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ABSTRACT
Differential privacy (DP) data synthesizers are increasingly
proposed to afford public release of sensitive information, of-
fering theoretical guarantees for privacy (and, in some cases,
utility), but limited empirical evidence of utility in practical
settings. Utility is typically measured as the error on rep-
resentative proxy tasks, such as descriptive statistics, mul-
tivariate correlations, the accuracy of trained classifiers, or
performance over a query workload. The ability for these
results to generalize to practitioners’ experience has been
questioned in a number of settings, including the U.S. Cen-
sus. In this paper, we propose an evaluation methodology
for synthetic data that avoids assumptions about the rep-
resentativeness of proxy tasks, instead measuring the likeli-
hood that published conclusions would change had the au-
thors used synthetic data, a condition we call epistemic par-
ity. Our methodology consists of reproducing empirical con-
clusions of peer-reviewed papers on real, publicly available
data, then re-running these experiments a second time on
DP synthetic data and comparing the results.

We instantiate our methodology over a benchmark of re-
cent peer-reviewed papers in the social sciences. We express
the authors’ claims computationally to automate the exper-
iment, generate DP synthetic datasets using multiple state-
of-the-art mechanisms, then estimate the likelihood that
these conclusions will hold. We find that, for reasonable

∗Rosenblatt is the first author, Howe and Stoyanovich are
the senior authors.

Copyright is held by the owner/author(s). Publication rights licensed to the
VLDB Endowment. This is a minor revision of the paper entitled “Epis-
temic Parity: Reproducibility as an Evaluation Metric for Differential Pri-
vacy,” published in PVLDB, Vol. 16, No. 11, ISSN 2150-8097. DOI:
https://doi.org/10.14778/3611479.3611517
.

privacy regimes, DP synthesizers can achieve high epistemic
parity for several papers in our benchmark. However, some
papers, and particularly some specific findings, are difficult
to reproduce for any of the synthesizers. Given these re-
sults, we recommend a new class of mechanisms that offer
stronger utility guarantees (as measured by epistemic par-
ity) and more nuanced privacy protection using application-
specific risks and threat models.

1. INTRODUCTION
Differential privacy (DP) has been studied intensely for

over a decade, and has recently enjoyed uptake in both the
private and public sectors. In situations where the down-
stream analysis is known, one can design specialized mech-
anisms with high utility [37, 38]. But an active research
area is to design general DP data synthesizers (henceforth,
synthesizers) that model the entire data distribution, inject
noise, then sample the noisy model to generate synthetic
datasets intended to be broadly usable in a variety of unan-
ticipated applications. Evidence to support claims of gen-
eral utility is typically presented as results on proxy tasks
over common public datasets (e.g., the ubiquitous Adult
dataset [33]). Proxy tasks may include descriptive statis-
tics, queries involving one or two variables [25, 24, 50, 51],
classification accuracy [12, 50, 56], and information theoretic
measures [56]. Although these proxy tasks are procedurally
representative of real tasks, the implicit claim of generaliza-
tion to practice is rarely explored.

Limited empirical evidence on relevant tasks undermines
trust in the practical use of DP. The US Census Bureau
adopted DP for disclosure avoidance in the 2020 census, in-
terpreting federal law (the Census Act, 13 U.S.C. § 214, and
the Confidential Information Protection and Statistical Effi-
ciency Act of 2002) as a mandate to use advanced methods
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to protect against computational reconstruction attacks un-
foreseen when the laws were passed. But the adoption of
DP for the Census was met with resistance among many
in the research community, who contend that data infused
with DP noise affects demographic totals [47] and exacer-
bates underrepresentation of minorities [32, 21]. Besides the
research implications, there are potential consequences for
policy: Block grants are allocated based on minority popu-
lations as measured by the census data, and underrepresen-
tation can lead to underfunding integral services including
Medicaid, Head Start, SNAP, Section 8 Housing vouchers,
Pell Grants, and more [8]. Although the Census Bureau held
workshops, released demonstration datasets, and published
technical reports to support the community, these outreach
efforts realized limited success; multiple lawsuits are still
pending as of May 2023.

Despite these challenges, DP still offers stronger guaran-
tees of disclosure protection than, and similar utility to, al-
ternative proposals (e.g., k-anonymity, swapping [8]). DP,
when used correctly, ensures that any inferences conducted
on data do not reveal whether a single individual’s infor-
mation (including, for example, their gender or race) was
included in the data for analysis [15]. DP can therefore not
only protect privacy, but also enable access to protected de-
mographic attributes necessary for research on fairness and
equity in machine learning [29].

Characterizing DP Error.
A practical method of operationalizing DP is to learn a

(noise-infused) model of a dataset, then sample that priva-
tized model to generate synthetic data that can be released
publicly [16, 22, 52, 45, 54, 37]. Ideally, this approach would
provide a drop-in replacement for the original data that
can be used in any downstream context to produce reason-
ably faithful results with strong privacy guarantees. But
this ideal is unrealizable, both theoretically and practically.
Overly accurate estimates of too many statistics are bla-
tantly non-private, affording full reconstruction of the origi-
nal dataset [13]. For any DP synthetic dataset, some statis-
tics will tend to be faithful to the original data, while others
will incur essentially arbitrary error. If the privacy budget
is allocated uniformly across features, descriptive statistics
of each individual feature will be faithful, but the condi-
tional probabilities and marginals needed to construct the
joint probability distribution, which is needed for general
inference, will be unreliably noisy, and vice versa. Utility
loss may also be non-uniform across subsets of a dataset, in
some cases exacerbating inequity and leading to underrepre-
sentation [2, 32] or to error rate disparities [43]. Designers of
DP synthesizers must therefore make some kind of educated
guess about which tasks should be preserved and which can
be ignored. Further, the error introduced by DP methods
can and should be incorporated into statistical models ex-
plicitly, just as other sources of error are modeled explicitly.
However, current DP synthesizers tend not to provide for-
mal descriptions of the error they introduce; this lack of error
guarantees is a major drawback of private data release. Our
work does not address this limitation, but does help provide
an empirical motivation for doing so.

Methodology.
We propose an evaluation methodology for DP synthe-

sizers based on reproducibility: that published findings on

the original dataset should be replicable on a noise-infused
dataset. We identify conclusions in the text of published pa-
pers, extract relevant findings supporting those conclusions,
implement the corresponding statistical tests using the au-
thors’ data, generate synthetic datasets using state-of-the
art DP synthesizers, re-apply the statistical tests over the
synthetic data, and then determine if the findings still hold.
If all findings hold, we say that the DP synthesizer achieves
epistemic parity for that paper.

We instantiate our methodology over a benchmark of peer-
reviewed sociology papers that are based on public data from
the Inter-university Consortium for Political and Social Re-
search (ICPSR) repository. We model quantitative results
as an inequality between two numbers, for example, “Those
using marijuana first (vs. alcohol or cigarettes first) were
more likely to be Black, American Indian/Alaskan Native,
multiracial, or Hispanic than White or Asian.” [19]

Following Errington et al. [18], and as is common in the
reproducibility literature, our aim was to identify and repro-
duce a selection of key findings from each paper. For gen-
erality, interpretability and simplicity, we consider whether
a conclusion holds over synthetic data to be true if the the
two quantities are in the same relative order, and do not
attempt to measure the change in effect size or the statis-
tical significance of the difference between the original and
synthetic result.

Benchmark and results.
ICPSR is an NSF-funded repository for social science data

holding over 100,000 publications associated with 17,312
studies. A study typically involves hundreds of variables
and supports dozens of papers. Each paper can be consid-
ered to be deriving its own dataset (selected variables and
selected rows) from the source data of the study. We ap-
ply DP methods to synthesize data for these paper-specific,
study-derived datasets. ICPSR studies are publicly available
by policy, which enables us to instantiate the epistemic par-
ity methodology and develop a benchmark. Notably, there is
increasing demand from the ICPSR leadership and commu-
nity to support keeping sensitive data private, while gener-
ating DP synthetic subsets to support reproducibility. Our
methodology can be used to respond to this demand.

Paper selection. The benchmark consists of 4 datasets
and 8 recent peer-reviewed papers selected for impact, ac-
cessibility of the topic to non-experts, recency, and several
other criteria. We extracted findings and attempted to re-
produce them, following the ”same data, different code, dif-
ferent team” approach to reproducibility, encountering chal-
lenges commonly reported in that literature including un-
documented data versioning, unspecific or incomplete method-
ologies, and irreconcilable differences between our reproduc-
tion and what the authors report. A complete list of papers
that we attempted to reproduce, and the issues we encoun-
tered, is available in our public GitHub repository. 1

DP synthesizer selection. We use six state-of-the-art DP
synthesizers, namely, MST [37], PrivBayes [56], PATECT-
GAN [45], AIM [38], PrivMRF [7], and GEM [35] executing
each at their recommended settings.

Summary of results. We find that marginals-based and
Bayes-net based state-of-the-art DP synthesizers are able to
achieve high epistemic parity for five out of eight papers in

1https://github.com/DataResponsibly/SynRD
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our benchmark, but that some papers, and particularly some
specific findings, are difficult to reproduce for any of the
synthesizers, suggesting a basis for a new benchmark. The
papers on which high epistemic parity is achieved use rela-
tively low-dimensional tabular data. However, as we show
empirically, large domain and high-dimensional settings are
still a bottleneck for increased adoption of DP synthesizers.

Roadmap and Contributions.
We discuss background and relevant DP synthesis meth-

ods in Section 2, and then present our contributions: (i) the
epistemic parity evaluation methodology, based on repro-
ducing qualitative and quantitative empirical findings in peer-
reviewed papers over DP synthetic datasets (Section 3); (ii) an
instantiation of the methodology for eight peer-reviewed so-
cial science publications, creating a reusable benchmark for
evaluating synthesizers (Section 4); and (iii) an experimen-
tal evaluation on our benchmark, using five state-of-the-art
DP synthesizers (Section 5). We conclude with a discus-
sion of the results, identifying trade-offs and motivating a
new class of privacy techniques that favor strong epistemic
parity and de-emphasize privacy risk, in Section 6.

2. BACKGROUND
Differential privacy (DP) ensures that altering or remov-

ing one record from a given dataset does not significantly
affect the outcome of an analysis or query. Intuitively, DP
prevents an observer of a private output from drawing con-
clusions about which specific individuals’ information was
included in the input. DP is based on the concept of neigh-
boring datasets, where two datasets are neighboring if they
differ in a single record. In the scope of the private syn-
thesizers considered by this paper, datasets X and X ′ are
considered neighboring if the removal of a single element xi

from one yields the other (except in the case of PrivBayes;
we account for this in our budget allocation). Informally,
DP synthesis mechanisms ensure that a synthetic dataset
derived from two neighboring datasets will be similar enough
as to hide the presence or anbsence of the removed element.

Different mechanisms use different formulations of DP:
AIM and GEM both give concentrated differential privacy
(ρ-zCDP) guarantees [6], while MST, PATECTGAN and
PrivMRF give conventional (ϵ, δ)-DP guarantees, and Priv-
Bayes gives an (ϵ, 0)-DP guarantee. As demonstrated by
Bunet al. [6], an established hierarchy of these guarantees

exists: an (ϵ, 0)-DP mechanism gives ϵ2

2
-zCDP, which gives

(ϵ
√︁

2 log(1/δ), δ)-DP for every δ > 0. In our experiments,
all ϵ parameters are translated using these relationships so
as to compare at the same relative privacy settings. As is
typical, we set δ to be “cryptographically small:” at most 1

n
for n records, but typically much smaller [17].

Differentially Private Data Synthesis.
We considered five state-of-the-art private data release

methods: MST, AIM, PrivMRF, PATECTGAN, PrivBayes
and GEM. We acknowledge that many other methods ex-
ist for generating DP data [16, 22, 52, 54]. We chose this
set informed by recent work [51, 38] showing that, over
randomized query workloads on tabular data, MST, AIM
and PrivMRF are the highest-performing marginal-based
methods, that PrivBayes is the highest-performing Bayes-
net-based method, and that PATECTGAN and GEM are

study 
dataset

paper paper-relevant 
data subset

f(d)	>	k

S

findings

f(d)	>	k…

f(d)	>	k…

f(d)	>	k…

…

parity = proportion of 
trials where 
xxxxxxxxxx

privatized dataset 
method m, trial i

(see Figure 3)

Figure 1: Epistemic parity workflow: Each study dataset
supports many papers, each using a subset of the features.

The paper’s findings are implemented as computable
inequalities. We generate many privatized datasets using
different random seeds, then compute the proportion of

these trials for which the findings hold (Figure 2).

the highest-performing deep learning based methods. AIM,
PrivMRF and GEM are more recent than MST; they were
not included in the recent dedicated DP synthesizer bench-
marking survey [51] and are currently considered to be the
state-of-the-art DP synthesizers.

PrivBayes [56] derives a Bayesian model and adds noise to
all k-way correlations to ensure differential privacy, and de-
spite being published in 2017 is still competitive with more
recent methods. MST [36] relies on the Private-PGM graph-
ical model to construct a maximum spanning tree among at-
tributes in the data feature space, where edges are weighted
by mutual information. It can measure 1-, 2- and even 3-way
marginals to create a high-fidelity low-dimensional approxi-
mation of the joint distribution. AIM [38], like MST, relies
on the Private-PGM for parameterizing the underlying dis-
tribution, but utilizes an iterative process to take advantage
of higher values of ϵ. PrivMRF [7] is another marginal-based
algorithm that relies on Private-PGM, and its novelty lies
in a clever criteria for the selection of marginals to measure.
PATECTGAN [55, 45] relies on a conditional generative ad-
versarial network tuned to tabular data, where the discrimi-
nator has privacy constraints. GEM[35] analyzes the“Adap-
tive Measurements” framework for private synthetic data al-
gorithms, inspired by the MWEM architecture [22], to (1)
privately selects a set of queries; (2) obtains noisy measure-
ments of these queries; and (3) updates an approximating
distribution according to some loss function.

3. EPISTEMIC PARITY EVALUATION
Intuitively, epistemic parity holds if all published find-

ings from the original dataset also hold on the synthetic
dataset. Consider a finding to be a Boolean condition over
the dataset, e.g., whether some statistic f exceeds thresh-
old k. We obtain an epistemic parity score by synthesizing
many datasets and reporting the fraction for which the find-
ing holds. Figure 1 illustrates the workflow. The input is
a set of papers, and the output is a set of scores indicating
whether findings are supported under various DP synthesiz-
ers. A study is associated with one dataset and potentially
many papers, each using a subset of the variables in the
study. We assume public access to the data on which the
paper’s results were computed; our focus is on evaluating DP
methods (requiring ground truth) rather than on protecting
the privacy of subjects involved in the study.2

2Indeed, inaccessible ground truth undermined the US Cen-
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Given a paper, we identify natural language claims made
by the authors as candidates for findings. Though these
claims may appear anywhere in the paper, most were found
in the results section. Domain expertise provides an ad-
vantage in this task, but we contend that it should always
be possible for non-expert readers to identify major claims
since the goal of a paper is to communicate findings to a
broader audience. For each claim, we identify the quanti-
tative evidence that supports the claim, recording the vari-
ables involved and methods used. We then re-implement the
analysis to (attempt to) reproduce the salient findings and
conclusions in the paper over the original, public dataset.

While this reproduction step is always possible in princi-
ple, it can be difficult or impossible in practice [3, 39], and
may involve guesswork when the computational details are
incomplete. Moreover, inconsistent reproducibility can in-
troduce bias in our benchmark: we may be more likely to
include findings for which computational details are clear,
which may be those that are simpler to explain or better-
known by the author.

If the reproduction was successful, we generate k×m syn-
thetic datasets representing k trials with different random
seeds and m different DP methods, and then draw an addi-
tional B samples from each seeded DP method. In our initial
benchmark, k = 10 and m = 5, and B = 25. The additional
B draws allow us to bootstrap a confidence interval for each
(trained) synthesizer. That is, there are two sources of ran-
domness: the training procedure used by the mechanism,
and the random sampling of the learned model to actually
generate synthetic data. Although each synthetic dataset
could be scaled to any number of records — recall that we
are sampling a privatized model — we always use the same
number of records as the original data for each bootstrap
sample. Given this set of synthetic datasets, we again at-
tempt to reproduce the findings using each one. Finally,
we contrast the findings based on original and DP data by
measuring the proportion of trials, for each method, where
a given finding holds. Our methodology is implemented in
an open-source framework.

Reproducing Experimental Studies.
We adapt three concepts of reproducibility—values, find-

ings, and conclusions—from Cohen et al. [9] into a practical
taxonomy for reproducing a statistical analysis in a peer-
reviewed publication, and implement a software framework
that allows us to conduct concrete experiments around this
taxonomy. The atomic element in reproducibility is a find-
ing, defined by Cohen et al. [9] as “a relationship between
the values for some reported figure of merit with respect
to two or more dependent variables.” For the purposes of
our study, a finding consists of a natural language state-
ment (i.e., a claim) reported in a publication, along with
evidence provided by one or more quantitative or qualita-
tive sub-statements about the analysis.

Evidence for a finding consists of a comparison between
two or more values that can be evaluated as a Boolean condi-
tion. A value may be a scalar (i.e., 34.1%), an aggregated or
computed result (i.e., a regression coefficient of 1.2), or even
an implicit threshold expressed in natural language (e.g., “a
low rate” or “a strong correlation”). In these cases, we in-
stantiate the language as a quantitative threshold, applying

sus Bureau’s efforts to build trust in DP [5].

conventions from the literature when they exist. For exam-
ple, a common convention is that Pearson’s correlation is
considered “strong” when r is larger than 0.7.

A special case of a finding is a qualitative visual finding
that often appears in the form of a figure, table or diagram.
A figure encodes many potential findings; we do not (nec-
essarily) consider each of these sub-findings on their own in
our analysis, but rather treat them as a single visual finding :
we attempt to reproduce the figure itself, and subjectively
evaluate its similarity to the original.

Finally, following Cohen et al. [9], a conclusion is defined
as“a broad induction that is made based on the results of the
reported research.” A conclusion must be explicitly stated
in a paper, and comprises one or several findings.

Generating DP Synthetic Data.
Each of the papers that we reproduced using DP synthetic

data derived findings from a subset of the full study’s data.
For example, HSLS:09 consists of over 7000 columns, but
Jeong et al. [30] used only a subset of 57. We synthesize
the subset of data relevant for the reproduced findings and
conclusions, as discussed in Section ??. In the case where a
paper relies on longitudinal data from a study, we collapse
the data such that it is “one row to one person.”

The DP methods for private data release are executed for
the range of ϵ values ϵ ∈ {e−3, e−2, e−1, e0, e1, e2}, which
represents a small to medium privacy regime [4]. Each DP
mechanism is run 10 times to produce, at each ϵ value, 10×B
sampled datasets using the same sample size but different
random seeds (where B is the bootstrap parameter). Each
DP method involves different hyperparameters and varying
levels of tunability, but we use author-recommended settings
to avoid biasing results towards our own expertise. We then
re-compute the findings for each sample.

If all findings are reproduced regardless of epsilon or ran-
dom seed, we say that the DP mechanism achieves complete
epistemic parity. But we measure parity as the proportion
of iterations for which the finding holds. The goal is to over-
look small variations in the exact value in favor of maintain-
ing the relative relationships of the computed statistics for
interpretability and practical utility.

4. BENCHMARK CONSTRUCTION
In constructing our benchmark, we selected study datasets

that have been used in at least 100 papers, focusing on
peer-reviewed, publicly available studies from the past 5
years that utilize publicly accessible data and are under 30
pages. We selected: (1) The High School Longitudinal Study
(HSLS:09) [10], a longitudinal study of U.S. 9th graders
(three of four paper reproduction attempts successful), (2)
the National Longitudinal Study of Adolescent and Adult
Health (AddHealth) [23] that follows U.S. adolescents from
grades 7 through 12 during the 1994-1995 school year (two
of four paper reproduction attempts successful), (3) The Na-
tional Survey on Drug Use and Health (NSDUH) [53] that
measures U.S. drug use prevalence and correlates (one of
four paper reproduction attempts successful, at least par-
tially due to study variations without clear version records),
and (4) the Americans’ Changing Lives Survey (ACL) [26],
which tracks U.S. adults over time to understand the effects
of social connections and work on health (two of two repro-
duction attempts partially successful), see [44] for details.
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Selected Studies.
A study dataset was selected only if it was used in at

least 100 papers. For each selected study, we selected peer-
reviewed papers published during the past 5 years that are
no more than 30 pages long.

HSLS:09: High School Longitudinal Study [10], is a na-
tionally representative, longitudinal study of U.S. 9th graders
who were followed through their secondary and postsec-
ondary years.

AddHealth, National Longitudinal Study of Adolescent
and Adult Health [23], consists of a nationally representative
sample of U.S. adolescents in grades 7 through 12 during the
1994-1995 school year.

NSDUH, National Survey on Drug Use and Health 2004-
2014 [53], measures the prevalence and correlates of drug
use in the U.S.

ACL, The Americans’ Changing Lives Survey [26], is an
ongoing longitudinal study of the lives of U.S. adults. The
study has several waves, the first of which was conducted in
1986, and each wave continues with the same respondents to
determine how social connections, work, and other factors
affect health throughout their lifetimes.

Selected Papers.
We will briefly outline each paper from our benchmark.

Saw et al. [48] utilized HSLS:09 for examining disparities
in STEM career aspirations among high school students.
Lee et al. [34] evaluated the impact of teacher support and
self-perceptions on math performance using HSLS:09. Jeong
et al. [30] investigated racial bias in the performance of ma-
chine learning classification tasks with HSLS:09. Fruiht and
Chan [20] explored the impact of mentors on first-generation
college students using AddHealth. Iverson and Terry [27]
analyzed the effects of high school football on later-life de-
pressive and suicidal tendencies using AddHealth. Fair-
man et al. [19] investigated early marijuana use and its con-
sequences using NSDUH. Assari and Bazargan [1] studied
the impact of obesity on mortality risk due to cerebrovascu-
lar disease using ACL. Pierce and Quiroz [40] examined the
effects of social support on emotional states using ACL.

Note on study/dataset dimensionality. We did not ex-
plicitly filter papers based on the size of the dataset they
used. The studies we considered were very high dimensional
(many thousands of variables), but the corresponding pa-
pers in our benchmark each follow a standard subsetting
procedure, where they select a small collection of variables
of interest for analysis. Thus, our benchmark datasets are
not as high-dimensional as other benchmarks [38].

Comparison to Other DP Benchmarks.
Selected papers represent 8 new datasets. In this sec-

tion, we adopt a meta-learning perspective [41, 42] to discuss
characteristics that differentiate these datasets from typical
ML benchmarks [33, 49] used in prior DP studies [24, 45].

In Table 1, we show several properties and meta-features
for eight datasets from our benchmark, as well as for two
popular datasets from the UCI Machine Learning reposi-
tory [14], Adult [33] and Mushroom [49].

Number of outliers is calculated as the number of values
that fall outside of the second and third quartiles, summed
across all numerical variables. Outliers present a challenge
for privatization, as they are easily identifiable.

Mutual information (mean, standard deviation) is calcu-

lated for each pair of features. DP synthetic data algo-
rithms like PrivMRF, MST, PrivBayes and AIM are, at their
core, interested in preserving mutual information between
features, but this preservation is challenging given the con-
strained nature of model fitting (often relying on a small set
of 2- or 3-way marginal queries) and the addition of noise
for privatization.

Skewness (mean, standard deviation) of a sample is calcu-
lated according to the formula for adjusted Fisher-Pearson
standardized moment coefficient, which is an unbiased es-
timate that gives similar results to other popular skewness
measures for large samples, but can vary for smaller and
moderate-sized samples [31]. The regularity of variables in
a dataset (the level of assymmetry in the underlying distri-
butions) affects their ease of replication.

Sparsity (mean, standard deviation) is defined as a nor-
malized ratio of the number of samples over the number
of unique values. Sparser data may be harder to capture
through noisy marginal measurements.

Table 1 illustrates the benchmark covers a wide range of
values of these metrics. Interestingly, one of our most chal-
lenging datasets to reproduce, Iverson and Terry [27], had
the lowest average mutual information score and one of the
highest sparsity scores. Many of the synthesizers we test de-
pend on mutual information to select the marginal measure-
ments for distribution learning. Selecting the most relevant
2-way marginals when mutual information is uniformly low
and there are many features is clearly a challenge. Moreover,
Adult, a common challenge dataset, has uniquely skewed
distributions, which aligns with prior work suggesting that
this dataset is idiosyncratic therefore less appropriate for
evaluation and benchmarking [11].

5. RESULTS
Our benchmark consists of eight papers, each evaluated

on six synthetic data algorithms for six values of ϵ, for a
total of 36 mechanisms for each paper, each repeated with
10 random seeds. We draw 25 samples of size n, where n
is the real data sample size, and bootstrap over this set of
samples when calculating average parity over our finding set.
Benchmarking extensively with DP synthesizers is compu-
tationally expensive [38, 45, 51]. Fitting many synthesizers
took 100s of compute hours. Training PrivMRF and PATE-
CTGAN was done using NYU’s Greene High Performance
Computing cluster using A100 and RTX8000 NVIDIA GPUs
with 80GB and 48GB of RAM respectively. CPUs from that
same cluster were used to train AIM, MST, PrivBayes, and
GEM. The benchmark itself (assessing parity per paper) was
also run on the cluster.

Epistemic parity: overall performance.
Figure 2 shows parity for all findings across all papers, for

each of the five synthesizers, with ϵ regimens of e−3, e−2,
e−1, e0, e1, and e2. Darker color indicates lower average
parity, while lighter indicates higher average parity. Each
paper is a block of rectangles, where the x-axis represents
findings and the y-axis shows the five synthesizers. The
crosshatched cells indicate that a synthesizer was unable to
fit to a dataset in under 6 hours.

The final row, labeled “real, bootstrap,” in Figure 2 shows
the results of our Bayesian bootstrapping control procedure
(see full version of the paper for details [44]). We note that
over 97% of our findings are reproduced in 100% of our
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Table 1: Properties and meta-features of the datasets in our benchmark, and of two datasets that are commonly used for DP
benchmarking, Adult and Mushroom. Mutual Information, Skewness and Sparsity are the average for each of these metrics

across all variables in the dataset. Our results reinforce that synthesizers may struggle with large sample sizes
(Fairman et al.), large domain sizes (Jeong et al.), and low mutual information (Iverson and Terry).

Paper Sample Size Variables Domain Size Outliers Mutual Info. Skewness Sparsity

Assari and Bazargan [1] 3361 16 9.03e+09 9 0.051 ± 0.153 0.563 ± 1.557 0.253 ± 0.231
Fairman et al. [19] 293581 6 2.03e+05 0 0.255 ± 0.432 0.185 ± 0.462 0.174 ± 0.165
Fruiht and Chan [20] 4173 11 2.20e+05 6 0.104 ± 0.256 0.607 ± 1.694 0.394 ± 0.183
Iverson and Terry [27] 1762 27 5.71e+15 5 0.004 ± 0.010 NaN 0.307 ± 0.180
Jeong et al. [30] 15054 57 7.04e+42 32 0.020 ± 0.026 0.338 ± 2.850 0.261 ± 0.166
Lee et al. [34] 14575 9 5.11e+17 5 2.862 ± 1.242 0.080 ± 0.440 0.111 ± 0.156
Pierce and Quiroz [40] 1585 17 7.19e+11 11 0.030 ± 0.050 0.001 ± 1.050 0.146 ± 0.158
Saw et al. [48] 20242 9 4.30e+04 3 0.143 ± 0.145 1.291 ± 1.218 0.354 ± 0.171

Adult [33] 32561 15 9.06e+14 96 0.066 ± 0.053 17.455 ± 22.992 0.125 ± 0.164
Mushroom [49] 8124 23 2.44e+14 74 0.199 ± 0.209 6.211 ± 8.955 0.297 ± 0.219

Bayesian bootstrap iterations. For the remaining inconsis-
tent three findings over the bootstrap, it is unfair to expect
the private synthesizers to have higher epistemic parity than
the bootstrap control.

The overall performance of the synthesizers was impres-
sive. All synthesizers achieved 100% parity for Lee et al. [34],
and Fruiht and Chan [20]. Besides PrivMRF (which was
computationally infeasible to fit to the data), AIM, MST,
PrivBayes, PATECTGAN, and GEM achieved 100% parity
for Pierce and Quiroz [40] as well. Both Saw et al. [48], and
Assari and Bazargan [1] also had very high levels of parity
between findings on real and on synthetic data, although
each of these papers had at least one finding that was diffi-
cult to reproduce.

Two of the papers provided the greatest challenge, and the
most interesting results, across privacy regiments and syn-
thesizer types: Fairman et al. [19], and Iverson and Terry [27].
These papers were challenging for very different reasons.
Fairman et al. [19] had the second-smallest domain size, and
the fewest variables. However, it had by far the largest sam-
ple, consisting of nearly 300K records. This combination
made it very sensitive to noise in marginal measurements
(as they are essentially counts), in turn making the findings
difficult to replicate in low-privacy settings. Still, PrivBayes
and MST exhibited impressive performance in comparison
to AIM, PATECTGAN and GEM. On the other hand, Iver-
son and Terry [27] had both one of the largest domains and
the most variables of the papers in our benchmark, as well
as a low mutual information between variables. No synthe-
sizer with the exception of GEM exhibited convincing parity
performance on this paper.

GEM was the strongest performing synthesizer on one
paper (Iverson and Terry [27]). For the other papers in
our benchmark, neither PATECTGAN nor GEM were the
strongest performing. However, these methods were the
most computationally tractable on high-dimensional large-
domain data, and were the only methods that were feasible
to run on Jeong et al. [30], where they both achieved 100%
parity. Interestingly, PrivBayes often outperformed MST on
our benchmark. We believe that this can be explained by
two factors: (1) MST is tailored to work on high-dimensional
datasets such as NIST, where explicitly parameterizing a
conditional structure (like PrivBayes does) is costly and un-
stable, while the datasets in our benchmark are relatively
low-dimensional; and (2) the findings that comprise the epis-
temic parity metric are based on conclusions that often rely

on conditional relationships, which PrivBayes represents ex-
plicitly, while MST does not.

PrivMRF was the slowest synthesizer to run, and required
a GPU. This requirement limited our ability to fully assess
the capabilities of PrivMRF, although we observe that it
performed well on the datasets on which it was able to run
successfully. PrivBayes was the second-slowest method to
run, due to a known limitation in handling high-dimensional
data, but performed competitively on datasets on which it
was able to run successfully. Notably, no synthesizer suc-
ceeded across all papers, and, remarkably, some findings
were never reproduced by any of the synthesizers.

Epistemic parity across ϵ values.
Figure 3 compares synthesizer performance across reason-

able ϵ values, shown on the x-axis in both sub-figures. The
left side of the figure shows aggregated epistemic parity as
the percentage of reproduced findings on the y-axis, over all
iterations of each synthesizer, averaged over all publications
in our benchmark. We observe that synthesizer performance
(average parity) improves — although not substantially —
for higher ϵ values for marginals-based methods PrivMRF,
MST, and AIM. At the smallest values (ϵ = e−3, e−2), the
performance of PrivBayes, AIM, and MST all begin to no-
ticeably (and understandably!) degrade, especially on cer-
tain findings (e.g., 16-21). Interestingly, PrivBayes achieves
best performance at ϵ = e, and PATECTGAN and GEM
appear insensitive to the value of ϵ. These trends are con-
sistent with the observations in Figure 2, and support the
choice of ϵ = e as a reasonable privacy budget. Overall,
we observe that restricting the privacy budget to ϵ = e−3)
does not significantly affect the ability of the synthesizers to
reproduce the “easy” findings, while increasing it to ϵ = e2

does not help with reproducing the “difficult” findings. We
conjecture that the modeling structure employed by the syn-
thesizer is more important than the scale of private noise.

The right side of Figure 3 shows average variance of epis-
temic parity. We observe that variance is lowest for PrivMRF,
followed by PrivBayes. Further, we observe that the value
of ϵ has little impact on parity variance; AIM is the only
synthesizer that benefits from a higher value of ϵ in terms of
reduced average parity variance.

The observation that epistemic parity is insensitive to ϵ is
significant. It suggests that our metric is substantially dif-
ferent compared to other metrics that were previously used
for assessment of DP synthesizers. Parity may provide in-
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Figure 2: Epistemic parity for six competitive mechanisms for synthesizing data across four ϵ values (e−3,e−2,e−1, e0, e1,
e2). All mechanisms achieve perfect parity on Fruiht and Chan and Lee et al., and all but one achieve perfect parity on

Pierce and Quiroz. Only PATECTGAN can scale to support Jeong et al.. All methods struggled with the high
dimensionality of Iverson and Terry. PrivMRF was too slow to be viable; we report results only for ϵ = e0. Only PrivBayes
and MST achieved reasonable parity for Fairman et al.. For datasets associated with Assari and Bazargan and Saw et al.,
only one finding was difficult to reproduce, and all methods struggled. Surprisingly, parity is relatively insensitive to ϵ.

sight into a more fundamental question about whether a DP
synthesizer’s methodology — the types of measurements it
takes to constitute a synthetic distribution — is appropriate
to preserve the statistical properties of the dataset that are
necessary to reproduce findings.

Epistemic parity across finding types.
Table 2 summarizes the methods used in the publications

in our benchmark, each corresponding to a type of finding.
We observe Mean Difference (both Between-class and Tem-
poral) is by far the most common finding type, followed by
Coefficient Difference. Whether a finding can be reproduced
over DP synthetic data depends on several factors, including
dataset size (as in Fairman et al. [19]) and dimensionality
(as in Iverson and Terry [27]). However, finding type likely
also plays a role: The majority (19 out of 26) of Mean Dif-
ference / Temporal findings are in these two papers that
were difficult to reproduce. However, we must be cautious
to interpret this as a trend: the remaining 7 findings of type
Mean Difference / Temporal (FC) were in Saw et al. [48],

and they were reproduced successfully by all synthesizers. In
what follows, we qualitatively evaluate the impact of finding
type (and, possibly, of other properties of the finding) on its
reproducibility over DP synthetic data.

That some findings are easier to reproduce than others is
unsurprising. Though each synthesizer relies on a fundamen-
tally different approach to replicating the joint distribution
across all of the data, they each struggle with high dimen-
sional data. Further, for general-purpose synthetic data,
PrivMRF, AIM, MST and PrivBayes prioritize lower dimen-
sional 2- or 3-way relationships among variables, and thus
it is unsurprising that simple mean comparison findings are
easily preserved by these methods.

We were surprised by the high number of findings across
all papers (even those that we were unable to replicate) re-
lying only on 1- or 2-dimensional comparisons: The low di-
mensionality suggests that earlier empirical studies (includ-
ing Tao et al. [51] and Hay et al. [24]) may be suitable as
proxy tasks. Targeted improvements to the synthesizers may
allow us to simultaneously support high utility for individual
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Figure 3: Average epistemic parity across papers achieved
by AIM, PrivMRF, MST, PrivBayes, PATECTGAN, and

GEM as a function of the privacy parameter
ϵ ∈ {e−3, e−2, e−1, e0, e1, e2}. Parity, on the y-axis, is on

[0,1] and represents the fraction of reproduced findings over
all experiments at each ϵ.

Table 2: Methods used in benchmark papers, each
corresponding to a type of finding in our framework.

Descriptive Statistics 8

Regression
Between-Coefficients 4
Fixed Coefficient (Sign) 2

Causal Paths
Variability 1
Interaction 1
Coefficient Difference 19

Logistic Regression

PBR, FNR, FPR 2 (each)
Accuracy 2

Mean Difference
Between-Class 24
Temporal (FC) 26

Correlation
Pearson 12
Spearman 1

findings and their composition into broad conclusions.
Next, we consider 3 findings that were difficult regardless

of synthesizer or privacy regimen: #4 (Assari and Bazargan [1]),
#39 (Iverson and Terry [27]), and #96 (Saw et al. [48]), see
Figure 2. Finding #4 is of type Descriptive Statistics. It is
based on the text statement “Similarly, overall, people had
12.53 years of schooling at baseline (95%CI = 12.34-2.73).”
Finding #39 is also of type Descriptive Statistics, and is
based on a somewhat longer text statement that refers to
specific percentages of individuals being diagnosed with spe-
cific disorders (5 such pairs of statistics in total). Finding
#94 is of type Mean Difference / Between-class. It’s based
on the text statement “From a longitudinal perspective, stu-
dents from the two lower SES groups—low-middle and low
SES groups—had significantly fewer persisters (31.9% and
29.9%) and emergers (6.1% and 5.4%) than their high SES
peers (45.1% and 9.0%, respectively).”

These findings were difficult to reproduce because they
give specific measurements for variables with large domains.
Larger domains require proportionally more DP noise, and
so the learned distribution over these variables was too noisy
to reproduce the findings within the specified tolerance.

Summary of experimental results.
Overall, we were encouraged by the performance of state-

of-the-art synthesizers on our benchmark. DP synthetic
data has become more widely used in the social sciences

(for Census Data, etc.) and these findings suggest that, in
certain contexts, scientists can use DP synthetic data to con-
duct their scientific inquiry. We caveat this point: Certain
contexts means relatively low-dimensional tabular data. Our
benchmark can be used to assess if those data characteristics
hold for a particular dataset, and researchers can proceed
with their private analysis with increased confidence.

However, large domain and high-dimensional settings are
still a challenge for DP synthesizers: as the domain/number
of variables grows, the ease of fingerprinting individuals in a
dataset increases dramatically. Our findings suggest that ex-
isting synthesizers struggle to scale (PrivMRF, MST, AIM,
PrivBayes), or are far from achieving reasonable utility (PA-
TECTGAN, GEM). We suggest incorporating more princi-
pled methods of data preprocessing, like DP-binning, DP
variable pruning, or other domain/variable count reduction
techniques into synthesizers, so that successful marginals-
based methods can be utilized for more complex data.

6. CONCLUSIONS AND FUTUREWORK
Summary of contributions. We proposed epistemic par-

ity as a methodology for measuring the utility of DP syn-
thetic data in support of scientific research. We assembled a
benchmark of peer-reviewed papers that analyze one of four
studies in the ICPSR social science repository. We then ex-
perimentally evaluated epistemic parity achieved by state-
of-the-art DP synthesizers over the papers in our bench-
mark. Overall, we found epistemic parity to be a compelling
method for evaluating DP synthesizers. Further, we found
that, of the six DP synthesizers we evaluated, no single syn-
thesizer outperformed all others on all papers. Finally, some
findings were never reproduced by any of the synthesizers.

Future work: Characterizing false discoveries. Replicat-
ing published findings using synthetic versions of the orig-
inal data can reveal some implications of DP for scientific
research. However, this methodology does not assess the
possibility of findings that would have occurred if the origi-
nal research had been done on synthetic data, which is re-
lated to publication bias [46, 28]. In future work, epistemic
parity could be extended to quantify the effect of DP noise
in producing these false discoveries by simulating data with
both “real” and spurious relationships.

Future work: Rebalancing utility and privacy. Though DP
was developed to provide formal guarantees of privacy with
best-effort utility, many practitioners and data providers
may want the inverse: strong guarantees of utility with
quantifiable, flexible risk of privacy violations that can be
managed with policy rather than mathematical guarantees.
Our benchmark promotes a more holistic discussion of socio-
technical-legal systems. Additionally, DP synthesizers can
generate arbitrarily large samples at low cost, which makes
the power of statistical hypothesis tests another concern for
scientific research on private data. Epistemic parity could
be extended to estimate the sample size required to achieve
a desired power for a particular finding.
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