

Given the importance of line features, the next step in

integrating line features with the visual odometry framework

is to perform feature-matching for line features. Existing

techniques either utilize line-based descriptors or apply point

descriptors to points sampled from detected lines. Both types

of techniques rely on visual descriptors, which tend to fail in

texture-poor scenes, justifying the need for a line-matching

solution that is constrained by the positions of line features

and visual cues. Position-constrained line-matching ensures

the prevention of line feature mismatches, particularly in

scenes where point features are sparse or similar structures

appear repeatedly, such as trusses of a bridge and windows

in urban high-rises.

Apart from vision-based sensors, inertial sensors such as

Inertial Measurement Units (IMUs) can be used to aid the

system to perform Visual-Inertial Odometry (VIO), which

yields better accuracy. However, we restricted our focus to

just vision-based systems to showcase our method’s capabil-

ities without the aid of other such sensors. We developed

our method with the goal of easily integrating it into a

standard self-driving research vehicle for real-time deploy-

ment, and hence we assume that our visual-odometry based

pose estimate will ultimately be fused with GNSS (Global

Navigation Satellite System) and IMU-based pose estimates

in an extended Kalman filter-based framework to provide

more accurate pose estimates.

Our contributions can be summarized as follows:

• We developed a novel line-matching technique using an

Attention Graph Neural Network that is capable of ac-

quiring robust line matches in feature-poor scenarios by

sampling and detecting self-supervised learning-based

point features along the lines with encoded position

constraints.

• We integrated point features and fine-tuned line features

in a Stereo Visual Odometry framework to maintain

consistent performance in adverse weather and dynamic

lighting conditions and compared the performance of

our method to that of state-of-the-art point and line

feature matching techniques.

We discuss related work in Section II, give a technical

description of our approach in Section III, and describe

experiments and results in Section IV. Section V concludes

the paper and provides an outlook on future work.

II. RELATED WORK

In this section, we give an overview of previous work

related to visual odometry, graph matching, point feature

matching, and line matching. Given the amount of prior

research, particularly in the visual odometry field (e.g., [12],

[13], [14]), a compilation of all existing visual odometry

algorithms is beyond the scope of this paper. Visual odometry

(VO) techniques are usually classified as either direct VO or

feature-based VO. Feature-based solutions are primarily used

for their reliability, high accuracy, and robustness, and will

therefore be the focus of this paper.

A. Point feature detection and matching

Point feature detection lies at the heart of most vision-

based algorithms. The paper [15] presents a comprehensive

survey of different classical feature detectors such as SIFT,

ORB, and SURF and learning-based detectors such as LF-

Net [16] and SuperPoint and compares their performance

on three evaluation tasks in terms of robustness, repeata-

bility, and accuracy. Classical feature-matching techniques

usually involve finding descriptors, matching them using a

nearest neighbor search, and finally removing outliers to

obtain robust matches. Over time, researchers moved towards

developing more robust and accurate feature detectors and

descriptors to improve matching. Then graph neural network

(GNN)-based matching systems such as SuperGlue [17] were

developed, which outperformed all existing feature matching

techniques by using an attentional GNN. The attention

mechanism enables the GNN to selectively focus on the most

relevant features (i.e., nodes and edges) when comparing two

graphs, which improves the accuracy of feature matching and

its robustness to noisy or incomplete graphs. For this reason,

we used SuperGlue for point feature matching in our Stereo

Visual Odometry framework.

B. Line feature detection and matching

Line feature detection and matching is a well-researched

topic. Classical line detector algorithms rely on geometric

constraints to extract lines and find correspondences. Simi-

larly, line segment descriptors can be constructed from the

appearance of a neighborhood of the detected line, without

resorting to any other photometric or geometric constraints

such as the mean–standard deviation line descriptor (MLSD)

[18], which constructs the line descriptors by computing the

mean and variance of the gradients of pixels in the neighbor-

ing region of a line segment. The work [19] proposes a Line

Band Descriptor (LBD) that computes gradient histograms

over bands for improved robustness and efficiency. Recent

advancements in learning-based line segment descriptors,

e.g., LLD [20] and DLD [21], demonstrate excellent perfor-

mance with the use of a convolutional neural network (CNN)

to learn the line descriptors. In [11], the authors propose a

novel line segment detector and descriptor, Learnable Line

Detector and Descriptor (L2D2), which enables efficient

extraction and matching of 2D lines via the angular distance

of 128-dimensional unit descriptor vectors. The paper [22]

presents a novel Graph Convolutional Network-based line

segment matching technique that learns local line segment

descriptors through end-to-end training.

In [10], the authors propose SOLD2, a self-supervised

learning-based line detector that is similar to SuperPoint

and does not require any annotation, enabling the system to

generalize to multiple scenarios. For this reason, we chose

SOLD2’s line detector module as a baseline for our method.

SOLD2 also includes a line-matching algorithm to enable

occlusion awareness. However, unlike SuperGlue, SOLD2’s

matching algorithm does not take advantage of the position

information of the features, which is critical in scenes that

Authorized licensed use limited to: ASU Library. Downloaded on June 11,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

contain repetitive structures such as windows in urban high-

rises.

C. Visual SLAM / Odometry with point and line features

As described in [23], [24], visual SLAM methods that in-

corporate both point and line features have been developed to

improve localization accuracy and computational efficiency

over conventional point-based approaches in challenging

scenarios, making the VO pipeline more comprehensive

and robust to real-world conditions. One example is the

visual-inertial SLAM method in [25], which includes several

enhancements in line detection and an optical flow-based line

feature tracker. Another is the line classification methodology

for a Visual Inertial Odometry system that is presented

in [26], which exploits the distinctive characteristics of

structural (parallel) and non-structural (non-parallel) line fea-

tures to develop a two-parameter line feature representation,

leading to more efficient SLAM computations. However,

despite the benefits afforded by using both point and line

features, these visual SLAM techniques often exhibit poor

performance in scenarios with repeated, similar-looking point

and line features, such as those found in traffic environments

(e.g., building facades, pedestrian crosswalks). The design

of our StereoVO technique was motivated in part by this

limitation.

III. STEREOVO WITH POINTS AND LINES

Our proposed StereoVO framework is developed to per-

form well in texture-poor scenarios and relies on tracking

a set of point and line correspondences. The framework is

based on the SuperGlue [17] network, with an additional con-

straint (constraint (3) in Section III-B) that greatly improves

performance. We first provide a overview of the StereoVO

framework, followed by the notation and definitions that we

use in our Attention Graph Neural Network architecture.

This is followed by a description of the Optimal Matching

layer for both point and line features, and a brief summary

of how to obtain pose estimates from the point and line

correspondences.

A. Overview

An outline of the proposed StereoVO framework is shown

in Fig. 2. The stereo images obtained from the camera are

initially undistorted. The left camera image is used to obtain

point and line matches, and the right camera image is used to

obtain 3D points and 3D line estimates from disparity maps

generated using the stereo images.

To improve the accuracy of StereoVO, the left cam-

era image is pre-processed using a semantic segmentation

algorithm to remove dynamic objects, such as cars and

pedestrians, thereby generating a mask that highlights static

features in the scene. In StereoVO, focusing on stable

features improves the reliability, precision, and robustness

of the camera pose estimates. We employ SegFormer [27], a

state-of-the-art semantic segmentation algorithm, out of the

box to mask the classes of interest.

Fig. 2. Outline of the proposed Stereo Visual Odometry framework.

In the next step, we perform point and line segment

feature detection on the masked input images. Since our goal

is to implement the framework on a full-size autonomous

vehicle and ensure that it is capable of performing well under

adverse weather and dynamic lighting conditions, we tested a

variety of point feature detectors, including SIFT, ORB, and

LIFT, in example scenarios with such conditions and chose

SuperPoint since it outperformed the others. SuperPoint is a

CNN-based self-supervised framework that is trained on the

MS-COCO dataset [28] and performs real-time point feature

detection out of the box without any fine-tuning.

We selected SOLD2 for line feature matching, since it

has a similar CNN architecture to SuperPoint. To improve

the performance of SOLD2 in low-light conditions and other

adverse weather conditions, we fine-tuned the network on

synthetic data generated using the CARLA driving simu-

lator [29]. Since SOLD2 performs well in ideal daytime

conditions, we used the line features detected by SOLD2

as ground truth and changed weather and lighting conditions

for the same scenes in CARLA to generate multi-weather

and lighting-augmented data. The SOLD2 algorithm also

performs line matching by sampling lines and performing

feature matching between the samples to aid in occlusion

awareness. However, this results in incorrect matches in

feature-poor scenarios. To overcome this, we introduced

position constraints on the line features by sampling points

along the lines, using SuperPoint to detect point features

from these sets of sampled points, and encoding the point

Authorized licensed use limited to: ASU Library. Downloaded on June 11,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

features with keypoint position awareness. This is explained

further in the next sections. Both the point and line feature

detection networks are designed to function effectively across

various datasets without being overly reliant on specific

training data. Their generalizability enables them to detect

point and line features in diverse contexts and domains,

making them versatile tools for a wide range of applications.

Figure 3 provides additional details of the framework.

B. Notation and definitions

Consider a pair of images labeled A and B. Each image

α ∈ {A,B} has Lα line features, indexed by set Lα ⊂
Z+, and Pα point features, indexed by set Pα ⊂ Z+ and

referred to as P-point features. The pixels comprising the line

features are extracted using SOLD2 line feature extractor,

and SuperPoint is used to detect Qα point features from these

pixels, indexed by set Qα ⊂ Z+ and referred to as L-point

features. Each point feature is associated with a position

p and a visual descriptor vector d. The feature position

is defined as p = [u v c]T , where u and v are the pixel

coordinates of the point and c is the descriptor detection

confidence. We will use the notation (pp)
α
i to indicate the

position of P-point feature i ∈ Pα in image α and (pl)
α
i to

indicate the position of L-point feature i ∈ Qα in image α.

We define the visual descriptors (dp)
α
i , (dl)

α
i similarly. The

subscript x will refer to either p or l.

The representation (yx)
α
i , x ∈ {p, l}, for each keypoint

i in image α is a high-dimensional vector that encodes the

keypoint’s position and visual descriptor. The keypoint posi-

tion is embedded into (yx)
α
i as follows using a multi-layer

perceptron (MLP), similar to the SuperGlue architecture:

(yx)
α
i = (dx)

α
i +MLPencoder(px)

α
i (1)

Our framework enforces the following constraints. (1) Any

P-point feature from one image has exactly one match to

a P-point feature in the other image; similarly for L-point

features. (2) All P-point features and L-point features that

are occluded or undetected will be unmatched. (3) A line

feature la ∈ LA in image A is matched to a line feature

lb ∈ LB in image B if most of the L-point features on la
are matched to L-point features on lb.

C. Attention Graph Neural Network

An Attention Graph Neural Network (GNN) forms the

first layer of the architecture. The network encodes both

the positions and visual descriptors of the keypoints, which

ultimately improves the performance of the network over a

conventional graph neural network. The position constraints

increase line-matching robustness and ensure that incorrect

line matches do not occur in cases where images contain

repetitive structures, such as windows in high-rise buildings.

We developed separate GNNs for point and line feature

matching, one with nodes defined as the P-point features

and the other with nodes defined as the L-point features.

Each GNN has a different set of losses and weights, since

the networks compute different estimates of the geometric

and photometric cues.

As in the SuperGlue architecture, aggression is achieved

through both self- and cross-attention mechanisms. Given a

feature that corresponds to a particular node in one image,

self-attention aggregates features that correspond to adjacent

nodes in the same image, and cross-attention aggregates

similar features that correspond to nodes in another image.

The framework attends to individual point features’ positions

and their positions relative to adjacent point features, as in

SuperGlue. Let (hx)
α
i , x ∈ {p, l}, denote the matching de-

scriptor for keypoint i in image α. The matching descriptors

are defined as:

(hx)
α
i = Wx(yx)

α
i + bx, x ∈ {p, l}, α ∈ {A,B}, (2)

where Wx is a weight matrix and bx is a bias vector.

D. Optimal Matching layer

The Optimal Matching layer forms the second block of

the framework, similar to SuperGlue. The input to this layer

is the structural affinity between the two GNNs that have

been encoded, defined in terms of affinity matrices Sp ∈
R

PA×PB and Sl ∈ R
QA×QB . The (i, j)-th entry of each

matrix represents the affinity score between point feature i

in image A and point feature j in image B and is defined

as follows:

(Sx)i,j = exp

(

(hT
x)

A
i Ex(hx)

B
j

δx

)

, x ∈ {p, l}, (3)

where Ex is a learnable weight matrix and δx is a tunable

hyperparameter. The network is subject to the constraints

described in Section III-B. As in SuperGlue, the unmatched

and occluded P-point and L-point features are assigned to

a dustbin, which augments each affinity matrix with an

additional row and column that are both filled with a single

learnable parameter.

We formulate the constrained optimization problem (4)-(5)

below to solve for the assignment matrices Pp ∈ R
PA×PB

and Pl ∈ R
QA×QB :

max

N+1
∑

i=1

M+1
∑

j=1

(Sx)i,j(Px)i,j , x ∈ {p, l} (4)

Px1N+1 = a and Px
T1M+1 = b, (5)

where M = PA, N = PB for x = p; M = QA, N = QB

for x = l; and a and b are biases. As in SuperGlue, this

constitutes a differentiable optimal transport problem and can

be solved using the Sinkhorn algorithm [30], which is GPU-

optimized. The algorithm is iterated until convergence.

Since all layers of the network are differentiable, we use

the negative log-likelihood loss as the matching prediction

loss. We backpropagate from ground truth matches to visual

descriptors. Let GTp be the set of ground truth matches of

P-point features, {(i, j)} ⊂ PA×PB , and GTl be the set of

ground truth matches of L-point features, {(i, j)} ⊂ QA ×
QB . The sets Ap ⊆ PA and Bp ⊆ PB will denote the

unmatched P-point features in both images, and similarly,

Al ⊆ QA and Bl ⊆ QB will denote the unmatched L-point

Authorized licensed use limited to: ASU Library. Downloaded on June 11,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The proposed point and line feature matching architecture, consisting of point and line feature layers, an Attention Graph Neural Network layer
for both points and lines, and an Optimal Matching layer that generates an assignment matrix using the Sinkhorn algorithm.

features. We define two losses, one for P-point features and

one for L-point features:

Lossx = −
∑

(i,j)∈GTx

log(Px)i,j −
∑

i∈Ax

log(Px)i,M+1

−
∑

j∈Bx

log(Px)N+1,j , x ∈ {p, l},

where M = PA, N = PB for x = p and M = QA, N = QB

for x = l.

E. Camera pose estimation

As a final step, we perform camera pose estimation by

using the point and line matches from 2D-3D point and line

correspondences between successive frames. To obtain 3D

points and lines, we perform stereo matching using the dis-

parity map generated from the stereo camera images. Since

this is a well-established topic and open source modules

are readily available, a detailed description of camera pose

estimation is outside the scope of this paper.

IV. EXPERIMENTS

In this section, we present the results of experiments that

compare the performance of our StereoVO framework to

that of state-of-the-art algorithms for point and line feature

matching. We compared Method 1, which combines the Su-

perGlue point-matching algorithm and SOLD2 line-matching

algorithm, to Method 2, which combines the SuperGlue

point-matching algorithm and our novel line-matching algo-

rithm. We tested both methods on the following datasets:

• Ford AV dataset [1], collected by autonomous vehicles,

which consists of stereo camera images with accurate

ground-truth trajectories obtained from LiDAR-based

ICP. Our test data was drawn from Log 3 (Vegetation

with clear sunny sky) and Log 4 (Residential area with

clear sky).

• Nighttime stereo camera images from the Oxford car

dataset [2], collected by an autonomous vehicle. Our

test data consisted of images of residential areas with

Visual Odometry (VO)-based ground truth.

• Synthetic stereo camera images with ground-truth tra-

jectories from the urban environment in Town 10 of

CARLA [29]. Our test data consisted of images of the

same scenes under a variety of weather and lighting

conditions, such as fog, nighttime, and glare.

Our StereoVO framework was run in real-time on an

NVIDIA RTX 2080Ti GPU at around 7 FPS (142 ms).

To ensure real-time operation, the framework requires a

minimum of 6 GB of GPU memory (VRAM). Point and line

matching results from Method 2 are shown in Fig. 1 and Fig.

4 for scenes from real and synthetic datasets, respectively,

under various weather and lighting conditions.

A. Comparison of estimated trajectories and pose error

We applied each method to estimate the vehicle camera

poses from the Ford AV Log 4 dataset and generated vehicle

trajectories from these pose estimates. The trajectories are

plotted in Fig. 5, along with the ground truth (GT) trajectory.

The figure shows that both methods yield trajectories that

are close to the GT trajectory at all times. Note that at

coordinates (2965, -660) and (3175, -825), indicated by

arrows in the figure, the vehicle was at a complete stop,

causing drift in the visual odometry. This drift can be reduced

by fusing measurements from other sensors, such as GNSS

and IMU, with the StereoVO estimates. To quantify the

deviation of the trajectory generated using each method

from the GT trajectory, we computed the Absolute Pose

Error (APE) over time between each trajectory and the GT

trajectory. Figure 6 compares the time series of the APE

for both trajectories and shows that our method (Method 2)

outperforms Method 1, in that it generally produced lower

APE values over the sampled 160-s period.

Authorized licensed use limited to: ASU Library. Downloaded on June 11,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

TABLE I

RMSE BETWEEN ESTIMATED AND GROUND TRUTH VEHICLE POSITION

FOR SCENARIOS SIMULATED IN CARLA, USING METHOD 2 WITH

DIFFERENT COMBINATIONS OF POINT AND LINE FEATURES

Scenario Points Lines RMSE (m)

Daytime
✓ - 0.2653
- ✓ 0.4312
✓ ✓ 0.1826

Fog
✓ - 1.1563
- ✓ 1.1702
✓ ✓ 0.9865

Nighttime
✓ - 1.1840
- ✓ 1.1597
✓ ✓ 1.0168

tween the estimated vehicle position and its ground truth

position, obtained from simulated noise-free GNSS data,

over 2000 frames in each of the three simulated scenarios

in CARLA. The estimated positions were computed using

Method 2 with only point features (detected by SuperPoint),

only line features (obtained by our line-matching algorithm),

or both point and line features. For each scenario, the use

of both point and line features yields a lower RMSE value

than either point features or line features alone. Hence, the

inclusion of line features in the StereoVO framework leads

to improved performance, particularly in low-visibility and

low-light conditions.

B. Comparison of number of feature detections and matches

We also compared the number of point or line features

that different algorithms detected and matched, along with

the percentage of detected features that were matched, in 200

frames of the Ford AV, Oxford car, and CARLA datasets.

Table II lists these quantities for point features that were

detected by SuperPoint and matched by SuperGlue and line

features that were detected by the SOLD2 line detector

and matched by either the SOLD2 line-matching algorithm

or ours. The table shows that our line-matching algorithm

recovers more line matches than the SOLD2 line-matching

algorithm in each tested dataset.

Figure 8 plots the number of point features detected by

SuperPoint and the number of line matches obtained by our

algorithm in each frame of the daytime, fog, and nighttime

scenarios simulated in CARLA. The figure shows that the

number of line matches in each frame is not significantly

affected by the visibility conditions (clear or foggy) or light

level (daytime or nighttime) in the scene. However, the

numbers of point features detected in the fog and nighttime

scenarios are consistently lower than the number detected in

the daytime scenario, and are substantially lower in some

frames. This is also reflected in the first row of Table II,

which shows fewer total point detections in the CARLA fog

and nighttime scenarios than in the daytime scenario.

These results indicate that our line-matching algorithm

exhibits robust performance as a scene becomes more

texture-poor due to adverse weather conditions and/or low

illumination. In turn, this robustness in feature matching

maintains the accuracy of the camera pose estimates under

TABLE II

NUMBER OF FEATURE DETECTIONS (D) AND MATCHES (M) IN REAL

AND SYNTHETIC DATASETS, USING COMPONENTS OF METHODS 1 AND 2

(L.F. = LINE FEATURES, L.M. = LINE MATCHES)

Algorithms
Real datasets

Synthetic dataset
(CARLA)

Ford AV
dataset
(Log 3)

Ford AV
dataset
(Log 4)

Oxford
car

dataset
(Night)

Day
time

Fog
Night
time

SuperPoint +
SuperGlue

D 142563 118642 22740 132733 125774 103457
M 98364 94237 17129 116395 96972 81304
% 69.0 79.4 75.3 87.7 77.1 78.6

SOLD2 (L.F.) D 36634 32145 8012 17355 17840 18272

SOLD2 (L.M.)
M 31089 22061 3834 12649 10426 9046
% 84.9 68.6 47.9 72.9 58.4 49.5

Our algorithm (L.M.)
M 34291 28679 6754 16861 16464 17588

% 93.6 89.2 84.3 97.1 92.3 96.2

Fig. 8. Number of point features detected by SuperPoint (top three plots)
and number of line features obtained by our line-matching algorithm (bottom
three plots) in each frame of three runs in CARLA under daytime, fog, and
nighttime conditions.

such conditions.

V. CONCLUSION

We have presented a real-time stereo visual odometry

framework aided by Attention Graph Neural Networks. This

framework incorporates self-supervised learning-based point

and line features and uses a novel line-matching technique

that samples line features into point features with encoded

position constraints. Using real datasets from autonomous

vehicles and synthetic datasets from the CARLA driving

simulator, we demonstrated that our framework produces

robust line-matching in feature-poor scenes and scenes con-

taining repetitive structures, e.g., Manhattan-world scenarios.

In these tests, our framework outperformed state-of-the-art

point and line feature matching algorithms in terms of the

error between estimated and ground-truth vehicle poses, the

percentage of detected line features that were matched, and

the variability in number of identified features with respect

to visibility and lighting conditions. One direction for future

work is to incorporate planar features into the framework to

improve its robustness. Moreover, developing a single end-to-

end framework that performs temporal and stereo matching

for both point and line features would be a promising step

toward increasing the method’s accuracy, robustness, and

computation efficiency.

Authorized licensed use limited to: ASU Library. Downloaded on June 11,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Agarwal, A. Vora, G. Pandey, W. Williams, H. Kourous, and
J. McBride, “Ford multi-AV seasonal dataset,” The International

Journal of Robotics Research, vol. 39, no. 12, pp. 1367–1376, 2020.

[2] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km:
The Oxford RobotCar Dataset,” The International Journal of Robotics

Research, vol. 36, no. 1, pp. 3–15, 2017.

[3] D. Lowe, “Object recognition from local scale-invariant features,” in
Seventh IEEE International Conference on Computer Vision, vol. 2,
1999, pp. 1150–1157.

[4] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust
features,” in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof,
and A. Pinz, Eds. Springer, 2006, pp. 404–417.

[5] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An effi-
cient alternative to SIFT or SURF,” in 2011 International Conference

on Computer Vision, 2011, pp. 2564–2571.

[6] D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-
supervised interest point detection and description,” in IEEE Confer-

ence on Computer Vision and Pattern Recognition Workshops, 2018,
pp. 224–236.

[7] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “LIFT: Learned invariant
feature transform,” in European Conference on Computer Vision.
Springer, 2016, pp. 467–483.

[8] S. Hausler, M. Xu, S. Garg, P. Chakravarty, S. Shrivastava, A. Vora,
and M. Milford, “Improving worst case visual localization cover-
age via place-specific sub-selection in multi-camera systems,” IEEE

Robotics and Automation Letters, vol. 7, no. 4, pp. 10 112–10 119,
2022.

[9] M. Voodarla, S. Shrivastava, S. Manglani, A. Vora, S. Agarwal,
and P. Chakravarty, “S-BEV: Semantic birds-eye view representation
for weather and lighting invariant 3-dof localization,” arXiv preprint

arXiv:2101.09569, 2021.

[10] R. Pautrat, J.-T. Lin, V. Larsson, M. R. Oswald, and M. Pollefeys,
“SOLD2: Self-supervised occlusion-aware line description and de-
tection,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2021, pp. 11 368–11 378.

[11] H. Abdellali, R. Frohlich, V. Vilagos, and Z. Kato, “L2D2: Learnable
line detector and descriptor,” in 2021 International Conference on 3D

Vision (3DV). IEEE, 2021, pp. 442–452.

[12] K. L. Lim and T. Bräunl, “A review of visual odometry meth-
ods and its applications for autonomous driving,” arXiv preprint

arXiv:2009.09193, 2020.

[13] M. He, C. Zhu, Q. Huang, B. Ren, and J. Liu, “A review of monocular
visual odometry,” The Visual Computer, vol. 36, 05 2020.

[14] M. O. A. Aqel, M. H. Marhaban, M. I. Saripan, and N. Ismail, “Review
of visual odometry: types, approaches, challenges, and applications,”
SpringerPlus, vol. 5, pp. 1–26, 2016.

[15] D. Bojanić, K. Bartol, T. Pribanić, T. Petković, Y. D. Donoso, and J. S.
Mas, “On the comparison of classic and deep keypoint detector and
descriptor methods,” in 2019 11th International Symposium on Image

and Signal Processing and Analysis (ISPA). IEEE, 2019, pp. 64–69.

[16] Y. Ono, E. Trulls, P. Fua, and K. M. Yi, “LF-Net: Learning local
features from images,” Advances in Neural Information Processing

Systems, vol. 31, 2018.
[17] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Su-

perGlue: Learning feature matching with graph neural networks,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 4938–4947.

[18] Z. Wang, F. Wu, and Z. Hu, “MSLD: A robust descriptor for line
matching,” Pattern Recognition, vol. 42, no. 5, pp. 941–953, 2009.

[19] L. Zhang and R. Koch, “An efficient and robust line segment matching
approach based on LBD descriptor and pairwise geometric consis-
tency,” Journal of Visual Communication and Image Representation,
vol. 24, no. 7, pp. 794–805, 2013.

[20] A. Vakhitov and V. Lempitsky, “Learnable line segment descriptor for
visual SLAM,” IEEE Access, vol. 7, pp. 39 923–39 934, 2019.

[21] M. Lange, F. Schweinfurth, and A. Schilling, “DLD: A deep learning
based line descriptor for line feature matching,” in 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 5910–5915.

[22] Q. Ma, G. Jiang, and D. Lai, “Robust line segments matching via
graph convolution networks,” arXiv preprint arXiv:2004.04993, 2020.

[23] X. Zuo, X. Xie, Y. Liu, and G. Huang, “Robust visual SLAM with
point and line features,” in 2017 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1775–
1782.

[24] Y. Yang, P. Geneva, K. Eckenhoff, and G. Huang, “Visual-inertial
odometry with point and line features,” in 2019 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2019, pp. 2447–2454.

[25] L. Xu, H. Yin, T. Shi, D. Jiang, and B. Huang, “EPLF-VINS: Real-
time monocular visual-inertial SLAM with efficient point-line flow
features,” IEEE Robotics and Automation Letters, vol. 8, no. 2, pp.
752–759, 2022.

[26] B. Xu, P. Wang, Y. He, Y. Chen, Y. Chen, and M. Zhou, “Leveraging
structural information to improve point line visual-inertial odometry,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3483–3490,
2022.

[27] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“SegFormer: Simple and efficient design for semantic segmentation
with transformers,” Advances in Neural Information Processing Sys-

tems, vol. 34, pp. 12 077–12 090, 2021.
[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in Computer Vision – ECCV 2014. Springer, 2014, pp.
740–755.

[29] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Conference on Robot

Learning. PMLR, 2017, pp. 1–16.
[30] M. Cuturi, “Sinkhorn distances: Lightspeed computation of opti-

mal transport,” Advances in Neural Information Processing Systems,
vol. 26, 2013.

Authorized licensed use limited to: ASU Library. Downloaded on June 11,2024 at 22:02:02 UTC from IEEE Xplore. Restrictions apply.

