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Abstract—In this paper, we interrogate whether data quality
issues track demographic group membership (based on sex,
race and age) and whether automated data cleaning — of the
kind commonly used in production ML systems — impacts the
fairness of predictions made by these systems. To the best of our
knowledge, the impact of data cleaning on fairness in downstream
tasks has not been investigated in the literature.

We first analyse the tuples flagged by common error detection
strategies in five research datasets. We find that, while specific
data quality issues, such as higher rates of missing values, are
associated with membership in historically disadvantaged groups,
poor data quality does not generally track demographic group
membership. As a follow-up, we conduct a large-scale empirical
study on the impact of automated data cleaning on fairness,
involving more than 26,000 model evaluations.

We observe that, while automated data cleaning is unlikely
to worsen accuracy, it is more likely to worsen fairness than
to improve it, especially when the cleaning techniques are not
carefully chosen. Furthermore, we find that the positive or
negative impact of a particular cleaning technique often depends
on the choice of fairness metric and group definition (single-
attribute or intersectional). We make our code and experimental
results publicly available.

The analysis we conducted in this paper is difficult, primarily
because it requires that we think holistically about disparities
in data quality, disparities in the effectiveness of data cleaning
methods, and impacts of such disparities on ML model perfor-
mance for different demographic groups. Such holistic analysis
can and should be supported by data engineering tools, and
requires substantial data engineering research. Towards this goal,
we discuss open research questions, envision the development of
fairness-aware data cleaning methods, and their integration into
complex pipelines for ML-based decision making.

Index Terms—responsible data management; data cleaning;
data preparation; fairness in machine learning

I. INTRODUCTION

Software systems that learn from user data with machine
learning (ML) are in ubiquitous use in critical decision-making
processes such as loan approvals, hiring, and prioritizing ac-
cess to medical interventions. Unfortunately, if left unchecked,
such applications often reproduce or even amplify pre-existing
bias in the data, and may lead to unlawful discrimination [1].

Most ML applications in production are data-intensive, and
require data cleaning [2]. Such applications regularly acquire
new training data in short intervals (e.g., nightly from log
files), and subsequently retrain and redeploy models, which
then make predictions on previously unseen data. Real-world
data — processed by production ML systems — inevitably
contains data errors [3], [4], [5], [6]. Due to large data

volumes and short redeployment intervals, data quality issues
are often addressed with automated cleaning techniques (e.g.,
to impute missing values, which many ML models cannot
handle directly).

What is the impact of data errors and automated cleaning
on model performance, both overall and for subsets of the data
corresponding to different demographic groups? This question
is both crucial and understudied, with very real implications
for production ML systems currently used for critical decision-
making. There are indications that data from historically
disadvantaged groups may be more likely to suffer from poor
quality, such as higher occurrence of missing values [7].
Such “heteroskedastic noise” in the data, in turn, has the
potential to negatively impact ML model fairness [8]. Yet,
while there is plenty of evidence that data quality issues hurt
the predictive accuracy of ML models [5], it is unclear whether
(1) poor data quality tracks membership in disadvantaged
groups, and (2) attempts to improve data quality through
automated cleaning impact the fairness of ML models (e.g.,
by amplifying disparities in prediction quality among groups).

Related work and research gap. To the best of our knowl-
edge, these questions have not been investigated in prior work.
On the one hand, the growing body of work on joint cleaning
and learning [9], [10], [11], [5] focuses on predictive accuracy
but not on fairness. On the other hand, research on fairness
in ML usually ignores data quality issues; it is common, for
example, to simply remove tuples with missing values from
the data before experimentation [12], [13]. Moreover, existing
data-centric work on fairness either focuses on coverage (e.g.,
under-representation) at training time [14], [8], [15] (and not
on repairing erroneous tuples), or it introduces synthetically-
generated errors only [16], [17], [18], making it difficult to
judge how representative the results are of real world settings.

Why should we care about fairness at the data cleaning stage?
A data error — and it’s subsequent repair — is a purely
technical conception. However, the mechanisms that lead to
data errors, specifically in social domains where the data is
of and about people, are not purely technical in nature. There
exist powerful social, political and legal systems that affect
people’s outcomes, as well as how data about these outcomes
is collected, curated and shared. An accessible way to think
about this is through the data-mirror metaphor [1]: data is
a reflection of the world. A reflection cannot by itself tell
us whether and why it is distorted. We must instead make
assertions about the world, and then examine whether the
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data is a faithful reflection of the world, or whether it is
distorted. Hence, data cleaning approaches that fail to take
into account broader normative thinking and that narrowly
focus on the statistical properties of the data itself will be
sub-optimal, in that they will fail to detect and correct for
real-world mechanisms that cause data errors.

Further, fairness is swiftly becoming a major desideratum in
ML systems alongside accuracy [19], [20], [21]. In this work
we take a group fairness perspective, namely, that unfairness
is quantified by the disparity in model performance aggregated
over socially privileged and disadvantaged groups, respec-
tively. From a purely technical perspective, model unfairness
is an indication that the model does not perform “equally
well” on all parts of the input space. Hence, even absent any
ethical/moral justification, a data intervention (such as clean-
ing) that results in disparate model performance (unfairness)
is problematic.
Why is it difficult to study the effect of data cleaning on fair-
ness? A major challenge in studying the impact of automated
data cleaning on model fairness is that there is no “clean”
ground truth available for datasets that are commonly used
for ML fairness research. This means that there is no “correct”
benchmark against which we can evaluate the performance of
error detection and data repair/cleaning techniques.

Furthermore, such datasets are hard to clean manually,
in part because validating data errors would require access
and corroboration through secondary data sources (such as
bank records or medical files), which is expensive and time-
consuming. More importantly, datasets for fairness-related
research are by definition at the person-level — this is data of
people, from critical domains such as finance or healthcare.
There are significant legal and ethical privacy challenges to
collecting, maintaining, and sharing such data. For example,
requirements for data deletion in the case of withdrawn
consent in the European Union is dictated by the General Data
Protection Regulation (GDPR).

Even for popular datasets from the research ecosystem —
such as the ones used in this study — it is infeasible to
obtain “ground truth” information regarding data errors. This
is because samples are usually de-identified before release (to
maintain privacy) and so there is no way to map a tuple in the
dataset to a person in the real world. Further, as a systemic
issue, the origin and provenance of fairness datasets is poorly
understood [22], [23].

For these reasons, rather than attempting to directly quantify
data quality, we focus on automated data cleaning in this
work.
Research questions. We tailor our research questions to
address two common stages of automated data cleaning: (1)
error detection, which flags potentially erroneous tuples, and
(2) data repair, which attempts to correct the erroneous tuples:
• RQ1. Does the incidence of data errors track demographic

group membership in ML fairness datasets?
• RQ2. Do common automated data cleaning techniques

impact the fairness of ML models trained on the cleaned
datasets?

To address RQ1, we analyze the tuples flagged by com-
mon error detection strategies in five widely used fairness
benchmark datasets, with respect to groups based on sex,
race, and age (Section III). To address RQ2, we conduct
an empirical study of the impact of data cleaning on model
fairness (Section V), by applying common automated data
cleaning techniques to the potentially erroneous tuples de-
tected in RQ1. We consider single-attribute group definitions
as well as intersectional definitions with multiple sensitive
attributes. Our study involves training and evaluating more
than 26,000 models and, in contrast to existing work, does not
inject synthetic noise but works with the raw data as provided.

Key findings. We summarize our key findings in the following.

• We find that higher rates of missing values are associ-
ated with membership in historically disadvantaged groups.
However, for other types of data errors, we do not find
sufficient evidence that poor data quality tracks demographic
group membership, both with single-attribute and intersec-
tional group definitions (Section III).

• We find that cleaning missing values is unlikely to have
a negative impact on accuracy, but is likely to cause un-
fairness at the single-attribute level. Interestingly, however,
we also find that cleaning missing values improves fairness
in outcomes for intersectional groups, underscoring the
need to select fairness definitions — here, how we define
protected groups — carefully, based on the specific context
of decision-making (Section V).

• We find that automated cleaning of outliers is very likely
to worsen accuracy and have an insignificant impact on
fairness. Further, when it does impact fairness, it is more
likely to worsen fairness than to improve it — at the group
level for single-attributes and by causing in-group unfairness
for intersectional groups (Section V).

• We find that repairing label errors is very likely to have
a strong effect on both accuracy and fairness. Accuracy
is improved in most cases, while the direction of impact
on fairness (positive or negative) is highly metric specific.
For single-attribute groups, cleaning label errors is very
likely to improve fairness according to the equal opportunity
measure, but worsen fairness according to the predictive
parity measure, and these effects are even stronger for
intersectional groups (Section V).

Our findings are significant because they potentially impli-
cate many production ML systems. The observed effect varies
based on dataset, fairness metric, group definition, and type
of error being repaired. Notably, in many cases, we do not
encounter a configuration that simultaneously improves both
fairness and accuracy (Section V). In Section VI we outline
which cleaning techniques, error detection strategies and ML
models turned out to be the best performing with respect to
fairness and accuracy in our study.

We discuss the implications of our findings, and outline
research challenges and directions for follow-up work in
Section VII. We provide the code and results for our study,
and experiments for reproducibility and follow-up research.1

1https://github.com/amsterdata/demodq
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II. PRELIMINARIES

Benchmark datasets. We use five publicly available datasets
listed in Table I from three source domains: census, finance,
and healthcare. These datasets are commonly used in research
on responsible machine learning and data management [7],
[8], [12], [23]. Each dataset is associated with a binary
classification task. In our setup, the positive class always
corresponds to the desirable outcome for the individuals in
the dataset, such as being considered creditworthy or being
prioritized for access to healthcare resources. Note that the
choice of sensitive attribute(s) is taken from existing research
on these datasets [7], [8], [12], [23].

TABLE I
DATASETS FOR OUR EXPERIMENTAL STUDY.

name source number of tuples sensitive attributes
adult census 48,844 sex, race
folk census 378,817 sex, race
credit finance 150,000 age
german finance 1,000 age, sex
heart healthcare 70,000 sex, age

The adult2 dataset contains demographic and financial
data, and the target variable denotes whether a person earns
more than 50,000 dollars per year. This dataset has been
used extensively to evaluate fairness in predictions of credit-
worthiness. Recent work proposes to “retire” this dataset
due to both unclear data origins and the apparent — and
unrepresentative — class-label imbalance, which renders the
prediction task unrealistic [23]. We include this dataset in our
study to complement these concerns from the data manage-
ment perspective, exposing additional data quality issues.

The folk3 dataset is based on US census data and has been
proposed as a replacement for the problematic adult [23]
dataset, to be used for financial decisions. We use the subset
of the data from the census in California in 2018, and replicate
the prediction task from adult.

The credit4 and german5 datasets contain financial
information, and the target variable denotes whether a person
has a good credit score. We remove the foreign_worker
attribute from the german dataset, due to unclear semantics.
According to the documentation of the data, more than 96%
of the records would belong to foreign workers. This inter-
pretation is likely due to an error, and the attribute is handled
differently in other derived versions of the dataset. We derive
the sex attribute for the german credit dataset from the
personal_status attribute, which encodes each unique
combination of marital status and sex.

The heart6 dataset consists of patient measurements with
respect to cardiovascular diseases, and the target variable
denotes the presence of a heart disease. This dataset has been
used to evaluate fairness of predictive tasks that allocate access
to priority medical care for individuals.

2https://archive.ics.uci.edu/ml/datasets/adult
3https://github.com/zykls/folktables
4https://www.kaggle.com/c/GiveMeSomeCredit
5https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
6https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset

Protected groups. We investigate disparities with respect to
sensitive attributes based on which unlawful discrimination
in decision-making has been observed [1], e.g., violating US
labor law [24] or European non-discrimination law [25].
Single-attribute groups. Given a sensitive attribute, we par-
tition the data into tuples belonging to a privileged group
and all other tuples as belonging to a disadvantaged group.
Following prior work [7], [8], [12], [23], [26], we consider
sex (with ‘male’ as the privileged group), race (with ‘white’
as the privileged group) and age (with people older than 30,
25 and 45 years old as the privileged group in the credit,
german and cardio datasets, respectively). Note that which
demographic group is considered privileged vs. disadvantaged
is task-specific, and is designated as appropriate for the
benchmark datasets and tasks described here. For example,
older age is considered privileged in the context of lending,
but disadvantaged in the context of hiring.
Intersectional groups. Intersectionality [27] is the idea that
interlocuting axes of discrimination give rise to a social expe-
rience that cannot be understood in terms of single-axis effects.
Crenshaw [27] writes: “Focusing on the most privileged group
members marginalizes those who are multiply-burdened and
obscures claims that cannot be understood as resulting from
discrete sources of discrimination.” A famous example is
the Gender Shades project [28], which showed that facial
recognition software performs significantly worse on Black
women than on other social groups.

We consider the intersection of sex and race in the adult
and folk dataset (with ‘white, male’ as the intersectionally
privileged group and ‘black, female’ as the disadvantaged
group), the intersection of sex and age in the german and
heart datasets (with ‘male, over 25’ and ‘male, over 45’ as
the intersectionally privileged group, and ‘female, under 25’
and ‘female, under 45’ as the intersectionally disadvantaged
group, respectively). The credit dataset does not include
an additional demographic attribute and is therefore left out
of this analysis. Note that unlike the single-attribute groups,
our chosen intersectional group definitions do not induce a
partition over the full dataset, i.e., we exclude tuples that are
privileged along one axis and disadvantaged along another.
Fairness metrics. In our experimental study, we report the
following group fairness metrics:
• Predictive parity (PP) is satisfied if a classifier has equal

precision for the subjects in the privileged and disadvantaged
groups. This metric is computed as TPpriv

TPpriv+FPpriv
− TPdis

TPdis+FPdis
,

and denotes equal probability of a correct positive prediction
for the groups.

• Equal opportunity (EO) is satisfied if a classifier has equal
recall for the subjects in the privileged and disadvan-
taged groups. This metric is computed as TPpriv

TPpriv+FNpriv
−

TPdis
TPdis+FNdis

.
In line with existing research [13], we choose these two

metrics because they intuitively represent the opposing in-
terests of two key stakeholders in many decision making
processes — individuals who seek access to resources, and
vendors who grant access. For example, in lending, the bank,
on the one hand, wants high precision (to avoid giving loans
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to creditors who might not have the means to repay them),
while customers, on the other hand, want high recall (to avoid
being denied a loan that they would have been able to repay).

Error detection strategies. We apply common error detec-
tion strategies that have been proposed in the data cleaning
literature [3], [29], [30] and are also used in studies about the
impact of data cleaning on machine learning tasks [5].

Missing values. We identify tuples with missing values
by detecting NULL and NaN values in the datasets.

Outliers. We detect numerical outliers with the following
techniques: (i) outliers-sd – we consider a value of
a column to be an outlier if it is more than n standard
deviations away from the mean of the column (with n = 3);
(ii) outliers-iqr – we consider a value of a column
to be an outlier if it lies outside of the interval [p25 − k ·
iqr, p75+k · iqr] with k = 1.5. Note that iqr refers to the inter-
quartile range defined as the difference between the 75th and
25th percentile of the column distribution: iqr = p75 − p25;
(iii) outliers-if – a tuple is considered to be an outlier
if it is identified as such by an isolation forest trained on
the data with a contamination parameter of 0.01. Note that
outliers-sd and outliers-iqr are univariate tech-
niques that inspect individual attributes, while the multivariate
approach outliers-if inspects whole tuples.

Label errors. An ML-specific type of error is mislabeled
examples: tuples with the wrong prediction label assigned to
them. Such errors have recently received a lot of attention, due
to the fact that they are pervasive in widely used benchmarking
datasets for ML [31]. We detect tuples with potential label
errors with the cleanlab [32] library, using a logistic re-
gression model as the base classifier. Cleanlab identifies label
errors in datasets by estimating the joint distribution between
noisy (given) labels and uncorrupted (unknown) labels.

Limitations. Unfortunately, there are no known integrity con-
straints available for the datasets (e.g., in the form of functional
dependencies or denial constraints [33]) and no verified sets
of clean records, which prevents us from applying more
advanced cleaning and error detection techniques such as
HoloClean [34], HoloDetect [35] or kNN-Shapley [36]. We
consider it an interesting avenue for future work to include
these approaches on appropriate datasets and tasks.

Automated repair methods. We apply standard techniques
for repairing erroneous tuples, which are implemented in
popular data science packages such as scikit-learn7 or pandas,
and used in existing studies on joint cleaning and learning [5].
We apply several methods to impute missing values, namely,
via the column mean, median or mode for numerical columns,
and via the mode or a constant “dummy” value for categorical
columns. We repair outlier values in numerical columns by
replacing them with the mean, median or mode of the column.
We repair label errors by flipping the labels of flagged tuples.

III. INDICATIONS OF DEMOGRAPHICALLY DISPARATE
DATA QUALITY ISSUES

To address RQ1, we search for cases in which our error
detection strategies flag significantly different fractions of the
privileged and disadvantaged groups, based on sex, race and
age. For a dataset D, let the Boolean predicate priv(t) evaluate
if tuple t ∈ D belongs to the privileged group. Further, let
the Boolean error function σ(t) evaluate if t is considered
erroneous by detection strategy σ.

To identify statistically significant disparities, we compute
the number of erroneous tuples |{t ∈ D | priv(t) ∧ σ(t)}|
from the privileged group, the number of erroneous tuples
|{t ∈ D | ¬priv(t) ∧ σ(t)}| from the disadvantaged group, and
conduct a G2 significance test with a threshold of p = .05. We
report only cases that pass this test. We run the error detectors
to identify data quality disparities among the protected groups
described in Section II, and report the results for single-
attribute and intersectional group definitions in Figures 1 and
2, respectively.

Results. We find that all three data error types (missing values,
outliers and label noise) are frequently detected in the research
datasets.8 These errors are flagged in disparate proportions
for different datasets and protected group definitions, and,
strikingly, error detection strategies often identify large frac-
tions of erroneous tuples (e.g., up to 51% of the tuples of a
particular group). Notably, adult — one of the most widely
used datasets in fair ML — is the only dataset for which all
five error detectors flag tuples with significant disparities, for
both single-attribute and intersectional group definitions. We
interpret this as additional evidence that it is time to “retire”
adult [23].

Disparities in missing values. We find that tuples from the
disadvantaged group are subject to missing data more fre-
quently: in 4 out of 6 cases (dataset/sensitive attribute pairs)
with single-attribute group definitions, and in 2 out of 3 cases
with intersectional group definitions.

Disparities in outliers. We see a mixed picture with respect to
outliers, where the trends vary strongly based on detection
technique and group definition (single-attribute or intersec-
tional). There are several cases where we encounter disparate
proportions of outliers with only a particular detection tech-
nique but not with others. Additionally, we find that the
number of outliers detected heavily varies based on the applied
detection strategy.

Disparities in predicted label errors. For label errors, we
find that, in the majority of cases (for both single-attribute
and intersectional group definitions), the fraction of tuples
from the privileged group in the mislabeled data is higher
than the fraction of tuples from the disadvantaged group.
(Recall that these labeling errors are predicted, and that we
do not have access to the ground truth.) We drill in on the
type of label error — false positive or false negative — and
find no significant differences between the privileged and the

7https://scikit-learn.org/stable/modules/generated/sklearn.impute.
SimpleImputer.html

8Note that the heart dataset has no missing values at all.
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Fig. 1. Single-attribute analysis: disparate proportions of tuples flagged by common error detection strategies for the privileged and disadvantaged groups.
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Fig. 2. Intersectional analysis: disparate proportions of tuples flagged by common error detection strategies for the intersectionally privileged and intersectionally
disadvantaged groups.

disadvantaged groups in most cases. However, in one case
(single-attribute groups in the heart dataset) the fraction of
false positives was significantly higher for the privileged group
than for the disadvantaged (57.7% vs. 52.2%, respectively),
and the trend was reversed for the false negatives (42% vs.
47.8%, respectively). This is potentially problematic, because
false positives can amplify the advantage, while false negatives
can exacerbate the disadvantage for the respective groups.

Discussion. Overall, while we do find strong indication of a
large number of data quality issues in benchmark datasets, we
do not find sufficient evidence that these potential data errors
track demographic group membership with respect to sex, race
and age. In the folk and heart datasets, overall, errors are
detected more frequently in the disadvantaged group, but the
disparity in errors between groups is small. In the credit
and german datasets, where the disparity in the incidence
of errors across groups is large, errors do not systematically
occur more frequently for the disadvantaged group.

Interestingly, the fraction of detected errors is comparable
across groups, irrespective of whether groups are defined based
on a single-attribute (Figure 1) or intersectionally (Figure
2). This finding is consistent with one of two possibilities.

The first is that data errors are, in fact, uniformly distributed
across social groups, in which case the answer to RQ1 is: no,
data quality does not track group membership. The second
possibility is that data errors do, in fact, occur more frequently
for some groups than for others, but the effectiveness of error
detection methods is also non-uniform across groups.

Explicitly missing values are the only error type in our study
where detection is straightforward: a tuple either contains a
NULL or it does not. For outliers and label errors, however, we
cannot tell what fraction of errors have been discovered/missed
because (as discussed in Section I) we do not have access to
the ground truth. Recall that missing values were the only error
type for which we did detect a demographic disparity in data
quality.

We posit that the outlier and mislabel detection techniques
we use could be incurring a high number of false negatives,
i.e., current techniques are only capable of identifying er-
rors caused by mechanisms that affect the majority (here,
privileged) group. This hypothesis is further supported by
the fact the general trend for detected errors stays the same
whether we look at disparities between single-attribute groups
or intersectional groups.
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Fig. 3. Overview of our experimentation framework. For each experimental configuration (dataset/model/error/repair), we 1 split the dataset into train/test
sets; 2 save the original raw data as a dirty version and apply the repair strategy to the raw data to generate a repaired version; 3 train a classifier on the
dirty train data and another classifier on the repaired train data; 4 generate predictions on the dirty test set using the classifier trained on dirty data and
predictions on the repaired test set using the classifier trained on the repaired train data; and 5 score each model on accuracy and fairness and compare the
scores computed from repaired data with the scores computed from dirty data to assess the impact of auto-cleaning for this configuration.

In summary, these results neither support nor conclusively
refute the hypothesis on which we focused under RQ1, namely,
that data from historically marginalized groups is more likely
to be erroneous. This motivates our large-scale empirical
study for a principled answer to RQ2, where we look at the
downstream effect of repairing these errors on model accuracy
and fairness instead.

IV. EXPERIMENTATION FRAMEWORK

We introduce our experimentation framework, before we
detail our empirical study. We extend the existing CleanML
benchmark [5] for joint data cleaning and model training, to
additionally compute fairness metrics for the cleaning impact.
Our goal is to enable fairness-related experimentation with
minimal effort. In order to achieve that, our extension enables
a declarative definition of sensitive attributes per dataset,
after which the benchmarking framework will automatically
compute the corresponding fairness metrics. In this section,
we give an overview of our implementation.

Listing 1. Declarative definition of the german credit dataset.

German = {
"data_dir": "German",
"error_types": [
"missing_values",
"outliers",
"mislabels"

],
"drop_variables": [
"age",
"personal_status",
"sex",
"foreign_worker"

],
"label": "credit",
"ml_task": "classification",
"privileged_groups": [
("age", operator.gt, 25),
("sex", operator.eq, "male")

],
}

Declarative definition of datasets. CleanML already allows
users to declaratively define datasets to experiment on, by
specifying the data location (data_dir), the error_types
to clean, the label to predict and the attributes to hide from
the classifier (drop_variables). We extend CleanML with
three additional datasets: folk, heart, and german. We
also add to the dataset definitions the ability to specify
privileged_groups present in a dataset. Membership in
a privileged group is defined by a binary predicate on the
sensitive attribute, e.g., that the age of a person is higher than
25. The declarative definition of the german credit dataset
for example looks as depicted in Listing 1.

Evaluation process. Figure 3 shows how we use the CleanML
framework: for each experimental configuration (dataset/mod-
el/error/repair), we 1 split the dataset into train/test sets; 2
save the original raw data as a dirty version and apply the
repair strategy to the raw data to generate a repaired version; 3
train a classifier on the dirty train data and another classifier on
the repaired train data; 4 generate predictions on the dirty test
set using the classifier trained on dirty data and predictions on
the repaired test set using the classifier trained on the repaired
train data; and 5 score each model on accuracy and fairness,
and compare the scores computed from repaired data with the
scores computed from dirty data to assess the impact of auto-
cleaning.

Automated computation of group-wise confusion matrices
per cleaning technique. During benchmark execution,
we automatically compute confusion matrices (counting
the number of true negative, false positive, false negative,
and true positive predictions) for the privileged and
disadvantaged groups, per cleaning technique. To get insights
into intersectional groups, we additionally compute the
confusion matrices for combinations of two groups. Our
design decision to compute the “raw” confusion matrices
gives us the flexibility to use a broad range of fairness metrics
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during analysis, including the commonly-reported group
fairness metrics for binary classification [37]. For example,
the following JSON snippet represents the results for training
a logistic regression classifier on the german dataset with
missing values from the training data in numerical columns
imputed with their mean and in categorical columns with
a “dummy” indicator. CleanML already computes general
metrics for this experiment, such as the accuracy on the
training set (train_acc) and the accuracy of a given
cleaning technique on the test set, e.g., imputing missing
values in numerical columns with their mean and inserting
a “dummy” indicator for missing values in categorical
attributes (impute_mean_dummy_test_acc). For each
such cleaning technique, we automatically compute the
confusion matrices for all definitions of privileged and
disadvantaged groups (and their intersectional combinations)
and record the resulting counts. For example, the key
impute_mean_dummy__sex_priv__age_priv__fp
denotes the number of false positive predictions on the test
set for the privileged intersectional group with respect to
sex and age (e.g., male persons older than 25 years) when
applying the impute_mean_dummy cleaning technique.

"German/v235/missing_values/impute_mean_dummy/logreg/6130": {
"best_params": { "C": 0.370200059179964 },
"train_acc": 0.8223048761489329,
"val_acc": 0.747454133168419,
...
"impute_mean_dummy_test_acc": 0.7133333333333334,
"impute_mean_dummy_test_f1": 0.46913580246913583,
...
"impute_mean_dummy__age_priv__tn": 145,
"impute_mean_dummy__age_priv__fp": 22,
"impute_mean_dummy__age_priv__fn": 39,
"impute_mean_dummy__age_priv__tp": 24,
...
"impute_mean_dummy__age_dis__tn": 31,
"impute_mean_dummy__age_dis__fp": 16,
"impute_mean_dummy__age_dis__fn": 9,
"impute_mean_dummy__age_dis__tp": 14,
...
"impute_mean_dummy__sex_priv__age_priv__tn": 114,
"impute_mean_dummy__sex_priv__age_priv__fp": 13,
"impute_mean_dummy__sex_priv__age_priv__fn": 31,
"impute_mean_dummy__sex_priv__age_priv__tp": 19,
...
"impute_mean_dummy__sex_dis__age_dis__tn": 17,
"impute_mean_dummy__sex_dis__age_dis__fp": 9,
"impute_mean_dummy__sex_dis__age_dis__fn": 5,
"impute_mean_dummy__sex_dis__age_dis__tp": 10,
...

}

Reproducibility. A crucial point of experimental work is to
ensure the reproducibility of the results. CleanML already
has a solid foundation for this by making all randomized
decisions like dataset splits depend on globally specifiable
random seeds. Furthermore, the framework supports stopping
and resuming computations, such that it will make sure not
to repeat previously conducted experiments. We implement
our extensions to be compatible with the existing design for
reproducibility in CleanML (e.g., we re-use existing splits for
computing fairness metrics).

Alarmingly, while conducting our experimental study, we
identified a severe reproducibility issue in CleanML: the key-
value mapping between the names of the cleaning techniques
and the resulting metric values is randomly reshuffled in some
cases due to a software bug, which leads to unreliable and

non-reproducible results. We fixed this issue in our codebase,
and also contacted the CleanML authors via a bug report in
their repository9, which led to them also addressing the issue.
To additionally verify the reproducibility of our results, we
ran our experimental study with 26,000 model evaluations
twice on identical machines with the same operating system
and software packages, and validated that we obtain the same
results from both runs.

V. IMPACT OF AUTOMATED DATA CLEANING ON FAIRNESS

In the following, we discuss the setup and results of our
empirical study to address RQ2.

Classification models and training procedure. We use
three ML model types, each of which we tune using 5-fold
cross-validation: logistic-regression (log-reg) with a tuned
learning rate, nearest neighbors (knn) with a tuned number
of neighbors, and gradient-boosted decision trees (xgboost)
with a tuned maximum tree depth. During each run, we sample
15,000 records from a given dataset, randomly split these into
train and test set, and evaluate five different model instances
(with different random seeds for the hyperparameter search)
per split. We repeat this 20 times per configuration (dataset/-
model/error/repair), resulting in the training and evaluation of
100 models per configuration.

Evaluation. For each run, we evaluate the predictions of the
corresponding model (learned on the repaired training set) on
an equivalently repaired test set. We compare these predictions
to the “dirty” baseline predictions of a model, trained and
evaluated on the “dirty” version of the data, as described
in Section IV. We aggregate confusion-matrix values over
the samples from the privileged and disadvantaged groups to
compute the fairness metrics described in Section II.

Error detection and repairs. We detect errors and repair
flagged tuples as outlined in Section II.

Missing values. We apply different variants of missing value
imputation. Note that most classifiers cannot naturally handle
missing values, which requires us to define a modified version
of the data as the ‘dirty’ version. For the ‘dirty’ setup, we
remove tuples with missing values from the training data and
impute them with the mean for numerical columns and dummy
for categorical columns on the test data. Note that one cannot
simply remove tuples with missing values from the data during
prediction in a real-world setup, therefore we have to impute
on the test set as well for consistency. For other types of errors,
missing values have to be removed from the data beforehand.

Outliers. We detect outliers and impute them as outlined earlier
in Section II. In the “dirty” setup, we simply retain the outliers
in both the train set and the test set.

Mislabels. For labeling errors, we run cleanlab for detection
and flip the labels of identified tuples as a repair technique.
For the “dirty” setup, we leave the labels as is in both train
and test set. Note that we never flip labels on the test set, as
this would make the prediction results incomparable with the
other experiments.

9https://github.com/chu-data-lab/CleanML/issues/3
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Results. We evaluate 26,400 models in total, and compute a
result table from our experiments, where each row contains
the result of a particular configuration with respect to a
dataset, sensitive attribute, fairness metric, model, error type,
detection method, repair method, and indicators for the impact
on fairness and accuracy. The impact on fairness as well as the
impact on accuracy of a configuration can be positive, negative
or insignificant. We determine this by comparing the resulting
100 fairness and accuracy scores from the “dirty” baseline
(with no cleaning) to the scores from a cleaning configuration
(dataset, sensitive attribute, fairness metric, error, detection,
repair). We leverage a sequence of paired sample t-tests as
proposed by CleanML [5] with a threshold for the p-value of
.05 adjusted by Bonferroni correction to account for multiple
hypothesis tests.

TABLE II
IMPACT OF AUTO-CLEANING MISSING VALUES FOR SINGLE-ATTRIBUTE

GROUPS, WITH PREDICTIVE PARITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 3.7% (4) 1.9% (2) 16.7% (18) 22.2% (24)
insign. 5.6% (6) 34.3% (37) 7.4% (8) 47.2% (51)
better 3.7% (4) 7.4% (8) 19.4% (21) 30.6% (33)

13.0% (14) 43.5% (47) 43.5% (47)

TABLE III
IMPACT OF AUTO-CLEANING MISSING VALUES FOR SINGLE-ATTRIBUTE

GROUPS, WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 1.9% (2) 15.7% (17) 19.4% (21) 37.0% (40)
insign. 9.3% (10) 25.9% (28) 13.0% (14) 48.1% (52)
better 1.9% (2) 1.9% (2) 11.1% (12) 14.8% (16)

13.0% (14) 43.5% (47) 43.5% (47)

Impact of repairing missing values. The effect of the auto-
mated repair of missing values on predictive parity (PP) and
equal opportunity (EO) for single-attribute group definitions
are reported in Table II and III, and for intersectional groups
in Table IV and V, respectively.
Single-attribute groups. Repairing missing values is very un-
likely to worsen accuracy (only 13% of the cases), and in most
cases (approximately 50% of the time) has an insignificant
impact on fairness (based on single-attribute group defini-
tions). However, when cleaning does have an effect on fairness,
the direction of the effect (positive/negative) is highly metric
specific: cleaning missing values is more than twice as likely
to worsen EO (37%) than to improve it (14.8%), but is more
likely to improve PP (30.6%) than worsen it (22.2%).

Recall from Section II that PP measures the disparity in
group-specific precision, whereas EO measures disparity in
group-specific recall. An intervention that marginally improves
precision-parity and significantly worsens recall-parity — as is
observed here — shows comparable positive rates but disparate
true positive rates, across groups. This means the model selects
people from both groups in comparable proportions, but not
equally accurately, for example by having more false negatives
in the disadvantaged group. Hence, when cleaning improves

group fairness according to predictive parity, but worsens equal
opportunity, it causes in-group unfairness because it incor-
rectly denies desirable outcomes (here, the positive outcome)
to deserving candidates from that group (true positives).

In summary, for single-attribute group definitions, cleaning
missing values only has an insignificant effect on fairness
approximately half of the times, and when it does has an effect
on fairness, it is likely to worsen fairness; either at the group
level or by causing in-group unfairness.

TABLE IV
IMPACT OF AUTO-CLEANING MISSING VALUES FOR INTERSECTIONAL

GROUPS, WITH PREDICTIVE PARITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 0.0% (0) 0.0% (0) 5.6% (3) 5.6% (3)
insign. 3.7% (2) 27.8% (15) 11.1% (6) 42.6% (23)
better 3.7% (2) 14.8% (8) 33.3% (18) 51.9% (28)

7.4% (4) 42.6% (23) 50.0% (27)

TABLE V
IMPACT OF AUTO-CLEANING MISSING VALUES FOR INTERSECTIONAL

GROUPS, WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 0.0% (0) 11.1% (6) 11.1% (6) 22.2% (12)
insign. 7.4% (4) 20.4% (11) 22.2% (12) 50.0% (27)
better 0.0% (0) 11.1% (6) 16.7% (9) 27.8% (15)

7.4% (4) 42.6% (23) 50.0% (27)

Intersectional groups. The trends for the fairness metrics flip
when we consider intersectional group definitions instead of
single-attribute groups. Cleaning now affects both metrics in
the same way: it is nearly 10 times more likely to improve PP
(51.9% of the time) than worsen to it (5.6% of the time), and
is also marginally more likely to improve EO (27.8%) than
worsen it (22.2%).

Together with the results from binary group definitions, this
is a very interesting finding: cleaning missing values is likely
to worsen fairness at the single-attribute level but to improve
fairness at the intersectional level. In such a case, the model
trained on clean data selects people from the intersectionally
privileged and disadvantaged groups in comparable propor-
tions (improved PP), but also equally accurately (improved or
insignificant effect on EO).

TABLE VI
IMPACT OF AUTO-CLEANING OUTLIERS FOR SINGLE-ATTRIBUTE GROUPS,

WITH PREDICTIVE PARITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 21.2% (40) 1.1% (2) 1.6% (3) 23.8% (45)
insign. 21.2% (40) 25.9% (49) 14.3% (27) 61.4% (116)
better 5.3% (10) 3.2% (6) 6.3% (12) 14.8% (28)

47.6% (90) 30.2% (57) 22.2% (42)

Impact of repairing outliers. The effect of the automated
cleaning of outliers on predictive parity (PP) and equal oppor-
tunity (EO) for single-attribute group definitions are reported
in Table VI and VII, and for intersectional groups in Table VIII
and IX, respectively.
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TABLE VII
IMPACT OF AUTO-CLEANING OUTLIERS FOR SINGLE-ATTRIBUTE GROUPS,

WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 28.0% (53) 5.8% (11) 14.8% (28) 48.7% (92)
insign. 15.9% (30) 24.3% (46) 7.4% (14) 47.6% (90)
better 3.7% (7) 0.0% (0) 0.0% (0) 3.7% (7)

47.6% (90) 30.2% (57) 22.2% (42)

TABLE VIII
IMPACT OF AUTO-CLEANING OUTLIERS FOR INTERSECTIONAL GROUPS,

WITH PREDICTIVE PARITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 14.8% (16) 0.9% (1) 0.9% (1) 16.7% (18)
insign. 28.7% (31) 25.0% (27) 8.3% (9) 62.0% (67)
better 4.6% (5) 2.8% (3) 13.9% (15) 21.3% (23)

48.1% (52) 28.7% (31) 23.1% (25)

TABLE IX
IMPACT OF AUTO-CLEANING OUTLIERS FOR INTERSECTIONAL GROUPS,

WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 15.7% (17) 0.9% (1) 16.7% (18) 33.3% (36)
insign. 32.4% (35) 26.9% (29) 6.5% (7) 65.7% (71)
better 0.0% (0) 0.9% (1) 0.0% (0) 0.9% (1)

48.1% (52) 28.7% (31) 23.1% (25)

TABLE X
IMPACT OF AUTO-CLEANING LABEL ERRORS FOR SINGLE-ATTRIBUTE

GROUPS, WITH PREDICTIVE PARITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 14.3% (3) 14.3% (3) 19.0% (4) 47.6% (10)
insign. 9.5% (2) 0.0% (0) 9.5% (2) 19.0% (4)
better 0.0% (0) 0.0% (0) 33.3% (7) 33.3% (7)

23.8% (5) 14.3% (3) 61.9% (13)

Outlier cleaning is in general not very helpful: it worsens
accuracy in nearly half of the cases. Interestingly, independent
of how groups are constructed (using a single-attribute or
intersectionally), automated outlier repair has an insignificant
effect on fairness (close to 60% of the time, for 3 out of 4
metric-group pairs). However, when it does have an effect, it
is far more likely to worsen fairness than to improve it. For
example, for EO on single-attribute groups, cleaning outliers
worsens fairness 48.7% of the time, and only improves it 3.7%
of the time. The exception to this trend is the PP measure,
on intersectional groups, where cleaning is marginally more
likely to improve fairness (21.3% of the time) than worsen it
(16.7% of the time). Recall from our discussion on missing
value repair, that improving PP while worsening EO results in
in-group unfairness. We observe a similar trend here, for the
effect of outlier repair on intersectional groups.

In summary, auto-cleaning outliers is most likely to worsen
accuracy and have an insignificant impact on fairness. How-
ever, when it does impact fairness, it is more likely to worsen
fairness than to improve it — at the group level for single-
attributes and in-group for intersectional groups.

TABLE XI
IMPACT OF AUTO-CLEANING LABEL ERRORS FOR SINGLE-ATTRIBUTE

GROUPS, WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 0.0% (0) 4.8% (1) 0.0% (0) 4.8% (1)
insign. 0.0% (0) 0.0% (0) 14.3% (3) 14.3% (3)
better 23.8% (5) 9.5% (2) 47.6% (10) 81.0% (17)

23.8% (5) 14.3% (3) 61.9% (13)

TABLE XII
IMPACT OF AUTO-CLEANING LABEL ERRORS FOR INTERSECTIONAL

GROUPS, WITH PREDICTIVE PARITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 25.0% (3) 8.3% (1) 33.3% (4) 66.7% (8)
insign. 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
better 0.0% (0) 0.0% (0) 33.3% (4) 33.3% (4)

25.0% (3) 8.3% (1) 66.7% (8)

TABLE XIII
IMPACT OF AUTO-CLEANING LABEL ERRORS FOR INTERSECTIONAL

GROUPS, WITH EQUAL OPPORTUNITY AS FAIRNESS METRIC.

accuracy
worse insignificant better

fa
ir.

worse 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
insign. 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)
better 25.0% (3) 8.3% (1) 66.7% (8) 100.0% (12)

25.0% (3) 8.3% (1) 66.7% (8)

Impact of repairing predicted label errors. The effect of the
automated cleaning of label errors on predictive parity (PP)
and equal opportunity (EO) for single-attribute group defini-
tions are reported in Table X and XI, and for intersectional
groups in Table XII and XIII, respectively.

Repairing label errors is very likely to have a strong
effect on both accuracy and fairness: Auto-repairing mislabels
improves accuracy in over 60% of the cases, and has an
insignificant effect on fairness in less than 20% of the cases,
irrespective of fairness metric and group definition. The direc-
tion of impact (positive or negative) is highly metric specific.
For single-attribute groups, cleaning label errors is very likely
to improve EO (81% of the times), whereas for PP, cleaning
is more likely to worsen fairness (47.6%) than to improve
it (33.3%). These effects are even stronger for intersectional
groups: EO improves in 100% of the cases, and PP is twice
as likely to worsen (66.7%) than to improve (33.3%).

This is the opposite trend to what we observed with missing
value repair: here, cleaning improves EO (recall parity) and
worsens PP (precision parity). This means that the model
trained on cleaned data makes more correct predictions for
members of disadvantaged groups (improved EO). But it
also becomes more conservative, ie. it selects fewer samples/
distributes fewer positive outcomes to members from these
groups (worsened PP). While this does not introduce in-group
unfairness of the kind we saw with missing value repair, it
might be of moral/ethical concern if base rates between groups
are very different or if people from different social groups
apply at very different rates.
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VI. DEEP DIVE

These results motivate us to look at the impact of automated
cleaning on a more granular level.
For which cases (dataset, error and fairness metric) is clean-
ing potentially beneficial at all? In order to assess whether
it would be possible to carefully choose a beneficial cleaning
technique for a given setting, we analyse for which of the cases
in our study we encounter a beneficial auto-cleaning technique
at all. We define a case as a combination of a fairness metric
(predictive parity or equal opportunity), a dataset with a single
sensitive attribute, and an error type (missing values, outliers
or label errors), resulting in 40 different cases in total.

A promising finding is that for most cases (37 out of 40),
we encounter at least one cleaning technique which does not
worsen fairness. In nearly half of the cases (23 out of 40), there
exists a cleaning technique which improves fairness, while we
can improve both fairness and accuracy simultaneously only
in 17 out of 40 cases.
Which repair and detection techniques produce the most
gains? Next, we focus on configurations with a positive impact
on fairness, and analyze the applied detection and repair
techniques in such cases.

For missing values, we do not encounter a dominating
imputation approach for numerical columns. However, for
categorical columns, “dummy” imputation with a constant
value turns out to be most beneficial for fairness (with fairness
improvements in 27 cases, compared to 22 cases with a
different imputation technique). We attribute this to the fact
that dummy imputation allows the model to identify tuples
with missing values and learn extra parameters for them
(which is not the case for mode and mean imputation). For
example, in the folk dataset, the accompanying datasheet
makes it clear that missing values are typically ‘Not Applicable
(N/A)’, based on values in another column; e.g., Occupation
(OCCP) and Class of Worker (COW) are missing for people
with Age (AGEP) less than 18. In this case, the missing value
is actually a special N/A value, and dummy imputation allows
the model to learn such a dependency.

For outlier-repair, which has the worst impact on both
fairness and accuracy, we observe no noticeable differences
between the repair techniques. However, we find a clear
difference when analyzing the detection techniques. Cleaning
outliers detected via the interquartile rule (outliers-iqr)
has a negative impact on fairness in 50% of the cases (com-
pared to 25% for detection with the standard deviation rule
(outliers-sd) and 33.3% for detection with an isolation
forest (outliers-if)). This likely due to the high fraction
of records wrongly flagged as outliers, which we already
encountered in Figure 1 of Section III.
Model choice. We also investigate the influence of the choice
of ML model on the impact on fairness and accuracy. The
highest accuracy over all tasks is provided by the logistic
regression model (log-reg). It is only outperformed by
gradient-boosted decision trees (xgboost) for outliers on
folk and heart, as well as for missing values on adult
and folk. Apart from that, we find that all models perform
comparably with respect to the impact of auto-cleaning on the

TABLE XIV
SINGLE-ATTRIBUTE ANALYSIS: IMPACT OF AUTO-CLEANING ON

ACCURACY AND FAIRNESS FOR DIFFERENT ML MODELS ON
212 CONFIGURATIONS IN TOTAL.

auto-cleaning makes
fairness worse fairness better fairness & accuracy

model better
xgboost 32.1% (68) 17.0% (36) 1.9% (4)
knn 31.6% (67) 12.7% (27) 11.3% (24)
log-reg 36.3% (77) 21.2% (45) 16.0% (34)

fairness of their predictions (Table XIV). In the majority of
cases, this impact is insignificant, however, if there is an im-
pact, auto-cleaning is more likely to worsen (betweeen 31.6%
to 36.3% of the cases) than to improve fairness (between
12.7% to 21.2% of the cases).

Logistic regression (log-reg) turns out to benefit most
from cleaning in our study, with the largest benefit in fairness
(21.2%) and fairness & accuracy (16.0%), while xgboost
benefits least from cleaning in the most desirable setting
(fairness and accuracy improve in only 1.9% of cases). knn
benefits less from cleaning than log-reg and does not
outperform the other models in terms of accuracy in any
configuration.

VII. VISION: FAIRNESS-AWARE DATA CLEANING

The analysis we conducted in this paper is difficult, pri-
marily because it requires that we think holistically about
disparities in data quality, disparities in the effectiveness of
data cleaning methods, and impacts of such disparities on
ML model performance for different demographic groups.
Such holistic analysis can and should be supported by data
engineering tools, but it requires substantial future research.
To detect disparities in data quality, and mitigate the impact
of such disparities on the performance of ML models down-
stream, we envision the development of fairness-aware data
cleaning methods and their integration into complex data-
intensive pipelines.
Implications for ML in production. While we did notice that
historically disadvantaged groups are subject to higher rates of
missing values in the majority of cases, we did not find suf-
ficient evidence of a demographic dependency in data errors.
This is counter-intuitive to a socio-technical framing, which
posits that marginalised groups also appear noisier in the data
(have more data errors), and could embolden data scientists
to not worry about disparate effects along demographic lines
when applying automated cleaning procedures.

However, our second result about the downstream effect
of automated cleaning demonstrates that repairing data errors
does, in fact, distribute gains disparately across demographic
groups! In Section III, we found that automated data cleaning
can have a negative impact on fairness, and was, in our study,
more likely to worsen fairness than to improve it. Furthermore,
we showed that the positive or negative impact of a particular
cleaning technique depends on the choice of fairness metric
and group definition. These findings are extremely worrying,
due to the potential negative impact on the fairness of decisions
made by many ML systems that are already in production.
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The good news is, however, that we encountered at least
one configuration for almost every case (dataset, error type,
cleaning method, fairness metric) that did not negatively
impact the fairness of model predictions. This indicates that
we can — and should — mitigate any potential negative
impact of automated cleaning with the help of a principled
methodology for selecting an appropriate cleaning procedure.
Our results underscore the importance of such a methodology,
and motivate its development.
Open questions and research directions. Our findings in-
dicate that we are either unable to detect demographically-
salient data errors with current approaches, or that current
cleaning procedures are not equally ‘effective’ for different
demographic groups, or — most disturbingly — we are seeing
failure modes in both detection and repair. In order to confirm
whether the disparate proportions of tuples flagged by the error
detection strategies in Section III correspond to actual errors,
one would need to repeat this analysis on a dirty fairness-
critical dataset where the clean ground truth is available. Thus
future work on fairness-aware data cleaning must include
additional empirical evaluation.

Our findings from the study in Section V impose the
immediate question of how to choose a cleaning technique that
does not negatively impact fairness. Additionally, it would be
interesting to analyze whether more advanced cleaning/error
detection techniques [34], [35], [11] impact fairness in a
similar way (note that we had to exclude them from our study
due to a lack of clean example tuples and integrity constraints).
An important long-term research question in fairness-aware
data cleaning is whether it will be sufficient to appropriately
choose from existing cleaning techniques or whether we would
need new fairness-aware cleaning procedures. The selection
of cleaning techniques and model hyperparameters is typically
steered by cross-validation techniques which aim for the high-
est accuracy. A promising direction here might be to extend
existing techniques and implementations to adhere to fairness
constraints during the selection procedure. A starting point for
designing new cleaning techniques is the identification of input
tuples with negative impact on fairness, which would then
need to be cleaned in a fairness-enhancing manner. Several
techniques for identifying such tuples have recently been
proposed, e.g., by computing Shapley values with respect to
a given fairness metric [38] or via causal explanations [13].

Finally, a limitation of our study is that we mainly worked
with US-centric datasets (which are common in fairness re-
search). This limitation should be overcome in future work on
fairness-aware data cleaning.
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repairs with probabilistic inference,” VLDB, 2017.

[35] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas, “Holodetect: Few-
shot learning for error detection,” SIGMOD, 2019.

[36] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gurel, B. Li, C. Zhang,
C. J. Spanos, and D. Song, “Efficient task-specific data valuation for
nearest neighbor algorithms,” VLDB, 2019.

[37] A. Narayanan, “Fairness definitions and their politics,” ACM FaccT,
2018.
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