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Abstract— Controlling soft continuum robotic arms is chal-
lenging due to their hyper-redundancy and dexterity. In this
paper we experimentally demonstrate, for the first time, closed-
loop control of the configuration space variables of a soft robotic
arm, composed of independently controllable segments, using
a Cosserat rod model of the robot and the distributed sensing
and actuation capabilities of the segments. Our controller solves
the inverse dynamic problem by simulating the Cosserat rod
model in MATLAB using a computationally efficient numerical
solution scheme, and it applies the computed control output
to the actual robot in real time. The position and orientation
of the tip of each segment are measured in real time, while
the remaining unknown variables that are needed to solve the
inverse dynamics are estimated simultaneously in the simula-
tion. We implement the controller on a multi-segment silicone
robotic arm with pneumatic actuation, using a motion capture
system to measure the segments’ positions and orientations. The
controller is used to reshape the arm into configurations that
are achieved through combinations of bending and extension
deformations in 3D space. Although the possible deformations
are limited for this robot platform, our study demonstrates
the potential for implementing the control approach on a wide
range of continuum robots in practice. The resulting tracking
performance indicates the effectiveness of the controller and
the accuracy of the simulated Cosserat rod model.

I. INTRODUCTION

Soft continuum robots have potential uses in manipulation
and locomotion tasks that require high dexterity and compli-
ance, and have often been inspired by soft biological struc-
tures with these properties, e.g., octopus arms and elephant
trunks [2], [3]. The control of soft robotic arms is challenging
due to the robots’ inherent passive compliance, infinite de-
grees of freedom, and nonlinear material characteristics [4],
[5]. Substantial progress has been made on this problem
in recent years [6], [7], [8], and the development of soft
segments with independent actuation [9] and soft grippers
with integrated sensors [10] are expanding the autonomous
capabilities of soft robots in unstructured environments.

Both model-based and model-free approaches have been
used to design soft robot arm controllers [4]. Of the model-
based approaches, dynamic controllers are generally more
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Fig. 1: Multi-segment silicone robotic arm used in this work.
The segments were fabricated using a method similar to [1].

accurate than kinematic controllers; however, the high com-
putational complexity and sensing requirements of existing
dynamic controllers have limited their use [11]. The first
closed-loop dynamic controller for a soft continuum robot
was developed in [12] and validated on a 2D soft robot arm,
composed of multiple segments with pneumatic actuation, for
trajectory tracking and surface following tasks. The inverse
dynamics solution was obtained by adding a mixed feedfor-
ward—feedback term to the closed-loop controller based on
the Lagrangian formulation of the robot dynamics. Another
model-based dynamic controller was designed in [13] to con-
trol a simulated octopus arm with realistic muscular actuation
for reaching and grasping tasks. The octopus arm was mod-
eled as a Cosserat rod, which can describe large deformations
due to bending, torsion, shear, and extension [14]. In [15],
continuum robots inspired by elongated-body animals were
modeled as Kirchhoff rods, a special case of the Cosserat
rod model, and used to solve the inverse dynamics problem
to simulate terrestrial locomotion gaits. However, there are a
limited number of works on implementing the Cosserat rod
model in practice on an underactuated continuum robot.

In this paper, we adapt the controller from our previous
work [16] to a soft robot arm composed of pneumatically-
actuated silicone segments, shown in Fig. 1, and experimen-
tally validate the controller on this platform. The controller
in [16] is a model-based inverse dynamic controller that is
designed to reshape a multi-segment soft robot arm, modeled
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Fig. 2: (a) Design and (b) cross-section of a silicone segment.
r; is the vector from the backbone to the center of the
i-th FRA chamber, which has cap area A;, in the local
frame of the cross-section, which has area A. (¢) Kinematic
representation of a constant-curvature segment with respect
to a local frame fixed at the base of the segment.

as a Cosserat rod, into target 3D configurations. To enable
the implementation of the controller, we define mappings
from the robot’s joint space to its actuator space (desired air
pressures) and from its task space to its configuration space
(curvatures, extension). The inverse dynamics of the robot
are solved using real-time measurements of the positions and
orientations of its segments, which are obtained by a motion
capture system, and estimates of unmeasured variables from
the solution to the forward dynamics of the Cosserat rod
model. In summary, the main contributions of this paper are:

Adaptation of our Cosserat rod model-based inverse dy-
namic controller for 3D configuration tracking [16] to a
soft robotic arm composed of independently-controllable
segments with pneumatic actuation.

Estimation of unmeasured robot variables in the in-
verse dynamics solution using real-time simulation of the
Cosserat rod model.

Experimental validation of the controller on a multi-
segment silicone robot that is capable of bending and
extending in 3D space, demonstrating that the controller
can be implemented on real soft robotic platforms.

II. SILICONE SEGMENT FABRICATION AND PROPERTIES

The multi-segment silicone arm was fabricated using a
process similar to the one described in [1]. Figure 2a
illustrates the design of a silicone segment, Fig. 2b shows its
cross-section, and Fig. 2c depicts its kinematic representation
as a constant-curvature segment. As shown in Fig. 2a, each
segment contains four fiber-reinforced actuators (FRASs),
indexed ¢ = 1, 2, 3, 4, which are symmetrically arranged with
respect to the central axis of the segment and embedded
in the segment using silicone filament. The helical fiber
reinforcements are wound clockwise and counterclockwise
in such a way that the FRAs elongate along the axial
direction instead of expanding in the radial direction. The
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TABLE I: Silicone segment properties.

Param.  Description Value  Units
N Number of segments 2 -

T Distance from backbone to each FRA 0.3 cm

A; FRA cap area 3.1 cm?
) Undeformed radius of the segment 5.3 cm
Lo Undeformed length of the segment 18.5 cm

M Mass of the segment 0.825 kg

p Density of the segment 7928  kg/m3
G Shear modulus of the segment 0.1 MPa
E Young’s modulus of the segment 0.28 MPa

two segments are dyed either blue or red and are connected
by black 3D-printed parts, which are fastened with bolts and
nuts (see Fig. 1). Compressed air is applied to each segment
through four air tubes, each connected to an FRA and a
digital pressure regulator. The pressure regulator measures
the air pressure p,, in the FRA and drives it to a desired
pressure set-point pg.

The physical properties of each segment are listed in
Table 1. To estimate the Young’s modulus of a segment,
assuming that its value remains constant during actuation,
an Instron 5944 universal testing machine was used to
elongate the unactuated segment under three loading speeds
(1 mm/s, 3 mm/s, and 5 mm/s) and measure its corresponding
change in length and the applied force. Three trials were
conducted for each loading speed, and the Young’s modulus
was estimated as the average value over all nine trials.

III. DYNAMICS AND KINEMATICS OF THE ROBOT ARM
BASED ON THE COSSERAT ROD MODEL

Here, we derive the forward and inverse dynamics of the
robot arm based on a Cosserat rod model, which is accurate
under the assumptions of a sufficiently large length-to-radius
ratio, material incompressibility, and linear elasticity.

A. Background: Cosserat rod model

The robot arm is modeled as an elastic Cosserat rod of
length L and density p. Each of its cross-sections has area
A and second mass moment of inertia tensor J. The cross-
section at arc length s in the global frame G has position
Gp(t,s) € R® and orientation matrix “R(t,s) € SO(3) at
time t (see Fig. 1 in [16] for a schematic of a Cosserat rod
in Cartesian coordinates). From here on, a variable without
the annotation G is defined with respect to a local frame that
is fixed to the cross-section with which it is associated.

The configuration space variables of the rod, given that its
neutral axis is in the z direction, are defined as the curvature
vector, u(t,s) = [ug,uy,u]T, and the rate of change of
position, v(t, s) = [vs, vy, v,]T. The components u, and u,
produce bending about the x and y axes; u, produces torsion
about the z-axis; v, and v, cause shear effects that change
the size of the cross-section; and v, produces extension
along the z-axis. The vectors g(¢,s) and w(t,s) denote
the translational and angular velocities, respectively, of the
cross-section at arc length s. The force and moment that the
material at p(t, s+ ds) exerts on the material at p(¢, s —ds),
for infinitesimal ds, are called the internal force and moment,
En(t,s) € R® and “m(t,s) € R>. Any force and moment
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that are applied to the backbone are called an external force
and moment, ¢ f(¢,s) € R? and “I(¢t,s) € R3.

The deformation of each cross-section of the rod is gov-
erned by a set of partial differential equations, differentiated
with respect to s and ¢. The spatial derivatives of the state
variables are calculated at each cross-section. Defining (-) as
the cross product matrix of a vector, the internal force and
moment evolve according to the equations:

“n, = “RpA(wq +q,) — °f, 0
“my = “Rp(wJw + Jw;) — “p,%n - €1,
and the kinematic variables evolve according to:
Gps = GRU7 = Rq7 qs; =Vt — ’aq + 'l/,l\)'l),
Gp _G G -~ =~ @)
R, Ru, “R; = Rw, w,=u; —uw.

The time derivatives are computed using the Backward
Differentiation Formula (BDF) [17], [18].
B. Joint space to actuator space mapping

The sources of the external forces and moments are the
control inputs applied by the robot’s pneumatic actuators,
which produce force ¢ f, and moment Glp, and the gravi-
tational force per unit length in the global frame, ¢ f,:

“F=°f,+°f..
where G.fe = pAGg7 Gg

Gl_Gl

3)
“4)

The forces and moments applied by the pneumatic actuators
to the backbone are given by:

Zgz
Zgz

where g; is the chamber air pressure of the ¢-th FRA and,
as depicted in Fig. 2b, A; is the corresponding chamber cap
area, r; is the vector from the center of the backbone to
the center of the ¢-th FRA in the local frame attached to a
segment cross-section, and e3 is the unit vector along the
z-axis. The gravitational effect in (4) is subtracted from the
actuation force to cancel out its effect on the backbone in (3).
Each silicone segment has three DOFs: bending about the
z-axis, bending about the y-axis, and elongation along the z-
axis. Hence, the equivalent actuation for each segment, P =
[Pz, P, P.], can be computed using the mapping below:

Py =1(y) - U ()] Ai, P = F,(2)-“f(2)/ A,
P, =S, (x) - 17 (z)/ A,

Yy
where A; is equal for all chambers. The equivalent actuation
is related to the real actuator pressures, g1, g2, g3, g4, as:

D>

=[00 —9.81]"m/s?

“R,es] — pAg,
&)

(°p+ “Rr;) x “Res),

(6)

P, =g1+92+93+ 94

Py =—g1+ 92— 93+ 94, ™

P, =g1+ 92— 93— g4,
In segment 1, two of the four air tubes are connected to one
pressure controller and the other two to another pressure
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controller such that ¢ go and g3 = g4. The reverse
combination is used for segment 2, such that g; = g3 and
g2 = g4. The constraint g; + g4 = g2 + g3 captures both sets
of pressure relations. Given this constraint, the real actuator
pressures are computed as:

g1 = (—Ps + Py + P.)/4,
93:<_P:v_Py+Pz)/4a

92:(Pw+Py+PZ)/4,

8
gs = (P — P, + P.)/4. ®

C. Forward dynamics solution

The solution to the forward dynamics of the rod is obtained
by substituting (8) into (5), (4) and (5) into (3), and (3) into
(1), and then spatially integrating (1) over the length of the
rod to calculate the configuration space variables as follows:

v = (Kse + COBse)_l[GRT Gn + Ksev* - Bse'uh];

_ . )
u = (Kbt + COBbt) I[GRT Gm + Kpu™ — Bbtuh].

Here, v* and u™* are the vectors v and uw at the undeformed
reference shape, and the history elements v; and wu; are
calculated from the values of v and w at the previous two
time steps [19]. The vectors vy and wuj are obtained from
experimental data on the position and orientation of the robot
in its task space, as discussed in Section IV. The matrices
K., Ky, Bg., and By, in (9) are defined as:

aG 0 0 E 0 0

K. =|0 aG 0|A Ky=1|0 E 0]|J,
0o 0 E 0 0 G

Bs,e =7Ks., By =T1Ky, (10)

where G and E are the shear modulus and Young’s modulus,
respectively, of the segment (given in Table I) and o, = 4/3
for circular cross-sections. The damping matrices B, and
By, are calculated from vibration tests [20], in which 7 is
twice the period of vibrations exhibited by the robot arm’s
tip. Due to the high stiffness of the segments, we set 7 ~ 0.

D. Task space to configuration space mapping

Since the configuration space variables (u, uy, v.) cannot
be directly measured from the robot’s task space, the solution
to the inverse dynamics problem requires a mapping from
the robot’s bending and extension deformations in the task
space to the corresponding values of u,, u,, and v,. Since
this mapping is robot-independent [11], we use the Piecewise
Constant Curvature (PCC) configuration space variables,
(k(t, s), d(t, s), L(t, s)), to complete the mapping. These
variables are defined for a constant-curvature segment that
approximates the silicone segment, illustrated in Fig. 2c: x is
the curvature of the segment’s backbone, L is its length, and
¢ is its angle of rotation about the z-axis with respect to the
z-axis (positive counterclockwise). The position (z,y, 2) of
the tip of the segment with respect to the local frame attached
to its base is related to the corresponding PCC configuration
space variables as follows, defined as in [5]:

k=2x/(x® +2%), L = (1/x)tan"! (x/z) for ¢ = 0 rad
k=2y/(y*+2%), L= (1/k)tan"! (y/z) for ¢ = g rad
k=0, L=z forxz=0, y=0. an
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The segment’s backbone lies in the x—z plane at ¢ = 0 rad
and in the y—z plane at ¢ = /2 rad. The curvature variable
k in each plane equals the component of the curvature vector
u in the same plane for bending deformations, and the
extension variable v, is the extension ratio of the segment:

k for ¢ =0rad, v, =14 (L— Lo)/Lo, (12)
—k for ¢ = /2 rad,
where L is the undeformed length of the segment. The

inverse dynamics solution can be obtained once the control
input is computed, which is discussed in the next section.

Uy

Uy

IV. INVERSE DYNAMIC CONTROL OF THE ROBOT ARM

We design a control approach that drives the robot arm
to track a time-varying reference configuration (@(t), o(t)),
as well as its first and second time derivatives, that achieves
desired bending and extension deformations in 3D space. We
specify a high-level controller that is similar to the dynamic
controller in our prior work [16], with proportional-derivative
gain matrices that are defined in terms of the physical and
material properties of distinct cross-sections of the robot arm.
The outputs of the high-level controller are defined as:

Gfp :GR[KPI(I_) U)—FKUI('(_)t_Ut)"‘KmlT)tt]
Glp :GR[Kp2 (ﬁ — u) + K1)2 (ﬁ't - ut) + K’mgﬂ'tt]a

where K,,, and K,,, are 3 x 3 diagonal matrices whose
diagonal entries are proportional to pA and pJ, respectively,
and I(p1 = alee, I{U1 = blBsea Kp2 = agKbt, KU2 =
ba By, are diagonal gain matrices with manually tuned coef-
ficients by = 1, by = 1 for both segments, a; = 100, a2 = 50
for segment 1, and a; = 37.5, ag = 18.75 for segment 2. The
closed-loop system is proven to be globally asymptotically
stable in the Appendix.

Figure 3 shows a block diagram of our controller. The
reference configuration (@(t),¥(¢)) and its first and second
time derivatives are sent to the control loop at each time step.
The high-level controller computes the control outputs (the
desired forces and moments (f,,l,,) applied by the actuators)
according to (13) based on the difference between these
reference values and the current configuration (u(t),v(t))
and their time derivatives, computed numerically for the
simulated robot. The control outputs are mapped to the
desired air pressure pg in each FRA using (6)-(8). Then,
the low-level controller drives the measured air pressure
pm in each FRA of the real robot to the corresponding
desired set-point pg via the robot’s pneumatic actuators. After
the arm deforms, the position and orientation of the tip of
each segment (p, R) are measured by an Optitrack motion
capture system with Motive software. Using mapping (11)-
(12), the measured task space variables (p, R) are used to
compute the configuration space variables (u, v), which are
stored as the history elements (up,vy) for the next two
time steps. To close the loop, the values of (u,v) and their
first time derivatives at the next time step are approximated
by simulating the Cosserat model forward dynamics based
on (1)-(5), (9)-(10), using high-level controller output (13).
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Algorithm 1: Conﬁguration tracking controller

: Given u vj, utj,vt], utt],vt”,

2—1 ST/dt, j=1,..,L/ds

2: for i <1 to T/dt do

3 nj,mp <+ SSM (n, ' =mi ! =0)

4 for j« 1t L/ds do

s: n}, m} + RK4 using (n}_;,m’_)) and
(n” 1,m 89— 1) .

6: uj, v} < Forward dynamics (9) using n ,mj
and uh T vh}]

7 fpj, lZ < Control law (13) using v}, u and
numerlcal approximations of their time derivatives

8: Pz — Eq (6) using f,, .1,

9: n?w, ; < Eq. (1) using fpj,

10:  end for

11: end for

Note: (n,m, f,l) are defined in the global frame,
and (v, u, P) in the local frame.

Algorithm 1 outlines the numerical solution of the forward
and inverse dynamic problems in the simulation. The solution
of the forward dynamics is found using the computationally
inexpensive approach in [19]. First, the time-varying refer-
ence configuration and its first and second time derivatives
are defined (line 1). An outer loop iterates over time steps
1 (lines 2 to 11), and an inner loop iterates over discretized
spatial locations (nodes) 7 along the backbone of the robot
(lines 4 to 10). In the outer loop, the boundary conditions
n} = “n(i,0) and m} = “m(i,0) of the fixed end of the
arm are guessed using the standard shooting method (SSM)
(line 3), which converts a two-point boundary value problem
(BVP) to an initial Value problem (IVP), as described in [21],
given that n;, ! = “n(i — 1,L) = 0 and m2 ! Gm(z —
1,L)=0at the free end of the arm and n and my are set
to 0. The implicit fourth-order Runge-Kutta (RK4) method is
applied to compute the internal force and moment né, m;
from their current values and spatial derivatives at spatial
node j — 1 (line 5). Next, the values of v’ and u’ are
computed according to (9) using the numerically integrated
nj, m} and the history elements v}, ;, uj, ; from the past two
tlme steps (line 6). Using the error between the configuration
space variables and their desired values and the error between
their actual and desired time derivatives, control law (13)
is used to calculate the force and moment ( fp by, ]) that
the pneumatic actuators must apply to the corresponding
backbone section (line 7). These forces and moments are
mapped to the equivalent actuation P (line 8), which is
converted using (8) into the desired actuator pressures that
are sent to the actual robot. Lastly, n! s,; and my ; are found
for the next iteration of the inner loop (line 9).

V. SIMULATION AND EXPERIMENTAL RESULTS

We compare the controller’s performance at tracking
reference configurations in the actual robot arm (Fig. 1)
and its simulation, which runs simultaneously in real time.
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Fig. 3: Schematic block diagram of the configuration tracking controller.

T
== Desired ——Segment 1 simulation Segment 2 simulation
—=-Segment 1 experiment ' Segment 2 experiment

100

150
Time (s)

(a) Desired, simulated, and experimental v (¢) for both segments.

42 T

----- Experiment|
——Simulation

e S .
F40; ‘
3

N39+

38

a7t ‘ ‘
0 50 100
Time (s)

(c) Height z(t) of segment 2’s tip in simulation and experiment.

150

50 100
Time (s)

of segment 1’s tip in simulation and experiment.

150

(b) Height z(t)

Y B B
ParPas ™ " PP,

T ParPaz PPz

Pressure [Psi]

.
0 50 100 150
Time (s)

(d) Desired pressure pfi j and measured pressure pﬁn i for actuator j of
segment ¢ during the experiment.

Fig. 4: Controller performance for tracking the reference extension v, (t) in (14) in an experimental trial with the soft robotic
arm and the corresponding simulation of its dynamical model.

As mentioned, the controller can produce all four main
deformations; however, due to the robot’s physical design
restrictions, we can only validate the controller for bending
and extension. Also, while there are no theoretical limitations
imposed by our modeling and control approach on the
number of segments, we used only two segments due to space
constraints on the motion capture system. The simulated arm
is slender, uniform, and symmetric about the z-axis and has
isotropic material properties and a circular cross-section with
radius . Our controller can also be applied to multi-segment
robots with other cross-section geometries if they satisfy the
assumptions required for using the Cosserat rod model.

We tested sinusoidal reference inputs with various ampli-
tudes and frequencies that produce extension and bending
under open-loop actuation. The position and orientation of
each segment’s tip were recorded using motion capture
cameras. The dead-zone of the electric valve of each FRA
was avoided by pre-loading the FRAs at a pressure of 1

psi. We describe results for reference inputs that kept the
robot within the tracked space of the motion capture system:
one that produced extension of both segments, and four
that produced simultaneous bending of segment 1 about the
(+x)- or (—x)-axis (i.e., toward the (—y)- or (+y)-axis)
and bending of segment 2 about the (+y)- or (—y)-axis
(i.e., toward the (4x)- or (—x)-axis). Videos of tests with
these inputs, including ones not discussed here due to space
limitations, are shown in the supplementary attachment.
The reference input that produced extension was given by:

v, (t) = 1 + asin® (wt), (segments 1 and 2) (14)
with ¢ = 0.1 cm, w = 27/100 rad/s. Figures 4a-d compare
the desired, simulated, and actual extensions v, (t), the z co-
ordinates of the segment tips, and the desired and measured
actuator pressures. The figures show that the robot closely
tracks the reference input v.(¢), and that the simulation
accurately predicts the robot’s deformation over time.
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Fig. 5: Controller performance for tracking the reference curvatures @, (t) (segment 1) and @,(t) (segment 2) in (15) in an
experimental trial with the soft robotic arm and the corresponding simulation of its dynamical model.

Of the reference inputs that produced bending, here we
present the results for the input that caused segment 1 to bend
about the (+x)-axis and segment 2 to bend about the (—y)-
axis. This input was defined as the following curvatures:

i, (t) = bsin? (wt),

iy, (t) = csin? (wt),

(segment 1) (15)
(segment 2)
where b = 1.5 cm, ¢ = —3 cm, w = 27/50 rad/s. Figure 5
compares the simulated and actual curvatures wu,(t) and
uy(t), and = or y coordinate of the segment tips, as well as
the desired and measured actuator pressures. The robot tracks
the reference input fairly well (Figs. 5a,b) and generally
follows the prediction of the simulation (Figs. 5a-d). The
main source of the robot’s tracking error and its discrepancy
from the simulation is the delay between the pneumatic
actuation and the resulting elongation or shortening of the
FRAs, which was not included in the Cosserat model forward
dynamics. This delay could be reduced in practice with
modifications to the actuation mechanism, such as adding
a vacuum to speed up deflation of the FRAs.

Table II lists the root-mean-square errors (RMSEs) be-
tween the reference inputs and the corresponding extension
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TABLE II: RMSEs with respect to reference deformations.

Deformation ~ Segment  Simulation  Experiment
vz 1 0.000 0.008
vz 2 0.000 0.009
Ug 1 0.061 0.318
Uy 2 0.014 0.662

or curvature of each segment during the simulations and
experiments. We computed the RMSEs from the time series
plotted over 150 s in Figs. 4a, 5a, and 5b. The highest RM-
SEs are the errors between the experimental and reference
curvatures, which are largely due to the previously described
delay between the actuation and resulting robot deformation.

VI. CONCLUSIONS AND FUTURE WORK

We have implemented a computationally efficient control
approach, using distributed sensing and actuation, on a multi-
segment soft robot arm to track desired 3D configurations.
The position and orientation of each segment’s tip are
measured externally and fed back to a simulated Cosserat
rod model of the robot. This model is used to estimate the
configuration space variables and their first time derivatives,
which precludes the need for force and torque sensors on the
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robot, and to compute the control outputs. The segments’
local sensing and actuation capabilities allow them to be
controlled independently and facilitate tracking of diverse
configurations that could be used for complex manipulation
tasks. A feasible next step toward expanding the robot’s
autonomous operations is to add more segments and include
embedded force sensors to enable estimation and control of
the robot’s interactions with its environment, similar to the
proprioceptive grasping method in [10] for a soft robot hand.

APPENDIX

To assess the stability of the closed-loop system, we sub-
stitute expressions (13) for the high-level controller outputs
Gf p Glp into (3), which we then substitute into (1) to obtain:

CR[K 1, 1t + Ko, (T — v¢) + K, (T — )]

= “RpA(wg + q,) — “n,,

CR[K i + Ko, (G — u) + K, (7 — u)]

= “Rp(wJw + Jw,) — “p,%n — “mi,.

(16)

The right-hand sides of these equations are the sums of the
internal forces and moments with respect to the arc length.
By defining n’, and m/’, as the following expressions,

¢ “RpA(q + q,) — n,

“Rp(wJw + Jw;) — “p,n

and rewriting them in terms of the second time derivatives

of the configuration space variables, Gn' ¢RK my Vtt

n'y =
and “m’, = °RK moUtt, the closed-loop configuration

dynamics of the robot can be expressed as:
Kml’l_]tt + Kv1 (’l_Jt — ’Ut) + K;D1 (’l_) — ’U) = Kml'Utt;
KmQﬁtt + KUQ(’L_Lt — Ut) + sz(’l_l, — u) = Km2utt.

n’,

a7

G G

’
m = — “mg,

(18)

Defining the error vector e(t) = (¥ —v, @ —u)T and writing
(18) in terms of e(t), the closed-loop dynamics take the form
of a homogeneous second-order differential equation, e;; +
K',e; + K’ e = 0, with matrices K’,, and K’,, given by:

K/ — K’U1 ®Km1 0

v 0 K1;2®Km2 ’ (19)
o _ [Kn @K, 0

P 0 K, oK,,|’

in which @ denotes element-wise division of matrices
(Hadamard division). These matrices are symmetric and
positive definite. We choose the positive definite Lyapunov

. 1 . . .
function V' = 3 (el'e;+eT K’ ,e), which has time derivative:

1 1 1
5 5 ieg‘K,pe + §eTK/pet
1 1

5(632 +elK' e, + §etT(€tt + K'ye)

1

2
Since K’, is positive definite, V; is a negative definite
function. By applying Lyapunov’s direct method to the
closed-loop system dynamics, we can prove that e(t) — 0 as
t — oo and the system is globally asymptotically stable [22].

T T
Vi=-e e+ e, en+

1
(_e?K,U)et + ief(_Klvet) = _e;Kli)et-
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