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ABSTRACT
In this demonstration, we present a comprehensive software library
for model auditing and responsible model selection, called Virny,
along with an interactive tool called VirnyView. Our library is
modular and extensible, it implements a rich set of performance and
fairness metrics, including novel metrics that quantify and compare
model stability and uncertainty, and enables performance analysis
based on multiple sensitive attributes, and their intersections. The
Virny library and the VirnyView tool are available at https://github.
com/DataResponsibly/Virny and https://r-ai.co/VirnyView.
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1 INTRODUCTION
Machine Learning (ML) models are being used to make decisions
in increasingly critical domains. To determine whether models are
production-ready, they must be comprehensively evaluated on a
number of performance dimensions, not just accuracy. As a prac-
tical scenario, consider Ann, a data scientist working on a public
policy task, such as to predict whether a low-income individual, not
eligible for Medicare, has coverage from public health insurance
(the ACSIncome task from [7]). Ann aims to develop an accurate,
robust, and fair model, and so needs to assess multiple models
from diverse hypothesis spaces and, further, to compare several
fairness-enhancing interventions on the models. Since measuring
only accuracy and fairness is not enough for building robust ML
systems [3, 11, 14], each model involves at least three overall di-
mensions (correctness, stability, uncertainty) and three disparity
dimensions evaluated on subgroups of interest (error disparity, sta-
bility disparity, uncertainty disparity). Adding to the complexity,
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these model dimensions exhibit trade-offs with one another [1].
Considering the multitude of model types, performance dimensions
and trade-offs, Ann faces the challenge of responsible model selection
— a task that appears insurmountable. In this demonstration, we
present the comprehensive Virny1 model profiling library, along
with the interactive VirnyView2 tool that profiles dataset properties
related to protected groups, computes comprehensive nutritional la-
bels [19] for individual models, compares multiple models according
to multiple metrics, and guides Ann through model selection.

Contributions. In contrast to existing fairness software libraries [2,
18, 21] and model card generating frameworks [5, 17], our system
stands out in four key aspects. Virny (i) facilitates the measurement
of fairness, stability, and uncertainty metrics for a set of initialized
models, both overall and broken down by user-defined subgroups
of interest; (ii) enables data scientists to analyze performance using
multiple sensitive attributes (including non-binary) and their inter-
sections; (iii) offers diverse APIs for metric computation, designed
to analyze multiple models in a single execution, assessing stability
and uncertainty on correct and incorrect predictions broken down
by protected groups, and testing models on multiple test sets, in-
cluding in-domain and out-of-domain; (iv) implements streamlined
flow design tailored for responsible model selection, reducing the
complexity associated with numerous model types, performance
dimensions, and data-centric and model-centric interventions.

2 OVERVIEW OF THE FUNCTIONALITY
2.1 Implementation of Virny
Virny is implemented in Python, and is designed based on three
core principles: (i) facilitating easy extensibility of model analysis
capabilities; (ii) ensuring compatibility with user-defined datasets
and model types; and (iii) enabling simple composition of dispar-
ity metrics based on the context of use. The software framework
decouples the process of model profiling into several stages, in-
cluding subgroup metric computation, disparity metric composition,
and metric visualization. This separation empowers data scientists
with greater control and flexibility in using the library, both during
model development and for post-deployment monitoring. Figure 1
shows the model analysis pipeline, with inputs shown in green,
pipeline stages in blue, and per-stage model outputs in purple. We
will describe each stage below, and will return to a discussion about
the specific metrics supported by Virny in Section 2.2.

Inputs. Users provide three inputs: base flow dataset, models con-
fig, and config yaml. The base flow dataset is a custom object for
the user’s dataset that includes its descriptive attributes such as a
target column, numerical columns, categorical columns, train and

1https://github.com/DataResponsibly/Virny
2https://r-ai.co/VirnyView
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Figure 1: Responsible model selection in Virny: inputs shown in green, pipeline stages in blue, and per-stage outputs in purple.

test sets. The models config is a key-value mapping, where keys are
model names and values are initialized models for analysis. Finally,
the config yaml specifies configuration parameters.

Subgroup metric computation. Virny implements several inter-
faces for metric computation: an interface for multiple models, an
interface for multiple test sets, and an interface for saving results
into a database. The library incorporates a Subgroup Variance Ana-
lyzer and a Subgroup Error Analyzer, and it is easily extensible to
encompass other analyzers. Once these analyzers finalize metric
computation, their outputs are merged and returned as a pandas
dataframe. Users have the option to specify a parameter for sav-
ing, allowing the metric dataframe to be stored on disk or in their
database using the provided df_writer function.

The Subgroup Error Analyzer computes error metrics, including
accuracy, F1, false-positive rate (FPR), and false-negative rate (FNR),
on both the overall test set and on the subgroups of interest. The
Subgroup Variance Analyzer computes stability and uncertainty
metrics, both overall and for subgroups. To quantify estimator
variance, we use bootstrapping [10]. We also compute a rich set of
stability and uncertainty metrics, discussed in Section 2.2.

Disparity metric composition. The Metric Composer handles the
second stage of the model profiling process, where it computes
the error disparity, stability disparity, and uncertainty disparity
metrics using the group-specific metrics computed in the previous
stage. Users have the flexibility to compose additional metrics. For
example, error disparity can be computed as the ratio of the Positive
Rate on the privileged and disadvantaged subgroups.

Metric visualization. Virny provides two types of metric visualiz-
ers for building static and interactive visualizations: Metric Visual-
izer allows users to conveniently generate customized static visual-
izations for comprehensive metric analysis, while Metric Interactive
Visualizer can be used to build an interactive web application that
guides responsible model selection and generates nutritional labels
for ML models. We use these visualizers to implement VirnyView.

2.2 Model performance metrics
Based on the influential work by Domingos [8], a model’s error can
be decomposed into (statistical) bias, variance, and noise. Accuracy
metrics capture the extent of a model’s bias, and have so far been
used as the primary means of assessing model performance. How-
ever, these metrics fail to provide insights into model arbitrariness,
which can be due to variance in its predictions, uncertainty in the
data or in the model, or both. Therefore, Virny implements a wide
range of accuracy, stability and uncertainty metrics.

Stability and uncertainty. Model stability is the property where
small perturbations in the input cause proportionately small changes
in the output. Several distinct approaches exist to quantify model
stability, including the Bootstrap [10] and Jackknife [16]. These ap-
proaches construct probabilistic distributions for each test sample
from the outputs of each trained model, rather than obtaining a
single-point estimate. By computing measures of variation between
the predictions of the ensemble of estimators for the same data
point, we can quantify the instability of a single model fit on the
full training set. This instability is expressed through such metrics
as Label Stability [6], Jitter [15], and IQR (inter-quantile range of
predictive variance), implemented in Virny.

Model uncertainty is related to how confident a model is in its
predictions. Uncertainty can stem from two sources: the inherent
randomness or variability in the data (aleatoric), or the lack of infor-
mation, typically stemming from limitations in understanding the
system or process being modeled (epistemic). Predictive variance is
a common measure of epistemic uncertainty, whereas the expected
entropy over all classes is a measure of aleatoric uncertainty [20].

Comparing performance across groups. It has been observed that
ML models often exhibit unfairness in terms of selection rates or
error distribution across groups (see, e.g., [4, 9, 12, 13]), leading to
the development of a number of group fairness metrics. Virny imple-
ments several such metrics, including disparate impact (parity in
selection rates), accuracy parity, and parity in FPR and FNR, among
others. Further, as we argued in prior work [1], popular fairness met-
rics in the ML literature do not explicitly capture whether the model
is comparably arbitrary for different demographic groups. Virny
computes several measures of stability-disparity and uncertainty-
disparity to give a more comprehensive view of model fairness.

3 DEMONSTRATION SCENARIOS
We will start the demonstration with a brief overview of the Virny
library. We will discuss the core principles behind the library, and
will give a tour of the main architectural elements (see Section 2.1).

Wewill spend the bulk of the time with the interactive VirnyView
application, implemented in Gradio, to present several responsible
model selection scenarios based on three fair-ML benchmarks: ACS
Income [7], ACS Public Coverage [7], and Law School [22]. For the
demo, we pre-computed all metrics discussed in Section 2.2 based
on 200 estimators, for each of the benchmarks.
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Figure 2: VirnyView, Step 2 for ACS Income. The user selects two overall constraints C1&C2, and two disparity constraints
C3&C4, and sets their min and max limits. Consequently, the bar chart shows the number of models that satisfy each constraint,
all pairs of constraints, and all 4 constrains simultaneously. For ACS Income, only 4 out of 12 models satisfy all four constraints.

Users will be able to interact with any of the three benchmarks
during the demo: select models to profile, specify sets of perfor-
mance constraints, and conduct in-depth comparisons of perfor-
mance of selected models based on various dimensions using in-
tuitive visualizations with a clear color scheme and tolerance. Ad-
ditionally, users will be able to break down the performance of a
specific model concerning multiple protected groups and perfor-
mance dimensions. We describe one such possible scenario below.

VirnyView consists of 6 visual components, each corresponding
to a step in the responsible model selection pipeline. Users can
interactively choose a specific combination of models, overall met-
rics, and disparity metrics across various model dimensions. This
selection dynamically alters the visualization perspective.

Let us now step through these components to conduct responsible
model selection for ACS Income, a dataset derived from US Census
data and used to predict whether a person’s income is < $50, 000
(label 0) or >= $50, 000 (label 1) [7]. For our demo, we used data
from the US state of Georgia from 2018, and sub-sampled the data
from 50,915 to 15,000 rows. We will showcase four model types and
the DisparateImpactRemover fairness intervention, applied with
repair levels of 0.0, 0.4, and 0.7 for each model type.

Step 1: Analyze demographic composition of the dataset. The ap-
plication is structured from a high-level overview to a detailed
examination. The upper screens provide general insights into the
dataset and models, while the lower screens delve into the per-
formance of individual models, broken down by protected groups.
Thus, prior to delving into metric analysis, it is crucial to establish
a comprehensive understanding of the proportions and base rates
of the protected groups within the dataset. This information serves
to elucidate potential disparities, for example, such as significant
variations in overall accuracy and stability among different racial
groups. In the ACS Income dataset, the overall base rate is 0.35, and
there are no significant gaps in demographic composition: males
vs. females (0.51 vs. 0.49) and white vs. black (0.68 vs. 0.32).

Step 2: Reduce the number of models to compare, based on overall
and disparity metric constraints. Creating an accurate, robust, and
fair model requires thorough validation of various model types,
pre-processing techniques, and fairness interventions. However,
the complexity arises when attempting to directly compare all mod-
els on a single plot or visualize every possible combination of the
models. In this step, the user defines overall and disparity metric
constraints to effectively narrow down the selection of models that
meet these criteria. In this scenario for ACS Income dataset, we
set Accuracy and Label Stability as overall constraints and Equal-
ized Odds FNR and Label Stability Ratio as disparity constraints.
Consequently, in Figure 2, we can see that only 4 out of 12 models
satisfy all the four constraints (C1 & C2 & C3 & C4). This strate-
gic reduction allows for a more detailed comparison of metrics,
focusing on a manageable number of models in subsequent steps.

Steps 3-4: Compare models that satisfy all constraints using overall
and disparity metric heatmaps. Figures 3 and 4 show overall and
disparity heatmap comparisons of 4 models, respectively. Green
signifies the most favorable model metric and red denotes the least
favorable, compared to other models. Crucially, the color scheme
takes into account that a score of 1.0 is considered best for Disparate
Impact, while 0.0 is best for Equalized Odds FNR. Furthermore,
users have the option to introduce a tolerance parameter to the
comparison process. This means that if the discrepancy between
metrics of different models falls below the tolerance threshold, these
models are grouped together (i.e., they are considered to be tied).
This is beneficial when minor differences, such as 0.001%, can be
considered negligible.

The overall heatmap for ACS Income (Figure 3) shows that Logis-
tic Regression with repair level 0.7 has best performance. However,
the disparity heatmap (Figure 4) shows a substantial drawback for
Logistic Regression — high error disparity on Equalized Odds FNR
for sex (0.043) and race (-0.086). Random Forest with repair level
0.4 shows the best performance based on disparity dimensions. In
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Figure 3: VirnyView Step 3: Overall heatmap with tolerance
0.005 for ACS Income and 4 models.

Figure 4: VirnyView Step 4: Disparity heatmap with tolerance
0.005 for ACS Income and 4 models.

subsequent steps, we will drill into the trade-offs between these
models, and will generate comprehensive nutritional labels.

Step 5: Generate a nutritional label for the selected model. In the
fifth step, users choose a particular model and a combination of
overall and disparity metrics to generate a nutritional label, seg-
mented by multiple protected groups and performance dimensions.
The nutritional label includes bar charts for the overall and dis-
parity metrics presented side-by-side that helps to find interesting
insights between them. This graphical representation proves par-
ticularly effective in identifying performance gaps among binary
or intersectional groups. For instance, the bar charts depicting the
Logistic Regression with repair level 0.7 reveal notable disparities
in Accuracy between racial dis and priv groups (0.871 vs. 0.792),
and in F1 scores between race-based (0.747 vs. 0.701), sex-based
groups (0.674 vs 0.739) groups. (See hosted demo for visualization.)

Step 6: Summarize performance of a selected model across differ-
ent dimensions and protected groups. In our scenario (see hosted
demo for visualization), the summary clearly displays differences
between Logistic Regression (repair level 0.7) and Random Forest
(repair level 0.4). The Logistic Regression excels across all overall
and disparity dimensions, except for substantial error disparity in
Equalized Odds FNR based on race (-0.086). On the other hand,
while Random Forest has slightly inferior stability and uncertainty,
it significantly outperforms the Logistic Regression in terms of

error disparity. The decision between the two models depends on
the specific context of use. If the application domain is highly sen-
sitive to model uncertainty or instability, then Logistic Regression
is preferable; otherwise, Random Forest may be a better choice.

This scenario underscores a clear trade-off among performance
dimensions in practical settings, emphasizing the importance of
measuring diverse overall and disparity performance dimensions,
and showcasing the practical utility of Virny and VirnyView.
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