


Fig. 2: (a) Design and (b) cross-section of a silicone segment.

ri is the vector from the backbone to the center of the

i-th FRA chamber, which has cap area Ai, in the local

frame of the cross-section, which has area A. (c) Kinematic

representation of a constant-curvature segment with respect

to a local frame fixed at the base of the segment.

as a Cosserat rod, into target 3D configurations. To enable

the implementation of the controller, we define mappings

from the robot’s joint space to its actuator space (desired air

pressures) and from its task space to its configuration space

(curvatures, extension). The inverse dynamics of the robot

are solved using real-time measurements of the positions and

orientations of its segments, which are obtained by a motion

capture system, and estimates of unmeasured variables from

the solution to the forward dynamics of the Cosserat rod

model. In summary, the main contributions of this paper are:

• Adaptation of our Cosserat rod model-based inverse dy-

namic controller for 3D configuration tracking [16] to a

soft robotic arm composed of independently-controllable

segments with pneumatic actuation.

• Estimation of unmeasured robot variables in the in-

verse dynamics solution using real-time simulation of the

Cosserat rod model.

• Experimental validation of the controller on a multi-

segment silicone robot that is capable of bending and

extending in 3D space, demonstrating that the controller

can be implemented on real soft robotic platforms.

II. SILICONE SEGMENT FABRICATION AND PROPERTIES

The multi-segment silicone arm was fabricated using a

process similar to the one described in [1]. Figure 2a

illustrates the design of a silicone segment, Fig. 2b shows its

cross-section, and Fig. 2c depicts its kinematic representation

as a constant-curvature segment. As shown in Fig. 2a, each

segment contains four fiber-reinforced actuators (FRAs),

indexed i = 1, 2, 3, 4, which are symmetrically arranged with

respect to the central axis of the segment and embedded

in the segment using silicone filament. The helical fiber

reinforcements are wound clockwise and counterclockwise

in such a way that the FRAs elongate along the axial

direction instead of expanding in the radial direction. The

TABLE I: Silicone segment properties.

Param. Description Value Units

N Number of segments 2 –
ri Distance from backbone to each FRA 0.3 cm

Ai FRA cap area 3.1 cm2

r0 Undeformed radius of the segment 5.3 cm
L0 Undeformed length of the segment 18.5 cm
M Mass of the segment 0.825 kg

ρ Density of the segment 792.8 kg/m3

G Shear modulus of the segment 0.1 MPa
E Young’s modulus of the segment 0.28 MPa

two segments are dyed either blue or red and are connected

by black 3D-printed parts, which are fastened with bolts and

nuts (see Fig. 1). Compressed air is applied to each segment

through four air tubes, each connected to an FRA and a

digital pressure regulator. The pressure regulator measures

the air pressure pm in the FRA and drives it to a desired

pressure set-point pd.

The physical properties of each segment are listed in

Table I. To estimate the Young’s modulus of a segment,

assuming that its value remains constant during actuation,

an Instron 5944 universal testing machine was used to

elongate the unactuated segment under three loading speeds

(1 mm/s, 3 mm/s, and 5 mm/s) and measure its corresponding

change in length and the applied force. Three trials were

conducted for each loading speed, and the Young’s modulus

was estimated as the average value over all nine trials.

III. DYNAMICS AND KINEMATICS OF THE ROBOT ARM

BASED ON THE COSSERAT ROD MODEL

Here, we derive the forward and inverse dynamics of the

robot arm based on a Cosserat rod model, which is accurate

under the assumptions of a sufficiently large length-to-radius

ratio, material incompressibility, and linear elasticity.

A. Background: Cosserat rod model

The robot arm is modeled as an elastic Cosserat rod of

length L and density ρ. Each of its cross-sections has area

A and second mass moment of inertia tensor J . The cross-

section at arc length s in the global frame G has position
Gp(t, s) ∈ R

3 and orientation matrix GR(t, s) ∈ SO(3) at

time t (see Fig. 1 in [16] for a schematic of a Cosserat rod

in Cartesian coordinates). From here on, a variable without

the annotation G is defined with respect to a local frame that

is fixed to the cross-section with which it is associated.

The configuration space variables of the rod, given that its

neutral axis is in the z direction, are defined as the curvature

vector, u(t, s) = [ux, uy, uz]
T , and the rate of change of

position, v(t, s) = [vx, vy, vz]
T . The components ux and uy

produce bending about the x and y axes; uz produces torsion

about the z-axis; vx and vy cause shear effects that change

the size of the cross-section; and vz produces extension

along the z-axis. The vectors q(t, s) and w(t, s) denote

the translational and angular velocities, respectively, of the

cross-section at arc length s. The force and moment that the

material at p(t, s+ds) exerts on the material at p(t, s−ds),
for infinitesimal ds, are called the internal force and moment,
Gn(t, s) ∈ R

3 and Gm(t, s) ∈ R
3. Any force and moment
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that are applied to the backbone are called an external force

and moment, Gf(t, s) ∈ R
3 and Gl(t, s) ∈ R

3.

The deformation of each cross-section of the rod is gov-

erned by a set of partial differential equations, differentiated

with respect to s and t. The spatial derivatives of the state

variables are calculated at each cross-section. Defining (̂·) as

the cross product matrix of a vector, the internal force and

moment evolve according to the equations:

Gns =
GRρA(ŵq + qt)−

Gf ,
Gms =

GRρ(ŵJw + Jwt)−
Gp̂s

Gn− Gl,
(1)

and the kinematic variables evolve according to:

Gps =
GRv, Gpt = Rq, qs = vt − ûq + ŵv,

GRs =
GRû, GRt = Rŵ, ws = ut − ûw.

(2)

The time derivatives are computed using the Backward

Differentiation Formula (BDF) [17], [18].

B. Joint space to actuator space mapping

The sources of the external forces and moments are the

control inputs applied by the robot’s pneumatic actuators,

which produce force Gfp and moment Glp, and the gravi-

tational force per unit length in the global frame, Gfe:

Gf = Gfp +
Gfe,

Gl = Glp, (3)

where Gfe = ρAGg, Gg = [0 0 − 9.81]T m/s2. (4)

The forces and moments applied by the pneumatic actuators

to the backbone are given by:

Gfp =

4∑

i=1

giAi[
GRse3]− ρAGg,

Glp =

4∑

i=1

giAi

∂

∂s
[(Gp+ GRri)×

GRe3],

(5)

where gi is the chamber air pressure of the i-th FRA and,

as depicted in Fig. 2b, Ai is the corresponding chamber cap

area, ri is the vector from the center of the backbone to

the center of the i-th FRA in the local frame attached to a

segment cross-section, and e3 is the unit vector along the

z-axis. The gravitational effect in (4) is subtracted from the

actuation force to cancel out its effect on the backbone in (3).

Each silicone segment has three DOFs: bending about the

x-axis, bending about the y-axis, and elongation along the z-

axis. Hence, the equivalent actuation for each segment, P =
[Px, Py, Pz], can be computed using the mapping below:

Px = Glp(y) ·
GlTp (y)/Ai, Pz = Gfp(z) ·

GfT
p (z)/Ai,

Py = Glp(x) ·
GlTp (x)/Ai,

(6)

where Ai is equal for all chambers. The equivalent actuation

is related to the real actuator pressures, g1, g2, g3, g4, as:

Px = −g1 + g2 − g3 + g4, Pz = g1 + g2 + g3 + g4.

Py = g1 + g2 − g3 − g4,
(7)

In segment 1, two of the four air tubes are connected to one

pressure controller and the other two to another pressure

controller such that g1 = g2 and g3 = g4. The reverse

combination is used for segment 2, such that g1 = g3 and

g2 = g4. The constraint g1+ g4 = g2+ g3 captures both sets

of pressure relations. Given this constraint, the real actuator

pressures are computed as:

g1 = (−Px + Py + Pz)/4, g2 = (Px + Py + Pz)/4,

g3 = (−Px − Py + Pz)/4, g4 = (Px − Py + Pz)/4.
(8)

C. Forward dynamics solution

The solution to the forward dynamics of the rod is obtained

by substituting (8) into (5), (4) and (5) into (3), and (3) into

(1), and then spatially integrating (1) over the length of the

rod to calculate the configuration space variables as follows:

v = (Kse + c0Bse)
−1[GRT Gn+Ksev

∗

−Bsevh],

u = (Kbt + c0Bbt)
−1[GRT Gm+Kbtu

∗

−Bbtuh].
(9)

Here, v∗ and u∗ are the vectors v and u at the undeformed

reference shape, and the history elements vh and uh are

calculated from the values of v and u at the previous two

time steps [19]. The vectors vh and uh are obtained from

experimental data on the position and orientation of the robot

in its task space, as discussed in Section IV. The matrices

Kse, Kbt, Bse, and Bbt in (9) are defined as:

Kse =



αcG 0 0
0 αcG 0
0 0 E


A, Kbt =



E 0 0
0 E 0
0 0 G


J ,

Bse = τKse, Bbt = τKbt, (10)

where G and E are the shear modulus and Young’s modulus,

respectively, of the segment (given in Table I) and αc = 4/3
for circular cross-sections. The damping matrices Bse and

Bbt are calculated from vibration tests [20], in which τ is

twice the period of vibrations exhibited by the robot arm’s

tip. Due to the high stiffness of the segments, we set τ ≈ 0.

D. Task space to configuration space mapping

Since the configuration space variables (ux, uy , vz) cannot

be directly measured from the robot’s task space, the solution

to the inverse dynamics problem requires a mapping from

the robot’s bending and extension deformations in the task

space to the corresponding values of ux, uy , and vz . Since

this mapping is robot-independent [11], we use the Piecewise

Constant Curvature (PCC) configuration space variables,

(κ(t, s), φ(t, s), L(t, s)), to complete the mapping. These

variables are defined for a constant-curvature segment that

approximates the silicone segment, illustrated in Fig. 2c: κ is

the curvature of the segment’s backbone, L is its length, and

φ is its angle of rotation about the z-axis with respect to the

x-axis (positive counterclockwise). The position (x, y, z) of

the tip of the segment with respect to the local frame attached

to its base is related to the corresponding PCC configuration

space variables as follows, defined as in [5]:

κ = 2x/(x2 + z2), L = (1/κ) tan−1 (x/z) for φ = 0 rad

κ = 2y/(y2 + z2), L = (1/κ) tan−1 (y/z) for φ =
π

2
rad

κ = 0, L = z for x = 0, y = 0. (11)
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The segment’s backbone lies in the x–z plane at φ = 0 rad

and in the y–z plane at φ = π/2 rad. The curvature variable

κ in each plane equals the component of the curvature vector

u in the same plane for bending deformations, and the

extension variable vz is the extension ratio of the segment:

uy = κ for φ = 0 rad, vz = 1 + (L− L0)/L0,

ux = −κ for φ = π/2 rad,
(12)

where L0 is the undeformed length of the segment. The

inverse dynamics solution can be obtained once the control

input is computed, which is discussed in the next section.

IV. INVERSE DYNAMIC CONTROL OF THE ROBOT ARM

We design a control approach that drives the robot arm

to track a time-varying reference configuration (ū(t), v̄(t)),
as well as its first and second time derivatives, that achieves

desired bending and extension deformations in 3D space. We

specify a high-level controller that is similar to the dynamic

controller in our prior work [16], with proportional-derivative

gain matrices that are defined in terms of the physical and

material properties of distinct cross-sections of the robot arm.

The outputs of the high-level controller are defined as:

Gf
p
=GR[Kp1

(v̄ − v) +Kv1
(v̄t − vt) +Km1

v̄tt]

− ρA Gg,
Glp =GR[Kp2

(ū− u) +Kv2
(ūt − ut) +Km2

ūtt],

(13)

where Km1
and Km2

are 3 × 3 diagonal matrices whose

diagonal entries are proportional to ρA and ρJ , respectively,

and Kp1
= a1Kse, Kv1 = b1Bse, Kp2

= a2Kbt, Kv2
=

b2Bbt are diagonal gain matrices with manually tuned coef-

ficients b1 = 1, b2 = 1 for both segments, a1 = 100, a2 = 50
for segment 1, and a1 = 37.5, a2 = 18.75 for segment 2. The

closed-loop system is proven to be globally asymptotically

stable in the Appendix.

Figure 3 shows a block diagram of our controller. The

reference configuration (ū(t), v̄(t)) and its first and second

time derivatives are sent to the control loop at each time step.

The high-level controller computes the control outputs (the

desired forces and moments (fp, lp) applied by the actuators)

according to (13) based on the difference between these

reference values and the current configuration (u(t),v(t))
and their time derivatives, computed numerically for the

simulated robot. The control outputs are mapped to the

desired air pressure pd in each FRA using (6)-(8). Then,

the low-level controller drives the measured air pressure

pm in each FRA of the real robot to the corresponding

desired set-point pd via the robot’s pneumatic actuators. After

the arm deforms, the position and orientation of the tip of

each segment (p,R) are measured by an Optitrack motion

capture system with Motive software. Using mapping (11)-

(12), the measured task space variables (p,R) are used to

compute the configuration space variables (u,v), which are

stored as the history elements (uh,vh) for the next two

time steps. To close the loop, the values of (u,v) and their

first time derivatives at the next time step are approximated

by simulating the Cosserat model forward dynamics based

on (1)-(5), (9)-(10), using high-level controller output (13).

Algorithm 1: Configuration tracking controller

1: Given ūi
j , v̄

i
j , ūi

t,j , v̄
i
t,j , ūi

tt,j , v̄
i
tt,j ,

i = 1, ..., T/dt, j = 1, ..., L/ds
2: for i← 1 to T/dt do

3: ni
0
,mi

0
← SSM (ni−1

L = mi−1

L = 0)

4: for j ← 1 to L/ds do

5: ni
j ,m

i
j ← RK4 using (ni

j−1
,mi

j−1
) and

(ni
s,j−1

,mi
s,j−1

)

6: ui
j ,v

i
j ← Forward dynamics (9) using ni

j ,m
i
j

and ui
h,j ,v

i
h,j

7: f i
p,j , l

i
p,j ← Control law (13) using vi

j ,u
i
j and

numerical approximations of their time derivatives

8: P i
j ← Eq. (6) using f i

p,j , l
i
p,j

9: ni
s,j ,m

i
s,j ← Eq. (1) using f i

p,j , l
i
p,j

10: end for

11: end for

Note: (n,m,f , l) are defined in the global frame,

and (v,u,P ) in the local frame.

Algorithm 1 outlines the numerical solution of the forward

and inverse dynamic problems in the simulation. The solution

of the forward dynamics is found using the computationally

inexpensive approach in [19]. First, the time-varying refer-

ence configuration and its first and second time derivatives

are defined (line 1). An outer loop iterates over time steps

i (lines 2 to 11), and an inner loop iterates over discretized

spatial locations (nodes) j along the backbone of the robot

(lines 4 to 10). In the outer loop, the boundary conditions

ni
0
= Gn(i, 0) and mi

0
= Gm(i, 0) of the fixed end of the

arm are guessed using the standard shooting method (SSM)

(line 3), which converts a two-point boundary value problem

(BVP) to an initial value problem (IVP), as described in [21],

given that ni−1

L = Gn(i− 1, L) = 0 and mi−1

L = Gm(i−
1, L) = 0 at the free end of the arm and n0

0
and m0

0
are set

to 0. The implicit fourth-order Runge-Kutta (RK4) method is

applied to compute the internal force and moment ni
j , mi

j

from their current values and spatial derivatives at spatial

node j − 1 (line 5). Next, the values of vi
j and ui

j are

computed according to (9) using the numerically integrated

ni
j ,m

i
j and the history elements vi

h,j ,u
i
h,j from the past two

time steps (line 6). Using the error between the configuration

space variables and their desired values and the error between

their actual and desired time derivatives, control law (13)

is used to calculate the force and moment (f i
p,j ,lip,j) that

the pneumatic actuators must apply to the corresponding

backbone section (line 7). These forces and moments are

mapped to the equivalent actuation P (line 8), which is

converted using (8) into the desired actuator pressures that

are sent to the actual robot. Lastly, ni
s,j and mi

s,j are found

for the next iteration of the inner loop (line 9).

V. SIMULATION AND EXPERIMENTAL RESULTS

We compare the controller’s performance at tracking

reference configurations in the actual robot arm (Fig. 1)

and its simulation, which runs simultaneously in real time.
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Fig. 5: Controller performance for tracking the reference curvatures ūx(t) (segment 1) and ūy(t) (segment 2) in (15) in an

experimental trial with the soft robotic arm and the corresponding simulation of its dynamical model.

Of the reference inputs that produced bending, here we

present the results for the input that caused segment 1 to bend

about the (+x)-axis and segment 2 to bend about the (−y)-
axis. This input was defined as the following curvatures:

ūx(t) = b sin2 (ωt) , (segment 1)

ūy(t) = c sin2 (ωt) , (segment 2)
(15)

where b = 1.5 cm, c = −3 cm, ω = 2π/50 rad/s. Figure 5

compares the simulated and actual curvatures ux(t) and

uy(t), and x or y coordinate of the segment tips, as well as

the desired and measured actuator pressures. The robot tracks

the reference input fairly well (Figs. 5a,b) and generally

follows the prediction of the simulation (Figs. 5a-d). The

main source of the robot’s tracking error and its discrepancy

from the simulation is the delay between the pneumatic

actuation and the resulting elongation or shortening of the

FRAs, which was not included in the Cosserat model forward

dynamics. This delay could be reduced in practice with

modifications to the actuation mechanism, such as adding

a vacuum to speed up deflation of the FRAs.

Table II lists the root-mean-square errors (RMSEs) be-

tween the reference inputs and the corresponding extension

TABLE II: RMSEs with respect to reference deformations.

Deformation Segment Simulation Experiment

vz 1 0.000 0.008
vz 2 0.000 0.009
ux 1 0.061 0.318
uy 2 0.014 0.662

or curvature of each segment during the simulations and

experiments. We computed the RMSEs from the time series

plotted over 150 s in Figs. 4a, 5a, and 5b. The highest RM-

SEs are the errors between the experimental and reference

curvatures, which are largely due to the previously described

delay between the actuation and resulting robot deformation.

VI. CONCLUSIONS AND FUTURE WORK

We have implemented a computationally efficient control

approach, using distributed sensing and actuation, on a multi-

segment soft robot arm to track desired 3D configurations.

The position and orientation of each segment’s tip are

measured externally and fed back to a simulated Cosserat

rod model of the robot. This model is used to estimate the

configuration space variables and their first time derivatives,

which precludes the need for force and torque sensors on the
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robot, and to compute the control outputs. The segments’

local sensing and actuation capabilities allow them to be

controlled independently and facilitate tracking of diverse

configurations that could be used for complex manipulation

tasks. A feasible next step toward expanding the robot’s

autonomous operations is to add more segments and include

embedded force sensors to enable estimation and control of

the robot’s interactions with its environment, similar to the

proprioceptive grasping method in [10] for a soft robot hand.

APPENDIX

To assess the stability of the closed-loop system, we sub-

stitute expressions (13) for the high-level controller outputs
Gfp,

Glp into (3), which we then substitute into (1) to obtain:

GR[Km1
v̄tt +Kv1

(v̄t − vt) +Kp1
(v̄ − v)]

= GRρA(ŵq + qt)−
Gns,

GR[Km2
ūtt +Kv2(ūt − ut) +Kp2

(ū− u)]

= GRρ(ŵJw + Jwt)−
Gp̂s

Gn− Gms.

(16)

The right-hand sides of these equations are the sums of the

internal forces and moments with respect to the arc length.

By defining n′

s and m′

s as the following expressions,

Gn′

s =
GRρA(ŵq + qt)−

Gns,
Gm′

s =
GRρ(ŵJw + Jwt)−

Gp̂s
Gn− Gms,

(17)

and rewriting them in terms of the second time derivatives

of the configuration space variables, Gn′

s = GRKm1
vtt

and Gm′

s = GRKm2
utt, the closed-loop configuration

dynamics of the robot can be expressed as:

Km1
v̄tt +Kv1(v̄t − vt) +Kp1

(v̄ − v) = Km1
vtt,

Km2
ūtt +Kv2(ūt − ut) +Kp2

(ū− u) = Km2
utt.

(18)

Defining the error vector e(t) = (v̄−v, ū−u)T and writing

(18) in terms of e(t), the closed-loop dynamics take the form

of a homogeneous second-order differential equation, ett +
K′

vet +K′

pe = 0, with matrices K′

v and K′

p given by:

K′

v =

[
Kv1 ⊘Km1

0
0 Kv2

⊘Km2

]
,

K′

p =

[
Kp1

⊘Km1
0

0 Kp2
⊘Km2

]
,

(19)

in which ⊘ denotes element-wise division of matrices

(Hadamard division). These matrices are symmetric and

positive definite. We choose the positive definite Lyapunov

function V =
1

2
(eTt et+eTK′

pe), which has time derivative:

Vt =
1

2
eTttet +

1

2
eTt ett +

1

2
eTt K

′

pe+
1

2
eTK′

pet

=
1

2
(eTtt + eTK′

p)et +
1

2
eTt (ett +K′

pe)

=
1

2
(−eTt K

′

v)et +
1

2
eTt (−K

′

vet) = −e
T
t K

′

vet.

Since K′

v is positive definite, Vt is a negative definite

function. By applying Lyapunov’s direct method to the

closed-loop system dynamics, we can prove that e(t) −→ 0 as

t −→∞ and the system is globally asymptotically stable [22].
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