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Abstract: Robotic manipulators with diverse structures find widespread use in both industrial and

medical applications. Therefore, designing an appropriate controller is of utmost importance when

utilizing such robots. In this research, we present a robust data-driven control method for the

regulation of a 2-degree-of-freedom (2-DoF) robot manipulator. The nonlinear dynamic model of the

2-DoF robot arm is linearized using Koopman theory. The data mode decomposition (DMD) method

is applied to generate the Koopman operator. A fractional sliding mode control (FOSMC) is employed

to govern the data-driven linearized dynamic model. We compare the performance of Koopman

fractional sliding mode control (KFOSMC) with conventional proportional integral derivative (PID)

control and FOSMC prior to linearization by Koopman theory. The results demonstrate that KFOSMC

outperforms PID and FOSMC in terms of high tracking performance, low tracking error, and minimal

control signals.
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1. Introduction

Robotic manipulators are highly utilized in various industries, such as automotive and
medical. These robots are in high demand and are often deployed in conditions where they
encounter external disturbances. Therefore, designing a suitable control method is the most
critical aspect of the robotics design process. Many control methods are applied to robot
manipulators to guide them along the desired trajectory, including the PID controller [1–4],
sliding mode control [5–7], and fuzzy PID control [8–10], among others. These mentioned
control methods depend on the dynamic model of the robot manipulator. However,
designing certain control methods, such as the model predictive controller and conventional
sliding mode control, requires an accurate dynamic model. Data-driven methods are
strong approaches that can approximate the dynamic model to generate precise model
characteristics.

Carron et al. [11] have introduced a model-based control method that utilizes data
acquired from actual operations to enhance the robotic arm’s model and tracking perfor-
mance. The foundations of this approach are inverse dynamics feedback linearization and
a data-driven error model, which are incorporated into a formulation for model predictive
control. They also demonstrated how incorporating a Gaussian process into a nominal
model can enable offset-free tracking. To achieve trajectory tracking control of the manip-
ulator, the Gaussian process feedback linearization approach, based on the updating of
the event-triggered model, is applied in a manipulator system with three degrees of free-
dom [12]. To address the challenge of extensive Gaussian process regression computation
with large data samples, sparse Gaussian process regression is employed for real-time ma-
nipulator trajectory tracking. It should be noted that the controllers proposed in [11,12] lack
robustness against external disturbances, and it is important to compare these proposed
methods with conventional controllers to assess their performance.
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The Koopman theory is a robust method for data-driven control techniques. It has
the capability to linearize complex nonlinear dynamic models. Several researchers have
incorporated the Koopman theory into their studies to achieve enhanced control perfor-
mance [13–17]. However, a critical aspect of applying the Koopman theory is the design of
the Koopman operator. The Dynamic Mode Decomposition (DMD) method is one of the
valuable techniques that can be employed to construct the Koopman operator. Extended
Dynamic Mode Decomposition (EDMD), introduced by Junker et al. [18], allows for the
approximation of a nonlinear dynamical system as a linear model. Given the widespread
use of linear system descriptions in control engineering applications, this technique is
particularly well suited for such purposes. Junker et al. [18] conducted a simulated analysis
of the prediction performance of the learned EDMD models using academic examples.
They demonstrated how crucial system properties, such as stability, controllability, and
observability, are reflected in the EDMD model. This reflection is a critical prerequisite for
a successful control design process. Furthermore, they presented experimental findings
on a mechatronic test bench and evaluated the applicability of their results to the control
engineering design procedure.

Within the realm of data-driven Koopman operator-based nonlinear robotic systems,
Shi and Karydis [19] propose ACD-EDMD, a novel approach for the Analytical Construc-
tion of Dictionaries of Appropriate Lifting Functions. The primary discovery in this study
is that Hermite polynomial-based lifting functions can be constructed by leveraging knowl-
edge of the fundamental topological spaces of the nonlinear system. They demonstrate that
when observables are bounded and weighted, the suggested approach produces dictio-
naries with proven completeness and convergence guarantees that are easy to implement.
ACD-EDMD is evaluated using various nonlinear robotic systems, including both simu-
lated and real hardware experiments. To address the limitation of this approach and extract
the leading Koopman eigenvalues, eigenfunctions, and modes of the unforced system,
Williams et al. [20] describe a modified version of EDMD that accounts for the effects of
actuation. They illustrate the effectiveness of this method using two examples: the Duffing
oscillator and a lattice Boltzmann code approximating the Fitzhugh–Nagumo partial differ-
ential equation, which demonstrates Koopman mode and eigenvalue computation under
(quasi)-periodic forcing. However, while the Koopman theory offers numerous advantages,
its limitations can be described as follows:

1- Control constraints: Koopman control may not easily accommodate control constraints,
such as safety limits on system states or control inputs. Ensuring that the control
strategy remains within these constraints can be challenging.

2- Computational complexity: solving the Koopman control problem can be compu-
tationally intensive, particularly for high-dimensional systems. Real-time control
implementation may be limited by computational constraints.

In recent years, the emergence of fractional calculus has significantly reshaped the
landscape of mathematical analysis and its applications. Fractional calculus extends tra-
ditional notions of differentiation and integration to non-integer orders, introducing a
powerful framework for modeling complex systems with long-range dependence, memory
effects, and anomalous diffusion. In this paper, we incorporate the principles of fractional
calculus into our research, leveraging its mathematical richness to provide deeper insights
into sliding mode control. By embracing fractional calculus, our aim is to enhance control
accuracy, improve stability, bolster robustness, and achieve high tracking performance.

This research makes the following contributions:

1- The application of Koopman theory to linearize the nonlinear dynamics of the 2-DoF
robot manipulator.

2- The use of the DMD method to obtain the Koopman operator.
3- The proposal of a fractional sliding mode control to regulate the linearized dynamics

model based on Koopman’s theory.
4- Implementation of conventional PID and FOSMC controllers to assess the performance

of the proposed control method.
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proach it as time t approaches infinity (t → +∞), while maintaining bounded values for
its state variables and control inputs. In mathematical terms, the problem can be formally
stated as follows:

Design a control law u(t) such that the system’s state q(t) approaches the desired
trajectory qd(t) as t → +∞, while ensuring that q(t), qd(t), and u(t) remain bounded and
the tracking error q(t) − qd(t) converges to zero.

The solution to this problem involves the development of a control algorithm, which
may include elements such as trajectory planning, feedback control, and disturbance rejec-
tion, while considering the physical limitations and constraints of the robot manipulator.

Addressing this problem is crucial for enhancing the performance and precision of
2-DoF robot manipulators in various applications, such as manufacturing, automation, and
robotics, where accurate trajectory tracking is essential for task execution and safety. In the
subsequent sections, we will delve into the control strategies and approaches employed to
tackle this problem, along with simulation results and experimental validations.

3. PID Control Model

The PID controller has been highly used in industrial companies due to its easy
implementation and low cost. The PID controller can be defined as:

uPID = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)

dt
(6)

where Kp, Ki, and Kd are proportional, integral, and derivative parameters. Moreover, the
tracking error can be defined as:

e(t) = qd − q (7)

where qd is desired trajectory tracking. The main drawbacks of the PID controller are that it
is not robust against external disturbances and has low trajectory tracking.

4. Fractional Order Sliding Mode Control

FOSMC is a robust control method against external perturbations and demonstrates
high tracking performance. Its primary advantage, when compared to conventional sliding
mode control, lies in its ability to incorporate fractional derivatives or integrals of the error.
The key aspect of FOSMC design involves selecting the fractional sliding mode surface as:

s(t) =
.
e(t) + αDµe(t) + βD−µe(t) (8)

where α and β are positive constants and D is the Grunwald–Letnikov fractional operator.
The Grunwald–Letnikov fractional derivative of the function e(t) with respect to t is given

as D
µ
t e(t) = limh→0h−µ

n

∑
k=0

(−1)k
(

µ

k

)

f (e(t)− kh), where the fractional order operator

parameters µ and k will be obtained by

(

µ

k

)

= µ(µ−1)(µ−2)...(µ−k+1)
k! = Γ(µ+1)

k!Γ(µ−k+1)
.

The FOSMC contains two control sections: equivalent control and reaching control law.
The equivalent control method can be obtained by equaling the derivative of the sliding
mode surface to zero. Taking derivative from Equation (8) results in:

.
s(t) =

..
e(t) + αµDµ+1e(t)− βµD−µ+1e(t) (9)

Taking double derivative from Equation (7) and substituting into Equation (9) produces:

.
s(t) =

..
qd −

..
q + αµDµ+1e(t)− βµD−µ+1e(t) (10)

Substituting Equation (5) into Equation (10) generates:

.
s(t) =

..
qd + B

.
q + CG(q)− u − d(t) + αµDµ+1e(t)− βµD−µ+1e(t) (11)
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By equaling Equation (11) and d(t) to zero, the equivalent control can be obtained as:

ueq =
..
qd + B

.
q + CG(q) + αµDµ+1e(t)− βµD−µ+1e(t) (12)

The equivalent control solely is not able to suppress the external disturbances. There-
fore, a reaching control law will be implemented to solve that problem. The reaching
control law is introduced as [25]:

ur = Krs(t) (13)

Therefore, the FOSMC is defined as:

uFOSMC(t) = ueq(t) + ur(t) (14)

The proposed control method’s stability can be proved by using the Lyapunov theory as:

V(t) =
1

2
sT(t)s(t) (15)

The condition for stability satisfaction is as follows:

.
V(t) = sT(t)

.
s(t) < 0 (16)

Substituting Equation (11) into Equation (16) produces:

.
V(t) = sT(t)

(

..
qd + B

.
q + CG(q)− u + αµDµ+1e(t)− βµD−µ+1e(t)

)

(17)

Substituting Equation (14) into Equation (17) introduces:

.
V(t) = sT(t)

(

..
qd + B

.
q + CG(q)− ueq(t)− ur(t) + αµDµ+1e(t)− βµD−µ+1e(t)

)

(18)

Substituting Equation (12) into Equation (18) results in:

.
V(t) = sT(t)

( ..
qd + B

.
q + CG(q)−

..
qd − B

.
q − CG(q)− αµDµ+1e(t) + βµD−µ+1e(t)− ur(t) + αµDµ+1e(t)− βµD−µ+1e(t)

)

(19)

Simplifying Equation (19) demonstrates:

.
V(t) = sT(t)(−ur(t)) (20)

Substituting Equation (13) into Equation (20) produces:

.
V(t) = sT(t)(−Krs(t)) (21)

Equation (21) satisfies the condition in Equation (16). Therefore, the proposed con-
troller is stable.

5. Koopman Theory

The key to successfully solving a nonlinear dynamical system, according to the Koop-
man operator theory, is to convert the nonlinear system’s original form into an infinite
dimensional state space, resulting in a linear system [26]. Consider a continuous-time
dynamical system as

.
x = f (x). The discrete time definition of the dynamic is [27]:

xk+1 = F(xk) (22)

where F is characterized by:

F(x(t0)) = x(t0) +
∫ t0+t

t0

f (x(τ))dτ (23)
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The dynamics of the original system become linear when the dynamics of a finite-
dimensional nonlinear system is transferred to an infinite-dimensional function space. In an
infinite-dimensional Hilbert space, g is an observable and a real-valued scalar measurement
function. Based on this observable, the Koopman operator generates as follows:

Kg = g ◦ F (24)

A continuous system can be utilized to implement smooth dynamics.

d

dt
g(x) = Kg(x) = ∇g(x). f (x) (25)

in which K is the Koopman operator. due to the Koopman operator’s unlimited dimensions,
which is important yet troublesome for operation and representation. Applied Koopman
analysis roughly approximates the evolution of a subspace covered by a limited number of
measurement functions rather than detailing the development of all measurement functions
in a Hilbert space. By constraining the operator to an invariant subspace, the Koopman
operator may be represented as a matrix with limited dimensions. Any combination of the
Koopman operator’s eigenfunctions can cover a Koopman invariant subspace [27]. When
the Koopman model’s eigenfunction ϕ(x) satisfies eigenvalue λ:

λϕ(x) = ϕ(F(x)) (26)

A Koopman eigenfunction ϕ(x) is satisfied in continuous time.

d

dt
ϕ(x) = λϕ(x) (27)

To approximate the Koopman operator, a finite-dimensional approximation is needed
on the application side. The DMD technique is one way that can estimate the Koopman
operator [27]. Here are some conditions under which it is acceptable to use the linearized
model obtained by Koopman theory:

1. Local linearity: the Koopman theory linearization is typically valid only in the vicinity
of equilibrium points or limit cycles of the nonlinear system. Therefore, it is acceptable
to use the linearized model when you are interested in studying the system’s behavior
near these points.

2. Small perturbations: the linearized model is a good approximation when the system
experiences small perturbations around a stable equilibrium. In such cases, the lin-
earized model can provide insights into the stability and local behavior of the system.

3. Short-time predictions: if you are interested in short-term predictions or analyzing
the system’s behavior over a relatively small time interval, the linearized model can
be acceptable. It often provides accurate predictions for short time horizons.

4. Reduced-order modeling: Koopman theory can be used to reduce the dimensionality
of a high-dimensional nonlinear system, creating a lower-dimensional linearized
model that retains important dynamics. This can be valuable for simplifying complex
systems while preserving critical behaviors.

6. DMD Method

DMD uses a robust numerical technique to approximate the Koopman operator.

X′
≈ AX (28)

where X′ is time shift of matrix X as:

X =
[

x1 x2 . . . . . . .
]
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Equation (28) may be used to determine A as follows:

A = X′X+ (29)

where the Moore–Penrose pseudoinverse is represented by +. Because a normal calculation
utilizing A would need a substantial amount of processing because of its enormous n, we
may utilize singular value decomposition (SVD) on the snapshots to identify the dominant
characteristics of the pseudoinverse of X [28].

X ≈ UΣV* (30)

where U ∈ Rn×r, Σ ∈ Rr×r, V ∈ Rn×r, and * demonstrate the conjugate transpose. SVD’s
reduced rank for approximating X is r. The eigenvectors can be defined as:

Φ = X′VΣ−1W (31)

where W is eigenvectors of full rank system dynamic systems.

W = X′VΣ−1Φ (32)

Let λ be eigenfunction, then we will have:

KW = λW (33)

where K is the Koopman operator.
The demonstration of the linearized dynamic model is as follows:

d

dt
y = Ky + u (34)

where y is the state variable of the linearized system.

7. Koopman Fractional Sliding Mode Control

The proposed control method block diagram is shown in Figure 2. The fractional slid-
ing mode surface for the linearized dynamic model by Koopman theory can be defined as:

sk(t) = ek(t) + αDµek(t) + βD−µek(t) (35)

where the ek is the tracking error as:

ek(t) = yd − y (36)

where yd is the desired trajectory.
Taking the derivative of the fractional sliding mode results in the following equation:

.
sk(t) =

.
ek(t) + αµDµ+1ek(t)− βµD−µ+1ek(t) (37)

Taking derivative from Equation (36) and substituting into Equation (37) produces:

.
sk(t) =

.
yd −

.
y + αµDµ+1ek(t)− βµD−µ+1ek(t) (38)

Substituting Equation (34) into Equation (38) introduces:

.
sk(t) =

.
yd − Ky − u + αµDµ+1ek(t)− βµD−µ+1ek(t) (39)

Equaling Equation (39) to zero and simplifying it produces:

ueq(t) =
.
yd − Ky + αµDµ+1ek(t)− βµD−µ+1ek(t) (40)
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where Li (i = 1,2) are the lengths of links, Mi masses of links, and g is the acceleration
of gravity.
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