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Database queries are often used to select and rank items as decision support for many applications. As

automated decision-making tools become more prevalent, there is a growing recognition of the need to

diversify their outcomes. In this paper, we define and study the problem of modifying the selection conditions

of an ORDER BY query so that the result of the modified query closely fits some user-defined notion of diversity

while simultaneously maintaining the intent of the original query. We show the hardness of this problem

and propose a mixed-integer linear programming (MILP) based solution. We further present optimizations

designed to enhance the scalability and applicability of the solution in real-life scenarios. We investigate the

performance characteristics of our algorithm and show its efficiency and the usefulness of our optimizations.
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1 INTRODUCTION
Ranking-based decision making is prevalent in various application domains, including hiring [18]

and school admission [36]. Typically, this process involves selecting qualifying candidates based on

specific criteria (e.g., for a job position) and ranking them using a quantitative measure to identify

the top candidates among those who qualify (e.g., for a job interview or offer). This process may be

automated and expressed using SQL queries, with the WHERE clause used to select candidates who

meet certain requirements, and the ORDER BY clause used to rank them. We next illustrate this idea

using a simple example in the context of awarding scholarships.

Example 1.1. Consider a foundation that wishes to grant six high-performing students scholar-

ships to universities in order to encourage participation in STEM programs. The foundation utilizes

a database of all students seeking scholarships provided by their schools, which may be filtered

according to the requirements of the foundation. Table 1 shows the students dataset, consisting

of five attributes: a unique ID, gender, family’s income level, grade point average (GPA), and SAT

score. The schools also provide information on the student’s involvements with extracurricular

activities, which are shown in Table 2 as a dataset with two attributes: the student’s ID and an
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Table 1. Students

ID Gender Income GPA SAT ↓
𝑡1 M Medium 3.7 1590

𝑡2 F Low 3.8 1580

𝑡3 F Low 3.6 1570

𝑡4 M High 3.8 1560

𝑡5 F Medium 3.6 1550

𝑡6 F Low 3.7 1550

𝑡7 M Low 3.7 1540

𝑡8 F High 3.9 1530

𝑡9 F Medium 3.8 1530

𝑡10 M High 3.7 1520

𝑡11 F Low 3.8 1490

𝑡12 M Medium 4.0 1480

𝑡13 M High 3.5 1430

𝑡14 F Low 3.7 1410

Table 2. Activities

ID Activity
𝑡1 SO

𝑡2 SO

𝑡3 GD

𝑡4 RB

𝑡4 TU

𝑡5 MO

𝑡6 SO

𝑡7 RB

𝑡8 RB

𝑡8 TU

𝑡10 RB

𝑡11 RB

𝑡12 RB

𝑡14 RB

abbreviation representing the activity in which they participated. The set of activities in Table 2

consists of robotics (𝑅𝐵), Science Olympiad (𝑆𝑂), Math Olympiad (𝑀𝑂), game development (𝐺𝐷),

and a STEM tutoring organization (𝑇𝑈 ).

The foundation would like to award these scholarships to students who have displayed interest in

STEM fields through their involvement in extracurricular activities and have maintained a minimum

GPA. The selected students are ranked by their SAT exam scores, and the foundation grants funding

to the best six students and additional funding to the top three students. These requirements

can be expressed using the following query, which selected students who have participated in an

extracurricular robotics club with a minimum GPA of 3.7:

SELECT DISTINCT ID, Gender, Income
FROM Students NATURAL JOIN Activities
WHERE GPA >= 3.7 AND Activity = 'RB'
ORDER BY SAT DESC

We refer to this query throughout as the scholarship query. Evaluating this query over the datasets

in Tables 1 and 2 produces the ranking [𝑡4, 𝑡7, 𝑡8, 𝑡10, 𝑡11, 𝑡12]. Therefore, the foundation awards

students 𝑡4, 𝑡7, 𝑡8 with an extra scholarship and students 𝑡10, 𝑡11, and 𝑡12 with the regular amount.

If the query is part of some high-stakes decision-making process, stating diversity requirements

as cardinality constraints over the presence of some demographic groups in the top-𝑘 result is

natural. For instance, in the above example, the foundation may wish to promote female students

in STEM by awarding a proportional number of scholarships to male and female applicants, i.e.,

the top-6 tuples in the output should include at least three females. Moreover, to expand access

to STEM education, the foundation may also wish to limit the extended scholarships granted to

students from high-income families. Namely, the top-3 results should include at most one student

with a high income. The scholarship query does not satisfy these constraints since the top-6 tuples

are 𝑡4, 𝑡7, 𝑡8, 𝑡10, 𝑡11 and 𝑡12, which includes only two females (𝑡8 and 𝑡11), and the top-3 includes two

students from high-income families (𝑡4 and 𝑡8).

In this paper, we propose a novel in-processing method to improve the diversity of a ranking by

refining the query that produces it.

Example 1.2. The scholarship query may be refined by adjusting the condition on Activity to
include students involved in Science Olympiad (𝑆𝑂), resulting in the following query:
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SELECT DISTINCT ID, Gender, Income
FROM Students NATURAL JOIN Activities
WHERE GPA >= 3.7 AND (Activity = 'RB' OR Activity = 'SO')
ORDER BY SAT DESC

Note that the essence of the query (selecting students who have displayed interest in STEM) is

maintained by the refined query, while the constraints are satisfied as the top-6 tuples (𝑡1, 𝑡2, 𝑡4, 𝑡6, 𝑡7,

and 𝑡8) consist of three women (𝑡2, 𝑡6 and 𝑡8) where the top-3 includes only a single student (𝑡4) with

high income.

The notion of refining queries to satisfy a set of diversity constraints was recently presented

in [26, 27], however, this work focuses on cardinality constraints over the entire output and does

not consider the order of tuples. The problem of ensuring diverse outputs in ranking queries has

received much recent attention from the research community [1, 9, 10, 23, 45, 46]. For instance,

in [10, 45, 46], output rankings are modified directly in a post-processing step, in order to satisfy a

given set of constraints over the cardinality of protected groups in the ranking. E.g., to fulfill the

desired constraints in the above example, the foundation may manipulate the output, awarding 𝑡4,

𝑡5, 𝑡6, 𝑡7, 𝑡8 and 𝑡10 with a scholarship, where 𝑡4, 𝑡5 and 𝑡6 will get the extended grant. However, this

leaves open the question of how one may obtain such a ranking in the first place.

Further, post-processing may be problematic to use to improve diversity, for two reasons: (1)

by definition, it modifies the results after they were computed, raising a procedural fairness

concern, and (2) it may explicitly use information about demographic or otherwise protected

group membership, raising a disparate treatment concern. In contrast, in-processing is usually

legally permissible, essentially because it applies the same evaluation process to all individuals.

That is, by modifying the query we produce a new set of requirements, and test all individuals

against these same requirements. In contrast, post-processing methods may decide to include or

exclude individuals based on which groups they belong to, therefore treading individuals differently

depending on group membership. Alternative in-processing solutions involve adjustments to

the ranking algorithm [1] or modifying items to produce a different score [9, 23]. Our approach,

conversely, assumes the ranking algorithms and scores of different items are well-designed and

fixed, and we aim to modify the set of tuples to be ranked.

Our goal is to find minimal refinements to the original query that fulfill a specified set of

constraints, however, we note that the notion of minimality may be defined in different ways,

depending, for example, on the legal requirements or on the user’s preferences.

Example 1.3. We may refine the scholarship query by relaxing the GPA requirement to 3.6 and

including students who participated in a game development activity (𝐺𝐷), obtaining the following

query:

SELECT DISTINCT ID, Gender, Income
FROM Students NATURAL JOIN Activities
WHERE GPA >= 3.6 AND (Activity = 'RB' OR Activity = 'GD')
ORDER BY SAT DESC

Similarly to the refined query from Example 1.2, the top-6 students (𝑡3, 𝑡4, 𝑡7, 𝑡8, 𝑡10, and 𝑡11) include

three women (𝑡3, 𝑡8, and 𝑡11), and there is only a single high-income student (𝑡3) among the top-3.

While the predicates of this refined query are intuitively more distant from the original query than

our prior refinement in Example 1.2 (two modifications compared to a single one), its output is

more similar to the output of the original query (the top-3 sets differ by one tuple).

To accommodate different alternative query relaxation objectives, as illustrated above, we propose

a framework that allows the user to specify their preferred notion of minimality.

To the best of our knowledge, our work is the first to intervene on the ranking process by

modifying which items are being considered by the ranking algorithm. This admits a large class of
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ranking algorithms while keeping the relative order of tuples consistent. This—of course—does not

come for free; the coarseness of refinements means that there may be no refinement that produces

a satisfactorily diverse ranking. Therefore, we study the problem of finding a refined query that is

within a specified maximum distance from satisfying all of the constraints, if one exists.

Contributions & roadmap. We begin by formalizing the Best Approximation Refinement

problem of obtaining a refined query that is closest, according to a given distance measure, to

the original query, while still adhering to a set of cardinality constraints within a maximum

distance, and show that this problem is NP-hard (Section 2). We thus propose modeling the

problem as a mixed-integer linear program (MILP) and utilizing it to derive an approximate solution

(Section 3). Inspired by the use of data annotations (provenance) to perform what-if analysis, i.e., to

efficiently reevaluate queries using algebraic expression without constantly accessing a DBMS (see,

e.g., [3, 15, 16, 31]), we construct the MILP using data annotation variables. This formulation offers

two advantages: it allows us to leverage the effectiveness of existing MILP solvers while avoiding

the costly reevaluation of queries on the DBMS.

Existing MILP solvers may solve the problem efficiently however their performance is sensitive to

the size of the program. The program generated in Section 3 is linear in the data size, which can be

challenging in real-life scenarios as we demonstrate in our experimental evaluation. We, therefore,

propose optimizations to make our approach more scalable, using the relevancy of the data and

the structure of the set of cardinality constraints to prune and relax our problem (Section 4). In

Section 5, we present an extensive experimental evaluation. We developed a dedicated benchmark

consisting of real-life datasets and considering realistic scenarios. Our results show the efficiency

and scalability of our approach with respect to different parameters of the problem.

2 PROBLEM OVERVIEW
In this paper, we consider the class of conjunctive Select

1
-Project-Join (SPJ)

2
queries with an ORDER

BY 𝑠 clause, generating a ranked list of tuples, where 𝑠 is a score function of a single tuple 𝑡 . A

query 𝑄 may have numerical and categorical selection predicates, denoted Num(𝑄) and Cat(𝑄),
respectively. Numerical predicates are of the form 𝐴 ⋄𝐶 , where 𝐴 is a numerical attribute, 𝐶 ∈ R,
and ⋄ ∈ {<, ≤,=, >, ≥}. Categorical predicates are of the form ∨

𝑐∈𝐶 𝐴 = 𝑐 , where 𝐴 is a categorical

attribute and𝐶 is a set of constants from the domain of𝐴. Selection operators combine predicates by

taking their conjunction. We use Preds(𝑄) to denote the set of attributes appearing in the selection

predicates of 𝑄. In the rest of the paper, we simply use query to refer to such queries.

2.1 Preliminaries
Cardinality constraints. Imposing constraints on the cardinality of tuples belonging to a

certain group in a query result to mitigate bias and improve diversity was studied in [27, 32]. In the

context of ranking, cardinality constraints are used over the top-𝑘 of the ranking for various values

of 𝑘 (see, e.g., [10, 33, 45]). Following this vein of research, we allow users to define constraints on

the cardinality of groups (i.e., data subgroups) for this setting.

A group is a collection of tuples that share the same value(s) for one or more (categorical)

attributes and is defined by a conjunction of conditions over values of the attributes. For instance,

in Example 1.1, the group including women students is defined by the condition Gender = 𝐹 and

consists of students 𝑡2, 𝑡3, 𝑡5, 𝑡6, 𝑡8, 𝑡9, 𝑡11, and 𝑡14. The group of low-income women candidates is

then defined by the condition Gender = 𝐹 ∧ Income = 𝐿𝑜𝑤 and consists of students 𝑡2, 𝑡3, 𝑡6, 𝑡11,

and 𝑡14. A cardinality constraint ℓ𝐺,𝑘 = 𝑛 (or 𝓊𝐺,𝑘 = 𝑛) specifies a lower (or an upper) bound of 𝑛

1DISTINCT is supported, and is used to select individuals uniquely if they should not appear more than once in the output.

2
We note that the system may be extended easily to handle unions, but we omit its description here due to space constraints.
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tuples belonging to a group 𝐺 appearing within the top-𝑘 tuples of the result. For instance, in our

running example, the constraint “at least 3 of the top-6 candidates are women”, can be expressed as

ℓGender=𝐹,𝑘=6 = 3. Multiple cardinality constraints may be composed together, forming a constraint

set that we denote by C.

Refinements. We use the notion of query refinement defined in [30]. Given a query 𝑄 , a

refinement of 𝑄 modifies its selection predicates. A numerical predicate 𝐴 ⋄𝐶 ∈ Num(𝑄) is a
modification to the value of 𝐶 . For categorical predicates

∨
𝑐∈𝐶 𝐴 = 𝑐 ∈ Cat(𝑄), a refinement is

done by adding and/or removing predicates from the set of values 𝐶 . We say that a query 𝑄 ′
is a

refinement of query 𝑄 if 𝑄 ′
is obtained from 𝑄 by refining some predicates of 𝑄 .

Example 2.1. The scholarship query has two predicates: a numerical predicate GPA ≥ 3.7 and
a categorical predicate Activity = ‘RB’. A possible refinement of the numerical predicate may

be GPA ≥ 3.6. The categorical predicate may be refined by adding ‘GD’ to 𝐶 . The refined query

resulting from 𝑄 by applying these refinements is the query depicted in Example 1.3.

2.2 Refinement Distance
Our objective is to find a refinement 𝑄 ′

that fulfills a specified set of constraints and preserves the

essence of the intent of query 𝑄 , i.e., is in some sense close to 𝑄 . A key question is how to measure

the distance between a query 𝑄 and a refinement 𝑄 ′
.

Recall from Example 1.3 that there may be multiple ways to define such distance. In this paper,

we support distance functions of two kinds — those that compare the predicates of 𝑄 and 𝑄 ′

(predicate-based) and those that compare the top-𝑘 results of 𝑄 and 𝑄 ′
, either as sets or in ranked

order (outcome-based). In both cases, a distance function returns a real number, with a smaller

value indicating closer proximity between 𝑄 and 𝑄 ′
. As we will discuss later, we use mixed-integer

linear programming to find query refinements. Hence, the distance function must be linear (or able

to be linearized) in the variables of its input. However, this limitation still permits a diverse set of

valuable distance measures, as we demonstrate next.

Predicate-based distance. Given a query 𝑄 and a refinement 𝑄 ′
, a natural distance measure

with respect to a numerical predicate 𝑛𝑄 = 𝐴 ⋄ 𝐶 ∈ Num(𝑄) is |𝑛𝑄 .𝐶 − 𝑛𝑄 ′ .𝐶 |, where 𝑛𝑄 .𝐶

is the value of 𝐶 in 𝑛𝑄 and 𝑛𝑄 ′ .𝐶 is the value of 𝐶 in 𝑄 ′
. The distance between all numerical

predicates may be (normalized and) aggregated as

∑
𝑛𝑄 ∈Num(𝑄 )

|𝑛𝑄 .𝐶−𝑛𝑄′ .𝐶 |
𝑛𝑄 .𝐶

. The distance between

categorical attributes may be measured using the Jaccard distance, defined for a pair of sets

𝑅 and 𝑆 as 𝐽 (𝑅, 𝑆) = 1 − |𝑅∩𝑆 |
|𝑅∪𝑆 | . We may aggregate the distance across categorical predicates

as

∑
𝑐𝑄 ∈Cat(𝑄 ) 𝐽 (𝑐𝑄 .𝐶, 𝑐𝑄 ′ .𝐶), where 𝑐𝑄 ′ ∈ Cat(𝑄 ′) is the corresponding categorical attribute of

𝑐𝑄 ∈ Cat(𝑄) (𝑐𝑄 and 𝑐𝑄 ′ are of the form
∨
𝑐∈𝐶 𝐴 = 𝑐).

Combining numerical and categorical components, we formulate the predicate-based distance

between 𝑄 and 𝑄 ′
as:

𝐷𝐼𝑆𝑝𝑟𝑒𝑑 (𝑄,𝑄 ′) =
∑︁

𝑛𝑄 ∈Num(𝑄 )

|𝑛𝑄 .𝐶 − 𝑛𝑄 ′ .𝐶 |
𝑛𝑄 .𝐶

+
∑︁

𝑐𝑄 ∈Cat(𝑄 )
𝐽 (𝑐𝑄 .𝐶, 𝑐𝑄 ′ .𝐶)

Example 2.2. Let𝑄 ′
and𝑄 ′′

be the refinements of the scholarship query 𝑄 shown in Examples 1.2

and 1.3, respectively. We compute 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 (𝑄,𝑄 ′) = 3.7−3.7
3.7

+ (1 − | {𝑅𝐵} |
| {𝑅𝐵,𝑆𝑂 } | ) = 0.5, which is smaller

than 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 (𝑄,𝑄 ′′) = 3.7−3.6
3.7

+ (1 − | {𝑅𝐵} |
| {𝑅𝐵,𝐺𝐷 } | ) ≈ 0.53.

Outcome-based distance. Distance measures in this family compare the top-𝑘 items 𝑄 (𝐷)𝑘
and 𝑄 ′ (𝐷)𝑘 , for some value of 𝑘 . We consider two types of distance measures: those that look at
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Table 3. Relation used for proof of Theorem 2.5

X Y Z
A C 6

A D 5

A D 4

B C 3

A C 2

B D 1

the top-𝑘 as sets, and those that are sensitive to the ranked order among the top-𝑘 items. We give a

couple of examples below, noting that many other set-wise and rank-aware distance metrics can be

defined.

A natural distance metric computes the Jaccard distance between the sets of top-𝑘 items of 𝑄

and 𝑄 ′
: 𝐷𝐼𝑆 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 (𝑄,𝑄 ′, 𝑘) = 𝐽 (𝑄 (𝐷)𝑘 , 𝑄 ′ (𝐷)𝑘 ).

Example 2.3. Let 𝑄 ′
and 𝑄 ′′

, again, be the refinements of the scholarship query 𝑄 shown in

Examples 1.2 and 1.3, respectively. Then, 𝐷𝐼𝑆 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 (𝑄,𝑄 ′, 𝑘 = 3) = 1 − | {𝑡4 } |
| {𝑡1,𝑡2,𝑡4,𝑡7,𝑡8 } | = 0.8, while

𝐷𝐼𝑆 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 (𝑄,𝑄 ′′, 𝑘 = 3) = 1 − | {𝑡4,𝑡7 } |
| {𝑡3,𝑡4,𝑡7,𝑡8 } | = 0.5.

Observe that𝑄 ′′
is closer to𝑄 according to 𝐷𝐼𝑆 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 at top-3, while𝑄

′
is closer to𝑄 according

to 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 .

Recall that query refinement does not reorder tuples. That is, tuples that belong to 𝑄 (𝐷)𝑘 ∩
𝑄 ′ (𝐷)𝑘 will appear in the same relative order in both top-𝑘 lists. As another alternative, a rank-

aware measure may, for example, use a variant of Kendall’s 𝜏 [22] that was proposed by Fagin

et al. [17] to compare the top-𝑘 items of 𝑄 and 𝑄 ′
. In a nutshell, this measure, which we denote

𝐷𝐼𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙 (𝑄,𝑄 ′, 𝑘), considers the new tuples in the top-𝑘 (i.e., 𝑄 ′ (𝐷)𝑘 \ 𝑄 (𝐷)𝑘 ), and computes

how much the tuples in the original top-𝑘 (𝑄 (𝐷)𝑘 ) were displaced. (Cases 2 and 3 from [17] apply

in our setting.)

Intuitively, if 𝐷𝐼𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙 (𝑄,𝑄 ′, 𝑘 = 3) < 𝐷𝐼𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙 (𝑄,𝑄 ′′, 𝑘 = 3), then the tuples 𝑄 ′′ (𝐷)𝑘 \
𝑄 (𝐷)𝑘 are positioned closer to the top of the list than those in 𝑄 ′ (𝐷)𝑘 \𝑄 (𝐷)𝑘 .

Example 2.4. To illustrate 𝐷𝐼𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙 , we introduce a new refinement 𝑄 ′′′
, which we define as:

SELECT DISTINCT ID, Gender, Income
FROM Students NATURAL JOIN Activities
WHERE GPA >= 3.6 AND (Activity = 'CS' OR Activity = 'MO')
ORDER BY SAT DESC

Observe that 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 (𝑄,𝑄 ′′) = 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 (𝑄,𝑄 ′′′) and 𝐷𝐼𝑆 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 (𝑄,𝑄 ′′, 𝑘 = 3) =

𝐷𝐼𝑆 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 (𝑄,𝑄 ′′′, 𝑘 = 3). However, the resulting ranking of 𝑄 ′′′ (𝐷) is [𝑡4, 𝑡5, 𝑡7, 𝑡8, 𝑡10, 𝑡11, 𝑡12].
This refinement includes a new tuple 𝑡5 in the output where it ranks second, while in 𝑄 ′′

, the

new tuple included (𝑡3) ranks first in 𝑄 ′′ (𝐷). However, we find that 𝐷𝐼𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙 (𝑄,𝑄 ′′, 𝑘 = 3) >

𝐷𝐼𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙 (𝑄,𝑄 ′′′, 𝑘 = 3), meaning that 𝑄 ′′′
is preferable to 𝑄 ′′

according to this measure.

These measures can be combined to formulate new measures that take into account both the

queries’ predicate distance and the outputs, e.g., using a weighted function.

2.3 Problem Formulation
Given a query 𝑄 , a set of cardinality constraints C, and a distance measure, our goal is to find a

refinement with minimal distance from 𝑄 that satisfies the set of constraints. However, we can

show that such a refinement may not exist.
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Theorem 2.5. There exists a database 𝐷 , a query 𝑄 over 𝐷 , and a constraint set C such that no

refinement of 𝑄 evaluated over 𝐷 satisfies C.

Proof. We prove this claim by a simple example. Let𝑄 be the query SELECT * FROM "Table 3"
WHERE Y = ‘C’ OR Y = ‘D’ ORDER BY Z DESC. Let us require that 2 tuples from group X = ‘B’
(or just 𝐵 for brevity) appear in the top-3 of the ranking, i.e., setting ℓ𝑋=′𝐵′,𝑘=3 = 2. The original

query evaluated over Table 3 selects the entire table, resulting in a ranking with no tuples belonging

to 𝐵 in the top-3. There are then only two possible refinements on the original query: Y = ‘C’ or Y
= ‘D’. In both cases, there is only 1 item of 𝐵 in the top-3. Neither the original query nor any of its

possible refinements result in a query that satisfies the constraints. □

Theorem 2.5 motivates the need to find a refinement that deviates as little as possible from

satisfying the constraint set in the case that exact constraint satisfaction is impossible, which allows

us to provide results that are more useful to the user than simply stating its infeasibility. To measure

the deviation from the satisfaction of a given set of constraints C, we leverage the notion of the

mean absolute percentage error, as was done in [4]. Specifically, we use it to measure the deviation

from the constraints over groups in C and their cardinalities in the output of the (refined) query.

We modify its definition to not penalize rankings that are above (below) the cardinalities specified

in lower (upper) bound constraints for a group.

Definition 2.6 (Deviation). Recall that 𝑄 (𝐷)𝑘 denotes the top-𝑘 tuples in the output of the query

𝑄 over a database 𝐷 . The deviation between C and 𝑄 , 𝐷𝐸𝑉 (𝑄 (𝐷), C) is given by

1

|C|
∑︁

(𝒸𝐺,𝑘=𝑛) ∈C

max (Sign(𝒸) · (𝑛 − |𝑄 (𝐷)𝑘 ∩𝐺 |), 0)
𝑛

where Sign(𝒸) is 1 for lower-bound constraints (ℓ) and −1 for upper-bound constraints (𝓊). Larger

values represent a larger violation of the constraint set.

When computing deviation, we assume that the output of𝑄 (𝐷) has at least the number of tuples

of the largest 𝑘 with a constraint in C. We refer to this quantity throughout as 𝑘∗. We are now

ready to formally define the Best Approximation Refinement problem.

Definition 2.7 (Best Approximation Refinement). Given a database 𝐷 , a query𝑄 , a constraint set

C, a maximum deviation from the constraint set 𝜀 ≥ 0, and a distance measure𝐷𝐼𝑆 : 𝑄 ×R×𝑘 → R,
the answer to the Best Approximation Refinement problem is the refinement 𝑄 ′

in

argmin

𝑄 ′∈R
𝐷𝐼𝑆 (𝑄,𝑄 ′, 𝑘) such that 𝐷𝐸𝑉 (𝑄 ′ (𝐷), C) ≤ 𝜀

where R is the set of possible refinements of 𝑄 that have at least 𝑘∗ tuples in in their output. Note

that the 𝑘 parameter is optional in the distance measure (e.g., 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 does not include it). A special

value is returned if there is no refinement 𝑄 ′
with constraint set deviation at most 𝜀.

Best Approximation Refinement provides the most similar (according to the given similarity

definition) refinement with an acceptable deviation from satisfying the constraint set.

We can show that this problem is NP-hard.

Theorem 2.8. Best Approximation Refinement is NP-hard.

The proof is based on a reduction from Vertex-Cover, a well-known NP-complete decision
problem [21]. To this end, we define the following corresponding decision problem. Given a database

𝐷 , a query 𝑄 , a constraint set C, a maximum deviation from the constraint set 𝜀 ≥ 0, a value 𝑘 , a

distance measure 𝐷𝐼𝑆 : 𝑄 × R × 𝑘 → R and a maximum distance 𝛿 ≥ 0, determine whether there

exists a refinement 𝑄 ′ ∈ R such that 𝐷𝐸𝑉 (𝑄 ′ (𝐷), C) ≤ 𝜀 and 𝐷𝐼𝑆 (𝑄,𝑄 ′, 𝑘) ≤ 𝛿 .
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An input to the Vertex-Cover problem consists of an undirected graph𝐺 = (𝑉 , 𝐸) and a number

𝑆 , and the goal is to determine whether there exists a vertex cover, i.e., a subset of vertices 𝑉 ′ ⊆ 𝑉

such that for every edge (𝑢, 𝑣) in 𝐸, one or both of its endpoints, 𝑢 and 𝑣 , are in 𝑉 ′
and |𝑉 ′ | ≤ 𝑆 .

Given𝐺 = (𝑉 , 𝐸) and 𝑆 , we create an input to our problem as follows. The database 𝐷 consists of a

single relation that encodes the graph’s edges, as well as dummy edges necessary to satisfy the

minimum cardinality assumption made for calculating deviation. The query 𝑄 is a query with a

categorical predicate selecting the edges with an endpoint in a given set of vertices with an ORDER
BY clause that always places dummy edges below real edges. We construct a set of cardinality

constraints that are perfectly satisfied if and only if all the real edges are selected. Then, by using

the 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 measure, we set 𝛿 such that there is only a refinement if there are at most 𝑆 vertices

selected as the covering and set 𝜀 to 0. The details of the reduction and its correctness proof are

given in [8].

3 FINDING THE BEST APPROXIMATION
Our problemmay be solved naïvely by an exhaustive search over the possible refinements. However,

the search space of refinements becomes intractably large even with relatively modest datasets,

as the number of possible refinements is exponential in the number of the query’s attributes.

Beyond the high cost of an exhaustive search, a naïve solution would require the evaluation of each

refinement query on the DBMS to check its deviation from the constraint set.

To address these challenges, we propose a solution based on a mixed-integer linear program

(MILP). Mixed-integer linear programming is a model for optimizing a linear objective function

subject to a set of expressions (equalities and inequalities) linear in the discrete or continuous

variables of the problem, limiting the space of feasible assignments. Solvers for such programs have

been developed with techniques to solve even large problems efficiently in practice, as discussed in

[43]. By incorporating the concepts introduced in [27, 32], we utilize data annotations to depict

potential refinements. These annotations serve as variables in the MILP, and enable us to quantify

the deviation from the constraint set without having to reevaluate refinements across the DBMS.

Briefly, a solution for a MILP is an assignment for the variables in the expressions, such that they

are satisfied and the objective function is minimized. Intuitively, given a database 𝐷 , a query 𝑄 , a

constraint set C, a maximum deviation from the constraint set 𝜀 ≥ 0, and a distance measure 𝐷𝐼𝑆 ,

we construct an instance of MILP such that the solution corresponds to a minimal refinement that

produces a ranking such that its deviation is within the maximum deviation 𝜀 from the constraint

set C while minimizing 𝐷𝐼𝑆 . By formulating Best Approximation Refinement as a MILP, we can

leverage existing tools to streamline the search process.

It is important to note that by using MILP to represent the problem, we are limited to distance

measures that can be modeled by a linear program. However, this limitation still allows a wide

range of useful distance measures, including the ones defined in Section 2.2. Some of these measures

may require additional modeling techniques to become linearized. For example, when modeling the

Jaccard distance, we can use the Charnes-Cooper transformation [11]. Similarly, we can introduce

auxiliary variables to model the version of Kendall’s 𝜏 for top-𝑘 lists introduced in [17].

The MILP instance we construct consists of two main groups of expressions: those that require

that all tuples selected by the refinement are in the ranking according to the ORDER BY expression

of 𝑄 , and those that enforce that the derived ranking’s deviation from the constraint set does not

exceed the input bound 𝜀. We next explain the construction of the expressions in each set, and, in

order to give a more intuitive picture of the process, demonstrate in Figure 2 how variables are

generated from a running example and how they are combined by these expressions.
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Table 4. Summary of variables used in our MILP model

Var. Domain Description
𝐶𝐴,⋄ R Refined𝐶 for a num. predicate on 𝐴 with operator ⋄
𝐴𝑣 {0, 1} Whether a value 𝑣 is selected by the cat. predicate on 𝐴

𝐴𝑣,⋄ {0, 1} Whether a value 𝑣 is in the range of the num. predicate on 𝐴

with operator ⋄
𝑟𝑡 {0, 1} Whether tuple 𝑡 is selected by the refinement

𝑠𝑡 R Rank of tuple 𝑡 in the ranking generated by the refinement

𝑙𝑡,𝑘 {0, 1} Whether tuple 𝑡 is present in the top-𝑘 of the ranking generated

by the refinement

𝐸𝐺,𝑘 R Number of tuples to add (remove) to satisfy lower-bound (upper-

bound) cardinality constraint

Table 5. 𝑄 obtained from scholarship query

ID Gender Income Lineage(𝑡 )
𝑡1 M Medium {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 ,𝐺𝑃𝐴3.7}
𝑡2 F Low {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 ,𝐺𝑃𝐴3.8}
𝑡3 F Low {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐺𝐷 ,𝐺𝑃𝐴3.6}
𝑡4 M High {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑅𝐵,𝐺𝑃𝐴3.8}
𝑡 ′
4

M High {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑇𝑈 ,𝐺𝑃𝐴3.8}
𝑡5 F Medium {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑀𝑂 ,𝐺𝑃𝐴3.6}
𝑡6 F Low {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 ,𝐺𝑃𝐴3.7}
𝑡7 M Low {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑅𝐵,𝐺𝑃𝐴3.7}
𝑡8 F High {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑅𝐵,𝐺𝑃𝐴3.9}
𝑡 ′
8

F High {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑇𝑈 ,𝐺𝑃𝐴3.9}
𝑡10 M High {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑅𝐵,𝐺𝑃𝐴3.7}
𝑡11 F Low {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑅𝐵,𝐺𝑃𝐴3.8}
𝑡12 M Medium {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑅𝐵,𝐺𝑃𝐴4.0}
𝑡14 F Low {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑅𝐵,𝐺𝑃𝐴3.7}

3.1 Modeling Refinement Output Using Expressions
Inspired by the use of provenance for query refinements [27, 32], we utilize the notion of data

annotations to model refinements through a set of expressions. This set is divided into two parts.

The first part is used to model the tuples that satisfy the refinement query’s predicates, while the

second part ensures that the selected tuples are ordered correctly by the ORDER BY expression of

the input query. We start by describing the variables used in the expressions.

Variables. Given a query 𝑄 and a database 𝐷 , for each categorical predicate in Cat(𝑄) over an
attribute 𝐴, we define a variable 𝐴𝑣 ∈ {0, 1} for each value 𝑣 in the domain of 𝐴 in 𝐷 . Intuitively,

a solution to the MILP where 𝐴𝑣 = 1 corresponds to a refinement that includes 𝐴 = 𝑣 in the

categorical predicates. For each numerical predicate 𝐴 ⋄𝐶 ∈ Num(𝑄), we define a variable 𝐶𝐴,⋄
whose value is in the range of values of 𝐴 in 𝐷 , and a set of variables 𝐴𝑣,⋄ for each value 𝑣 in the

domain of 𝐴 in 𝐷 .

Example 3.1. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑅𝐵 and 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 are two of the variables generated by the categorical

predicate Activity = ‘RB’ since these values are present in the database. The variable 𝐶𝐺𝑃𝐴,≥
is generated from the numerical predicate GPA >= 3.7. Additionally, the variable 𝐺𝑃𝐴3.7,≥ is

generated since there exists a tuple in the data with the value 3.7 in the GPA attribute.

The value of𝐶𝐴,⋄ represents the value of the constant𝐶 in the refinement query, and the variables

𝐴𝑣,⋄ are used to determine whether a given tuple 𝑡 in𝐷 (with the value 𝑣 in𝐴) satisfies that predicate
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over 𝐴 in the refined query. More concretely, the variable 𝐴𝑣,⋄ is used to reflect whether 𝑣 ⋄𝐶𝐴,⋄ .
Finally, we use a variable 𝑟𝑡 to denote the existence of a tuple 𝑡 in the output of a refinement query

and a variable 𝑠𝑡 to indicate the position of 𝑡 in the output.

Expressions. We formulate a set of expressions such that the assignment generated by a solver

to the MILP instance corresponds to the set of tuples selected by the corresponding refinement

query. A tuple is part of a query’s output if it satisfies its predicates set. We first define expressions

for numerical predicates. Intuitively, a tuple 𝑡 with value 𝑣 in attribute 𝐴 satisfies the predicate

𝐴 ⋄𝐶𝐴,⋄ if 𝑣 ⋄𝐶𝐴,⋄ . For lower-bound predicates, i.e., when 𝐴 ≥ 𝐶 or 𝐴 > 𝐶 , we model this using the

following MILP expressions for each predicate in Num(𝑄) and each value 𝑉 in the domain of 𝐴

in 𝐷 .

𝐶𝐴,⋄ +𝑀𝐴 · 𝐴𝑣,⋄ ≥ 𝑣 + (1 − St(⋄)) · 𝛿
𝐶𝐴,⋄ −𝑀𝐴 · (1 −𝐴𝑣,⋄) ≤ 𝑣 − St(⋄) · 𝛿 (1)

where𝑀𝐴 is a constant larger than the maximum absolute value in the domain of the attribute 𝐴

in 𝐷 , St(⋄) is 1 if ⋄ is a strict inequality and 0 otherwise, and 𝛿 is some small constant added when

⋄ is strict in order to relax the inequality as MILP expressions do not support strict inequalities.

We choose 𝛿 to be smaller than the smallest pairwise difference between the values in the domain

of 𝐴, ensuring the relaxation does not include another value from the domain. For upper-bound

predicates, we instead use the following set of expressions.

𝐶𝐴,⋄ −𝑀𝐴 · 𝐴𝑣,⋄ ≤ 𝑣 − (1 − St(⋄)) · 𝛿
𝐶𝐴,⋄ +𝑀𝐴 · (1 −𝐴𝑣,⋄) ≥ 𝑣 + St(⋄) · 𝛿 (2)

Intuitively, the first expressions in (1) and (2) ensure that 𝐴𝑣,⋄ is 1 if 𝑣 ⋄𝐶𝐴,⋄ is true and the second

expressions are used to ensure that 𝐴𝑣,⋄ is 0 if 𝑣 ⋄𝐶𝐴,⋄ is false. Together, they enforce that 𝐴𝑣,⋄ is 1
if and only if 𝑣 ⋄𝐶𝐴,⋄ is true.

Example 3.2. Continuing with our example, the following expressions are generated using the

variables 𝐶𝐺𝑃𝐴,≥ and 𝐺𝑃𝐴3.7,≥ for the numerical predicate GPA ≥ 3.7 in the scholarship query.

𝐶𝐺𝑃𝐴,≥ + 5 ·𝐺𝑃𝐴3.7,≥ ≥ 3.701

𝐶𝐺𝑃𝐴,≥ − 5 · (1 −𝐺𝑃𝐴3.7,≥) ≤ 3.7

Here𝑀𝐴 is set to 5, a value greater than any value of the attribute GPA in the data, and St(⋄) is 0
(since the inequality in the predicate is not strict). Consider an assignment that assigns the 3.7 to

𝐶𝐺𝑃𝐴,≥ . This assignment corresponds to a query with the predicate GPA ≥ 3.7. Assigning this

value to the above expression results in

3.7 + 5 ·𝐺𝑃𝐴3.7,≥ ≥ 3.701

3.7 − 5 · (1 −𝐺𝑃𝐴3.7,≥) ≤ 3.7

In this case, the value of 𝐺𝑃𝐴3.7,≥ should be 1 as well, indicating that tuples with a value ≥ 3.7 in

the GPA attribute meet the condition. Indeed, these expressions can be satisfied if and only if the

variable 𝐺𝑃𝐴3.7,≥ is assigned the value 1. Notice that adding 𝛿 in the first expression is necessary

in order to guarantee that the only valid assignment for𝐺𝑃𝐴3.7,≥ is 1.

Next, we construct expressions that model the existence of a tuple in the query’s output (rep-

resented using the variable 𝑟𝑡 ). The expressions should be able to model any possible refinement.

Note that the output of a refinement may include tuples that are not part of the output of the

original query. To this end, we use𝑄 to denote the query obtained from𝑄 by omitting the selection

predicates and any DISTINCT statement. Intuitively, the output of 𝑄 over 𝐷 contains the output of

every possible refinement query. A tuple 𝑡 is in the output of a query𝑄 if 𝑡 satisfies all the predicates
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in 𝑄 . To indicate whether 𝑡 is part of the output, we leverage the notion of lineage. The lineage of a

tuple 𝑡 ∈ 𝑄 (𝐷) is the set of variables𝐴𝑣 and𝐴𝑣,⋄ that correspond to the values of 𝑡 for each attribute
in Attr(𝑄): Lineage(𝑡) = {𝐴𝑡 .𝐴 | ∀ (∨𝑐∈𝐶 𝐴 = 𝑐) ∈ Cat(𝑄)} ∪ {𝐴𝑡 .𝐴,⋄ | ∀(𝐴 ⋄𝐶) ∈ Num(𝑄)}.
Table 5 shows the result of 𝑄 (𝐷) in our running example with the lineage annotation for each

tuple.

Since the value of each variable 𝐴𝑡 .𝐴 = 1 or 𝐴𝑡 .𝐴,⋄ = 1 indicates the satisfaction of a predicate

over 𝐴 by 𝑡 , a tuple 𝑡 is in the output of 𝑄 if all predicates in 𝑄 are true for 𝑡 , i.e.,
∑
𝑝∈Lineage(𝑡 ) 𝑝 =

|{Preds(𝑄)}|. We use this property to construct an expression that models the behavior of 𝑟𝑡 for

each tuple 𝑡 ∈ 𝑄 (𝐷). Note that tuples appearing once in 𝑄 (𝐷) may appear multiple times in 𝑄 (𝐷).
E.g., when using DISTINCT selection after a join operation, as the case in the scholarship query,

where the tuples denoted by 𝑡4 and 𝑡
′
4
represent the same student ID (that appears once in the output).

To address this case, we define 𝑆 (𝑡) = {𝑡 ′ | 𝑡 ′ ∈ 𝑄 (𝐷), ∀𝑎 ∈ Distinct(𝑄) 𝑡 .𝑎 = 𝑡 ′ .𝑎, 𝑄 (𝐷) (𝑡 ′) <
𝑄 (𝐷) (𝑡)} where Distinct(𝑄) is the set of attributes selected distinctly by 𝑄 . Namely, for a tuple 𝑡 ,

𝑆 (𝑡) is the set of tuples with the same values on attributes selected distinctly that are ranked closer

to the top than 𝑡 . For instance, in our example 𝑆 (𝑡 ′
4
) = {𝑡4}. Intuitively, at most one tuple from

𝑆 (𝑡) ∪ {𝑡} can appear in the output of the refined query (depending on its selection predicates). We

therefore add the following expression to the MILP.

0 ≤
∑︁

𝑝∈Lineage(𝑡 )
𝑝 +

∑︁
𝑡 ′∈𝑆 (𝑡 )

(1 − 𝑟𝑡 ′ ) − (|Preds(𝑄) | + |𝑆 (𝑡) |) · 𝑟𝑡

≤ |Preds(𝑄) | + |𝑆 (𝑡) | − 1

(3)

The lower bound of this expression prevents 𝑟𝑡 from being assigned 1 if not all attributes of the

tuple satisfy the predicate of the corresponding refinement or any tuples sharing its distinct values

ranked better than it were already selected. Similarly, the upper bound is used to ensure that 𝑟𝑡
is assigned the value 1 in case that all of the attributes of the tuple satisfy the predicate of the

corresponding refinement and none of the tuples sharing its distinct values ranked better than it

were already selected
3
.

Example 3.3. Consider 𝑡6 in Table 5. The lineage of 𝑡6 is the set of variables {𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 ,𝐺𝑃𝐴3.7,≥},
|Preds(𝑄) | = 2, and the set 𝑆 (𝑡6) is empty given there is only 1 tuple with ID 6 in 𝑄 (𝐷). Thus, the
MILP instance has the expression

0 ≤ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 +𝐺𝑃𝐴3.7,≥ − 2 · 𝑟𝑡6 ≤ 1

Assuming𝐺𝑃𝐴3.7,≥ = 1 and 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 = 1, 𝑟𝑡6 must be assigned 1, indicating that 𝑡6 is part of the

output in this case.

Given these 𝑟𝑡 variables, we may enforce that there at least 𝑘∗ tuples in the output of the

refinement by the expression ∑︁
𝑡 ∈𝑄 (𝐷 )

𝑟𝑡 ≥ 𝑘∗ (4)

The last part required to complete the correspondence between the solution to the MILP instance

and the output of a refinement query is modeling the order of the output tuples (according to the

ORDER BY expression of the input query) through the MILP expressions. We use the set of variables

𝑠𝑡 for each tuple in 𝑄 (𝐷), which represents the position of 𝑡 in the output of the corresponding

refinement query. Intuitively, the position of a tuple 𝑡 in the output of the refinement query 𝑄 ′
is

3
Allowing the same entity (e.g., student ID in our example) appear multiple times in the output can be done by removing

DISTINCT from the input query.
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one plus the number of tuples 𝑡 ′ ∈ 𝑄 (𝐷) that are part of the output 𝑄 ′
and ranked higher than 𝑡

(i.e., 𝑄 (𝐷) (𝑡 ′) < 𝑄 (𝐷) (𝑡)). For tuples 𝑡 that are not part of the output of 𝑄 ′
, the variable 𝑠𝑡 will be

assigned a value larger than |𝑄 (𝐷) |. This is modeled using the following set of expressions.

1 + |𝑄 (𝐷) | · (1 − 𝑟𝑡 ) +
∑︁

𝑡 ′∈𝑄 (𝐷 ),
𝑄 (𝐷 ) (𝑡 ′ )<𝑄 (𝐷 ) (𝑡 )

𝑟𝑡 ′ = 𝑠𝑡 (5)

for each 𝑡 in 𝑄 (𝐷). Given this, we may further limit 𝑠𝑡 to be in the range [1, 2 · |𝑄 (𝐷) |].

Example 3.4. In our running example |𝑄 (𝐷) | = 14. Thus the expression 1 + 14 · (1 − 𝑟𝑡6 ) + 𝑟𝑡1 +
𝑟𝑡2 + 𝑟𝑡3 + 𝑟𝑡4 + 𝑟𝑡 ′

4

+ 𝑟𝑡5 = 𝑠𝑡6 is the expressions generated for the tuple 𝑡6. Assuming 𝑟𝑡1 , 𝑟𝑡2 , 𝑟𝑡4 and

𝑟𝑡6 are 1 (and the rest of the variables are 0), the value of 𝑠𝑡6 must be 4, indicating its position in the

ranking in this case.

3.2 Bounding Maximum Deviation
The second part of the solution consists of expressions whose goal is to limit the refinement

query’s output’s deviation from the constraint set C to be at most 𝜀. For each cardinality constraint

𝒸𝐺,𝑘 = 𝑛 in C, we are interested in the number of tuples belonging to group 𝐺 in the top-𝑘 of

the refined ranking to determine the number of tuples of group𝐺 needs to be added or removed

to satisfy 𝒸𝐺,𝑘 = 𝑛. To model this property, we introduce two sets of new variables 𝑙𝑡,𝑘 and 𝐸𝐺,𝑘 .

The variables 𝑙𝑡,𝑘 are used to indicate whether a tuple 𝑡 appears in the top-𝑘 ranked output of the

corresponding refinement query, and 𝐸𝐺,𝑘 represents the number of tuples from𝐺 in the top-𝑘 that

need to be added (removed) to satisfy lower-bound (upper-bound) cardinality constraints (i.e., 𝐸𝐺,𝑘
is equivalent to the numerator in the summation of Definition 2.6 for each cardinality constraint).

Intuitively, we may further specify that 𝐸𝐺,𝑘 ∈ [0, 𝑘].
We use a similar construction to the expressions in (1) to ensure that 𝑙𝑡,𝑘 = 1 if and only if the

tuple 𝑡 appears in the top-𝑘 as follows.

𝑠𝑡 + (2 · |𝑄 (𝐷) | + 1) · 𝑙𝑡,𝑘 ≥ 𝑘 + 𝛿

𝑠𝑡 − (2 · |𝑄 (𝐷) | + 1) · (1 − 𝑙𝑡,𝑘 ) ≤ 𝑘
(6)

where (2 · |𝑄 (𝐷) | + 1) is the constant coefficient that plays the role of 𝑀𝐴 in (1) and 𝛿 is a small

additive constant as in (1) and (2). We utilize the variables 𝑙𝑡,𝑘 to determine the values of 𝐸𝐺,𝑘 using

the following expressions for each cardinality constraint 𝒸𝐺,𝑘 = 𝑛 in C.
𝐸𝐺,𝑘 ≥ 0

𝐸𝐺,𝑘 ≥ Sign(𝒸) · ©­«𝑛 −
∑︁

𝑡 ∈𝑄 (𝐷 )∩𝐺

𝑙𝑡,𝑘
ª®¬ (7)

where

∑
𝑡 ∈𝑄 (𝐷 )∩𝐺 𝑙𝑡,𝑘 is the number of tuples belonging to group 𝐺 in the top-𝑘 .

Finally, to restrict the deviation of the refinement’s output to at most 𝜀, we construct the following

expression

1

|C|
∑︁

(𝒸𝐺,𝑘=𝑛) ∈C

𝐸𝐺,𝑘

𝑛
≤ 𝜀 (8)

Example 3.5. Consider again the database shown in Example 1.1 and the cardinality constraint

ℓ𝐺𝑒𝑛𝑑𝑒𝑟=‘𝐹𝑒𝑚𝑎𝑙𝑒′,𝑘=6 = 3. Tuples 𝑡2, 𝑡3, 𝑡5, 𝑡6, 𝑡8, 𝑡
′
8
, 𝑡11, and 𝑡14 are in the group Gender=‘Female’.
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Thus, we generate the expressions

𝐸𝐺𝑒𝑛𝑑𝑒𝑟=‘𝐹𝑒𝑚𝑎𝑙𝑒′,6 ≥ 0

𝐸𝐺𝑒𝑛𝑑𝑒𝑟=‘𝐹𝑒𝑚𝑎𝑙𝑒′,6 ≥ 3 − (𝑙𝑡2,6 + 𝑙𝑡3,6 + 𝑙𝑡5,6 + 𝑙𝑡6,6 + 𝑙𝑡8,6 + 𝑙𝑡 ′
8
,6 + 𝑙𝑡11,6 + 𝑙𝑡14,6)

where the value of 𝑙𝑡6,6, for instance, is used in the expressions

𝑠𝑡6 + 25 · 𝑙𝑡6,6 ≥ 6.001

𝑠𝑡6 − 25 · (1 − 𝑙𝑡6,6) ≤ 6

Continuing Example 3.4, assuming 𝑠𝑡6 is assigned the value 4, forcing the assignment of 1 to 𝑙𝑡6,6.

Assuming 𝑠𝑡2 = 2 and 𝑠𝑡8 = 6, we would similarly get that the value of 𝑙𝑡2,6 and 𝑙𝑡8,6 must be 1. Using

these values in expression generated by (7) results in

𝐸𝐺𝑒𝑛𝑑𝑒𝑟=‘𝐹𝑒𝑚𝑎𝑙𝑒′,6 ≥ 0

𝐸𝐺𝑒𝑛𝑑𝑒𝑟=‘𝐹𝑒𝑚𝑎𝑙𝑒′,6 ≥ 3 − (1 + 1 + 1) ≥ 0

This intuitively means that no additional tuples from the group Gender=‘Female’ are required to

satisfy the constraint.

We summarize our mixed-integer linear program in Figure 1, and its variables in Table 4. By

satisfying all of these expressions together, we produce rankings that are both valid and sufficiently

satisfactory of the constraint set. In fact, we can show that any satisfying assignment 𝛼 to the

variables in the expressions generated by (1)-(8) corresponds to a valid refinement that is sufficiently

satisfactory.

Theorem 3.6 (Solution correctness). Let 𝐷 be a dataset, 𝑄 be a query over 𝐷 , C be a set of

cardinality constraints, and 𝜀 ≥ 0 be a threshold over the deviation from C. There is an assignment 𝛼

satisfying the expressions generated by (1-8) if and only if there is a refinement 𝑄 ′
for 𝑄 such that

1○ For each (∨𝑐∈𝐶 𝐴 = 𝑐) ∈ Cat(𝑄 ′), 𝛼 (𝐴𝑐 ) = 1 ⇐⇒ 𝑐 ∈ 𝐶

2○ For each (𝐴 ⋄𝐶) ∈ Num(𝑄 ′), 𝛼 (𝐶𝐴,⋄) = 𝐶

3○ 𝐷𝐸𝑉 (𝑄 ′ (𝐷), C) ≤ 1

| C |
∑

(𝒸𝐺,𝑘=𝑛) ∈C
𝛼 (𝐸𝐺,𝑘 )

𝑛
≤ 𝜀

To prove this, we first show that there is an assignment 𝛼 satisfying the expressions (1)-(6) if and

only if there is a refinement of the query with properties 1○ and 2○ and that for each cardinality

constraint (𝒸𝐺,𝑘 = 𝑛) ∈ C and 𝑡 ∈ 𝐺 , it holds that 𝑡 ∈ 𝑄 ′ (𝐷)𝑘 ∩𝐺 ⇐⇒ 𝛼 (𝑙𝑡,𝑘 ) = 1. We then use

Definition 2.6 and expression (7) to prove the claim. See [8] for details.

Model limitation. Given an input to our program, we construct aMILP program. The correctness

of the solution generated by the program, as stated in Theorem 3.6, relies on three properties. First,

every possible refinement may be represented as an assignment to the variables of the program.

Second, the tuples in the output of any potential refinement are in the same relative order, and

finally, every tuple in the output satisfies all the predicates of the corresponding refinement. We

define the problem for SPJ queries, and thus, our model is designed to handle SPJ queries, and

these properties hold for them. We note that supporting other classes of queries may require

modifications to the problem definition as well as to our proposed model. For instance, in union

queries, it is enough for a tuple in the output to satisfy the predicates of one branch of the union,

in contrast to the third property. This may be handled straightforwardly, as noted in Section 2.

Handling nested queries is more challenging since they may contain multiple selection statements

at different nesting levels. The problem definition should first be extended to properly define how

such a query can be refined, e.g., whether refinements at different nesting levels are allowed. Our

proposed model cannot capture the refinement of selection statements in different nesting levels
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min 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸

s.t. 𝐶𝐴,⋄ +𝑀𝐴 · 𝐴𝑣,⋄ ≥ 𝑣 + (1 − St(⋄) ) · 𝛿 ∀(𝐴 ⋄ 𝐶 ) ∈ Num> (𝑄 )
𝐶𝐴,⋄ −𝑀𝐴 · (1 − 𝐴𝑣,⋄ ) ≤ 𝑣 − St(⋄) · 𝛿 ∀(𝐴 ⋄ 𝐶 ) ∈ Num> (𝑄 )
𝐶𝐴,⋄ −𝑀𝐴 · 𝐴𝑣,⋄ ≤ 𝑣 − (1 − St(⋄) ) · 𝛿 ∀(𝐴 ⋄ 𝐶 ) ∈ Num< (𝑄 )
𝐶𝐴,⋄ +𝑀𝐴 · (1 − 𝐴𝑣,⋄ ) ≥ 𝑣 + St(⋄) · 𝛿 ∀(𝐴 ⋄ 𝐶 ) ∈ Num< (𝑄 )

0 ≤
∑︁

𝑝∈Lineage(𝑡 )
𝑝 +

∑︁
𝑡 ′∈𝑆 (𝑡 )

(1 − 𝑟𝑡 ′ )

− ( |Preds(𝑄 ) | + |𝑆 (𝑡 ) | ) · 𝑟𝑡
≤ |Preds(𝑄 ) | + |𝑆 (𝑡 ) | − 1

∀𝑡 ∈ 𝑄 (𝐷 )

∑︁
𝑡 ∈𝑄 (𝐷 )

𝑟𝑡 ≥ 𝑘∗

1 + |𝑄 (𝐷 ) | · (1 − 𝑟𝑡 ) +
∑︁

𝑡 ′∈𝑄 (𝐷 ),
𝑄 (𝐷 ) (𝑡 ′ )<𝑄 (𝐷 ) (𝑡 )

𝑟𝑡 ′ = 𝑠𝑡 ∀𝑡 ∈ 𝑄 (𝐷 )

𝑠𝑡 + (2 · |𝑄 (𝐷 ) | + 1) · 𝑙𝑡,𝑘 ≥ 𝑘 + 𝛿 ∀𝑡 ∈ 𝑄 (𝐷 ), (𝒸𝐺,𝑘 = 𝑛) ∈ C

𝑠𝑡 − (2 · |𝑄 (𝐷 ) | + 1) · (1 − 𝑙𝑡,𝑘 ) ≤ 𝑘 ∀𝑡 ∈ 𝑄 (𝐷 ), (𝒸𝐺,𝑘 = 𝑛) ∈ C
𝐸𝐺,𝑘 ≥ 0 ∀(𝒸𝐺,𝑘 = 𝑛) ∈ C

𝐸𝐺,𝑘 ≥ Sign(𝒸) ·
©­­«𝑛 −

∑︁
𝑡 ∈𝜎𝐺 (𝑄 (𝐷 ) )

𝑙𝑡,𝑘
ª®®¬ ∀(𝒸𝐺,𝑘 = 𝑛) ∈ C

1

| C |
∑︁

(𝒸𝐺,𝑘=𝑛) ∈C

𝐸𝐺,𝑘

𝑛
≤ 𝜀

Fig. 1. Summary of our MILP model

Fig. 2. Diagram illustrating the expression generation for our running example. The predicate Activity =
‘RB’ AND GPA ≥ 3.7 generates the variables𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 and𝐺𝑃𝐴3.7,≥ as ‘SO’ and 3.7 are values that appear
for those attributes respectively in the database 𝐷 .𝐶𝐺𝑃𝐴,≥ is also generated by the predicate to hold the new
constant of the predicate, and constrains the value of𝐺𝑃𝐴3.7,≥ by (1). The tuple 𝑡6 ∈ 𝑄 generates the variable
𝑟6, whose value is constrained through (3) by the values of 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 and 𝐺𝑃𝐴3.7,≥ due to its lineage. It
also generates the variable 𝑠6, which is then constrained by the value of the 𝑟𝑡 values for the tuples that
rank better than it, i.e., 𝑟𝑡1..5 , through (5). Finally, the constraint ℓ𝐺𝑒𝑛𝑑𝑒𝑟=‘𝐹𝑒𝑚𝑎𝑙𝑒′,𝑘=6 = 3 combines with 𝑡6 to
generate the variable 𝑙𝑡6,6 which is constrained by the value of 𝑠𝑡6 by (6). The constraint generates the variable
𝐸𝐺𝑒𝑛𝑑𝑒𝑟=‘𝐹𝑒𝑚𝑎𝑙𝑒′,6 which is constrained through (7) by the values of all the 𝑙𝑡,6 variables for which 𝑡 is a part
of the group (listed in Example 3.5).

and, therefore, does not fulfill the first property. Moreover, if the ORDER BY clause relates to an

inner query, refining the inner query may change the relative order of the tuples in contrast to the

second property.
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4 OPTIMIZATIONS
In Section 3, we have presented a MILP formulation designed to solve the Best Approximation

Refinement problem. While this approach enables us to leverage existing MILP solvers that can

solve the problem efficiently, they often encounter difficulties when dealing with extensive programs

(containing numerous expressions), and a large number of variables [43]. While the number of

expressions and variables in the MILP we generate is linear in the data size, MILP solvers struggle

to scale and solve the generated programs as we show in Section 5.

To this end, we propose three optimizations for the construction of the MILP problem: one is

a general optimization that applies in all cases, and the other two are limited to some cases. The

first optimization is relevancy-based and removes from consideration tuples that are irrelevant to

determining the satisfaction of the constraint set. The second optimization reduces the number of

binary variables in the MILP problem by combining redundant variables. This optimization cannot

be applied for queries with a DISTINCT statement. The third optimization relaxes the expression

used to determine the score of a tuple in the new ranking. This optimization is only applicable to

tuples belonging to groups with only lower-bound or only upper-bound constraints, but not both.

Relevancy. We propose a relevancy-based optimization to reduce the number of expressions

and variables in our problem. Recall that we use 𝑘∗ to denote the maximal 𝑘 that appears in the

constraint set C. Then, by removing tuples that could never appear in the top-𝑘∗ in any refinement,

we are able to avoid adding their variables and expressions to our problem. We determine the

relevancy of these tuples by selecting the top-𝑘∗ of the groups of tuples that share the same lineage.

Let [Lineage(𝑡)] be the equivalence class of tuples that share the same lineage as a tuple 𝑡 . Then

for a tuple 𝑡 , let 𝑇 (𝑡) be the ranking generated by ranking the tuples of [Lineage(𝑡)] according to

the ORDER BY clause of 𝑄 . We see trivially that it is not possible for tuples past position 𝑘∗ in 𝑇 (𝑡)
for all 𝑡 in 𝑄 (𝐷) to be included in the top-𝑘∗ of any refinement. Thus, it is sufficient to consider

only the top-𝑘∗ of 𝑇 (𝑡), denoted by 𝑇 (𝑡)𝑘∗ , in the generated program, and we replace 𝑄 (𝐷) in the

expressions referencing it in Figure 1 with

⋃
𝑡 ∈𝑄 (𝐷 ) 𝑇 (𝑡)𝑘∗ ranked according to the ORDER BY clause

of 𝑄 .

Example 4.1. Consider 𝑡14 from Table 5. Its equivalence class [Lineage(𝑡14)] is the set {𝑡7, 𝑡10, 𝑡14}.
Assume we are interested in satisfying a single constraint ℓ𝐺𝑒𝑛𝑑𝑒𝑟=‘𝐹𝑒𝑚𝑎𝑙𝑒′,𝑘=2 = 1. Note that the

tuple 𝑡14 can never appear in the top-2 of any refinement query, as any refinement that includes 𝑡14
includes tuples with its same lineage, i.e., 𝑡7 and 𝑡10. Therefore, it is safe to remove all variables and

expressions related to 𝑡14 from consideration.

This optimization is most effective when 𝑘∗ is small, and there are few lineage equivalence

classes. In Section 5, we show that this is often the case in queries over real data sets. We further

demonstrate the effect of 𝑘∗ on the running time in Figure 4.

Selecting lineages. Recall that the program we generate includes a binary variable 𝑟𝑡 for each

tuple in 𝑄 (𝐷). However, tuples sharing the same lineage all have equal values for their 𝑟𝑡 variables.

Therefore, we can use a single variable for all tuples in the same lineage equivalence classes.

Example 4.2. To demonstrate this idea, consider the scholarship query without its DISTINCT
statement and consider again the tuple 𝑡14 with its equivalence class shown in Example 4.1. If

𝑡14 satisfies the selection condition of a refinement on the scholarship query, then 𝑡7 and 𝑡10 must

satisfy the conditions as well, as they share the same lineage. Therefore, we have the equivalence

𝑟𝑡14 = 𝑟𝑡7 = 𝑟𝑡10 . The variables 𝑟𝑡7 and 𝑟𝑡10 are then made redundant, as they always have the same

value as 𝑟𝑡14 .

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 166. Publication date: June 2024.



166:16 Felix S. Campbell, Alon Silberstein, Julia Stoyanovich, & Yuval Moskovitch

In order to avoid such redundancy, instead of constructing the set of 𝑟𝑡 variables, we construct

a set of variables 𝑟 [Lineage(𝑡 ) ] for every tuple 𝑡 in 𝑄 (𝐷). Using (3) as a basis, we are able to model

𝑟 [Lineage(𝑡 ) ] being assigned 1 if and only if the tuples in [Lineage(𝑡)] satisfy the selection condition

of the corresponding refinement query. Instead of constructing expression (3) for each tuple in

𝑄 (𝐷), we construct the following expression for each 𝑟 [Lineage(𝑡 ) ] variable: 0 ≤ ∑
𝑝∈Lineage(𝑡 ) 𝑝 −

|Preds(𝑄) | · 𝑟 [Lineage(𝑡 ) ] ≤ |Preds(𝑄) | − 1. Furthermore, in order to ensure that the 𝑠𝑡 values are

modeled as before, we modify (5) by changing 𝑟𝑡 to 𝑟 [Lineage(𝑡 ) ] and 𝑟𝑡 ′ to 𝑟 [Lineage(𝑡 ′ ) ] . We note that

this optimization cannot be applied if the input query includes a DISTINCT statement, as we need

this information in order to not select tuples that already have at least one tuple sharing its distinct

value(s) in the output.

Relaxation for single-constraint-type tuples. We present another optimization that is possible

when a tuple belongs to groups that have only either lower-bound (ℓ) or upper-bound (𝓊) cardinality

constraints made on them. We define the set of tuples belonging only to groups with lower-bound

constraints as 𝐿 = {𝑡 ∈ 𝑄 (𝐷) | �(𝓊𝐺,𝑘 = 𝑛) ∈ C, 𝑡 ∈ 𝑄 (𝐷) ∩ 𝐺}. We define a similar set 𝑈 for

upper-bound tuples, replacing 𝓊𝐺,𝑘 = 𝑛 in the quantifier with ℓ𝐺,𝑘 = 𝑛. Then, for a tuple 𝑡 ∈ 𝐿, we

relax expression (5) to 1 + |𝑄 (𝐷) | · (1 − 𝑟𝑡 ) +
∑
𝑡 ′∈𝑄 (𝐷 ),𝑄 (𝐷 ) (𝑡 ′ )<𝑄 (𝐷 ) (𝑡 ) 𝑟𝑡 ′ ≤ 𝑠𝑡 . For tuples in𝑈 we

set an upper bound instead (≥ 𝑠𝑡 ). This relaxation makes finding feasible solutions for this model

easier and may be used by presolving techniques in MILP solvers.

In order to understand why this maintains the correctness of our solution, consider the lower-

bound constraints. Intuitively, we can allow the 𝑠𝑡 variables of tuples belonging to the group defined

in the constraint in a given top-𝑘 to be assigned a value larger than the position of 𝑡 in the ranking,

as this could only result in a higher deviation for lower-bound constraints as determined by (8).

Suppose the deviation as calculated by (8) is higher than the true deviation of the corresponding

refinement. Then, the refinement returned by the MILP is still a correct answer as (8) bounds the

calculated deviation by the input 𝜀 value, and therefore the true deviation of the corresponding

refinement cannot be more than 𝜀. On the other hand, if 𝑠𝑡 were assigned a value smaller than

the position of 𝑡 in the ranking of the corresponding refinement’s output, then the deviation as

calculated by (8) may be lower than that of the true deviation of the corresponding refinement,

which could cause the MILP to return a refinement with a deviation higher than permitted. The

case for upper-bound constraints is symmetric.

5 EXPERIMENTS
We performed an experimental analysis of our proposed algorithm on real-life and synthetic

datasets considering realistic scenarios. We first examine the effect of different parameters on the

running time. We show that our solution scales, performs well on realistic scenarios and that the

optimization presented in Section 4 are effective. We then compare our solution to [27, 32] that

studies a similar problem for queries without ranking. We demonstrate the differences between

solutions and compare their outputs and performance through a use case.

5.1 Evaluation Benchmark
To the best of our knowledge, we are the first to consider this problem, and there is no benchmark

consisting of datasets, including ranking queries and sets of cardinality constraints. To this end,

we have developed a dedicated benchmark that involves real-life datasets used in the context of

ranking as follows.
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Table 6. Queries and constraints

Dataset Query Predicates Order by (DESC) Constraints

Astronauts 𝑄𝐴

"Graduate Major" = ’Physics’
AND "Space Walks" <= 3
AND "Space Walks" >= 1

"Space Flight (hrs)"

(1) ℓ𝐺𝑒𝑛𝑑𝑒𝑟=′𝐹 ′,𝑘 = 𝑘
2

(4) ℓ𝑆𝑡𝑎𝑡𝑢𝑠=′𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 ′,𝑘 = 𝑘
5

(2) ℓ𝐺𝑒𝑛𝑑𝑒𝑟=′𝑀 ′,𝑘 = 𝑘
2

(5) ℓ𝑆𝑡𝑎𝑡𝑢𝑠=′𝑅𝑒𝑡𝑖𝑟𝑒𝑑 ′,𝑘 = 𝑘
5

(3) ℓ𝑆𝑡𝑎𝑡𝑢𝑠=′𝐴𝑐𝑡𝑖𝑣𝑒′,𝑘 = 𝑘
5

Law Students 𝑄𝐿

Region = ’GL’
AND GPA <= 4.0
AND GPA >= 3.5

LSAT

(1) ℓ𝑆𝑒𝑥=′𝐹 ′,𝑘 = 𝑘
2

(4) ℓ𝑅𝑎𝑐𝑒=′𝑊ℎ𝑖𝑡𝑒′,𝑘 = 𝑘
5

(2) ℓ𝑆𝑒𝑥=′𝑀 ′,𝑘 = 𝑘
2

(5) ℓ𝑅𝑎𝑐𝑒=′𝐴𝑠𝑖𝑎𝑛′,𝑘 = 𝑘
5

(3) ℓ𝑅𝑎𝑐𝑒=′𝐵𝑙𝑎𝑐𝑘′,𝑘 = 𝑘
5

MEPS 𝑄𝑀
Age > 22
AND "Family Size" >= 4

Utilization

(1) ℓ𝑆𝑒𝑥=′𝐹 ′,𝑘 = 𝑘
2

(4) ℓ𝑅𝑎𝑐𝑒=′𝐵𝑙𝑎𝑐𝑘′,𝑘 = 𝑘
5

(2) ℓ𝑆𝑒𝑥=′𝑀 ′,𝑘 = 𝑘
2

(5) ℓ𝑅𝑎𝑐𝑒=′𝑊ℎ𝑖𝑡𝑒′,𝑘 = 𝑘
5

(3) ℓ𝑅𝑎𝑐𝑒=′𝐴𝑠𝑖𝑎𝑛′,𝑘 = 𝑘
5

TPC-H 𝑄5 Region = ’ASIA’ Revenue

(1) ℓ𝑂𝑟𝑑𝑒𝑟𝑃𝑟𝑖𝑜=′5−𝐿𝑂𝑊 ′,𝑘 = 𝑘
2

(4) ℓ𝑀𝑘𝑡𝑆𝑒𝑔=′𝐵𝑈 𝐼𝐿𝐷𝐼𝑁𝐺 ′,𝑘 = 𝑘
5

(2) ℓ𝑂𝑟𝑑𝑒𝑟𝑃𝑟𝑖𝑜=′3−𝑀𝐸𝐷𝐼𝑈𝑀 ′,𝑘 = 𝑘
5

(5) ℓ𝑀𝑘𝑡𝑆𝑒𝑔=′𝑀𝐴𝐶𝐻𝐼𝑁𝐸𝑅𝑌 ′,𝑘 = 𝑘
5

(3) ℓ𝑀𝑘𝑡𝑆𝑒𝑔=′𝐴𝑈𝑇𝑂𝑀𝑂𝐵𝐼𝐿𝐸′,𝑘 = 𝑘
5

• Astronauts4: A dataset of 19 attributes containing 357 NASA astronauts and information about

their careers. Astronauts are ranked in descending order by their number of space flight hours,

as was done in [39].

• Law Students [25, 44]: A dataset of 8 attributes containing 21,790 law students and various

evaluations such as grade point average, LSAT examination scores, and first year grade average.

Students are ranked by their LSAT scores, as in [47].

• MEPS5: A dataset of 1,941 attributes containing 34,655 individuals and information related to

their usage of healthcare. Patients are ranked in descending order by a combination of utilization

metrics (office-based visits + ER visits + in-patient nights + home health visits), as was done

in [45].

To evaluate scalability, we use Synthetic Data Vault (SDV) [35] to learn the distributions of

our real-life datasets and subsequently synthesize scaled-up versions. We also use the TPC-H
Benchmark, which includes complex queries involving multiple tables. We generate a TPC-H

dataset of scale factor 1, which is approximately 1 GB of data. We use Query 5 (Q5) from the TPC-H

specification and remove the predicates filtering on date types.

Queries and constraints. Table 6 summarizes the queries and constraints used. We generated

queries and constraints for each dataset, showcasing real-life scenarios. Each row in the table

represents a query. For example, the first line represents the following query𝑄𝐴 over the Astronauts

dataset.

SELECT * FROM Astronauts
WHERE "Space Walks" <= 3 AND "Space Walks" >= 1
AND "Graduate Major" = 'Physics'
ORDER BY "Space Flight (hrs)" DESC

This query may be used in the selection process of astronauts for a mission. The mission requires

specific training (number of space walks) and background (graduate major), and the candidates

are ordered by their experience (space flight hours). Similarly, the query 𝑄𝐿 for the Law Students

dataset may be used to rank outstanding students (based on their GPA) from a particular region

based on their SAT scores for a scholarship. Finally, 𝑄𝑀 is defined for the MEPS dataset. Such

a query may be used to invite the best-fitting patients (based on their utilization) with specific

criteria, for a study.

We defined result diversity constraints for each dataset (listed in Table 6). For instance, in

the Astronauts dataset, the result should include women and candidates of varying ranks in the

organizational hierarchy. The constraints’ bounds are parameterized with a value 𝑘 , and we set

4
https://www.kaggle.com/datasets/nasa/astronaut-yearbook

5
https://meps.ahrq.gov/data_stats/download_data/pufs/h192/h192doc.shtml
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them to values that produce a valid refinement in most cases. Specifically, out of 132 performed

experiments, we were not able to find a solution in only 2.

Parameters setting. When using ranked-retrieval in decision-making contexts (e.g., when

deciding how many people to invite for in-person interviews), one expects the number of items

a user will consider (𝑘) to be relatively low. In general, rankings are subject to position bias — a

geometric drop in visibility of items in lower ranks — and so are best-suited for cases where the

user interacts with a small number of top-ranked items [2]. Thus, unless otherwise specified, we

use 𝑘 = 10 as a default value. Furthermore, we let the default maximum deviation 𝜀 be 0.5, aiming

to strike a balance between being sufficiently close to the constraints but realistically possible in

the datasets. In practice, this parameter may be chosen by specifying a worst-case scenario that is

still acceptable, and then use the deviation of this scenario as calculated by Definition 2.6 to set 𝜀.

We also set the constraints set to include a single constraint (constraint (1) from Table 6 for each

dataset). We used the three distance measures mentioned in Section 2.2: the queries predicates

distance measure 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 (abbr. QD in the figures), the Jaccard distance over the output, 𝐷𝐼𝑆 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑
(JAC in the figures), and Kendall’s 𝜏 , 𝐷𝐼𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙 , for top-𝑘 lists defined in [17] (KEN in the figures).

Compared algorithms. To our knowledge, our problem is novel and has no competing algo-

rithms other than the naïve exhaustive search. Therefore, we compare our baseline MILP-based

algorithm (MILP), our optimized MILP-based algorithm (MILP+opt), which includes the optimiza-

tion described in Section 4, an exhaustive search over the space of refinements (Naïve), and a

version the exhaustive search that uses our provenance annotations to evaluate the refinements

(Naïve+prov). We report the total running time and show the setup time (constructing the MILP

for MILP-based solutions, and generating the provenance for Naïve+prov). The MILP solver time is

the gap between total and setup. The reported times are an average of 5 executions.

Platform & implementation details. Our experiments were performed on macOS 13.4 with

an Apple M2 processor and 16 GB of memory. Our algorithm was implemented with IBM’s CPLEX

22.1.1.0
6
to solve the mixed-integer linear program and DuckDB 0.8.0 [37] for query evaluation.

The algorithm to construct the problem and the naïve method were written and evaluated with

Python 3.9.6 and PuLP 2.7.0 (the library used for modeling the MILP problem). 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 is linearized

by computing the Jaccard distance for categorical predicates through the Charnes-Cooper transfor-

mation [11]. In addition, for numerical predicates, additional variables are generated that represent

the absolute difference between the refined and original constants. As it does not consider the

output, we skip generating 𝑠𝑡 and 𝑙𝑡,𝑘 variables for tuples that do not belong to any group𝐺 in C.
𝐷𝐼𝑆 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 is evaluated over the output, thus we leverage the fact that there are at least 𝑘∗ tuples
in the output and aim at maximizing the number of original tuples output, thereby maximizing

the Jaccard distance. For 𝐷𝐼𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙 , only Cases 2 (a tuple leaves the top-𝑘) and 3 (a tuple enters

the top-𝑘) as defined in [17] may occur in our model. We create a variable for each case for each

tuple, which is then equal to the sum of the case if the tuple is selected and zero otherwise. For

more details, see [7, 8].

5.2 Results
Running time for compared algorithms. We begin by comparing the running time of all

algorithms using the default parameters and setting a timeout of one hour. Recall that the size of

the generated MILP program (without optimization) is linear in the data size and that MILP solvers

are typically sensitive to the program size. Thus, we expect the MILP algorithm to struggle with

large-scale datasets. On the other hand, the naïve approaches perform a brute-force search over the

6
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
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Fig. 3. Running time of compared algorithms, for cases where computation completed within a 1-hour
timeout (method or distance omitted when timed out). MILP+opt consistently outperforms other methods.

possible refinements, where their number is exponential in the number of predicates in the query

(and their domain). Thus, datasets with high cardinality in the domain of the query predicate are

likely to be challenging for the naïve solutions.

Figure 3a presents performance for the Astronauts dataset. The optimized MILP solution out-

performs the unoptimized MILP, and we observe a speedup of up to 6 times. Given that there

are 114 different values for “Graduate Major”, the space of refinements is extremely large and

both Naïve and Naïve+prov timed out (and thus omitted from the graph). Figures 3b to 3d show

the results for the remaining datasets. In these cases, due to the data size, the unoptimized MILP

was unable to terminate before the time-out. MEPS and TPC-H have a relatively small space of

refinements for the posed queries, making Naïve+prov competitive with MILP+opt. However, Law

Students has a considerably larger space of refinements (although modest compared to Astronauts),

making Naïve time out and Naïve+prov significantly slower than MILP+opt. Essentially, MILP+opt

is well-posed to deal with scaling both the data size and the space of the possible refinements. The

naïve brute-force search methods and unoptimized MILP method fail to scale, and we exclude them

from the rest of the experiments.

Effect of 𝑘∗. We study the effect of 𝑘∗, the largest 𝑘 with a constraint in the constraint set, on

the running time of our algorithm by increasing the parameter 𝑘 of the constraint from 10 to 100 in

increments of 10. The results are presented in Figure 4. Recall that the relevancy-based optimization

from Section 4 aims at reducing the program size using 𝑘∗. We expect to see its effect degrade

as 𝑘∗ increases, as shown in Figures 4b and 4c. The optimization is less effective for Astronauts

(Figure 4a), as the number of different lineage equivalent classes is large, and each consists of a

relatively small number of tuples (fewer than 10). Therefore, the expressions generated for very

few tuples may be removed from the program. The optimization is particularly effective for 𝑄5

of TPC-H (Figure 4d), as the vast majority of expressions are removed as there are only 5 lineage

equivalence classes. Moreover, we see that most of the time is spent setting up the problem rather

than solving it.

Effect of maximum deviation (𝜀). While an increase in 𝜀 maymake finding feasible refinements

easier, the solver must still find the minimal refinement, which remains a difficult task. Therefore,
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Fig. 4. Running time vs. 𝑘∗, showing𝐷𝐼𝑆𝑝𝑟𝑒𝑑 is often the fastest to compute, while𝐷𝐼𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙 can be sensitive
to increasing 𝑘∗.
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Fig. 5. Running time vs. maximum deviation (𝜀), showing that the effect of 𝜀 is limited.

the value of 𝜀 should not significantly affect the running time. Figure 5 shows that the running time

is fairly stable. We observed a decrease when 𝜀 reaches 1.0. This is because we use only lower-bound

constraints in this experiment, where the deviation of any (refined) query is bounded by 1.0, i.e.

finding a satisfying refinement is trivial as all refinements are good enough. In Figure 5d, the solver

time is negligible and depends mostly on the setup time, which is very similar across all values of 𝜀

(differing by at most 1%).

Effect of constraint quantity. The number of generated expressions of the form (6) and (7) is

linear in the number of constraints. Thus, when increasing the number of constraints, the program

size increases and as a result, we expect to see an increase in the running time. We gradually

added constraints to the constraint set in the order they listed in Table 6. To ensure that the set of

constraints can be satisfied along with the default value of 𝜀, we slightly adjust the value of the first

two constraints for Astronauts, Law Students, and MEPS to have a lower-bound of
𝑘
3
. As shown in
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Fig. 6. Running time vs. the number of constraints: the impact of the number of constraints is limited.
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Fig. 7. Running time vs. constraint type, showing the efficacy of one of our optimizations.

Figure 6, we observed a slight increase in the running time as the number of constraints increased

in contrast to increasing the value of 𝑘 . The number of expressions is linear in the number of

constraints and tuples, however there are significantly fewer constraints than tuples, which is why

the number of constraints does not have a pronounced effect on the runtime. TPC-H (Figure 6d)

shows a negligible difference as the vast majority of the time is set up the MILP problem, as the

solver has only 5 lineage equivalence classes to explore.

Effect of constraint types. In Section 4, we presented an optimization that is effective when

tuples belong to groups with only either lower-bound or upper-bound constraints made on them.

To demonstrate the effect of this optimization, we generate two sets of constraints for each dataset:

C𝐿 with lower bound constraints only, and C𝑀 with a mixed set of upper bound and lower bound

constraints. In particular, each dataset, C𝐿 includes constraints (1) and (2) from Table 6, and C𝑀
includes constraints (1) and (2), where constraint (2) is turned into an upper-bound constraint.

Notice that these particular attributes are binary, and, as we assume there are at least 𝑘∗ tuples in
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Fig. 8. Running time vs. data size. The setup time is mostly impacted by the cost to capture lineage from the
input query, while the solving time is mostly impacted by the number of lineage classes.

the output, the two constraints of C𝑀 are equivalent (except for TPC-H, which lacks any binary

attributes). We then compared the running time when using C𝐿 and C𝑀 (for which the optimization

was disabled for C𝑀 ). The results are presented in Figure 7. As expected, the running times for

the case of C𝐿 are typically better, as shown in Figures 7a to 7c, indicating the usefulness of the

optimization. We note that the experiment in Figure 7d depicting the experiment for TPC-H shares

the same performance characteristics as the previous experiments.

Effect of dataset size. We use SDV [35] to synthesize scaled-up versions of the real datasets.

Not only does this increase the data size, but new lineage classes are created according to the

distribution of the dataset as well. For TPC-H, we generate different scales of the dataset according

to its standard, but no new lineage classes are created. The number of variables and expressions of

the generated MILP is linear in the number of tuples in the dataset. However, given that solving

MILP is in NP, we expect a non-polynomial increase in running time with an increase in the data

size. The results are plotted in Figure 8, each plot starting from the original size of the dataset. For

the Astronauts, Law Students, and MEPS datasets, we observed a modest increase in the runtime as

the data size grows. This could be explained by the low increase in the number of lineage classes,

which impacts the efficiency of our optimization and has a greater effect on the running time. In

TPC-H (Figure 8d), the vast majority of the running time is spent building the MILP problem, and

in this case, constructing the set of lineages for Q5 involves a non-trivial amount of join processing.

Effect of chosen distance measure. We observed that in most cases, 𝐷𝐼𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙 is the hardest

to compute as it involves extra variables in order to linearize the measure. When the refinement

space is extremely large, such as for Astronauts, 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 takes longer to prove optimality (as seen

in Figures 4a and 6a).

5.3 Comparison with Erica [26, 27]
We conclude with a comparison to Erica [26, 27], which presents a similar framework for query

refinements to satisfy cardinality constraints over groups representation in the query’s output.
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We note Erica focuses on cardinality constraints over the entire output, without considering the

order of tuples. By restricting the overall output size to 𝑘 , Erica may be used to refine a given

query to satisfy constraints over the top-𝑘 tuples. However, as we next demonstrate, this additional

constraint over the output size also limits the possible refinements to those that have at most 𝑘

tuples. Moreover, this adjustment of Erica cannot be used to constrain over different values of 𝑘

simultaneously (as in our running example). Additionally, since satisfying the constraints in our

setting is more challenging, we focus on finding approximate solutions that are close to satisfying

the constraints, while Erica only finds solutions that satisfy the constraints exactly. Finally, our

framework allows the user to define different distance measures between queries whereas Erica

uses a single distance measure based on the predicate distance. We compare the systems by refining

the query𝑄𝐿 except with the predicates Region = ‘GL’ AND GPA >= 3.0. subject to the singleton
constraint set C = {ℓ𝑆𝑒𝑥=′𝐹 ′,𝑘=100 = 50}. To be consistent with [26, 27], we aim to minimize the

predicate distance (using 𝐷𝐼𝑆𝑝𝑟𝑒𝑑 as the distance measure) and allow only results that satisfy the

constraints exactly, i.e., 𝜀 = 0. When running Erica, we added a constraint requiring that exactly

100 results are returned to ensure the top-100 tuples contains at least 50 female candidates, and that

there are enough results to satisfy the assumption in our problem definition. Using our optimized

MILP-based approach, we were able to find a minimal refinement in ≈ 11 seconds. The refinement

selects candidates from the regions ‘GL’ or ‘SC’ with a GPA of at least 4.0. Erica found 5 different

refinements in ≈ 53 seconds, though none of them are closer to 𝑄 than the refinement found by

our framework. In fact, all of the refinements require a GPA of at least 4.0 and select 3 regions.

The refinement found by our system was not generated by Erica due to the additional constraint

requiring the output size to be exactly 100.

6 RELATEDWORK
Query refinements. The problem of query refinement has been addressed in previous studies

such as [13, 24, 30, 34, 40, 41]. They focus on modifying queries to satisfy cardinality constraints,

mostly emphasizing the overall output size rather than specific data groups within the output, and

does not consider ranking of the results. For example, [24, 34] aim to relax queries with an empty

result set to produce some answers. Other works like [13, 30] address the issues of too many or

too few answers by refining queries to meet specific cardinality constraints on the result’s size. A

recent line of work has studied the use of refinement to satisfy diversity constraints [27, 32, 38].

The work of [38] aims to refine queries to satisfy constraints on the size of specific data groups in

the result, however, they consider only numerical predicates with a single binary sensitive attribute.

Closer to our work, Erica [26, 27, 32] utilizes provenance annotations to efficiently find minimal

refinements. While our proposed solution is inspired by these works, their focus is on selection

queries and can not be easily extended to ranking queries. Particularly, the provenance model used

in these works is insufficiently expressive to capture the semantics of ranking, motivating our

need to devise a new way to annotate and use these annotations to find the best approximation

refinement. We discuss and demonstrate the differences in Section 5.3.

Constrained query answering. More generally, our problem answers queries that are subject

to some set of constraints over the results. Systems like those proposed in [4, 6] allow querying

groups of tuples that optimize some objective function while satisfying some constraints on the

output, including cardinality constraints. However, they do not support top-𝑘 queries and therefore

do not extend to the ranking setting. The work in [4] specifically relaxes the constraints of the

problem to achieve partial satisfaction of the set of constraints, however it does so by removing

constraints and not by modifying them as in our work. In [29], the authors develop a system to

answer how-to queries. How-to queries answer how to modify the database in order to satisfy some
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constraints while optimizing for an objective. However, their system also lacks support for ranking,

making it unsuitable to use for intervening on the top-𝑘 for various 𝑘 values as in our framework.

Fairness in ranking. The problem we consider in this paper has implications in the context

of fairness. Fairness in ranking has been the subject of much recent attention [1, 9, 10, 12, 20, 23,

45, 46, 48, 49]. These works can be categorized as post-processing methods (e.g., [10, 45, 46]) that

directly modify the output rankings, or in-processing solutions [1, 9, 12, 20, 23] that adjust the

ranking algorithm or modify items to produce a different score. Our solution can be considered as

an in-processing method, however unlike existing solutions, we assume ranking algorithms and

scores of different items are well-designed, and do not modify them.

Query result diversification. Query result diversification aims to increase result diversity while

maintaining relevance of results to the original query by including or excluding tuples from the set

of tuples in the result of the query output. [14, 19, 42]. Unlike our solution, the diversification is

achieved by modifying the set of the tuples directly rather than the query, and does not consider

tuples absent from the original query.

MILP & databases. Mixed-integer linear programming has been used in data management in

order to solve relevant NP-hard optimization problems. However, as pointed out in [5, 28, 29, 43],

scaling MILP problems to database-size problems is difficult. In order to scale, these works make

several optimizations. In particular, the relevancy-based optimization we proposed resembles

optimizations presented in [29, 43].

7 CONCLUSION
We identified a novel intervention to diversify (according to user-input constraints) the output of

top-𝑘 queries by refining the selection predicates of the input query. Furthermore, we recognized

the importance of maintaining the user’s intent as best as possible when searching for such a

refinement. Towards this end, we developed a framework that can find the closest refinement for

various distance measures that satisfy the user’s desired constraints. We introduced optimizations

in order to make our framework practical for datasets of real-life scale. We demonstrated this

with a suite of experiments, showing our framework’s scaling capability and the usefulness of

our optimizations. In the future, this problem could be extended to find refinements that remain

diverse even after adding new data. This way, the refinement may explain some underlying bias of

the query instead of fitting to the original data. Extending our model to richer classes of queries

presents further interesting directions as we discussed in Section 3.
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