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ABSTRACT
Algorithmic systems are often called upon to assist in high-stakes
decision making. In light of this, algorithmic recourse, the princi-
ple wherein individuals should be able to take action against an
undesirable outcome made by an algorithmic system, is receiving
growing attention. The bulk of the literature on algorithmic re-
course to-date focuses primarily on how to provide recourse to a
single individual, overlooking a critical element: the effects of a
continuously changing context. Disregarding these effects on re-
course is a significant oversight, since, in almost all cases, recourse
consists of an individual making a first, unfavorable attempt, and
then being given an opportunity to make one or several attempts
at a later date — when the context might have changed. This can
create false expectations, as initial recourse recommendations may
become less reliable over time due to model drift and competition
for access to the favorable outcome between individuals.

In this work we propose an agent-based simulation framework
for studying the effects of a continuously changing environment on
algorithmic recourse. In particular, we identify twomain effects that
can alter the reliability of recourse for individuals represented by the
agents: (1) competition with other agents acting upon recourse, and
(2) competition with new agents entering the environment. Our
findings highlight that only a small set of specific parameterizations
result in algorithmic recourse that is reliable for agents over time.
Consequently, we argue that substantial additional work is needed
to understand recourse reliability over time, and to develop recourse
methods that reward agents’ effort.
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Figure 1: Motivation for multi-agent over-time analysis of
algorithmic recourse. First, at time 𝑡 = 0, blue agents received
a negative outcome and green agents received a positive out-
come. Second, at time 𝑡 = 1, black agents entered the environ-
ment. The red agent that had the negative outcome at 𝑡 = 0
took actions according to the recourse recommendation gen-
erated at 𝑡 = 0, but (disappointingly) such recourse-guided
effort turned out to be insufficient. This is because context
has changed from 𝑡 = 0 to 𝑡 = 1: competition from other
agents acting upon recourse and from new agents “raised the
bar,” pushing up the decision boundary.

1 INTRODUCTION
Artificial intelligence (AI) systems are becoming increasingly com-
mon in consequential decision-making settings such as health-
care [3, 9], finance [19], and hiring [14, 25, 29]. While these sys-
tems have the capacity to significantly improve people’s lives, they
can also have adverse consequences, such as erroneous decision-
making [30]. As a result, those developing and researching AI sys-
tems in high-stakes domains have introduced the concept of algo-
rithmic recourse, which is the ability of an individual to take action
against the outcome of an algorithmic decision-making system. Al-
gorithmic recourse allows an agent (i.e., individual) to understand:

(1) why an outcome was produced by the system, and
(2) what can be done in order to reverse it [15, 33].
The importance of algorithmic recourse has been argued from

an equitable and ethical computing standpoint [28, 34], and signifi-
cant effort has been devoted to the when, why, and how of giving
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Figure 2: Comparison of recourse reliability (metric defined
in Section 3.5) over time under different simulated models of
agent behavior. Based on the behaviors defined in Section 3.3,
(a) shows simulations where agents’ behavior is modeled
under continuous adaptation with constant effort; (b) shows
simulations under continuous adaptationwithflexible effort.

recourse to individuals. However, as we observe in Section 2, time-
related effects, producing a continuously changing context, have
been considered only by a few authors. The driving insight of
this paper is that the impact of time and of a continuously
changing context should never be ignored in algorithmic re-
course work because time is intrinsic to the notion of recourse
itself. Typically, recourse consists of an individual making a first,
unsuccessful, attempt at a time 𝑡 , and then being given an oppor-
tunity to make a second attempt at a later time 𝑡 + 𝛿 . Depending
on the length of time represented by 𝛿 , recourse recommendations
from 𝑡 may become demonstrably less reliable. The importance of
considering time-related effects has been acknowledged by Ferrario
and Loi, and Barocas et al., further highlighting the importance of
continued work aimed at closing this critical research gap [2, 8].

As an example, consider the lending setting, wherein an AI
system denies an individual’s application for a loan but provides
information on what that individual can do to be approved for the
loan if they apply again at a later date [11]. The individual may
be told that their loan application was denied because their credit
score is 50 points lower than necessary. One could imagine that it
takes the individual 6 months to a year to improve their credit score
— which is enough time for the criteria for approving the loan to
change. As a result, the initial recommendation of “improving your
credit score by 50 points” may have set false expectations.

There are numerous reasons why selection criteria — and the re-
liability of recourse recommendations — can change over time [20,
27, 31, 32]. In this work, we look at competitive effects that arise
from having a multi-agent resource-constrained setting. In particu-
lar, we identify two main effects: (1) other agents are acting upon
recourse recommendations they have received, and (2) new agents
are entering the system. An illustration of the competitive effects
and their impact on recourse can be seen in Figure 1.
Research questions, contributions, and roadmap.Motivated
by the scenarios described above, this work aims to develop a frame-
work for multi-agent multi-time-step analysis of algorithmic re-
course. We seek to answer the following research questions:

(1) What metrics can be used to evaluate the reliability of algo-
rithmic recourse over time?

(2) Under what conditions is algorithmic recourse most reliable
for individuals?

(3) How can system designers set better expectations for what
will happen to individuals, if they follow algorithmic re-
course recommendations?

We tackle these questions with the help of an agent-based simu-
lation framework, in which a population of agents, each having its
own features, applies for access to a scarce resource, and a black-
box model decides on the outcomes. Agents obtaining a positive
outcome exit the system, while those obtaining a negative outcome
are given recourse recommendations, allowing them to adapt their
features before applying again at the next time-step. Our frame-
work is guided by a rich set of stochastic variables, including how
flexible/willing an agent is to adapt and how many new agents
are joining the system at each time step to compete for limited
resources. To the best of our knowledge, this is the only work ex-
amining algorithmic recourse under resource-constrained settings
using agent-based modeling. We are also among the first authors
to study recourse over many time steps, rather than just examining
one or two points in time.

Moreover, we define a recourse reliability metric, quantifying the
probability that individuals will receive a favorable outcome, given
that they took the recommended recourse. We also use our frame-
work to assess how different parameterizations of the setting affect
this metric. Our findings highlight that only a small set of specific
parameterizations results in algorithmic recourse that is reliable for
individuals over time. As a preview of our results, Figure 2 shows
that, under 9 different parameterizations of our framework, one
rarely observes reliable recourse over 50 time-steps.

Our work highlights a crucial socio-technical implication: Sys-
tems that provide recourse recommendations without considering
potential shifts in the threshold for positive outcomes can create
unrealistic expectations for individuals. In some cases, these recom-
mendations may even be harmful by falsely promising rewards to
those who seek recourse based on recommendations. This calls for
substantial additional work on understanding recourse reliability
in multi-agent multi-timestep settings, and on developing recourse
methods that reward agents’ effort.

The rest of this paper is organized as follows:
• We review related work on algorithmic recourse (Section 2).
• We formalize multi-agent algorithmic recourse, propose a
simulation framework for evaluating recourse over time, and
define a recourse reliability metric (Section 3).
• We present detailed analysis that confirms the importance
of considering temporal effects in recourse (Section 4).
• We provide an in-depth discussion of the practical implica-
tions of our observations (Section 5).

2 RELATEDWORK
Algorithmic recourse is critically important for three reasons: first,
as mentioned, it ascribes agency to individuals against adverse out-
comes, including outcomes that are either incorrect (and inefficient)
or discriminatory [31, 33, 36]. As such, many have argued that
providing individuals recourse is morally good and equitable, and
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therefore consistent with ethical computing [28, 34]. Second, from
the perspective of the owners of AI systems, recourse can improve
the overall accuracy and reliability of a system’s outcomes. Third,
algorithmic recourse will likely become legally necessary with the
passing of legislation like the European Union AI Act [4, 6].

There are two main approaches used for providing algorithmic
recourse in practice. The first and simpler approach is to provide
recourse based on “contrastive explanations,” which find changes
that can be made to an individual’s profile (i.e., the feature space)
to flip their outcome from unfavorable to favorable [5, 33]. These
recommended changes are sometimes called “interventions.” While
useful in many settings, a short-coming of this approach is that it
does not consider the normativemeaning of features. This weakness
can lead to recourse recommendations that are disconnected from
real-world actions [2, 17], like recommending to an individual that
they should “lower their age“ to receive a different outcome.

The second set of methods, “causal recourse methods,” use struc-
tural causal models [16, 24] to account for downstream effects when
changing a smaller set of an individual’s features (also referred to
as “consequential recommendations” [13]). The advantage of causal
recourse methods is that they produce smaller, easier to achieve
intervention sets for individuals [15] that are better connected with
real-world actions and settings.

2.1 Temporal effects on recourse
To the best of our knowledge, the impact of time in algorithmic re-
course is understudied. As noted earlier, we see this as a significant
research gap, because time is inherent to algorithmic recourse itself.
We now discuss several studies that begin to fill this gap.

Ferrario and Loi, motivated by the idea that machine learning
models are often unstable in real-world settings, studied the impact
of retraining models on the validity of counterfactual explanations
over time [8]. In their work, they developed a method using coun-
terfactual data augmentation to improve the robustness of recourse
recommendations and prevent so-called Unfortunate Counterfacutal
Events (UCEs), which occur when an individual is given a recourse
recommendation at time-step 𝑡 , but, due to model updates, the
recommendation is invalid at time-step 𝑡 + 𝛿 . Other researchers
have more generally studied the robustness of counterfactual ex-
planations due to changes in the underlying settings, but, notably,
they did not emphasize temporal effects as the reason for these
changes [7, 10, 18, 32, 35].

Rawal et al. analyzed the impact of distribution shifts in the
data on algorithmic recourse recommendations [26]. They did not
make any assumptions about the origin of these distribution shifts,
and considered temporal shifts, geo-spatial shifts, and shifts due to
data correction. An important finding of this work is that there are
theoretical trade-offs between minimizing the cost of a recourse
recommendations and ensuring robustness to distribution shifts.
Under this trade-off, Pawelczyk et al. proposed a method for gen-
erating counterfactual explanations that allows individuals to set
preferences and navigate this trade-off for themselves [23]. We
further refer to the work of Pawelczyk et al., and Ferrario and Loi
in Section 3.5.

The methods by Upadhyay et al. [32] and Rawal and Lakkaraju
[27] use adversarial training to provide recourse recommendations

that are robust to model shifts. They quantify the probability of
recourse being invalidated given the possibility of model shifts.
This is achieved by defining a set of plausible model shifts based on
perturbations introduced in the parameter or gradient space. This
analysis applied multiple data drift scenarios over two time steps.

Our work fills an important gap left by existing work: Rather
than focusing specifically on the robustness of counterfactual ex-
planations, we look to characterize the reliability of algorithmic
recourse more generally. The framework we propose is agnostic
to the method used to generate recourse recommendations. Fur-
thermore, we not only consider temporal effects in algorithmic
recourse, but also study them alongside multi-agent effects, and in
resource-constrained environments.

2.2 Recourse in multi-agent settings
The vast majority of work on both contrastive explanations and
causal recourse methods has focused on single-agent settings, save
for a few exceptions [1, 20, 21, 27, 32]. One notable work on multi-
agent algorithmic recourse is by O’Brien and Kim [20, 21], who
adapted concepts from game theory literature to algorithmic re-
course. They definedmetrics like “Social-Welfare-Efficient recourse”
and “Pareto-efficient recourse,” which measure the effect of one
agent taking recourse on the population of agents as a whole. Their
analysis of multi-agent interactions, done through the lens of the
prisoners’ dilemma problem, leads to the following key conclu-
sions: The improvement of an individual (or subgroup) tends to
result in a loss in social welfare, while no scenario results in an
improvement of both social welfare and the principal agent’s. This
finding highlights an open question: “When should algorithmic
recourse be provided?” and is related to insights from Barocas et al.
[2], who suggest that recourse should not be presented to someone
if it encourages an action that would be harmful to them.

Another relevant line of work is by Altmeyer et al. [1], who stud-
ied how recourse-based multi-agent interactions affect model drift
over multiple time-steps. Their analysis shows significant model
drift effects, which changed the threshold for receiving a positive
outcome over time. This work has similarities to our own, however,
their conclusions only hold under a restricted set of assumptions,
namely, that (1) an agent who follows recourse recommendations
is guaranteed a positive outcome; (2) the model is retrained at ev-
ery time-step, using all prior data; and (3) agents are capable of
taking as much recourse-based action as they need, and make the
exact changes recommended to them. Importantly, violations of the
first assumption could lead to unrealistic outcomes (e.g., decreasing
an agent’s age), or, in the case of the loan example, to significant
monetary losses [32].

Our contribution departs from O’Brien and Kim [20], and Alt-
meyer et al. [1], as we propose a more realistic agent-based frame-
work, allowing agents to act on recourse in different ways, and ac-
commodating more flexible population dynamics, with new agents
joining and winning agents exiting the system. There are two other
distinctions present in our simulation framework. First, at each
iteration, we provide recourse to all agents who did not receive a
favorable outcome, and they take recourse action based on a func-
tion describing their actions (also potentially choosing not to act).
In contrast, in Altmeyer et al. [1], a batch of agents is selected and
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provided recourse. Second, Altmeyer et al. [1] focus on gradient-
based counterfactual search, while our formulation is agnostic to
the counterfactual search method.

3 PROPOSED FRAMEWORK
We study the problem of recourse in binary classification, where
receiving the positive outcome corresponds to an agent gaining
access to a desirable resource. Note that from here forward we
use “agent” to mean an individual who is receiving an outcome
from a system and possibly taking recourse. We start from the well-
studied recourse problem in the static setting for a single agent, and
then move to a more realistic setting in which multiple agents are
competing for access to scarce resources (i.e., the number of agents
competing exceeds the number of available positive outcomes).
Our goal in developing this framework was to create a way to
realistically simulate algorithmic recourse in a multi-agent,
multi-time step environment.

3.1 Recourse for a Single Agent
Consider a single agent, described by a set of features, 𝑥 ∈ X, and
a black-box classifier 𝑓 : X → {0, 1} that is used to generate an
outcome for the agent. If an agent 𝑥 receives a negative outcome
from the classifier 𝑓 , then the outcome is supplemented with a rec-
ommendation (or an explanation) on what they can change in their
feature space to receive a positive outcome instead. Generating this
recommendation is the goal of the single-agent recourse problem.

Definition 1 (Single-agent recourse problem). Given a black-box
classifier 𝑓 : X → {0, 1} and an agent 𝑥 ∈ X for which 𝑓 (𝑥) = 0 (a
negative outcome), find a new configuration of the agent 𝑥 ′ ∈ X
that results in 𝑓 (𝑥 ′) = 1 (a positive outcome), and is associated
with the lowest cost 𝑐 (𝑥, 𝑥 ′) of making the change:

𝑥 ′ = min
𝑥 ′

𝑐 (𝑥, 𝑥 ′)

𝑠 .𝑡 . 𝑓 (𝑥 ′) = 1
𝑥 ′ ∈ X

(1)

Use the configuration 𝑥 ′ to return a recommendation to agent
𝑥 regarding the adjustment they need to make to their features to
receive a positive outcome.

To make this definition more concrete, consider a scenario where
agents are applying for a loan form a bank (a common example
used when discussing recourse). For our purposes, let an agent
𝑥 ∈ X have two features: its credit rating 𝑥1 and annual income
𝑥2. Suppose the agent applies for the loan, but is ultimately denied
based on the output of a risk assessment tool, represented by 𝑓 :
X → {0, 1}. If the bank decides to offer recourse to 𝑥 , they may
suggest that credit rating 𝑥1 should be improved by 𝛿1 or income
𝑥2 be improved by 𝛿2, or both, minimizing cost 𝑐 : X × X → [0, 1]
for the agent, so that 𝑓 (𝑥 ′) = 1. Various methods for solving the
problem of Definition 1 have been proposed [5, 13, 33].

3.2 Multi-Agent Recourse
Suppose next that agents belong to a population 𝑃 , and that they
all are competing for access to a scarce resource. For example, there
may be |𝑃 | = 𝑁 loan applicants, but the bank is only able to lend
money to 𝑘 ≪ 𝑁 of them.

Because of the existence of the resource constraint 𝑘 , there is no
fixed threshold that can be used to determine whether the output
of 𝑓 (𝑥) corresponds to a positive or a negative outcome. Instead,
we construct the black-box model so that, rather than returning a
binary outcome, it returns a score: 𝑓 (𝑥) : X → [0, 1]. This score is
used to rank agents, from highest to lowest, and then selecting the
top-𝑘 agents 𝑃𝑘 ⊆ 𝑃 to receive the positive outcome. While there
is no fixed threshold associated with the positive outcome, we can
use the 𝑘𝑡ℎ highest score 𝑠 as a threshold for receiving the positive
outcome. We write this formally below:

Definition 2 (Multi-agent recourse problem). Given a black box
classifier 𝑓 : X → [0, 1], a population of agents 𝑃 , and a resource
constraint𝑘 , compute the score threshold 𝑠 for receiving the positive
outcome.

For each agent 𝑥 ∈ X for which 𝑓 (𝑥) < 𝑠 (a negative outcome),
find a new counterfactual configuration of the agent 𝑥 ′ ∈ X that
results in 𝑓 (𝑥 ′) ≥ 𝑠 (a positive outcome), and is associated with the
lowest cost 𝑐 (𝑥, 𝑥 ′) of making the change:

𝑥 ′ = min
𝑥 ′

𝑐 (𝑥, 𝑥 ′)

𝑠 .𝑡 . 𝑓 (𝑥 ′) ≥ 𝑠

𝑥 ′ ∈ X
(2)

Use the configuration 𝑥 ′ for each agent 𝑥 for which 𝑓 (𝑥) < 𝑠 to
return a recommendation regarding the adjustments they need to
make to their features to receive the positive outcome.

3.3 Modeling Agents’ Behaviors
Having shown how recourse can be modeled for multiple agents,
we now turn our attention to modeling the behaviour of a popu-
lation of agents over time. We consider two important, realistic
considerations about agents’ behavior with respect to recourse:

(1) How faithfully an agent follows the recourse recommendation.
Agents may follow the recourse recommendation exactly, or
they may outperform (or underperform) the recommenda-
tion. For example, returning to the loan example described
in Section 3.1, one could imagine that if an agent is told to
increase their credit score by 50 points, they may do so ex-
actly, or they may actually increase their score by 40 point,
or by 60 points. We call this consideration “adaptation.”1

(2) The likelihood of an agent to take any action. An agent that
receives a recourse recommendation may or may not act
on it. The likelihood that an agent will attempt a recourse
action is be determined by several factors, such their implicit
willingness to make challenges and the amount of effort the
action requires. In the loan example, if an agent is told to
increase their credit score by 20 points, they may be more
likely to make the effort as opposed to being told to increase
it by 200 points. We call this consideration “effort.”

Adaptation. The single-agent recourse problem (Definition 1) as-
sumes that, when a recommendation for recourse is provided, an
agent will change their features exactly according to the recommen-
dation they receive. Here, we relax this assumption and consider
cases where there is uncertainty regarding whether an agent will,
1Pawelcyzk et al. use the terms prescribed recourse and implemented recourse to refer
to a similar concept.
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Figure 3: Different types of agent behavior. The agent (red)
receives a recommendation (yellow) and takes action (blue).
See Section 3.3 for a detailed description of the parameters
adaptation and effort.

in fact, change their configuration in the way that the recommen-
dation suggests.

We model an agent’s actions in changing their features as a
function 𝑎(𝑥, 𝑥 ′) : X×X → X that produces configuration 𝑥 ′′, with
the goal of reaching or exceeding the score threshold 𝑠 . We consider
three cases: (1) 𝑥 follows the suggested recourse recommendation
exactly, i.e., 𝑎(𝑥, 𝑥 ′) = 𝑥 ′ with 𝑓 (𝑥 ′) = 𝑠; (2) 𝑥 declines to follow
the recommendation, i.e., 𝑎(𝑥, 𝑥 ′) = 𝑥 , with 𝑓 (𝑥) < 𝑠 ; (3) 𝑥 changes
their features in a way that is feasible but different than the recourse
recommendation, i.e., 𝑎(𝑥, 𝑥 ′) = 𝑥 ′′ with score 𝑓 (𝑥 ′′) that may be
greater than or less than 𝑠 .

In our simulation framework, we model this behavior using the
adaptation parameter that has two settings: binary and continuous.
The binary setting matches the classical view of recourse found
in the literature, and assumes that all agents that take recourse
action exactly match the recommendation (their new feature con-
figuration is 𝑥 ′). Under this setting, an agent acts on the recourse
recommendation with some probability 𝑝 (i.e., 𝑎(𝑥, 𝑥 ′) = 𝑥 ′), and
it retains the original value of the features with probability 1 − 𝑝
(i.e., 𝑎(𝑥, 𝑥 ′) = 𝑥 ).

The continuous setting accounts for what we believe is a more re-
alistic modeling of behavior: that an agent makes progress towards
a recourse recommendation, and may out- or under-perform the
recommendation at any given time-step. In this setting, the agent
produces configuration 𝑥 ′′ according to some probabilistic model
(e.g., a Gaussian distribution). When taking actions, a value 𝛿𝑥 is
sampled from this distribution, resulting in a new configuration
𝑥 ′′, and a new score 𝑓 (𝑥 ′′) = 𝑓 (𝑥) + 𝛿𝑥 is computed.

Effort. As described earlier, effort reflects an agent’s likelihood to
take action and change their feature space. Under our simulation,
this parameter has two settings: constant and flexible. The setting
constant means that an agent has an implicit willingness to act on
recourse that is determined a priori and is intrinsic to the agent.

Regardless of what is happening in the environment, an agent has
some probability 𝑝 that they will act on a recourse recommendation.

The setting flexible means that the amount of effort required
for a recourse recommendation determines the probability that an
agent will take action and change their features. In other words, the
less effort is required the more likely it is for an agent to act (and
vice versa). In this case, the agents’ probability to act on recourse
is sampled from dist(𝑓 (𝑥), 𝑠). To encode effort into our simulation,
we use the parameter 𝑙 ∈ R, and explain how how it is used in
each setting in 4.2. 𝑙 is an additive factor, and intuitively, it can be
thought of as the agent-level willingness to take recourse action.

Difficulty of acting on recourse recommendations. An addi-
tional consideration we use to model agent behavior is defining a
global parameter that controls the difficulty of acting on a recourse
recommendation. For example, one can imagine that it is easier to
act on a recourse recommendation when it is related to signing up
for a social media account versus improving one’s credit score. The
parameter 𝑔 ∈ [0, 1] is set a priori for the simulation. Values of 𝑔
closer to 1.0 indicate a setting where it is easier for all agents to
successfully get recourse.

Adaptation and effort combined. Since both adaption and effort
have two settings, there are four possible settings to model agents’
behavior. These are illustrated and described in Figure 3. For better
understanding, let’s consider two of the settings in detail:

• Binary adaptation with constant effort. In this case, an agent’s
willingness to take action is determined a priori, and they
will make the exact changes to their features per the recom-
mended recourse they receive.
• Continuous adaptation with flexible effort. In this case, an
agent’s willingness to take action is determined by how
much effort they need to make. Further, how much they
change their features is also probabilistic, and may result
in them meeting, out-performing or under-performing the
recourse recommendation.

3.4 Simulation Framework
We consider an environment where agents compete for access
to a scarce resource repeatedly, at discrete time steps 𝑡0, . . . , 𝑡𝑛 .
The number of resources at each time step is given by 𝑘 , which
determines the number of positive outcomes (e.g., loans) that can
be assigned at each time step. The simulation begins with an initial
population of agents 𝑃0, all with synthetically-generated features.

At each time step, every agent receives a score from a machine
learning classifier 𝑓 : X → [0, 1], representing their attempt at a
positive outcome (e.g., applying for a loan). The agents with the top-
𝑘 scores at each time step receive a positive outcome and exit the
environment (e.g., they receive a loan). Agents that receive a nega-
tive outcome are given recourse recommendations from a function
𝑟 : X → X, and have the chance to act on those recommendations
at a later time step. The likelihood an agent will “take action” and
change their features is governed by an “agent behavior” function
𝑎𝑙,𝑔 : X × X → X. Note that both the likelihood of taking action
(or not) and the amount action taken are governed by 𝑎𝑙,𝑔 .

We encode 𝑙 and 𝑔 as described in Section 3.3 as hyperparemters
for the adaptation function 𝑎𝑙,𝑔 . Recall that𝑔 ∈ [0, 1] determines the
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Figure 4: Overview of our simulation framework. A The initial population 𝑃𝑡 = 𝐴𝑡 ∪ 𝑁𝑡 is the union of the agents 𝐴𝑡 that had a
negative outcome at time 𝑡 − 1 and new agents 𝑁𝑡 entering in the system. B The black-box classifier 𝑓 : X → [0, 1] computes
agents’ scores 𝑆𝑡 . C Agents are sorted according to the scores in 𝑃𝑡 . D The top-𝑘 agents in 𝑃𝑡 are selected as 𝑃𝑘𝑡 and exit from
the system. E The threshold 𝑠𝑡 is updated to the lowest score of the agents in 𝑃𝑘𝑡 . F For all the non-winning agents 𝐿𝑡 , recourse
is provided by 𝑟 : X → X. G The adaptation function 𝑎 : X × X → X generates the evolution of each agent 𝑥𝑡 ∈ 𝐿𝑡 from time
𝑡 to 𝑡 + 1, given the recourse 𝑟 (𝑥𝑡 ) = 𝑥 ′, with the final output 𝑎(𝑥𝑡 , 𝑟 (𝑥𝑡 )) = 𝑎(𝑥𝑡 , 𝑥 ′) = 𝑥𝑡+1. H The initial population at 𝑡 + 1 is
𝑃𝑡+1 = 𝐴𝑡+1 ∪ 𝑁𝑡+1.

global difficulty of achieving recourse and is set a priori for the sim-
ulation. We let 𝑙 ∈ [0, 1] be defined separately for each agent when
they enter the simulation, and it reflects each agent’s individual
willingness to take action. We draw 𝑙 from a random distribution,
and a higher value of 𝑙 means that an agent is more willing to act
upon a recourse recommendation. Note that 𝑙 is mutable from one
time-step to another. For example, under the flexible setting (see
Figure 3), if an agent finds themselves closer to the score threshold,
their willingness to take action may increase.

Importantly, the population of agents is not fixed: at each time
step, new agents (i.e., new loan applicants) join the environment.We
model these dynamics by representing the population of agents over
time as a sequence 𝑃 = {𝑃𝑡0 , . . . , 𝑃𝑡𝑇 }. At the end of the simulation,
we retrieve 𝑃 that contains the final state of each agent.

3.5 Quantifying the Reliability of Recourse
As discussed in Sections 1 and 2, prior work on time-related effects
of recourse is very limited. To the best of our knowledge, only two
recourse reliability metrics have been defined to-date. Ferrario and
Loi propose measuring the reliability of recourse using “Unfortunate
Counterfactual Events (UCEs)” that occur when a counterfactual
explanation used as a recourse recommendation becomes inval-
idated at a later time due to updates in the underlying machine
learning model [8]. Pawelczyk et al. define a metric called Recourse
Invalidation Rate that quantifies the probability that a recourse rec-
ommendation becomes invalidated for a single individual due to
changes in the way recourse is implemented by that individual [23].

In this paper, we propose an alternate metric that quantifies how
well recourse recommendations meet individuals’ expectations. In

other words, we offer a metric that quantifies whether the “promise”
of recoursematches reality.We call this metric recourse reliability,
and see it as an important contribution to the literature, for two
reasons: first, unlike previous metrics, it quantifies system-level
behavior, as opposed to focusing on recourse for a single individual.
Second, our metric is not tied to counterfactual explanations, and
is agnostic to the way the underlying recourse recommendation is
generated. For example, it is can be used to quantify reliability of
principle reason explanations [2].

The impact of competitive effects on the score threshold for
a positive outcome. Consider the simulation framework described
in Section 3.4. At each time step 𝑡 > 0, an agent that received a
negative outcome in the previous time step has a chance of altering
their feature space in such a way that it either meets or exceeds
the previous score threshold for a positive outcome 𝑠𝑡 . Typically,
an agent that carries out this behavior would expect to receive a
positive outcome at the next time step, 𝑡 + 1. However, due to com-
petitive effects (described in Figure 1) the agent may not receive a
positive outcome. Specifically, we consider two competitive effects:

(1) Agents already present in the environment may act on re-
course recommendations and exceed the score of other agents.

(2) New agents entering the environment may have scores that
exceed the score of other agents.

In both cases, it is possible that the score threshold for a positive
outcome increases so that 𝑠𝑡+1 > 𝑠𝑡 . Intuitively, the score threshold
can only remain constant if the number of agents acting on recourse
and the number of agents is equal to the resource constraint 𝑘 . This
is shown in the following equality:
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Algorithm 1 Simulating multi-agent recourse over time

Inputs: Classifier 𝑓 : X → [0, 1]; function for generating recourse
recommendations 𝑟 : X → X; function describing agent re-
course actions 𝑎𝑙,𝑔 : X × X → X; global difficulty setting 𝑔;
agent-level willingness 𝑙 for each agent; number of time steps
𝑇 ; number of favorable outcomes per time step 𝑘 ; initial popu-
lation size 𝑝; number of new agents at each time step 𝑛

Output: The sequence of sets of agents {𝑃𝑡0 , . . . , 𝑃𝑡𝑇 } in their final
state for each time step.

1: 𝑡 ← 0
2: 𝑃0 ← create the initial population of 𝑝 agents
3: 𝐴𝑡 = ∅
4: while 𝑡 < 𝑇 do
5: if 𝑡 ≠ 0 then
6: 𝑁𝑡 ← set of 𝑛 agents joining the simulation;
7: 𝑃𝑡 ← 𝐴𝑡 ∪ 𝑁𝑡 , full population of agents;
8: 𝑆𝑡 ← {𝑥𝑡 , 𝑠 |∀𝑥𝑡 ∈ 𝑃𝑡 , 𝑠 = 𝑓 (𝑥𝑡 )}, compute agent scores;
9: 𝑃𝑡 ← 𝑠𝑜𝑟𝑡 (𝑆𝑡 ), sort agents by score;
10: 𝑃𝑘𝑡 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑡𝑜𝑝_𝑘 (𝑃𝑡 ), select 𝑘 highest-scoring agents,

assign them a positive outcome;
11: 𝑠𝑡 ← 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑃𝑘𝑡 ), update the decision threshold to be the

minimum score from 𝑃𝑘𝑡 ;
12: 𝐿𝑡 ← 𝑃𝑡 \ 𝑃𝑘𝑡 , select agents who did not receive a positive

outcome;
13: 𝑅𝑡 ← {𝑥 ′ |∀𝑥 ∈ 𝐿𝑡 , 𝑥

′ = 𝑟 (𝑥)}, generate recourse recom-
mendations;

14: 𝐴𝑡+1 ← {𝑥𝑛𝑒𝑤 |∀𝑥 ∈ 𝐿𝑡 , 𝑥𝑛𝑒𝑤 = 𝑎𝑙𝑥 ,𝑔 (𝑥, 𝑥 ′)}, for each
agent, determine what action they take (if any);

15: 𝑡 ← 𝑡 + 1, increase time-step

E[∑𝑥𝑡 ∈𝑃𝑡 1[ 𝑓 (𝑥𝑡 )>𝑠𝑡−1 ] ]
𝑘

= 1 (3)

Importantly, if the equality does not hold, then the score threshold
for a positive outcome may increase at future time steps. As a result,
the reliability of algorithmic recourse recommendations cannot be
guaranteed.

Defining recourse reliability. Let us denote the set of agents that
changed their features per a recourse recommendation and met or
exceeded the score threshold 𝑠𝑡−1 as 𝐶𝑡 = {𝑥𝑡 ∈ 𝐴𝑡 |𝑓 (𝑥𝑡 ) ≥ 𝑠𝑡−1}.
The agents 𝐶𝑡 successfully acted on a recourse recommendation
and thus expect to receive a positive outcome. Recall 𝑃𝑘𝑡 is the set of
agents that received a positive outcome at time step 𝑡 . Using this
notation, we can define recourse reliability at time t as:

𝑅𝑅𝑡 =
|𝐶𝑡 ∩ 𝑃𝑘𝑡 |
|𝐶𝑡 |

(4)

Stated plainly, recourse reliability at time 𝑡 is the proportion of
agents who acted on recourse and received a positive outcome, out
of all those agents who acted on recourse and expected a positive
outcome. In this way, recourse reliability is a measure of how well
recourse expectations are met for agents.

Table 1: Summary of simulation parameters

Symbol Parameter Settings

𝑝 Initial number of agents 100
𝑘 Number of favorable out-

comes per time step
10

𝑛 Number of new agents per
time step

{0.8𝑘, 0.9𝑘, 𝑘, 1.1𝑘, 1.2𝑘}

𝑎𝑙,𝑔 (𝑥, 𝑥 ′) Describes adaptation and ef-
fort of agents

{binary, continuous}
× {constant, flexi-
ble}

𝑙 Agent-level (local) willing-
ness of acting on recourse

[0, 1]

𝑔 Global ease of acting on re-
course

[0, 1]

T Number of time steps 50

4 EMPIRICAL ANALYSIS
To better understand the behavior of recourse reliability, we con-
ducted extensive empirical analysis using the simulation framework
described in Section 3.4. Our analyses also allow us to demonstrate
how the various concepts defined previously like adaptation, effort,
competitive effects impact algorithmic recourse. The following anal-
yses were executed using Python with its standard libraries. Our
implementation and all supporting code (including the empirical
analysis reported here) are publicly available on GitHub2.

We report results of simulations using the parameters summa-
rized in Table 1. All reported results represent 20 executions with
different initial random seeds, saved for reproducibility.

4.1 Experimental Setup
Table 1 summarizes the parameters of the simulations used in our
experimental evaluation. We refer to Figure 4 for a visual summary
of the components of the framework, and their interactions.

Population. Agents are generated over a 2-dimensional feature
space, sampled independently at random. Each feature is sampled
from a Gaussian distribution, where 𝑥 = (𝑥1, 𝑥2) and 𝑥𝑖 ∼ N(𝜇 =

0.5, 𝜎 = 0.3), 𝑖 = 1, 2. All simulations have an initial population 𝑝 =

100 agents. Of these, 𝑘 = 10 receive the favorable outcome at every
time step and exit the system. New agents 𝑛 enter the simulation
at every time step, where the number of new agents is fixed per
simulation, and varies between 8 and 12 across simulations.

Classifier. The framework described in Section 3.4 is model-
agnostic, but for our experiments we used a simple logistic re-
gression classifier to determine the score for each agent at each
time step. The target variable 𝑦𝑖 for the prediction task is created
randomly using a binomial distribution.

Calculating recourse recommendations. Our simulation frame-
work is also agnostic to the method used for generating recourse
recommendations for each agent. We use a simple approach to

2https://github.com/joaopfonseca/recourse-game/
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generate single-agent counterfactual explanations for linear classi-
fication, based on the work by Ustun et al. [33] and its open source
implementation.

4.2 Experimental Results
We present our results based on the different types of agents be-
havior, and show full results for three parameter settings:

(1) Binary adaptation with constant effort.
(2) Continuous adaption with constant effort.
(3) Continuous adaption with flexible effort
We do not report results for the binary adaptation flexible effort

setting because it does not contain unique insights as compared to
the other settings. Further, we do not explore the effect of varying 𝑙
within each experiment (i.e., agent leveling willingness) but instead
define 𝑙 a priori for each setting.We do this because we are primarily
interested in the impact of the (global) difficulty of recourse and of
the number of new applicants at each time-step.
4.2.1 Binary adaptation with constant effort.

Recall that binary adaptation means that all agents 𝑥 will adapt
to match the counterfactual configuration 𝑥 ′ based on some fixed
probability. We express this probability in the following way:

𝑎𝑙,𝑔 (𝑥𝑡 , 𝑥 ′𝑡 ) = (1 − 𝑙) × 𝑥𝑡 + 𝑙 × 𝑥 ′𝑡 (5)
We sample 𝑙 from a Bernoulli distributionwhere 𝑙 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑔).

Figure 5 shows the score threshold for a positive outcome 𝑠𝑡 and
the recourse reliability 𝑅𝑅𝑡 over 50 time-steps, varying the number
of agents taking recourse action and the number of new agents
entering at each time step. There are several observations that
can be gleaned from the figure. First, over nearly all settings, the
threshold 𝑠𝑡 is relatively constant, with imperceptible drifts over
time. Second, and significantly, the recourse reliability 𝑅𝑅𝑡 always
tends to decrease (at different rates). Third, in settings where the
𝑔 is approximately 0.5 or greater and the number of new agents
is approximately 0.9 × 𝑘 or greater, the 𝑅𝑅𝑡 is close to 0. This is
because with so many agents adapting, the environment becomes
incredibly competitive and it is difficult for agents to achieve a
successful recourse event.
4.2.2 Continuous adaptation with constant effort.

Recall that constant effort is based on the idea that each agent
has an a priori willingness to act on a recourse recommendation,
and it does not change over time. We sample 𝑙 a random uniform
distribution where 𝑙 ∼ U(0, 1), and as described earlier, 𝑔 is an
input parameter of the simulation.

Figure 6 is analogous to Figure 5. Notice that in this case, the
volatility of the recourse reliability score 𝑅𝑅𝑡 varies with a more
discernible pattern: although the score threshold for a positive
outcome 𝑠𝑡 also varies with both parameters, it always decays
when the number of new agents (8 or 9) is lower than the number
of favorable outcomes (10). Overall, the recourse reliability scores
follow non-linear trajectories with high volatility.
4.2.3 Continuous adaptation with flexible effort.

Recall that flexible effort means that an agent’s willingness to
take action on recourse is based on the agent’s distance to the score
threshold for a favorable outcome. It follows the assumption that an
agent with a score closer to the score threshold will have a greater
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Figure 5: Binary adaptationwith constant effort. Score thresh-
old values for a positive outcome (blue lines) and recourse
reliability (red lines) over 50 time steps (error bars given by
running 20 simulations with different random seeds). The
𝑦−axis in each subgraph is the score of individual agents,
and the 𝑥−axis in each subgraph is the time step. The large
𝑦−axis is the difficulty of acting on recourse 𝑔, and the large
𝑥−axis is the number of new agents at each time step 𝑁𝑡 .
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Figure 6: Continuous adaptation with constant effort. Identi-
cal details as in Figure 5.
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Figure 7: Continuous adaptationwithflexible effort. Identical
details as in Figure 5.

incentive to exert effort as compared to an agent with a lower score.
In this case, we define the agent level willingness 𝑙 as follows:

𝑙 =
1

𝑠𝑡 − 𝑓 (𝑥) (6)

Figure 7 is analogous to Figure 5. Although one observes lower
volatility of both the score threshold and the recourse reliability
as compared to the continuous adaptation with constant effort
setting (Section 4.2.2), some parameter settings yield high volatility.
Specifically, larger 𝑔 and lower 𝑁𝑡 lead to lower recourse reliability.

4.2.4 Summary of experimental results. Generally, we observe that
recourse reliability will decrease as the global difficulty 𝑔 increases
(i.e., it is harder for agents to act on recourse), and as the number
of agents increases above the resource constraint 𝑘 . Intuitively, this
reflects the idea that a more competitive environment will result in
lower recourse reliability.

Adaptation. In terms of agent behavior, holding all other parame-
ters constant, binary adaptation has a negative impact on recourse
reliability overall as compared to continuous adaptation. Again,
our intuition is that binary adaptation models a more competitive
environment since agent’s are “quicker” to implement recourse.
Also, in this setting, agents often find themselves having their score
tied with others since all agents are changing their score to exactly
match the threshold.

Effort. In a similar fashion, flexible effort has a more negative
impact on recourse reliability as compared to constant effort, likely
due to making more the environment more competitive. Under
flexible effort, agents that are closer to the threshold will act on
recourse and pass the threshold more frequently.

5 DISCUSSION
In this paper, we developed a framework that simulates recourse in
a multi-agent environment over time. In the experiments conducted
using our framework, we found that, in the vast majority of cases,
the score threshold for a positive outcome either decreases or in-
creases over time. Both of these cases can be harmful to the agents:
If the threshold increases over time, then recourse reliability suffers
(i.e., some of the agents that were promised a positive outcome will
not receive one even if they reach the threshold). If the threshold
decreases over time, then recourse recommendations are reliable,
but the effort of agents acting on recourse may be wasted (i.e., they
worked harder than necessary to achieve the positive outcome).

Importantly, across all of our simulations, we found that the score
threshold rarely remains stable over time, and, further, that thresh-
old stability, which is desirable from the point of view of the agents,
is the most difficult to parameterize for.

Our observations have a significant socio-technical implication:
In systems that administer recourse without considering pos-
sible changes over time, individuals are at best being given
unrealistic expectations about what will happen to them if
they follow recommendations for recourse, and, at worst,
the system designers are being irresponsible —and possibly
damaging— by falsely promising a reward to individuals for
their efforts. This finding supports concerns by Barocas et al. and
other authors about the need to study recourse under the assump-
tion that the system will change over time [2, 8, 22].

For a real-world example, let us consider college admissions.
There is substantial evidence that the selectivity of US universities
changes over time [12]. One can imagine a scenario where an ap-
plicant is denied admission to their top-choice university in one
year, and is recommended a set of improvements to make to their
application (e.g., increase their SAT score, increase the number of
volunteering hours). However, these improvements may turn out
to be insufficient for admission when the individual re-applies to
the same university one or two years later.

Guidance for system-level decision-makers. Our framework
can be used to provide guidance to system-level decision-makers
like banks, colleges, and governments. The parameters of our frame-
work— the number of new individuals at each time step, the number
of individuals that re-apply at each time step, and the expected level
of improvement among the individuals who re-apply— can all be
easily measured in practice. Once these parameters are known, our
framework can anticipate changes in the threshold over time, and
provide insight regarding the time-step at which specific changes
are expected to occur. Another use case for our framework is that,
if any of these values can only be estimated rather than measured,
one could run many experiments sweeping over a broad range of
values and scenarios to better understand possible outcomes.

There are two concrete actions that decision-makers can take
based on empirical insights. First, recourse reliability can be mea-
sured and used to provide an uncertainty estimate to individuals
undertaking recourse action. For example, the system could gen-
erate a recommendation in the following way: “If you make the
following 𝑋 changes by time 𝑡 , then there is a 𝑌% chance that you
will receive a positive outcome.” Second, if it is possible to adjust
resource constraints (e.g., the number of loans being given, or the
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number of spots in an incoming college class), our framework can
inform what setting of the resource constraint maximizes recourse
reliability. For example, colleges could estimate the ideal incoming
class-size that achieves a stable threshold for admissions.

6 CONCLUSIONS, LIMITATIONS, AND
FUTURE WORK

In this paper, we sought to close a significant gap in the literature,
and conducted multi-agent, multi-time step analysis of algorithmic
recourse within competitive environments. We developed a simu-
lation framework that allows the configuration of a diverse set of
components, such as incorporating external interventions/shocks,
problem-specific adaptation functions, introduction of new agents
and resource constraints, and opens up opportunities to study how
these settings affect the reliability of algorithmic recourse over time.
The software implementation of our framework is available in a
public GitHub repository. The major finding of our work is that
recourse is only reliable under a very specific set of conditions,
leading to an important insight for people who design recourse
methods, and for people who receive recourse recommendations.
It is our hope that this paper will lead to more robust and reliable
algorithmic recourse methods.

Limitations and future work. In this paper, we presented an
agent-based framework that has undergone rigorous testing using
simulated data. Our future plans involve evaluating the practical
applicability of our insights by incorporating real-world data and
deployment scenarios.

A further limitation of our work is that our adaptation functions
attempt to model human behaviour, which is complex and not
always rational. In future work, we plan to further validate these
functions, and to develop methods that learn adaptation behavior
from historical data.

Further future work involves designing additional metrics, and
exploring the impact of different feature distributions, and distri-
butions of adaptation and effort, on recourse reliability, efficiency,
and fairness.
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