where the agents are trained
to learn directly by observing the environment and learning
policies to perform tasks autonomously. In the case of network
environments, these agents can control and monitor the traffic as
well as help preserve the confidentiality, integrity, and availability
of resources and services in the network. In the case of software-
defined networks (SDN), the centralized controller in the control
plane has become the single point of failure for the entire network.
Reactive routing in SDNs makes such networks vulnerable to
denial-of-service (DoS) attacks that aim to overwhelm switch
memory and the control channel between SDN switches and
controllers. One potential solution to cope with such attacks
is to use an intelligent mechanism to detect and block them
with minimal performance overhead for the controller and
control channel. In this work, we investigate the practicality and
effectiveness of a reinforcement learning (RL) approach to cope
with DoS attacks in SDN networks that utilize programmable
switches. Assuming the existence of a reliable reward function, we
demonstrate that an RL-based approach can successfully adapt
to the changing nature of attack traffic to detect and mitigate
attacks without overwhelming switch memory and the control
channel in SDN.

Index Terms—Reinforcement learning, software-defined net-
works, programmable data planes, SDN security

I. INTRODUCTION

Software-defined networks (SDN) introduced the idea of
separating control plane logic from packet forwarding logic,
virtually centralizing the control logic, and converting switches
to simple packet forwarders. Even though SDN enables better
network manageability and ease of functional extensibility, the
technology may be vulnerable to potential security threats such
as denial-of-service (DoS) attacks. An attacker can send a high
volume of novel packets, forcing the switch to send a request to
the controller to receive forwarding rules to handle each such
packet. This attack can potentially overwhelm the controller,
saturate the controller-to-switch control channel, and fill the
switch’s forwarding table. Defending an SDN environment
against these types of attacks becomes an important task to
ensure the smooth operation of the network.

The introduction of programmable switches and the P4
language has provided us with the ability to introduce limited
control logic to the switches. One can use P4 to implement
some limited control logic on the switches to introduce new
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functionality or improve the performance of existing functions
in an SDN network. P4 gives network administrators the flex-
ibility to define the way they want the packets to be processed
in the network without being constrained by the protocols
supported by the hardware ASIC. P4 allows customization in
the packet processing pipeline to include a block that can filter
out packets before forwarding them to the controller. In this
paper, we use this capability offered by P4 and programmable
switches to handle flooding-based DoS attacks without having
to rely on the controller for every malicious packet while
learning to identify new and previously unseen attack patterns.

Recently, machine learning (ML) algorithms have been
extensively used to implement solutions to deal with network
attacks such as DoS attacks. It has been shown that supervised
ML algorithms [1], [2] can be trained on previously collected
and labeled network traffic to effectively classify ongoing
traffic as benign or malicious with high accuracy. On the
other hand, these algorithms are found to be slow in adapting
to the changing nature of the network traffic as the overall
process requires (1) collecting network traffic data, (2) labeling
the flows as benign or malicious, (3) re-training the ML
algorithm based on this new data, and (4) deploying the new
model to do packet classification. Given that this process
requires a non-trivial amount of time and potential human
involvement (for labeling), it may have limited effectiveness in
network environments where the nature of the traffic changes
continuously.

In this paper, we explore a reinforcement learning (RL)
based approach to improve attack detection time as the nature
of the traffic changes in the network while leveraging available
network attack datasets. In RL, the agent builds a policy by
interacting with the environment. Initially, the agent explores
the environment by choosing actions based on trial and error
and receives feedback from the environment as a numerical
reward. This feedback helps the agent to continuously update
its policy and use the policy to take actions to maintain the
desired state of the environment.

When applying RL principles in data networks, we face
several challenges. In contrast to certain application scenarios
where a relatively small number of variables define the state
of the environment, data networks require a larger set of



parameters to fully describe their state. In addition, it is
challenging to develop a reliable model of the network that
can be used in conjunction with the RL agent. Furthermore, the
success of the RL agent depends on the quality of the feedback
that it receives from the network. Given these challenges,
our main goal in this work is to examine the feasibility of
using RL in adapting to the changing nature of attack traffic
in the network assuming that we have a reliable feedback
(i.e., an oracle reward) mechanism available to us. We apply
the principles of Offline RL [3] and leverage previously
collected and labeled datasets to train the agent. In Offline
RL, the authors propose the use of previously collected data
for training the RL agents extracting maximum possible utility
out of available datasets. In our approach, we use the labeled
datasets to provide reliable feedback for the agent to learn
optimal policy to filter malicious packets based on dynamic
packet and flow features. We consider finding a practical and
reliable reward mechanism as a future work.

In our framework, the actions of the agent are translated
into the data plane switches as match-action rules. These rules
represent the signatures of DoS attacks and allow the switches
to detect and drop malicious packets in the data plane. We
use Proximal Policy Optimization (PPO) [4] algorithm as our
RL agent in an emulated network environment. A custom
OpenAl Gym [5] environment is developed as a moderator
between the emulated mininet [6] environment and the RL
agent. The mininet environment will have a network topology
made of P4 programmable switches. We create a pipeline
that collects packets in the network as pcap files and use the
Cicflowmeter [7] to generate flow-based dataset that is fed
back to the agent as the environment state.

In our evaluations of the developed test environment, we see
that the match-action rules installed by the agent can filter out
malicious packets in an efficient manner. Our contributions in
this work include the following: (1) we formulate a flooding-
based attack and its mitigation as an RL problem; (2) we
develop a custom OpenAl Gym environment that acts as a
moderator between the emulated mininet environment and
the RL agent; (3) we develop a method to leverage existing
datasets to train the RL agent offline to perform actions that
mitigate network attacks; (4) we propose a way to install the
agent’s actions as match-action rules in the P4 programmable
software switches without involving the controller for every
new attack traffic flow; and (5) we simulate the network
scenario by replaying well-known datasets and report the
performance of RL in mitigating network attacks.

The rest of the paper is organized as follows. Section II
presents the related work. Section III provides a brief discus-
sion on the PPO algorithm and P4 programmability. Section
IV presents the theory behind the proposed solution. Section
V discusses the implementation and evaluations. Section VI
concludes the paper.

II. RELATED WORK

With the invention of programmable data plane devices
along with domain-specific languages like P4, several solutions

have been developed to perform in-network computations on
the switches. In [8], the authors present a comprehensive
survey of studies that focus on offloading ML operations
to network infrastructure devices. In the case of in-network
ML, there are several works where different stages of the
ML algorithm are implemented on the programmable data
plane [1], [9], [10]. Several works off-load training of the ML
algorithm onto the data plane where the data plane performs
aggregation operations associated with the model updates.

The work done in [9] is an example of utilizing the data
planes to perform training and gradient aggregation in the
network devices. This work utilizes the features offered by
SDNs and uses the programmability of switches to perform the
training of the learning algorithms. The authors propose their
own protocol and packet format to facilitate direct communi-
cation among the switches (workers). In our work, we focus
on offloading the RL models onto the data plane to perform
inference. In contrast to [9], complex mathematical operations
are not carried out at the switches, thereby preserving their
high processing speeds. Instead, all the learning and optimiza-
tions are run on the control plane and the data plane devices
can function as worker nodes, implementing the instructions
obtained from the control plane.

In [11], the authors propose a framework to perform both
RL training and inference at the data plane, focusing on
classical RL methods such as tile coding with algorithms
like Sarsa [12]. This work primarily addresses the efficient
implementation of learning at data plane devices, such as
Netronome SmartNIC hardware, and presents the effect of such
implementation on their performance. The authors also briefly
discuss the adaptability of their implementation for DDoS
attack mitigation. In our work, we perform RL inference in the
data plane by training the RL agent externally to the data plane
devices using the Deep-RL algorithm (PPO) for the specific
task of attack mitigation. We also present the evaluation of our
proposed solution for DDoS attack mitigation, demonstrating
that the proposed solution efficiently leverages the advantages
of both the control (for training) and data plane (in-network
packet filtering) of the SDN architecture.

In [13], the authors developed an intelligence system using
Deep Q Learning and PPO to perform mitigation against
network attacks. The defense framework is implemented on
the OpenStack cloud computing platform with Opendaylight
controller and Openflow-enabled OpenvSwitches. Similarly in
[14], the authors implement an RL-based framework using
Deep Q Networks with constraints on exploration performed
by the agent. The security constraints are learned in a semi-
supervised manner as partial attack signatures. In both [13]
and [14], the RL agent learns to install flow rules to drop
packets based on the source IP address, requiring a new rule
for every new attack flow. In cases where the attacker can
launch multiple flows, installing a rule for every new flow
may overwhelm the switch memory. In our work, we identify
attack signatures based on dynamic packet features like packet
count per flow and packet size and add match action rules



in P4-programmable data plane devices. Since we implement
attack signatures that are more generic for the considered
attack independent of source and destination IP addresses, our
method provides a solution against attackers launching DDoS
attacks with spoofed source IP addresses.

III. REINFORCEMENT LEARNING AND P4 PROGRAMMING

The goal of this work is to implement a robust in-network
attack mitigation framework that can continuously learn using
RL algorithms to filter new types of attacks. The agent runs on
top of the controller and installs corresponding match-action
rules in the data plane switches to filter out malicious packets.
In this section, we summarize the two technologies that form
the basic building blocks of the proposed solution, namely, RL
and P4 programmability.

A. Reinforcement Learning

In RL, the agent learns its behavior through trial and error
by interacting with the environment. It is a closed-loop system
where the agent takes an action in the environment based on
which the environment moves on to the next state and the
agent receives a reward back depending on how useful the
action was towards achieving the long-term goal. Based on the
interaction between the agent and environment, the collected
rewards and environment state are used to perform updates on
the policy. In this work, we use a model-free optimization-
based algorithm called Proximal Policy Optimization (PPO),
a state-of-the-art deep RL algorithm in the class of policy
optimization algorithms [4], as our RL agent.

PPO is a policy gradient method. In policy gradient methods,
the policy based on which the agent chooses the action is
improved at each step directly. The policy mg(als) is the
probability of taking action a from state s, parameterized by 6,
where 6 can be the weights of the neural network. The main
idea of these methods is to boost the probabilities of actions
that earn high rewards while penalizing the actions that lead
to low reward values by decreasing their probability. These
updates are performed iteratively such that the resulting policy
mo(als) is the optimal policy.

Policy gradient methods are online methods where the agent
iteratively learns the optimal policy directly by trial and error
based on what it encounters in the environment. This means
that policy gradient algorithms do not store past experiences in
a replay buffer and learn from stored data. Once the episode
is over and the data is used to perform a gradient update,
the data from that episode is discarded. This naturally limits
the ability of the agent to maximize the sample efficiency.
Sample efficiency denotes the amount of training data that a
model needs to achieve the desired performance. Since these
methods do not store data offline, the agent needs more training
episodes to achieve good performance.

Algorithms like PPO were developed to tackle the sensitivity
of vanilla policy gradient algorithms with respect to hyper-
parameters like learning rate. PPO algorithm tackles these
issues by making sure that the new policy update is not too
different from the previous policy with the help of simpler

first-order methods that can be tuned and implemented at ease
while making sure that it has high sample efficiency. PPO
achieves this by using clipped policy gradients. That is, the
gradient is clipped to a certain range before performing a
policy update. If an action is more likely under the current
policy than it was under the previous policy, instead of biasing
the policy update more and more towards the action, PPO clips
the objective function to limit its impact during the gradient
update. Similarly, if the action is not returning good rewards
with the current policy, PPO makes sure that the action is not
penalized to make its probability zero in this current update.
This is performed by including the clipping function in the
PPO objective function as:

LOLP () = &, [min (ry(0) Ay, clip (r¢(0),1 — €1+ e)At)l

(1
where A is the advantage function, € is a hyperparameter and
r¢(0) denotes the probability ratio given by
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Here, A, is an estimate that is used to measure the quality of a
given action in comparison with the average action for a given
state. PPO uses a clipped version of the advantage function to
prevent unstable policy updates. The PPO objective function
makes sure that the new policy update is not too far from the
previous policy by taking the minimum of the clipped and
unclipped objective. The € is a hyperparameter and is used to
lower bound on the unclipped objective.

In addition to advantages like robust policy updates, PPO
has been shown to perform better than all the other policy
gradient methods for continuous control tasks [4]. That is, the
action of the agent could contain several parameters each of
which can take any value from a range of values. In our case,
since we aim to find the signature of the attack packets based
on features of the packet that take continuous values within a
range, we use the PPO algorithm to train the agent.

B. P4 Programmability

The main goal of developing the P4 language [15] is
to offer flexibility in the data plane switches independent
of the target hardware used in them. P4 offers network
administrators the freedom to process packets with custom
protocols and pipelines. The P4Switch is a software switch
that is developed based on a specific switch architecture.
The architecture defines the components that are present in
the switch with certain components that can be customized
and programmed. These programmable components can be
modified based on the requirements of the application. In
this work, we use simple_switch_grpc [16] as the data plane
switch. The simple_switch_grpc is a variation of Behavioral
Model version2 (bmv2) [17] P4 software switch, that supports
vilmodel architecture.



Among the programmable components, the ingress and
egress pipelines have match-action table units. These match-
action table units have match keys which can be packet
features and action fields such as forward or drop actions.
The rules are installed in these tables with key values and
corresponding action values by the control plane. For every
packet processed by the switch, the key values of the packet
are checked against the table and the corresponding action is
performed. The data plane switches are programmed with the
help of P4 language and the control plane communication is
handled by the P4Runtime API [18]. The P4 language offers
several externs like counters, meters, registers, etc., which
can also be used to customize the packet processing pipeline.
The block diagram of the ingress processing with the custom
match-action table that is used in this work is depicted in Fig.1.
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Fig. 1: Ingress Processing with Custom match-action table

IV. PROPOSED SOLUTION

In this work, we explore the possibility of automating the in-
network attack mitigation process using RL. As we previously
established, flooding-based network attacks are evolving every
day, putting the entire network infrastructure under serious
pressure. Therefore, it becomes essential to develop solutions
that can evolve and learn new attack signatures in a continuous
manner. We propose that with reliable and accurate feedback,
the RL-based solutions can learn the optimal policy to filter
new types of attacks in a continuous manner. The major
contribution of our work is to develop a framework where
the RL agent’s actions are directly installed in data plane
devices to perform in-network mitigation of network attacks.
We configure the action parameters as packet and flow features
that the malicious packets are expected to take. We use a
separate channel using ThriftAPI [19] to install the match-
action rules directly into the switch bypassing the controller
to protect it from being overwhelmed by the attack traffic.

We develop our solution in two stages. Firstly, we focus on
evaluating the efficiency of RL-based methods to learn attack
signatures given that they have reliable reward calculation
mechanisms. We leverage well-known previously collected
datasets to train the agent offline and evaluate its effectiveness
in choosing actions that filter malicious packets. Then, we
propose a framework to adapt RL-based solutions for real-
time network environments by translating the actions of the

agent in the form of match-action rules to be installed on data
plane switches to perform in-network packet filtering.

a) Stage 1: During the initial stages of learning in RL,
the agent has limited knowledge about the environment. Hence,
the agent relies on random exploration of the environment by
performing actions without any reliable policy. In the case of
real-time network environments, these random actions by the
agent could potentially cause the dropping of benign packets.
Therefore, in this work, we perform initial training by replay-
ing previously collected datasets and evaluating the agent’s
performance before deploying it in the network environment.
Training the agent with pre-existing datasets ensures that the
agent starts with a useful initial policy, thereby preventing
blind exploration of the network environment from scratch.

In our work, we use the PPO algorithm to perform policy up-
dates in the agent. In RL, the policy is defined as the decision
function that decides the action given an input state. During
each episode, the agent receives the state of the environment
as input and performs an action based on the current policy
for the given state. While training with previously collected
datasets, batches of flows from the dataset are given as input
to the agent during each episode.

Index Features Feature type
1 Source port Packet-level
2 Destination port Packet-level
3 Total packets in forward direction Flow-level
4 Total packets in backward direction Flow-level
5 Average packet length Packet-level
6 ACK Flag Packet-level
7 CWE Flag Packet-level
8 SYN Flag Packet-level
9 Number of flow packets per second Flow-level
10 Number of forward packets per second Flow-level

TABLE I: Features used for defining network state

We replay the packet flows from well-known DDoS datasets
namely CICDDo0S2019 and CICIDS2017 during the first stage.
These datasets have more than 80 features containing both
packet-level and flow-level features. In this stage, we perform
feature engineering to rank and select the features of the
dataset. The purpose of selecting traffic features is twofold:
(1) The environment state that is given as input to the agent is
given in terms of recent flow information that is described
by traffic flow features. The selected features are listed in
Table 1. (2) The action parameters that are given as output
by the agent are also packet/flow feature values that the attack
packets/flows are expected to take. These feature values will be
used to install match-action rules in the data plane switches to
perform in-network packet filtering. Therefore, it is important
to select features that can be expressed as match-action rules
in data plane switches as well as describe the network state
efficiently for the agent. Here, we shortlist features that are
most relevant and can be used to train the agent and filter
attack packets in the data plane switches. We use subsets of
features in different combinations in the match-action table
of the switch to describe the attack signature. The feature
combinations that are selected to be used as the agent’s action



parameters and installed as match-action rules in the data plane
switches are listed in Table II.

Index  Feature pairs used as Action parameters
SYN flag Count, Destination Port
ACK flag Count, Source Port
ACK flag Count, Destination Port
SYN flag Count, Source Port
Destination Port, Packet Length Mean
Source Port, Packet Length Mean
SYN flag Count, Packet Length Mean
ACK flag Count, Packet Length Mean

[ BEN No WU, N N UV I S

TABLE II: Feature combinations used as action parameters

We perform the training of the agent in an offline manner.
Instead of allowing the agent to obtain network state from the
network directly, we leverage previously collected datasets to
simulate network scenarios. During each episode, the environ-
ment state is provided in batches of ten flows from the dataset,
simulating the ten most recently seen flows in the network. The
agent receives the state information from the environment as
the ten most recent flows and returns the action values based
on its current policy. Here, the agent’s actions do not merely
indicate whether a packet is benign or malicious. Instead, we
configure the agent to analyze the most recent flows seen
in the network and identify packet/flow feature values that a
malicious packet/flow could potentially exhibit. This enables
us to install rules at the switch to drop any future packets/flows
that enter the network carrying the same feature values.

In a traditional RL scenario, once the action is performed
in the environment, the agent receives feedback from the
environment in the form of numerical rewards. The agent
updates the policy based on the numerical reward for the next
episode. Therefore, the numerical reward from the network is
very important for the agent to learn the optimal policy. In
our case, while training with the previously collected datasets,
we create a database of feature values that malicious and
benign packets exhibit from the dataset to provide reliable
rewards to the agent. For every action given as output by the
agent, we check if the match-action rule would filter benign
or malicious packets using the lookup dictionary and provide
reliable rewards. Given that our reward decision comes from
labeled data, we call this reward mechanism as oracle reward.
Oracle reward is not practical in real-life deployment scenarios
but in our work, it helps us evaluate the merit of RL-based
solution to the problem. We leave the selection of a practical
reward mechanism as our immediate future work.

b) Stage 2: In Stage 1, we proposed an RL-based so-
lIution for attack packet detection in data networks. In this
step, we present our framework to implement the solution
in an SDN environment, as shown in Fig. 2. The major
contribution of this work is to develop the framework to
impart some intelligence into the switch to filter malicious
packets based on dynamic packet features instead of relying
on the static 4-tuple header information of the packet. We
propose that utilizing dynamic packet features in match-action
tables to filter malicious packets optimizes the switch memory
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Fig. 2: Proposed framework

usage when compared to filtering packets based on source
and destination IP addresses. The components of the proposed
system are as follows.

PPO agent The PPO agent takes in the network state infor-
mation and performs an action based on its current policy.
The agent learns attack signatures in terms of dynamic feature
values and these values are translated to the switch in the form
of match-action rules. In this work, we drop the packets that
match with the match-action rule installed by the agent. The
packets that do not match the installed rules are considered
as benign and they are processed normally by the switch. The
PPO agent directly communicates with data plane switches
with the help of ThriftAPI installing rules directly without
involving the controller. We modify the P4Switch packet pro-
cessing pipeline by incorporating a match-action table block
to facilitate the installation of packet filtering rules from the
PPO agent. The agent runs PPO algorithm from the Stable-
Baselines3 implementation with MipPolicy [20].

P4Runtime control plane The P4Switches in the data plane
are controlled and managed by the P4Runtime-enabled con-
troller. The controller supporting P4Runtime API is respon-
sible for installing rules to forward packets that enter the
network. In this work, we use the p4runtime_lib python library
to write a custom python program emulating a controller that
supports P4.

Data collection unit This unit is used to collect and process
the traffic information from the network. Several metrics like
bandwidth utilization and latency can be used to describe
the state of the network. In this work, we configure our
agent to utilize traffic flow patterns and flow statistics as
the environment state to perform necessary actions to filter
out malicious packets and mitigate network attacks. In this
work, we use CICFlowmeter [7] to extract the packet flow
information and transmit relevant flow information as network
state to the agent in batches. The agent executes actions based
on its current policy for the given network state and installs
a match-action rule in the P4 switch via the ThriftAPI. Based

4



on the impact of the action, the data unit would calculate the
reward for the action and send it as feedback to the agent.
Identifying a reliable reward calculation methodology solely
utilizing the signals from the network is left as our immediate
next work.

In the P4 packet processing pipeline, the match-action table
that is dedicated to the attack signature is placed ahead of
the forwarding table as shown in Fig. 1. This means that
when a packet reaches the switch, it is initially matched
with the action signature table. If it matches feature values
indicative of a malicious packet, it is dropped. Only packets
that are identified as benign are further processed based on the
forwarding table of the switch. The controller is involved only
in installing forwarding rules for previously unseen benign
flows. This configuration protects the controller from being
overwhelmed by the flooding of malicious flows. We present
the empirical results showing the effectiveness of RL for
packet classification in Section V-B.

A. Challenges

The goal of performing attack mitigation in-network using
RL algorithms is to automate the process of identifying new
attack signatures without having to involve the controller for
every new attack flow. To achieve this goal, certain challenges
need to be addressed:

Ensuring scalability of RL-based solution Several RL-based
methods [21] have been developed where RL agents located on
top of the controller have been configured to perform actions
on a per-flow basis. This model is not scalable as it requires
transmission of every new flow to the agent site for decision
making which overwhelms both the control channel and the
controller. In our work, the agent is configured to output packet
or flow feature values that a malicious packet can take. Instead
of transmitting every new packet to the agent, we collect the
packets and extract flow information at the data plane and then
send them to the agent in batches as the network environment
state. For every state, the agent action will be used to install
a match-action rule in the switch to filter any packet flow
matching the attack signature in the future. This approach then
allows the data switches to make local decisions on incoming
packets without having to flood the controller.

Feature selection A network environment has a large number
of variables that are difficult to keep track of and use efficiently
while training the agent. It is important to use the domain
knowledge and shortlist the features that are expected to
provide maximum information to implement the RL algorithm.
We perform feature ranking and utilize the features that can
be collected and processed at ease by the data plane devices.
Reward calculation In RL, having a reliable reward function
is critical for the agent to learn optimal policy. In the case of
mitigating network attacks, a reward function is expected to
help the RL agent identify and drop attack traffic and allow
benign ones. Given that finding such a reward function is not
a straightforward task, in our work, we use an oracle reward
function that gives us reliable feedback. This strategy allows
us to focus on our main goal of understanding the feasibility

of using an RL-based approach for close-to real-time attack
mitigation as the nature of the attack traffic changes in the
network. Finding a practical and effective reward function is
left as our immediate future work.

Generalizing for other attacks In this work, we only consider
DDoS flooding attacks from a labeled dataset [22] to emulate
a real-time network scenario by replaying the dataset. We
provide a proof-of-concept solution with a single type of
attack to demonstrate the feasibility of using RL algorithms
to perform attack mitigation. We believe that by developing
a reliable feedback mechanism that characterizes the expected
behavior of target (benign) traffic patterns, one can train the RL
agent to install rules to filter out packets that do not conform
to the target (benign) traffic profile. We plan to extend our
methodology to other attack scenarios to perform an extensive
study in our future works in this direction as well.

V. IMPLEMENTATION AND EVALUATION

In this section, we present our simulation environment to
experimentally evaluate the performance of an RL agent in
mitigating flooding-based attacks. The RL agent is trained
with the help of a custom OpenAl Gym environment that
is configured to replay packets in our datasets. The datasets
used in this work are CICDDo0S2019 and CICIDS2017 datasets
where the former one introduces TCP SYN Flood attacks and
the latter one introduces benign flows into our experimental
environment.

In this work, we use the p4runtime_lib python library to
write a python program to emulate an SDN controller that
supports communication with P4-based data plane devices
based on P4Runtime API specification [18] and emulate our
network environment using mininet [6]. This environment
allows us to show that the attack signature generated by the
agent as feature values can be installed in the data plane
switches to filter malicious packets locally. In the following,
we first present the implementation details of our solution and
next report on our evaluation of its performance.

A. Implementation Details

The agent runs the PPO algorithm and learns by interacting
with a custom OpenAl Gym environment. This environment
is modeled to replay packets in batches for the agent as the
network state. In RL, during each episode, the agent receives
the most recent network flows as the environment state. The
features used to define each flow are listed in Table I. In
practice, this Gym environment would act as an intermediary
between the network environment and the RL agent. In this
section, we discuss the implementation detail of each of the
components that are necessary for the agent to learn the
optimal policy to filter attack packets efficiently.

a) State: In the case of SDNs, several metrics can be
used to define network state. Metrics like bandwidth utiliza-
tion, throughput, latency, and packet loss rate provide insights
into overall network performance and status. In this case, we
aim to develop a solution to filter malicious packets based on



dynamic packet and flow-based features rather than blacklist-
ing flows based on source and destination IP addresses. We aim
to use other dynamic features that distinguish malicious and
benign packets. Therefore we define the state of the network
environment in terms of packet and flow-based metrics based
on previously collected well-known datasets( [23], [22]). The
list of 10 features used to define the traffic flow state of the
network is tabulated in Table L.

For the simulation environment, we replay packets from
previously collected and labeled datasets as the environment
state. For each state, a batch of 10 flows from the dataset
is sampled and given to the agent. Out of approximately 80
features in the datasets, a subset is used to express the network
traffic state. During training, the next state is given to the
agent based on its current action: If the current action of the
agent installs a rule that drops malicious packets, the next state
will have flow information comprising predominantly benign
packets. When the agent’s action drops benign packets and
attack packets are untouched. The next state will comprise
malicious packets, as the agent’s action is not contributing
positively to mitigate the ongoing attack. If the agent’s action
filters neither benign nor malicious packets, that action has no
impact on the current state of the network. Hence, the next state
will contain flow information of malicious flows as the attack
is still ongoing. As a result, the next state seen by the agent
reflects the effect of performing the previous action. The next
state of the simulated environment is designed to resemble
real-time network behavior that is expected for each action
during flooding-based attacks.

b) Action: Attack detection is inherently a classification
problem. While deploying an RL agent to perform attack
detection and mitigation, it is important to ensure that the
agent’s actions are not merely classifying packets as benign
or malicious. As mentioned earlier, using the RL agent as a
classification engine is not scalable when the attacker launches
flooding of packets from spoofed IP addresses. Therefore, in
this work, we train the agent to identify attack signatures of
packets in terms of dynamic features and install the rules in
data plane devices to perform in-network packet filtering. The
rules are installed with priority values such that newer rules are
selected over the older ones until outdated rules are deleted. To
manage switch memory more efficiently, we periodically purge
older rules based on their priority value. In each experiment,
the agent is configured to generate feature values for a pair of
features from Table II.

This table is placed ahead of the forwarding table in the
packet pipeline as shown in Fig. 1. The RL agent com-
municates with the data plane switches with the help of
Thrift API [19]. For flow-based features, we use counters
to evaluate the feature values and match the values using
the attack_signature table before the packet is forwarded to
the next hop based on the forwarding table. An example
of the P4 table for attack signature with destination port as
hdr.tcp.dstPort and packet length as hdr.ipv4.totalLen is shown
in code listing 1.

table attack_signature{
key = {

hdr.tcp.dstPort: exact;
hdr.ipvé4.totallLen: exact;
}
actions = {
drop;
NoAction;
}
size = 4096;
default_action = NoAction;

}

Listing 1: Ingress Processing with Custom match-action table

c) Reward: In RL, the agent updates its policy based
on the numerical reward returned by the environment. In the
case of data networks, one way of calculating rewards could be
based on the impact of the action on network links. If the action
leads to the dropping of attack packets, this will be reflected in
the network links, and the reward can be calculated accordingly
and fed back to the RL agent. We see that relying solely on the
bandwidth to calculate rewards for the RL agent is unreliable.
This is because any dropped packet (benign or malicious)
contributes towards easing the bandwidth utilization. If the
agent’s actions install match-action rules that drop benign
packets, the goal of attackers is achieved with the agent’s
help. Therefore, we need a dependable reward calculation
mechanism for the agent to differentiate between attack and
benign packets. In our approach, we use previously collected
datasets and create a database of benign and malicious packet
signatures as an oracle feedback mechanism that gives us
reliable rewards.

While training the simulated system, we give reward values
depending on the packets that are dropped. For every action of
the agent, we cross-reference the feature values with the benign
or malicious database. If the feature values match malicious
packets, the system gets the highest positive reward value. If
the agent installs rules that drop benign packets according to
the oracle, we give the highest negative rewards. When neither
malicious nor benign packets are dropped, we give a lower
negative reward value to signal the agent that its action does
not impact the network and we need the agent to update its
policy to perform actions that drop attack packets.

B. Evaluation Results

In RL, the agent learns an optimal policy to perform actions
in the environment such that the actions yield maximum
rewards. In this work, the goal of the RL agent is to learn
an optimal policy that can install match-action rules in the
form of feature pairs to filter attack packets in the network.

We configure the agent to identify values for the considered
feature pairs that a malicious packet could potentially present
with. This ensures that any malicious packets matching these
installed values are dropped by the data plane switches. Each
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Fig. 3: Comparison between continuous policy updates and separate testing case

Index Features

Malicious packets

Benign packets Neither Malicious nor Benign

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2
1 SYN flag Count, Destination Port 862 998 10 0 128 2
2 ACK flag Count, Source Port 829 933 1 0 170 67
3 ACK flag Count, Destination Port 834 999 33 0 133 1
4 SYN flag Count, Source Port 816 928 50 9 134 63
5 Destination Port, Packet Length Mean 843 999 0 0 157 1
6 Source Port, Packet Length Mean 814 820 14 7 172 173
7 SYN flag Count, Packet Length Mean 551 983 223 0 226 17
8 ACK flag Count, Packet Length Mean 657 992 129 2 214 6

TABLE III: Agent actions for 1000 time steps

rule installed by the agent could belong to three possible
categories based on the dataset used for training. The feature
pairs installed could match (1) malicious packet signature, (2)
benign packet signature, or (3) there are no packets in the con-
sidered dataset with the installed feature pair at all. Therefore,
we evaluate the agent’s performance by reporting the number
of positive (filter malicious packet), high negative (filter benign
packet), and low negative (filters neither malicious nor benign
packets) rewards the agent receives by following its policy. In
Table III, we report the performance of the agent based on the
rewards it receives during 1000 episodes for 8 different pairs
of features as action parameters from two sets of experiments.

In case (1), we perform an analysis similar to a supervised
ML case, where the model is trained using a training dataset,
and its performance is evaluated using a test dataset. We split
the dataset into train and test datasets. The agent is trained for
150000 time steps by replaying flows from the training set.

Once the training is complete, we evaluate the quality of the
final policy by replaying 1000 episodes from the previously
unseen test dataset. The policy is not updated during testing
and the agent performs its actions based on the final policy
it has learned at the end of training. The testing is performed
for 1000 episodes and we report the number of positive and
negative rewards the agent receives based on the learned policy.

In case (2), we continue to train the agent with unseen data
and allow updates on the policy. We perform 151000 episodes
of training with the entire dataset and report the rewards the
agent receives during the final 1000 episodes of training. The
results are presented as a comparison between case 1 and
case 2 for three different scenarios (1) the number of actions
installed by the agent dropping malicious packets correctly (2)
the number of actions installed by the agent dropping benign
packets (3) the number of actions of the agent dropping neither
malicious nor benign packets. In the case of actions dropping



malicious packets, we see that when the agent continues to
learn, it can perform actions that yield high positive rewards
around 90-98% of the time compared to using a static policy
without allowing updates (Col. 3 vs Col. 4, Table. III). For
the case of actions that filter benign packets, we see that the
static model drops a significant number of benign packets.
This behavior is undesirable as the goal of making the network
unavailable for benign users is achieved with the agent’s help.

We see that this number is significantly reduced in contin-
uous update cases (Col. 5 vs Col. 6, Table. IIT). Similarly, the
actions that drop neither benign nor malicious packets are high
for static policy cases for all pairs of features. With continuous
policy updates, this number is drastically low for all pairs of
features (Col. 7 vs Col. 8, Table. IIl). These results can be
observed from the plots in Fig. 3. We see that training the
RL agent continuously helps it learn the changing nature of
attack traffic and perform well in all three scenarios while
the static policy case filters fewer malicious packets and more
benign packets, while consistently installing large numbers of
insignificant match-action rules that do not contribute towards
filtering attack packets.

Since we translate these actions as match-action rules into
the switch directly, it is important to ensure that only useful
actions are installed as match-action rules for optimal usage
of switch memory. Consequently, we protect the controller
from becoming a bottleneck during flooding attacks. Since
the principle of RL is to learn by experience, we show
that with continuous policy updates, the agent can adapt and
learn new attack signatures to help mitigate flooding attacks,
while ensuring that the number of benign packets dropped is
negligible.

These results show that given a reliable reward function,
the proposed closed-loop RL framework can learn attack
signatures to filter new attacks and protect the network. We
see that performing in-network RL-based packet classification
can help protect the network from the ever-changing nature of
attack traffic. The attack signatures in the form of the agent’s
action can be used in several creative ways in P4 switches to
make sure the number of benign packets that are dropped is
near zero. Each of the feature combinations in Table III can
implemented as a standalone unit or as an ensemble of match-
action tables that drop packets only when the packet is deemed
malicious by a majority of tables ensuring that fewer benign
packets are dropped.

VI. CONCLUSION

In this work, we implement an RL agent on top of the con-
trol plane of the network with the sole purpose of mitigating
flooding-based attacks. We see that utilizing RL algorithms
with programmable switches helps with migrating towards
automating attack detection operations for production-grade
networks in a scalable manner. We observe that configuring
the agent to identify dynamic feature values for installing
match-action rules is more scalable than requiring the agent
to perform packet classification for every new attack packet.
We see that with continuous training RL can discern new

attacks and flag them with the help of appropriate and reliable
feedback from the network. In future work, we plan to work on
exploring practical and reliable reward calculation mechanisms
for RL to tackle network attacks and other operational issues
in SDNs.
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