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It remains an open question how to determine the winner of an election when voter preferences are incomplete
or uncertain. One option is to assume some probability space over the voting profile and select the Most
Probable Winner (MPW) — the candidate or candidates with the best chance of winning. In this paper, we
propose an alternative winner interpretation, selecting the Most Expected Winner (MEW) according to the
expected performance of the candidates.

We separate the uncertainty in voter preferences into the generation step and the observation step, which
gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles. We use
this framework to establish the theoretical hardness of MEW over incomplete voter preferences, and then
identify a collection of tractable cases for a variety of voting profiles, including those based on the popular
Repeated Insertion Model (RIM) and its special case, the Mallows model. We develop solvers customized for
various voter preference types to quantify the candidate performance for the individual voters, and propose a
pruning strategy that optimizes computation. The performance of the proposed solvers and pruning strategy
is evaluated extensively on real and synthetic benchmarks, showing that our methods are practical.
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1 INTRODUCTION

Voting is a mechanism to determine winners among the candidates in an election by aggregating
voter preferences. In classical voting theory, each voter gives a complete preference (most frequently,
a ranking) of all candidates. How voter preferences are aggregated is determined by a voting
rule 7, 27, 29]. A prominent class of voting rules, which assign scores to candidates based on their
positions in the rankings and then sum up the scores for each candidate, are positional scoring
rules, on which we focus in this paper.

In practice, voter preferences may well be incomplete and represented by partial orders. Since
voting rules are defined over (complete) rankings, the solution is to replace each partial order with
all of its linear extensions, each of which is a completion or a possible world" of the partial order. The
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Voter‘rlz(a,b,c) ©p=(b,a,c) 1w3=(b,c,a) T4={c,b,a)

x 0.7 03 0 0
y 0 0 0.5 0.5

(a) A probabilistic voting profile of voters x and y.

Possible world ‘ (Co-)winners by Plurality ‘ Pr(zy, 7y)

x casts 71, y casts 73 {a, b} 0.7 X 0.5 =0.35
x casts 71, y casts 74 {a,c} 0.7 X 0.5=0.35
x casts 72, y casts 73 {b} 0.3%0.5=0.15
X casts Ty, y casts 74 {b,c} 0.3%0.5=0.15

(b) Each voter casts her vote independently of the other, leading to 4
possible worlds and 4 possible outcomes for (co-)winners under the
plurality rule. The probability of a possible world is Pr(zy, 7). Under
the plurality rule, candidate a is the MPW with a winning probabil-
ity of Pr(z1, 73)+ Pr(71, 74)=0.7, while candidate b is the MEW with
expected score Pr(zz | x)+Pr(zs | y)=0.3+0.5=0.8.

Fig. 1. A probabilistic voting profile of 2 voters.

preferences of all voters in an election are referred to as a voting profile. A voting profile of complete
rankings is a complete voting profile, while that of incomplete preferences is an incomplete voting
profile. Voters are assumed to cast their preferences independently. A completion of an incomplete
voting profile is a complete voting profile obtained by replacing each voter’s partial order with one
of its completions.

There have been various interpretations of winners proposed for this setting. For example,
Konczak et al. [15] proposed the necessary winners (NWs) and possible winners (PWs): the NWs
are the candidates winning in all possible worlds, while the PWs are the ones winning in at least
one possible world. Bachrach et al. [1] assumed that the partial orders correspond to the uniform
distribution over their completions, and evaluated the candidates by the number of possible worlds
in which they win. We refer to this winner semantics as the Most Probable Winner (MPW).

In this paper, we propose the Most Expected Winner (MEW) as an alternative winner interpretation
for incomplete voter preferences under positional scoring rules. Like MPW, it adopts the possible
world semantics of incomplete voting profiles. However, in contrast to MPW that determines a
winner by a (weighted) count of the possible worlds in which she wins, MEW follows the principle
of score-based rules that high-scoring candidates should be favored. Specifically, an MEW is the
candidate who has the highest expected score in a random possible world.

MEW and MPW are similar in that they both aggregate election results over all possible worlds
and give a balanced evaluation of the candidates. Their difference lies in the aggregation methods,
which will be discussed in detail in Section 10. In practice, MEW and MPW may yield the same
result, but this is not always the case.

ExaMPpLE 1. Figure 1 gives an example where MEW and MPW select different winners in an election
with two voters and three candidates, under the plurality rule. In this election, each voter produces
a full ranking drawn from a probability distribution over T, = {(a,b,c), T, = (b,a,c), 13 = (b, ¢, a),
74 = {c, b, a), with probabilities of each ranking for each voter given in Figure 1a. Since voter preferences
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are probability distributions over rankings, the corresponding voting profile is named a probabilistic
voting profile.

Let Pr(zy, 7,) denote the probability that voters x and y cast rankings T, and t, respectively. If
we assume that x and y cast their votes independently, then Pr(zy, t,) = Pr(zy | x) - Pr(zy | y). For
example, Pr(ty, 73) = 0.7 - 0.5 = 0.35. The voting profile in Figure 1a generates 4 possible worlds in
Figure 1b. The plurality rule rewards a candidate with 1 point every time she is ranked at the top of
a ranking in the profile. So, in the possible world of Pr(z1, 73), candidate a obtains 1 point from ty,
candidate b obtains 1 point from s, and both of them become (co-)winners in this possible world. After
enumerating all 4 possible worlds, we find that candidate a is the MPW with probability 0.7 to be a
(co-)winner, while candidate b is the MEW with an expected score of 0.8 points.

If the Borda rule, which rewards a candidate with the number of candidates ranked below her, is used,
then, in the possible world of Pr(ty, 13), candidate a would obtain 2 points from ;, while candidate b
would obtain 1 point from 7y and 2 points from ;. Candidate b would then be the only NW of this
profile, and she would also be the MEW with an expected score of 2.8 points.

Contributions and Roadmap. We present related work in Section 2, and provide the necessary
background on preferences and voting in Section 3.

Then, in Section 4, we present our first contribution: a unified framework for representing uncer-
tainty in voter preferences, where we distinguish between the uncertainty from voters themselves
(e.g., their preferences are actually probability distributions [21]) and that due to the voting mecha-
nism (e.g., approval ballots do not allow the voters to fully reveal their preferences). We classify
voting profiles into probabilistic profiles, where uncertainty is due to the voters themselves, incom-
plete profiles, where uncertainty is due to the voting mechanism, and combined profiles, with both
kinds of uncertainty. This classification gives us a framework within which to study the complexity
of identifying MEW, by computing expected scores of the candidates.

In Section 5, we discuss several alternative interpretations of MEW and formally state the MEW
problem. Then, we present our second contribution: an investigation of the computational complexity
of MEW, and its related Expected Score Computation (ESC) problem, in Section 6. The MEW problem
turns out to be FP*"-complete under plurality, veto, and k-approval rules for the general case of
uncertain profiles.?

In Sections 7 and 8, we present our third contribution: exact solvers for MEW computation over
different voting profiles. We first give a solver with exponential complexity for the partial voting
profiles studied in Section 6. We then identify many interesting cases, such as the RIM [6] voting
profiles and the combined profiles of Mallows [20] and partitioned preferences, where it is tractable
to compute the expected scores and determine the MEW (Section 7). In Section 8, we present
performance optimizations to speed up the computation of MEW for large voting profiles.

In Section 9 we present our fourth contribution: an extensive experimental evaluation of the
proposed solvers, demonstrating that our proposed methods are practical.

In Section 10 we present a thorough comparison between MEW and MPW, describing cases where
MEW treats candidates differently from MPW, and highlighting the computational advantages of
MEW that can lead to more efficient computation in practice.

We conclude and propose future directions in Section 11.

2 RELATED WORK

Winner semantics under incompleteness. Among the winner interpretations for incomplete prefer-
ences, the most thoroughly studied are the necessary and possible winners [15]. A candidate is a

2Recall that FP*P is a class of functions efficiently solvable with an oracle to some #P problem. A function f is FP*-hard if
there is a polynomial-time Turing reduction from any FP* function to f.
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necessary winner (NW) if she wins in every possible world; she is a possible winner (PW) if she
wins in at least one possible world. Chakraborty et al. [4] recently developed practical techniques
for NW and PW computation. NW and PW have substantial shortcomings: The requirement for
NW is so strict that there are often no winners available in a voting profile under this interpretation,
while the requirement for PW does not differentiate between a candidate who only wins in one
possible world and another candidate who only loses in one possible world. To address these
limitations, alternative winner semantics for uncertain preferences have been proposed in the
literature, discussed next.

Bachrach et al. [1] assume that an incomplete voting profile of partial orders represents a uniform
distribution over its completions, and prefer the candidates who enjoy victory in more possible
worlds. This winner semantics is named the Most Probable Winner (MPW). While this semantics
is well defined under any voting rule, and while it can be extended in a straight-forward way
to incorporate the probability of a completion of a voting profile, computing a winner under
MPW is known to be intractable already under plurality [1]. Kenig and Kimelfeld [13] study the
probability of the complement event, namely, losing an election, and devise an approach based on
the Karp-Luby-Madras algorithm [11] for multiplicative polynomial-time approximations.

Hazon et al. [8] also investigate MPW but in a different setting, where voter preferences are
specified explicitly by rankings and their associated probabilities. They prove that it is #P-hard to
compute the winning probabilities under plurality, k-approval, Borda, Copeland, and Bucklin, and
provide an approximation algorithm.

Imber and Kimelfeld [9] investigate the minimal and maximal possible ranks of candidates after
rank aggregation of partial voting profiles, and prove intractability for every positional scoring
rule.

Preference models. In this paper we model the uncertainty in voter preferences using a distance-
based model known as the Mallows [20], and its generalizations, the Repeated Insertion Model [6]
and the Repeated Selection Model [4]. Others have considered uncertainty in voter preferences
under the Random Utility Models (RUMs) such as the Thurstone-Mosteller (TM) [22, 31] and the
Plackett-Luce (PL) [19, 26]. RUMs quantify the preferences over each item with a modal utility
randomized with noise (e.g., Gaussian noise for TM and Gumbel distributions for PL), and the
modal utilities are regarded as the ground truth.

Two recent papers proposed preference aggregation semantics for PL and TM models that are
similar to MEW, in that they evaluate the candidates in an election based on their expected utility.
Noothigattu et al. [23] first aggregate preferences over the TM or PL models that correspond to
each voter into a summary model to represent the entire voter base (without explicit use of a
scoring rule at this step), and then select the highest modal utility candidate. The authors show that
their aggregation method is equivalent to Borda and Copeland. Zhao et al. [32] apply randomized
voting rules that sample a winner from the candidates with a probability proportional to their
expected scores. They demonstrate that the expected utilities of the candidates can be determined
efficiently under plurality and Borda, for PL models. These papers share motivation with our work,
but they do not consider distance-based preference models such as the Mallows, or their popular
generalization like RIM, and do not study the complexity of winner determination for specific kinds
of uncertain voting profiles. Understanding the complexity of evaluation of MEW for TM and PL
models for different kinds of incomplete voting profiles and voting rules is an interesting direction
for future work.

Querying probabilistic preferences. Voter preferences are a special case of preference data that
has been studied in the database community [10]. Kenig et al. [14] propose RIMPPD, a database
framework to incorporate probabilistic preferences represented by RIM models, and identify a class
of tractable queries. Then Kenig et al. [12] further optimize the query engine with lifted inference.
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Table 1. Examples of positional scoring rules.

Voting rule ry,

plurality (1,0,...,0,0)

veto (1,1,...,1,0)
2-approval  (1,1,0,...,0,0)
Borda (m-1,m-2,...,1,0)

For a more general class of queries that are intractable in RIMPPD, Ping et al. [25] develop a number
of exact solvers, as well as approximate techniques based on Multiple Importance Sampling. In this
work, we build on some of the technical insights of these papers, and develop solvers for MEW.

3 PRELIMINARIES
3.1 Preferences

We denote by C = {cy, ..., ¢} a set of items or candidates (used interchangeably.) For any a, b, ¢ € C,
preference is a binary relation > that is transitive (a > b and b > ¢ imply a > c), irreflexive (a * a),
and asymmetric (a > b implies b # a). A preference pair is an instance of this relation.

A (strict) partial order or poset is a set of preference pairs that corresponds to a directed acyclic
graph with edges being the preference pairs. For example, vy = {¢1 > cz2,¢1 > c3} states that
candidate c; is preferred to both ¢, and cs.

A ranking or permutation is alist T = (ry,..., ;) such that Vi < j, 7; > 7;. It defines a bijection
between the candidates and the ranks: 7(i) = r; and 77(;) = i.

The linear extensions of a partial order v, denoted by Q(v), is a set of rankings consistent with v.
For example, Cy = {cy1, c2,c3} and vy = {c1 > ¢a,¢1 > ¢3}, then Q(vy) = {{cy, 2, ¢3), (€1, 3, €2) }-

3.2 Voting and Winners

We denote by V = {vy,...,0,} a set of voters and by P = (73,...,7,) a (complete) voting profile
where 7; is a ranking over C by voter v;.

Among various voting rules, the positional scoring rules are arguably the most thoroughly studied.
Let rpy = (rm(1), ..., rm(m)) denote a positional scoring rule where V1 < i < j < m,rp (i) = rm())
and rp,(1) > ry,(m). It assigns a score r,, (i) to the candidate at rank i. The performance of a
candidate ¢ is the sum of her scores across the voting profile P: s(c, P) = >, cps(c, 7) where
s(¢,7) = rm(t71(c)). Candidate w is a (co-)winner if her score is not less than that of any other
candidate. We use W (r,,, P) to denote the set of co-winners.

ExAMPLE 2. Given the voting profile in Table 2, under the Borda rule, Biden obtains 3 points from
Ann and Dave, and 0 point from Bob, which makes him the winner with a total score of 6.

Table 2. A voting profile of 3 voters over 4 candidates.

voter ranking

Ann (Biden, Sanders, Weld, Trump)
Bob  (Trump, Weld, Sanders, Biden)
Dave (Biden, Sanders, Weld, Trump)
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Table 3. A partial voting profile of 3 voters over 4 candidates. Ann gives a partial order, while Bob and Dave
give rankings.

voter partial order

Ann {Biden > Weld, Sanders > Weld,Weld > Trump}
Bob (Trump, Weld, Sanders, Biden)
Dave (Biden, Sanders, Weld, Trump)

Table 4. The two completions of the voting profile in Table 3.

completion voter ranking

Ann (Biden, Sanders, Weld, Trump)
No. 1 Bob  (Trump, Weld, Sanders, Biden)
Dave (Biden, Sanders, Weld, Trump)

Ann (Sanders, Biden, Weld, Trump)
No. 2 Bob (Trump, Weld, Sanders, Biden)
Dave (Biden, Sanders, Weld, Trump)

Most Probable Winner. Voters may only partially express their preferences. Let PY° = (vy,..., v;)
denote a partial voting profile of n partial orders. Recall that Q(v) is the set of linear extensions
of v, which are also called the completions of v. A complete voting profile P = (zy,...,7,) is a
completion or a possible world of a partial voting profile P*© = (vy,...,v,) if Vr; € P,7; € Q(v;).
Let Q(P?°) = {Py,..., P,} denote the set of completions of P’0. Assume that P'© represents a
uniform distribution of its possible worlds. The Most Probable Winner (MPW) [1, 8] is defined as
follows.

DEFINITION 1 (MPW). Given a partial voting profile PY° and a positional scoring rule r,, candidate
w € C is the Most Probable Winner (MPW), if and only if, Pr(w | PP°) = max.cc Pr(c | PP°) where
Pr(c | PPO) = Ypcq(proy L(c € W(rm, P)) - Pr(P | PO).

A candidate is the MPW if her chance of winning in a random possible world is no less than any
other candidate.

ExaMmPpLE 3. Given the partial voting profile in Table 3, we first construct its completions listed in
Table 4. Under the plurality rule, Biden is the only winner in completion No.1, while completion No.2
has winners Biden, Sanders and Trump. Both completions have the probability 0.5. Thus, Biden is the
MPW with winning probability 1, while the winning probability for Sanders and Trump is 0.5.

3.3 Preference Models

Repeated Insertion Model (RIM). Doignon et al. [6] proposed a generative model RIM (o, IT) that
defines a probability distribution over permutations. It is parameterized by a reference ranking
o = (01,...,0m) and a probability function IT where I1(i, j) is the probability of inserting o; at
position j. Algorithm 1 presents the RIM generative procedure. It starts with an empty ranking,
inserts items in the order of o, and places o; at the j position of the incomplete ranking = with
probability IT(i, j).
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Algorithm 1 Repeated Insertion Model
Input: RIM(o,II) where |o| = m
Output: Ranking 7

1: Initialize an empty ranking = = ().

2: fori=1,...,mdo

3:  Insert o(i) into 7 at j € [1, i] with probability II(i, j).
4: end for

5: return v

ExampLE 4. RIM({a, b, c), 1) generates t'={c, a, b) as follows. Initialize 1y=(). When i = 1, 1;=(a)
by inserting a into 7y with probability I1(1,1). When i = 2, T,=(a, b) by inserting b into t; at position
2 with probability I1(2,2). When i = 3, ©'=(c, a, b) by inserting c into 7, at position 1 with probability
I1(3, 1). Overall, Pr(z’ | {a, b, c),I)=I1(1,1) - I1(2,2) - I1(3, 1).

RIM Inference and Cover Width. Given RIM(o,II) and a partial order v, RIM inference is used
to calculate the marginal probability of v over RIM(o, II), or, equivalently, the probability that a
sample from RIM (o, 1) is a linear extension of v.

RIMDP [12] is a RIM inference solver that uses Dynamic Programming (DP). It runs the RIM
insertion procedure (Algorithm 1) to generate all possible rankings that satisfy the partial order.
Given m items, there are potentially m! permutations to generate. RIMDP prunes the space based
on an insight that it is only necessary to track the positions of items directly related to some
not-yet-inserted item in the partial order. Two items {a, b} are directly related and a is a cover of b, if
and only if a > b and Ac € C,a > ¢ > b. As a DP approach, the states of RIMDP are mappings from
tracked items to their positions. The maximum number of tracked items during RIM procedure is
called the cover width, denoted cw (o, v). The complexity of RIMDP is O(m¢¥(%>¥)*2) RIMDP runs
in polynomial time for partial orders whose cover widths are bounded.

EXAMPLE 5. Let 0 = (0y,...,09) and v = {03 > 05,05 > 0g}. RIMDP does not track the positions
of o1 and oy since they are not directly related to any item in v. The insertion of o5 generates 3 states:
{o5 — 1}, {03 — 2}, and {03 — 3}. The position of o3 is the boundary for os. After inserting
o5, RIMDP will stop tracking o3 by merging all states sharing the same position of os, e.g., merging
{05 — 1,05 — 3} and {05 — 2,05 — 3} into {05 — 3}. RIMDP will keep tracking o5 until og is
inserted. The cover width in this example is 1, since RIMDP tracks at most 1 item for each insertion.

Repeated Selection Model (RSM). Algorithm 2 presents a generative model for partial orders called
RSM(o, 1L, p) [4]. The model is parameterized by a reference ranking o, a probability function

Algorithm 2 Repeated Selection Model

Input: RSM(o,I1, p) where |o| =m
Output: Partial order v

1: Initialize an empty partial order v = {}.
2. fori=1,....m—-1do
3:  Sample j € [1,m — i + 1] with probability II(i, j).

4 Obtain item ¢ = o(j) and remove it from o.
5 fork=1,...,m—-ido

6: Add o > o (k) into v with probability p(i).
7 end for

8: end for

9: return v
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IT where II(i, j) is the probability of the j** item selected at step i, and a probability function
p:{1,..,m—1} — [0,1] determining whether the selected item is preferred to each remaining
item. In contrast to RIM that randomizes insertion positions, RSM randomizes the insertion order.
In this paper, we will use RSM with p = 1, such that it only outputs rankings, and will denote it
rRSM(o, II).

Mallows Model. Denoted by MAL(0, ¢), where 0 < ¢ < 1, the Mallows model [20] defines a
probability distribution over rankings: reference ranking o at the center and other rankings closer
to o having higher probabilities. For a given ranking 7, Pr(z|o, ¢) « ¢P (@7) where D(o,7) =
|(a,a’)|a >4 a’,a’ >, a| is the Kendall-tau distance counting the number of disagreed preference
pairs. If ¢ = 1, the Mallows becomes a uniform distribution. The MAL(a, ¢)) is a special case for

both RIM(o,1I) by I1(, j) = quw and rRSM (o, 1) by I1(4, j) =

¢~
1+P+...+4Ppm=E"

4 UNCERTAIN VOTING PROFILES

In classical voting theory, voters give complete rankings over candidates. However, in practice only
partial preferences may be observed, due to the voting mechanism (e.g., when approval ballots or a
ranking of at most k < m candidates are elicited), the uncertainty in preferences themselves [21],
or both. Figure 2 represents uncertainty as two distinct steps: preference generation (Figure 2a) and
preference observation (Figure 2b). Important special cases of voting profiles are discussed next.

4.1 Uncertainty in profile generation

The most general form of voter preferences over rankings is a non-parametric probability distri-
bution such as that given in Figure 1a. Let PM = (M, ..., M,,) denote a probabilistic voting profile
where M; is the ranking model of voter v;. A possible world of PM is a complete voting profile
P = (wy,...,1,) where each 7; is sampled from M;. It is assumed that the voters cast their ballots
independently, i.e., Pr(P | PM) = [T%, Pr(z; | M;). So PM represents a probability distribution of
its possible worlds Q(PM) = {Py,...,P,}.

Let s(¢, M) and s(c, PM) denote the scores assigned to candidate ¢ by model M and probabilistic
voting profile PM, respectively. (Note that both are random variables.) Partial voting profiles are
a special case of probabilistic voting profiles, since they are based on the assumption that all
completions are equally likely. Below are a few other cases.

/ PM (ranking models)\ / PPO (partial orders) \

PPP (partially partitioned preferences)

PEP (fully partitioned preferences)

[ PTR (truncated rankings) }

N ZA\ )

(a) Generation step (b) Observation step

Fig. 2. Uncertain voting profiles. (a) Uncertainty in the preferences by the voters themselves is represented by
the ranking models in the generation step. (b) Uncertainty introduced by the preference elicitation mechanism
is represented by the incomplete voting profiles in the observation step.
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In a uniform voting profile, denoted by PY, no voter has any preference between any two can-
didates. Voter preferences are sampled from the uniform distribution over the rankings of all
candidates.

There are specific important ranking models that we will describe in Section 7. The Mallows
model [20] is the best known, and it is generalized by the Repeated Insertion Model (RIM) [6]
and the ranking version of the Repeated Selection Model (RSM) [4]. Voting profiles consisting of
Mallows, RIMs, and RSMs (ranking version) are denoted by PMAL pRIM a1d PrRSM, respectively.
We will see that, when the generation step is based on these models, we have a computational
advantage for computing the MEW.

4.2 Uncertainty in profile observation
A partial voting profile, denoted by PO, consists of partial orders and represents a uniform distri-
bution of its completions. What follows are important special cases.

A (fully) partitioned voting profile, denoted by P'’, records preferences in the form of partitions:
linear orders of item buckets, with no preference among the items within a bucket.

A partially partitioned voting profile, denoted by P', generalizes the fully partitioned preferences
by only considering a subset of items, with no preference information for the missing ones.

A partial chain voting profile, denoted by PPC, records preferences in the form of partial chains.
A partial chain is a linear order of a subset of items, with no preference over the remaining items.
The partial chains are a special case of the partially partitioned preferences, where each partition
only consists of one item.

A truncated voting profile, denoted by PR, records preferences in the form of truncated rankings.
Let 7(%?) denote a truncated ranking with t items at the top and b items at the bottom, with no
preference specified for the middle part of the ranking. The () is a special case of the partitioned
preferences, with ¢ + b + 1 partitions.

Combined voting profiles. Most research works have assumed that a partial voting profile repre-
sents a uniform distribution over its completions. However, the assumption that all completions
are equally likely may not hold in practice. We propose combined voting profiles PM*F where each
voter is associated with both her original incomplete preferences P and a ranking model M. The
ranking model M is her prior preference distribution, which may be obtained from historical data.
But after observing new evidence P, the probabilities of rankings that violate P collapse to zero,
while the remaining rankings that satisfy P have the same relative probabilities among each other.
Formally speaking, the preferences of this voter become the posterior distribution of M conditioned
on P.

In another sense, the combined voting profiles are also the most general form of voting profiles
(same as PM) that unify all voting profiles so far. For example, a partitioned voting profile P™*
is essentially PY*'*, and a RIM voting profile PR'M is essentially PR'™M*? where () means that the
partial orders are the empty ones.

Among the tractable cases in Section 7, there are also combined voting profiles, which means that
applying combined voting profiles both brings the benefit of more customized ranking distributions,
and can also be practical.

5 MOST EXPECTED WINNER

For a general voting profile and a positional scoring rule, the performance of a candidate can be
quantified by the expectation of her score in a random possible world. We define this formally
below.
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DEFINITION 2 (MEW). Given a general voting profile PM and a positional scoring rule r,, candidate
w is a Most Expected Winner, if and only if, E(s(w, PM)) = max.cc E(s(c, PM)).

We denote the set of Most Expected Winners by MEW (r,, PM).

5.1 Alternative Interpretations

To gain an intuition for Most Expected Winner (MEW), we will now give two winner definitions
that are equivalent to MEW. Proofs can be found in the technical report [24].

Least Expected Regret Winner. The MEW can also be regarded as the candidate who minimizes the
expected regret in a random possible world. Let Regret(w, P) denote the regret value of choosing
w € C as the winner given a complete voting profile P.

Regret(w, P) = macxs(c, P) —s(w,P)
ce

Accordingly, the regret value Regret(w, PM) over a probabilistic voting profile becomes a random
variable.

E(Regret(w, PM)) = Z Regret(c, P) - Pr(P | PM)
PeQ(PM)

Candidate w is a Least Expected Regret Winner, if and only if, she minimizes the expected regret
E(Regret(w, PM)).

THEOREM 1. Least Expected Regret Winner is equivalent to MEW.

Our use of expected regret as an alternative interpretation of MEW is inspired by Lou and
Boutillier [18], who were the first to use regret in winner determination. They proposed MMR, the
winner that minimized regret in the worst-case completion. In contrast, MEW minimizes regret in
expectation, across all completions.

Meta-Election Winner. Recall that a voting profile PM represents a probability distribution of
possible worlds Q(PM) = {Py, ..., P.}. The Meta-Election Winner is defined as the candidate who
wins a meta election with a large meta profile Py; = (Py,. .., P,) where rankings in P; are weighted
by Pr(P; | PM).

THEOREM 2. Meta-Election Winner is equivalent to MEW.

5.2 Problem Statement

The MEW is determined based on the expected performance of the candidates. Thus, the winner
determination problem of MEW can be reduced to the problem of Expected Score Computation
(ESC), stated below and addressed in the remainder of the paper.

DEFINITION 3 (ESC). Given a general voting profile PM, a positional scoring ruler,,, and a candidate
¢ € C, compute TE(s(c, PM)) the expected score of the candidate c.

6 HARDNESS OF ESC

This section investigates the complexity of the ESC problem. We first prove the hardness of two
closely related problems, the Fixed-rank Counting Problem and the Rank Estimation Problem,
and then demonstrate that the ESC problem is hard as well. Proofs can be found in the technical
report [24].
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6.1 Fixed-rank Counting Problem

Counting the number of linear extensions of a partial order is well-known to be #P-complete [2].
The Fixed-rank Counting Problem (FCP) is interested in the number of linear extensions where an
item is placed at a specific rank. Let Q(v) denote the set of linear extensions of v, and N(c—j | v)
denote the number of linear extensions in Q(v) where item c is placed at rank j.

DErFINITION 4 (FCP). Given a partial order v over m items, an item c, and an integer j € [1, m],
calculate N(c—j | v), the number of linear extensions of v where item c is placed at rank j.

De Loof’s doctoral dissertation [17] discusses this problem (Section 4.2.1), proposing exact and
approximate algorithms, but does not provide proof of complexity.

THEOREM 3. The FCP is #P-complete.
The hardness of FCP facilitates the hardness proofs for the Rank Estimation Problem.

6.2 Rank Estimation Problem

Now we move on to the Rank Estimation Problem (REP). This problem can be regarded as the
probabilistic version of the FCP. It calculates the probability that a given item is placed at a specific
rank. But the REP is generalized from partial orders to arbitrary ranking distributions.

DErFINITION 5 (REP). Given a ranking model M over m items, an item c, and an integer j € [1,m],
calculate Pr(c—j | M), the probability that item c is placed at rank j, by M.

For the convenience of discussions in the rest of this Section, we also define two special cases of
the REP where items are placed at the top and bottom of the linear extensions.

DEFINITION 6 (REP-t). Given a ranking model M of m items and an item c, calculate Pr(c—1 | M),
the probability that item c is placed at the top of a linear extension, by M.

DEFINITION 7 (REP-b). Given a ranking model M of m items and an item c, calculate Pr(c—m | M),
the probability that item c is placed at the bottom of a linear extension, by M.

Lerche and Serensen [16] proposed an approximation for the REP over partial orders, but did not
provide a formal complexity proof. Bruggemann and Annoni [3] and De Loof et al. [5] considered a
related problem, calculating the expected rank of an item in the linear extensions of a partial order.
These works focused on approximation, lacking complexity proofs as well.

With the help of Theorem 3, it turns out that the REP and its two variants are all FP*’-complete
over partial orders.

LEmMA 1. If ranking model M is a partial order v of m items representing a uniform distribution of
Q(v), the REP-t is FP*P -complete.

LEMMA 2. If ranking model M is a partial order v of m items representing a uniform distribution of
Q(v), the REP-b is FP*P -complete.

THEOREM 4. If ranking model M is a partial order v of m items representing a uniform distribution

of Q(v), the REP is FP*F -complete.

6.3 Complexity of ESC

ESC is closely related to REP. Firstly, ESC is no harder than REP over general voting profiles
(Theorem 5), which lays the foundation for the identification of tractable cases in Section 7.

THEOREM 5. Given a general voting profile PM and a positional scoring rule rp,, the ESC problem
can be reduced to the REP.
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THEOREM 6. The REP for rank k is equivalent to the ESC problem over either one or both of the
(k — 1)-approval and k-approval rules.

Theorem 6 provides an insight into the relation between REP and ESC in terms of computational
complexity. If a solver is available for the ESC problem over a collection of k-approval votes, this
solver is computationally equivalent to the REP solver. Note that Theorem 6 is not limited to partial
voting profiles.

THEOREM 7. Given a partial voting profile P¥C, a distinguished candidate c, and plurality rule rp,,

the ESC problem of calculating E(s(c | P™°,r,,)) is FP**-complete.

THEOREM 8. Given a partial voting profile P'°, a distinguished candidate c, and veto rule rp,, the
ESC problem of calculating E(s(c | P™°,r,)) is FP*F -complete.

THEOREM 9. Given a partial voting profile P*, a distinguished candidate c, and k-approval rule
¥m, the ESC problem of calculating E(s(c | PO, rp,)) is FP*P -complete.

The three theorems above demonstrate the hardness of the ESC problem over partial voting
profiles, under plurality, veto, and k-approval, respectively. In particular, ESC is FP*F-complete
even under plurality (Theorem 7).

7 MOST EXPECTED WINNER SOLVERS

The problem of determining MEW can be reduced to the ESC problem (Definition 3), then further
reduced to the REP by Theorem 5. This section will solve the MEW problem by solving the REP.
Proofs can be found in the technical report [24].

7.1 Solver for RIM-based partial orders

We adopt the RIMDP algorithm [12], discussed in Section 3.3, to develop an exact solver for the
REP over posets, and more generally, for RIM combined with posets. The exact solver only modifies
the RIMDP by always tracking the target candidate, such that when RIM insertions finish, RIMDP
obtains the probabilities of the target candidate being placed at each rank.

The RIMDP has exponential complexity O(m¥(%¥)*2) where cw(ao, v) is the cover width, given
the reference ranking o and the partial order v [12]. It takes O(nm"(%¥)*3) to calculate MEW by
executing RIMDP for all m candidates and n voters.

7.2 Solvers for Partitioned Preferences, Truncated Rankings, and Partial Chains

It turns out that the MEW problem can be solved efficiently for all special cases of partial voting
profiles in Figure 2b, i.e., the partitioned voting profile,

TueOREM 10. Given a positional scoring ruler,, a fully partitioned voting profile PFP=(vI¥, ... vIP),
and candidate w, determining w € MEW(rp,, P'?) is in O(nm?).

The truncated voting profiles can be solved by the same approach above, since they are a special
case of the fully partitioned profile.

TuEOREM 11. Given a positional scoring rule ry,, a partial chain voting profile PP€ = (vFC, ... vE©),

> ¥n
and candidate w, determining w € MEW(r,, PP is in O(nm?).

The MEW over partially partitioned preferences can be solved by extending the above approach
for partial chain voting profiles.

THEOREM 12. Given a positional scoring rule ry,, a partially partitioned voting profile P™¥ =
(vfp, e, v,fp), and candidate w, determining w € MEW(r,, PPy is in O(nm?).
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Algorithm 3 REP solver for RIM

Input: Item ¢, RIM(0,II) where |o| = m

Output: {k — Pr(c—k | 0,11) | k € [1,m]}
1: 8o = 0,P0 = {6} and qo(dp) = 1
2: fori=1,...,mdo

3 Pi={}

4: fordePi_1do

5: forj=1,...,ido

6: if o (i) is c then

7: & = {c—j}

8: else if § = {c — k} and j < k then
9: & = {c—>k+1}

10: else

11: § =6

12: end if

13: if &' ¢ P; then

14: Pi.add(é’)

15: gi(8) =0

16: end if

17: qi(8") += qi-1(5) - 1I(, j)
18: end for

19:  end for

20: end for

21: Yk € [1,m],Pr(c—k | 0,1I) = gm({c — k}).
22: return {k — Pr(c—k | o,II) | k € [1,m]}

7.3 Solver for Probabilistic Voting Profiles
While the problem of MEW determination is hard in general, it is tractable over specific ranking
models such as the Mallows [20] and its generalizations RIM [6] and RSM [4].

THEOREM 13. Given positional scoring rule r,,, a RIM voting profile PR'™ = (RIMy, ..., RIM,,), and
candidate w, determining w € MEW(rp,, PR'™) is in O(nm?).

The complexity of MEW determination over RSM voting profiles is O(nm*) as well. Proof can
be found in the technical report [24].

7.4 Solver for Combined Voting Profiles

It is usually harder to compute the expected scores over combined voting profiles. Below are some
cases where this problem is tractable. The first case is the RIMs combined with truncated rankings.

THEOREM 14. Given a positional scoring rule rm, a voting profile PRM*TR=((RIM;, '[l(tl’bl)), cee
(RIMp, r,(lt"’b"))), and candidate w, determining w € MEW(rp,, PR"™M*TR) is in O(nm*).
Mallows combined with partitioned preferences is also tractable.

THEOREM 15. Given a positional scoring rule r,,, a voting profile PMALP = ((MALy, vfp ey
(MALp, vEP)), and candidate w, determining w € MEW(rp,, PMAYP) is in O(nm*).

7.5 Summary

Table 5 summarizes all solvers in this Section, including additional conclusions for a large number
of specialized voting profiles. For example, the complexity over Mallows voting profiles is bounded

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 22. Publication date: May 2023.



22:14 Haoyue Ping and Julia Stoyanovich

Table 5. Complexity of exact MEW solvers under general positional scoring rules for various voting profiles,
including partial orders (PO), partially partitioned preferences (PP), fully partitioned preferences (FP), partial
chains (PC), RIMs, rRSMs, Mallows, and combined profiles. A dagger (f) refers to results presented in the
technical report [24]. An asterisk (*) means that the RIM and rRSM models are effectively the Mallows models
in the experimental benchmarks.

Profile Complexity  Solver Experiments
pFo O(nm*3)  RIMDP Figures 5 and 6
PP O(nm?) Theorem 12 Figure 7

2 O(nm?) Theorem 10 Figure 8

PFC O(nm?) Theorem 11 Figure 9

PR O(nm?) Theorem 10, as PFP Figure 10
PRIM O(nm*) Theorem 13

pMAL O(nm*) Theorem 13, as PRIM Figure 11
prRSM O(nm*) Theorem 2?7 Figure 12*
PRIM+PO 5 (yyeW+3)  RIMDP Figure 13c

PR|M+PP O(nmCW+3) RIMDP, as PR|M+PO
PR|M+PC O(nmcw+3) RIMDP, as PR|M+PO
PR|M+FP O(nmcw+3) RIMDP, as PR|M+PO

PRIMFTR 5 () Theorem 14 Figure 13b*
PMAL+FP O(nm?) Theorem 15 Figure 13a
PMALFTR () Theorem 15, as PMAL+FP

PMAL+PP O(nmCW+3) RIMDP, as PR|M+PP
PMAL+PC O(nmcw+3) RIMDP, as PR|M+PC
PMAL+PO O(nmcw+3) RIMDP, as PRIM+PO

by O(nm*), since they are a special case of PR, An interesting observation is that the MEW
complexity over PRM*FP j5 not tractable, but its special case PMAMTP has polynomial complexity.
Although this table demonstrates that evaluating MEW over probabilistic voting profiles has higher
complexity than that over incomplete voting profiles (e.g., O(nm*) for PMALFF but only O(nm?)
for P'?), the tractability results over a collection of probabilistic and combined voting profiles give
the MEW a computation advantage in practice. Note that the combined voting profiles with RSM
models are not covered by Table 5, since the complexity of determining the MEW for them is still
an open question.

8 OPTIMIZATION STRATEGIES

The algorithms in Section 7 find the MEW by computing candidate scores for a single voter at a
time, and then aggregating the scores across the voting profile. We now present two optimization
strategies for a voting profile solver in Algorithm 4.

Candidate pruning. We can save computation by iteratively pruning candidates who cannot be
the MEW. The key idea is to quickly compute score upper- and lower-bounds for all candidates
across the voting profile, progressively refine these scores during per-voter computation, and prune
candidates who cannot be the MEW based on the upper- and lower-bounds computed so far.

Algorithm 4 presents the candidate pruning procedure. The first step is to compute UB(c) and
LB(c), the upper- and lower-bounds of the score of each candidate ¢ by quickly computing their
best possible and worst possible ranks assigned by each voter (lines 3 - 10). For example, in a given

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 22. Publication date: May 2023.



Most Expected Winner: An Interpretation of Winners over Uncertain Voter Preferences 22:15

Algorithm 4 Solver for voting profiles

Input: general voting profile PM = (M1, ..., My,), voting rule ry,
Output: MEW (r,,, PM)
1: Group identical votes in PM, sort them by the group size in descending order, to generate a weighted
voting profile P,, where each vote M; is associated with a weight w;

2: Obtain candidates C = {cy, ..., ¢} from Py,

3: Yc € C,UB(c) :=0,LB(c) :==0

4: for (M,w) € P, do

5.0 forceCdo

6: Compute the best possible rank a of ¢ over M

7: Compute the worst possible rank b of ¢ over M

8: UB(c) +=w - rm(a), LB(c) +=w - rp(b)

9:  end for
10: end for
11: Compute max(LB), prune any candidate c if UB(c) < max(LB)

12: for (M,w) € P,, do

13:  Let C; denote the candidates currently tracked by UB and LB

14: forc e Cydo

15: Compute the exact score of ¢ over M

16: Refine UB(c) and LB(c) with its exact score and the weight w
17:  end for

18:  Compute max(LB), prune any candidate c if UB(c) < max(LB)
19:  if Only one candidate remains in UB and LB then

20: Let ¢’ denote the only remaining candidate
21: return MEW (rp,, PM) = ¢/

22:  endif

23: end for

24: Let C’ denote the set of remaining candidates in UB and LB
25: return MEW (rp,, PM) =’

partial order M (voter) in a partial voting profile, the best possible rank of candidate ¢ is bounded
by the number of its ancestors in M, while its worst possible rank is bounded by the number of its
descendants. Combing this information with the voting rule, we can efficiently obtain score upper-
and lower-bounds of each candidate for each voter.

ExAMPLE 6. Let v = {03 > 05,05 > 03} be a partial order, over m = 10 items, and assume the
voting rule is 2-approval. Item o5 has 1 ancestor o3 and no descendant in v. So its best possible rank is
2 and its worst possible rank is m, which correspond to scores 1 and 0, respectively, under 2-approval.
Thus, 1 is the score upper-bound of o5, and 0 the score lower-bound, for v.

Per-voter score upper-bounds and lower-bounds can be aggregated (summed up) across all
voters in the profile (line 8 of Algorithm 4). The pruning strategy can then confidently determine
the losing candidates as those whose score upper-bounds are lower than the best observed score
lower-bound (line 11 of Algorithm 4).

Score upper- and lower-bounds are refined as the algorithm iterates over the voters (lines 12- 23),
computing the exact scores of viable (tracked) candidates, refining UB(c) and LB(c), and pruning
any candidates that are no longer viable (line 18).

If, at any point during the iteration, only a single tracked candidate w remains, then it is returned
as the MEW (line 21). Once all voters M have been iterated over, return all remaining tracked
candidates as the winners. (Note that if after all voters are iterated, and there are still multiple

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 22. Publication date: May 2023.



22:16 Haoyue Ping and Julia Stoyanovich

tracked items, then their upper- and lower-bounds are precisely their exact scores, and they all
share the same exact score, otherwise the candidates with lower exact scores would have been
pruned during voter iteration.)

ExampLE 7. Assume UB = {01 — 15,0, — 6} and LB = {07 — 5, 00 — 2} at a time point during
refining the UB and LB. Assume that after computing the exact scores of o1 and o, over the latest voter,
the refined UB = {01 — 12,0, — 5} and the refined LB = {01 — 7, 05 — 3}. Now, candidate o, can
be pruned, since UB(02) < LB(01). After pruning oy, only o1 is tracked by UB and LB, thus we can
confidently declare o1 as the winner.

Voter grouping. As another optimization, we observe that when multiple voters cast the same
vote, we only need to compute the expected candidate scores for this vote once. When computing
the MEW over a voting profile, the first step is to group identical votes and sort them by their
frequencies in descending order, which generates a new voting profile that is weighted and sorted.

9 EXPERIMENTS

We systematically tested the proposed algorithms and optimization strategies with both synthetic
and real datasets, described below. All experiments were conducted on a Linux machine with two
Intel Xeon Platinum 8268 24-core 2.9GHz Processors and 384GB RAM. All code is available at
https://github.com/DataResponsibly/mew-supplementals.

Synthetic data generators. The synthetic partial orders are generated by RSMs. Let RSM (o, 1L, p)
j-1

W s which
makes its item selection order equivalent to MAL(@, ¢). Then uniformly draw probabilities p :
{1,...,m — 1} — Uniform(0, pnax) Where pyqy is part of the parameter setup in our experiments.

Partially partitioned preferences are generated with specified numbers of partitions. First, create
an ordered list of partitions, and randomly choose an item for each partition to guarantee that each
partition has at least one item. Then, create an additional partition for the missing items. Finally,
assign each of the remaining items to a random partition, including the “missing items” partition.
Fully partitioned preferences are generated in a similar fashion, except that there is no partition for
the missing items. Partial chains also use this generator, except that it stops at the first step where
each partition has been assigned a single random item.

Truncated rankings are generated by first drawing a ranking from the uniform ranking distribu-
tion, and keeping only the top and the bottom parts of the ranking.

denote the preference model of a voter where o = (0y,...,0m) and II(i, j) =

Real datasets. We worked with three real datasets with different voting profile types. Crow-
dRank [30] is a dataset of partial chains over movies collected from Amazon Mechanical Turk. It
consists of 50 human intelligence tasks (HITs), each of which asked 100 users to rank 20 movies
that they were familiar with. MovieLens is a dataset of movie ratings collected by GroupLens
(www.grouplens.org). We used the most frequently rated movies and converted movie ratings by
the same user into partially partitioned preferences. We then obtained a partially partitioned voting
profile with 200 movies and 6040 users. Travel [28] is a dataset of ratings of European attractions
that belong to 24 categories in Google Reviews. The ratings are average values given by each user
for each attraction category. We converted these average ratings into a fully partitioned voting
profile with 24 attraction categories and 5456 users.

9.1 Performance optimizations

We tested the performance of optimization strategies over synthetic partial voting profiles, with 10
candidates under three voting rules. The partial orders are generated by RSM (o, 11, p) and ppax as
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Fig. 3. Performance of optimization strategies over partial voting profiles, with 10 cand., ¢ = 0.5. Candidate
pruning with 10,000 voters; effectiveness improves with ppax. Voter grouping with pmax = 0.1; effectiveness
improves with #voters.

described above. In each voting profile, all voters share the same reference ranking o and insertion
probabilities I1, and their item selection orders are equivalent to MAL(a, ¢). For the convenience
of discussion, we use ¢ as the setting that describes II.

Candidate pruning. We turned off voter grouping to test the performance of candidate pruning.
For each parameter setting, we generated 10 voting profiles, fixing 10,000 voters and ¢ = 0.5,
varying pmax, and computed MEW with and without candidate pruning. We present speedup as a
function of pp,ax for 10,000 voters in Figure 3a, for plurality, 2-approval and Borda. We observe
that pruning never hurts performance, and that it is more effective for higher values of p,,x, the
parameter that controls the density (number of preference pairs) in a partial order. Pruning is most
effective for plurality, followed by 2-approval and then by Borda. We thus conclude that these
performance optimizations are effective at reducing the running time of MEW computation, and
we use both optimizations in all remaining experiments.

Voter grouping. In this experiment, we turned off candidate pruning, and tested the voter grouping
optimization. For each parameter setting, we generated 10 voting profiles, fixing ¢ = 0.5 and
Pmax = 0.1, varying the number of voters, and computed MEW with and without voter grouping.
The speedup of voter grouping is the running time without voter grouping divided by the running
time with voter grouping. Figure 3b demonstrates that voter grouping never hurts performance,
and that the speedup realized by this optimization increases with the number of voters.
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Fig. 4. Parallel implementation for MEW over partial voting profiles of 10 candidates, 1 million voters, ¢ = 0.5,
and pmax = 0.1. The speedup due to parallelism is nearly linear in the number of worker processes.
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Fig. 5. Running time over partial voting profiles, fixing 10 candidates and pjax = 0.1. MEW is determined
fastest under plurality, slowest under Borda. Running time is insensitive to changes in ¢ (voter preference
diversity). Running time increases linearly with the number of voters.

Parallel computation of MEW. Algorithm 4 gives a sequential implementation of MEW, with
linear complexity in the number of voters. To handle a large volume of voters in real-world settings,
the computation of MEW can be easily parallelized by turning off the candidate pruning strategy
and allocating all votes to different CPU cores. We tested the parallel implementation of MEW over
10 synthetic partial voting profiles of 10 candidates and 1 million voters. The partial orders are
generated with ¢ = 0.5 and py,qx = 0.1, using the same methodology as in Section 9.1. Figure 4a
demonstrates that the solver runs faster with more worker processes. In Figure 4b, the speedup of
the parallel solver relative to the sequential solver increases linearly with the number of worker
processes.

9.2 Incomplete voting profiles

Partial voting profiles. A collection of synthetic profiles of 10 candidates are generated to test the
scalability of the solver in Section 7.1. Synthetic partial orders are generated in the same way as in
Section 9.1. We generated 10 voting profiles for each parameter setting, and calculated the MEW
under three voting rules, with performance optimizations discussed in Section 8.

Figure 5 demonstrates the impact of voting rules on the running time. MEW is determined fastest
under plurality, followed by 2-approval, and finally, by Borda. In Figure 5a, the ¢ parameter of the
Mallows model is varied to test the impact of voter consensus level on the running time, which
turns out to be minor. Figure 5b shows the linearly increasing running time with the number of
voters.

Partial orders and cover width. A benchmark of partial orders is prepared to investigate the impact
of the cover width parameter, discussed in Section 3.3, on performance. We fixed the reference
ranking of the RSM over 10 candidates, and made its insertion probabilities equivalent to ¢ = 0.5 in

107

St

1 2 3 4 5
cover width

Fig. 6. Running time over partial orders increases exponentially with cover widths. 100 partial orders generated
with RSM over 10 candidates, ppmax = 0.1, and insertion probabilities equivalent to Mallows with ¢ = 0.5.
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Fig. 7. Average time over partially partitioned profiles. It declines with more partitions in the voter preferences,
increases with more candidates in the voting profile, and increases linearly with the number of voters.
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Fig. 8. Average time over fully partitioned profiles. It increases under plurality and 2-approval, but declines
under Borda, with more partitions in the voter preferences. It increases linearly when adding more candidates
or voters.

Mallows. For each partial order, we sample a new vector of edge construction probabilities with
Pmax = 0.1, generating 100 partial orders. Figure 6 shows that the exact solver for partial orders has
exponential complexity with the cover width, which is consistent with our complexity analysis.

Partially partitioned voting profiles. Synthetic profiles are generated with the parameter settings
in Figure 7. For each setup, we generated 10 profiles and calculated the MEW with the solver
in Theorem 12 and Algorithm 4. Figure 7 shows their average running time to demonstrate the
scalability w.r.t. the number of partitions, candidates, and voters. In Figure 7a, the running time
decreased with greater number of partitions. Figures 7b and 7c¢ show that the running time increases
linearly with more candidates and voters.

Fully partitioned voting profiles. The setup of this experiment is identical to that of the partially
partitioned preferences above. While Figure 8b also gives the linear growth of running time with
increasing number of candidates, Figure 8a shows opposite trends between Borda and the other two
voting rules. It turns out that under Borda rule, the pruning strategy benefits from the increasing
number of partitions. In comparison, after turning off the pruning strategy, the running time of
computing MEW under the Borda rule increased from 0.76 seconds to 0.79 seconds.

Partial chain voting profiles. The setup of this experiment is almost identical to the experiments
of partitioned voting profiles, except that the number of partitions is now the chain size. Figure 9
presents the average running time to compute the MEW with candidate pruning under various
parameter settings. In Figure 9a, running time increases mildly with chain size under Borda, while
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Fig. 9. Average time over partial chain profiles is more sensitive to the Borda rule when increasing the chain

size, and increases linearly with the number of candidates or voters for all rules.
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Fig. 10. Average time over truncated voting profiles. It stays the same for plurality and 2-approval, but steadily
decreases, when increasing the top and bottom sizes of the truncated rankings. It increases linearly with the
number of voters.

it even drops under plurality and 2-approval. In Figures 9b and 9c, the running time increases
linearly with more candidates and voters.

Truncated voting profiles. In this experiment, we fixed the number of candidates to be 80, and
varied the top and bottom sizes of the truncated rankings, and the number of voters. For each
parameter setting, we generated 10 voting profiles and computed the average running time of MEW
with the candidate pruning strategy.

Figure 10a demonstrates that the top and bottom size has no impact on the running time over
plurality and 2-approval, which is expected since these voting rules only need information about
the top-1 or 2 ranked candidates. Under Borda, MEW computation is faster for higher top and
bottom size, also as expected, since uncertainty in the truncated rankings decreases accordingly.
Finally, Figure 10b demonstrates that the running time over truncated voting profiles increases
linearly with the number of voters.

9.3 Probabilistic voting profiles

Mallows voting profiles. We generate synthetic profiles to test the performance of the RIM solver
over its special case, the Mallows model. We vary the number of candidates from 10 to 80, and
the dispersion parameter ¢ from 0.1 to 0.9, generate 10 profiles for each parameter setting, and
report the average running time, with pruning, in Figure 11. Figure 11a shows that the solver scales
well with the number of candidates, while Figure 11b shows that the time to compute MEW is
insensitive to the Mallows parameter ¢.
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Fig. 11. Average time over Mallows voting profiles, fixing 1000 voters. It increases linearly with the number of
candidates, while the ¢ has little impact over the running time.
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Fig. 12. Average time over RSM voting profiles, fixing 1000 voters. It increases linearly with the number of
candidates, while the equivalent ¢ has little impact over the running time.

RSM voting profiles. This experiment uses exactly the same voting profiles as the experiment above
for Mallows models. Since rRSM generalizes the Mallows model, we converted the Mallows models
into rRSM instances and invoked the RSM solver for these converted voting profiles. Compared to
Figure 11a, Figure 12a shows better scalability with regards to increasing number of candidates,
especially for the plurality and 2-approval rules. Figure 12b gives a similar conclusion as Figure 11b
that the dispersion of the preferences has little impact over the running time.

9.4 Combined voting profiles

Mallows with fully partitioned preferences. In this experiment, we investigate the impact of the
Mallows ¢ on the running time. All voting profiles have 10 candidates, 1000 voters, and 2 partitions
for the partitioned preferences. Figure 13a shows that the Mallows ¢ has little impact on the running
time, and that the running time under plurality and 2-approval rules are almost identical. Similar
trends were observed for more than 2 partitions, and we do not report these results here.

Mallows with truncated rankings. The setup of this experiment is similar to the above, for Mallows
combined with fully partitioned preferences, except that the top and bottom sizes of the truncated
rankings are fixed to be 3, instead of fixing the number of partitions. Figure 13b demonstrates
that the dispersion ¢ has little impact on the running time. Similar trends were observed for other
truncated ranking sizes, and we do not report these results here.

Mallows with partial orders. The setup of this experiment is similar to the previous two experi-
ments for combined voting profiles. All voters in a profile have the same Mallows model. Their
partial orders are generated by RSMs whose selection probabilities are derived from dispersion ¢
of their Mallows, and each voter has an independent edge construction probability vector sampled
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Fig. 14. Running time on CrowdRank. Computing MEW under Borda is slower than under plurality or
2-approval.

from ppax = 0.9. Figure 13c shows that ¢ substantially impacts the running time: The computation
of MEW is faster with a small ¢ value, especially for Borda. This is expected, because the voters
exhibit stronger consensus for lower values of ¢, and so the pruning strategy is more effective.

9.5 Real datasets

Figure 14 compares the running time of computing MEW under 3 voting rules for the 50 HITs
in CrowdRank. Recall that each HIT has its own set of 20 movies and 100 partial chains over
these movies. The experiment result shows that the voting rule has a significant impact on the
running time. It took much longer to compute MEW under the Borda rule, compared to plurality
and 2-approval.

Table 6 presents the running time of MEW over MovieLens and Travel, with number of items
m (i.e., movies and attraction categories, respectively), and number of voters n. MovieLens is a
partially partitioned voting profile of 200 movies. It took about 38 minutes to compute the MEW

Table 6. Computing MEW for real datasets

Running time (in seconds
Dataset #cand #voters g ( )

plurality 2-approval Borda

MovieLens 200 6040 137 140 344

Travel 24 5456 0.57 0.49 0.35
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under both plurality and 2-approval rules, and the winner is American Beauty in both cases. In
comparison, Star Wars: Episode IV - A New Hope is the winner under Borda, computed in around 100
minutes. Travel is a fully partitioned voting profile with 24 attraction categories. It took less than 1
second to compute the MEW under all three voting rules, which yields museums as the winner.

10 COMPARING MEW AND MPW

We now conduct a thorough comparison between MEW and MPW to better demonstrate their
differences. MEW and MPW can be interpreted as different aggregation approaches across possible
worlds. Recall that given a general voting profile PM, Q(PM) = {P,,..., P,} is the set of its possible
worlds of PM, and each P; is associated with a probability p; = Pr(P; | PM) and Y7, p; = 1. Now
let’s see how the performance of a candidate c is aggregated across possible worlds. Let 1() be the
indicator function.

e MEW: E(s(c, PM)) = 3% s(c, P) - pi

e MPW: Pr(c wins | PM) = 322 1(c wins | P;) - p;

MEW estimates the average performance of a candidate, while MPW estimates the probability

that she wins. As a result, MPW ignores the possible worlds in which the candidate cannot win,
putting certain candidates at a disadvantage.

ExAMPLE 8. Let PM = {My} be a single-voter voting profile over 4 candidates {a, b, c,d}. Assume
My is a ranking model where Pr({b, a,c,d)) = Pr({c,a,b,d)) = Pr({d, a,b,c)) = 1/3. Under Borda
rule, MEW favors candidate a who, despite losing in every possible world, enjoys the highest expected
score of 2, while the MPWs are {b, c,d}, each winning in one possible world.

MEW also quantifies the performance of candidates more granularly than MPW, as illustrated
in the next example.

ExaMPLE 9. Let PTO = {v,} be a single-voter voting profile over 4 candidates {a, b, c,d}. Assume
v ={a> b,b > c,b > d}. Under the Borda rule, MEW and MPW agree that candidate a is the winner,
but they disagree on the performance of candidate b. MPW cannot differentiate between b, ¢, and d,
since none of them wins in any possible world, but MEW believes that b outperforms c and d, since b
has a higher expected score than ¢ and d.

MEW also has a computational advantage over MPW, making it practical for real-world appli-
cations: Although both are intractable in the general case, MEW enjoys linear complexity in the
number of voters, while the running time of MPW grows exponentially. We implemented the MPW
solver based on the VotingResult algorithm by Hazon et al. [8], with the modification that the solver

o parallel MPW e parallel MPW

1024 & parallel MEW 1024 o parallel MEW
5 100 3 10t
kg I3
£ E
“ 100 = 100

10t 101

3 5 7 ] 1 4 7 10
#cand #voters

(a) 10 voters, varying #candidates (b) 9 candidates, varying #voters

Fig. 15. Average time of parallel MPW and MEW, using 48 worker processes, over partial voting profiles, fixing
¢ = 0.5 and pmax = 0.1, using the plurality rule. MEW scales much better than MPW, with both #candidates
and # voters.
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iterates over the completions of each voter’s partial order, while the original algorithm assumes that
each voter gives an explicit probability distribution over the rankings. We compared performance
of the parallel versions of MPW and MEW under plurality, fixing the number of voters to 10 and
varying the number of candidates from 3 to 9 (Figures 15a), then fixing the number of candidates
to 9 and varying the number of voters from 1 to 10 (Figure 15b). Observe that MEW scales much
better than MPW. The corresponding results under the Borda rule are available in the technical
report [24].

11 CONCLUDING REMARKS

In this paper we modeled uncertainty in voter preferences with the help of a framework that
distinguishes between uncertainty in preference generation and uncertainty in preference observa-
tion, unifying incomplete and probabilistic voting profiles. We then proposed the Most Expected
Winner (MEW) semantics for positional scoring rules and established the theoretical hardness of
this problem. We identified tractable cases with the help of the uncertainty framework for voting
profiles, and developed solvers.

Much exciting future work remains. For example, the hardness of ESC is proved over only
plurality, veto, and k-approval, which calls for investigation of other positional scoring rules such
as Borda. When MEW is intractable, it may be necessary to develop approximate solvers. MEW can
also be extended to other score-based rules, such as Simpson and Copeland. Another direction is to
consider voter preferences represented by additional ranking models [21] such as the Plackett-Luce
(PL) [19, 26] and Thurstone-Mosteller (TM) [22, 31]. For example, others [23, 32] have studied a
preference aggregation method over PL models that is closely related to the MEW over PL models,
and we plan to investigate this connection further in the future.
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