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A B S T R A C T   

Developing an accurate dynamic model for an Autonomous Underwater Vehicle (AUV) is challenging due to the 
diverse array of forces exerted on it in an underwater environment. These forces include hydrodynamic effects 
such as drag, buoyancy, and added mass. Consequently, achieving precision in predicting the AUV’s behavior 
requires a comprehensive understanding of these dynamic forces and their interplay. In our research, we have 
devised a linear data-driven dynamic model rooted in Koopman’s theory. The cornerstone of leveraging Koop-
man theory lies in accurately estimating the Koopman operator. To achieve this, we employ the dynamic mode 
decomposition (DMD) method, which enables the generation of the Koopman operator. We have developed a 
Fractional Sliding Mode Control (FSMC) method to provide robustness and high tracking performance for AUV 
systems. The efficacy of the proposed controller has been verified through simulation results.   

1. Introduction 

Autonomous Underwater Vehicles (AUVs) represent a cutting-edge 
technological innovation in marine exploration and research (Zhang 
et al., 2024 & Li et al., 2024). These self-propelled, unmanned vehicles 
navigate the ocean depths with remarkable precision, offering scientists, 
engineers, and various industries invaluable insights into the underwa-
ter world (Er et al., 2023 & Su et al., 2024). Equipped with a myriad of 
sensors, cameras, and advanced navigation systems, AUVs can conduct a 
wide range of tasks, from mapping the ocean floor to collecting envi-
ronmental data and performing underwater inspections. With their 
ability to operate autonomously for extended periods and reach depths 
beyond the capabilities of human divers, AUVs are revolutionizing our 
understanding of the ocean environment and facilitating discoveries in 
fields such as marine biology, geology, archaeology, and offshore in-
dustries. Controlling AUVs is a crucial responsibility in utilizing them for 
the purposes above. 

Obtaining a nonlinear dynamic model for AUVs poses significant 
challenges due to the complex interaction of hydrodynamics, control 
systems, and environmental factors. Unlike simpler linear models, 
nonlinear models must account for varying buoyancy, drag, hydro-
statics, and hydrodynamics, making their derivation intricate. Addi-
tionally, AUVs operate in an inherently uncertain and dynamic 
underwater environment, where factors such as currents, waves, and 

seabed topology can influence their behavior unpredictably. This ne-
cessitates sophisticated modeling techniques, often involving numerical 
simulations and experimental data fusion, to capture the vehicle’s dy-
namics accurately. Moreover, nonlinearities in AUV dynamics can lead 
to challenges in control design and system identification, requiring 
advanced methods like adaptive control and nonlinear optimization. 
Overall, the complexity and nonlinearity of AUV dynamics demand 
interdisciplinary expertise and computational resources for their accu-
rate modeling and control. 

Accuracy in linearizing nonlinear dynamic models using Koopman 
theory is crucial for ensuring the reliability and effectiveness of the 
resulting linear approximations (Gong et al., 2022). The accuracy of the 
linearization process heavily depends on the choice of observable 
functions used to span the state space and approximate the nonlinear 
dynamics. Selecting an appropriate set of observables that captures the 
essential features of the system dynamics is critical for achieving accu-
rate linearizations (Korda and Mezić, 2020). Additionally, the accuracy 
of the linearized model also depends on the fidelity of the Koopman 
operator approximation. Techniques such as data-driven approaches 
and numerical methods play a vital role in estimating the Koopman 
operator from observed system trajectories, and their accuracy directly 
influences the quality of the linearized model. Ultimately, ensuring ac-
curacy in linearizing nonlinear dynamic models using Koopman theory 
enhances the reliability of subsequent control and analysis tasks, 
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facilitating more precise predictions and effective system manipulation 
(Zhang and Wang, 2023; Pan et al., 2023; Abraham and Murphey, 2019) 

Dynamic Mode Decomposition (DMD) is a data-driven technique 
that analyzes dynamical systems to extract coherent structures and 
patterns from time-series data (Rahmani and Redkar, 2023). It aims to 
decompose the system’s dynamics into spatial modes and their corre-
sponding temporal dynamics. The DMD method involves constructing a 
low-rank approximation of the data’s spatiotemporal dynamics using 
singular value decomposition (SVD) and then computing the Koopman 
operator, which is a linear operator that evolves the observables of the 
system in time (Bakhtiaridoust et al., 2023; Li et al., 2023). The Koop-
man operator allows for analyzing and predicting system behavior in a 
transformed space, often revealing underlying dynamical properties that 
are not evident in the original state space. By leveraging DMD to obtain 
the Koopman operator, one can gain insights into the dominant modes of 
behavior, identify essential features, and potentially uncover simplified 
representations of complex systems for control, forecasting, or modeling 
purposes. Švec et al. (2023) proposes a predictive algorithm for direct 
yaw moment control using a finite-dimensional approximation of the 
Koopman operator called enhanced extended dynamic mode decom-
position. This approach reduces model complexity while maintaining 
accuracy by transforming nonlinear dynamics into a higher-dimensional 
space. Williams et al. (2016) discuss the growing popularity of 
data-driven Koopman spectral analysis methods like DMD and EDMD for 
extracting dynamic features from data. They highlight the limitations of 
these methods, which assume data from autonomous systems, especially 
in cases involving system actuation. To address this, they propose a 
modified version of EDMD that accounts for actuation effects, allowing 
accurate recovery of Koopman eigenvalues, eigenfunctions, and modes. 
They demonstrate their approach’s effectiveness using periodic forcing 
examples, such as the Duffing oscillator and a lattice Boltzmann code 
approximating the FitzHugh-Nagumo equation. 

Fractional sliding mode control (FSMC) is a robust control method 
that extends the classical sliding mode control (SMC) to systems with 
fractional order dynamics (Rahmani and Rahman, 2021). The system’s 
state trajectory in traditional SMC must slide along a designated mani-
fold to achieve robustness against uncertainties and disturbances. FSMC 
introduces fractional calculus concepts to handle systems with 
non-integer order dynamics, familiar with many real-world processes 
exhibiting complex behaviors. By incorporating fractional derivatives, 
FSMC offers improved performance in robustness, tracking accuracy, 
and chattering reduction compared to integer-order SMC. Additionally, 
FSMC exhibits enhanced adaptability to systems with uncertainties and 
nonlinearities, making it suitable for a wide range of applications, 
including robotics, power systems, and biomedical engineering. Its 
benefits include enhanced robustness, improved tracking accuracy, 
reduced chattering, and increased adaptability to complex systems with 
fractional order dynamics. Luo and Liu (2023) propose a novel approach 
called disturbance observer-based nonsingular fast terminal sliding 
mode control for guiding an AUV along a desired trajectory. The method 
incorporates a nonlinear disturbance observer to estimate complex 
external disturbances, which is then integrated into the proposed control 
framework. The construction of sliding surfaces involves an expanded 
parameter selection in the exponential terms of nonsingular fast termi-
nal sliding mode control. The stability of the proposed method is proven 
using Lyapunov’s second method, demonstrating uniformly ultimately 
bounded stability. Simulation results validate the effectiveness of the 
proposed controller, showing improved convergence rates compared to 
existing nonsingular fast terminal sliding mode control methods. 

Additionally, the controller exhibits robustness against smooth 
external disturbances and can effectively track random disturbances, 
including impulses, showcasing its robust performance. Rong et al. 
(2022) present an innovative approach to FSMC for an AUV under the 
influence of random disturbances. The proposed method includes the 
development of a fractional-order sliding mode disturbance observer 
that estimates random disturbances and the AUV’s unknown model 

using adaptive and fixed-time techniques. A motion control strategy 
based on adaptive fractional sliding mode control is then implemented, 
along with a line-of-sight guidance law featuring a time-varying look--
ahead distance for path following. Additionally, a new FSMC is devised 
by constructing a fractional-order mode surface and introducing a pre-
scribed performance function to ensure control effectiveness. The paper 
also includes proofs and analyses of closed-loop stability and demon-
strates the controller’s effectiveness and robustness through numerical 
simulations. Bingul and Gul (2023) proposes model-free trajectory 
tracking control for an AUV, addressing challenges such as ocean cur-
rents, external disturbances, measurement noise, model uncertainty, 
initial errors, and thruster malfunctions. It presents a hybrid controller 
combining intelligent-PID (i-PID) and PD feedforward controllers to 
improve disturbance rejection, compensate for errors, and maintain 
precise trajectory tracking. A mathematical AUV model with ocean 
current dynamics is developed for accuracy. Computer simulations using 
the LIVA AUV demonstrate the proposed controller’s superior perfor-
mance in trajectory tracking and disturbance rejection compared to 
other controllers. Wang et al. (2024) proposes a novel control method 
for an underactuated AUV using adversarial deep reinforcement 
learning. The method includes a long-short-term-memory neural 
network for state prediction, a cascaded multilayer perceptron for action 
mapping, and an adversarial training scheme for robust control strate-
gies. Simulation-based pre-training and experimental validation in a 
towing tank demonstrate superior robustness compared to traditional 
PID controllers. 

The primary contribution of this research lies in developing an 
innovative and robust data-driven control methodology tailored for the 
precise regulation of an AUV system. This methodology integrates 
advanced theoretical frameworks and computational techniques to 
enhance the efficacy of control strategies in challenging underwater 
environments. Specifically, the study employs Koopman theory, a so-
phisticated mathematical framework renowned for its ability to effec-
tively linearize complex nonlinear dynamical systems to address the 
inherent nonlinearities within the AUV dynamics. Subsequently, the 
DMD method is harnessed to accurately estimate the Koopman operator, 
thereby facilitating a comprehensive understanding of system behavior. 
The proposed control paradigm leverages Fractional Sliding Mode 
Control, a robust control technique known for its resilience to un-
certainties and disturbances, to govern the linearized dynamic model 
obtained through Koopman theory. Additionally, the stability of the 
devised control strategy is rigorously validated utilizing the renowned 
Lyapunov theory, ensuring its robustness and effectiveness under vary-
ing operational conditions. Simulation-based evaluations are conducted 
to substantiate the superior performance of the proposed control 
methodology, benchmarked against conventional controllers, thus 
demonstrating its efficacy in real-world applications. Our proposed 
control method is designed to handle various sea conditions, including 
calm waters and turbulence. It applies to multiple disturbances 
encountered during Autonomous Underwater Vehicle (AUV) movement. 

The forthcoming sections of this paper are structured as follows: In 
Section 2, we delve into the intricate nonlinear dynamics governing the 
operation of AUV systems. This section aims to provide a comprehensive 
understanding of the mathematical model underpinning the behavior of 
AUVs. Section 3 introduces the Koopman theory, offering a robust 
framework for analyzing the dynamics of nonlinear systems through the 
lens of linear operators. Section 4 elaborates on the Dynamic Mode 
Decomposition (DMD) method, a versatile technique for extracting 
dominant spatiotemporal patterns from high-dimensional datasets. 
Following this, in Section 5, we present the application of fractional 
sliding mode control, a robust control strategy capable of handling un-
certainties and disturbances inherent in AUV operations. Section 6 is 
dedicated to presenting simulation results, demonstrating the efficacy of 
the proposed methodologies in enhancing AUVs’ performance and 
maneuverability. Finally, in Section 7, we conclude from our findings 
and discuss avenues for future research in AUV dynamics and control. 
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2. AUV nonlinear dynamic model 

Certainly, when considering the dynamic behavior of an AUV within 
the horizontal plane, it’s common to simplify the analysis by dis-
regarding motions in heave (vertical movement), roll (rotation around 
the longitudinal axis), and pitch (rotation around the transverse axis). 
By doing so, we focus primarily on the movement components of surge 
(forward and backward motion), sway (sideways motion), and yaw 
(rotation around the vertical axis). An AUV’s kinematic and dynamic 
model encompasses various factors that influence its motion and 
behavior in water. This model typically involves a complex interplay of 
hydrodynamic forces, thruster dynamics, control inputs, and environ-
mental conditions. In the simplified horizontal plane, the model can be 
delineated more distinctly, highlighting how surge, sway, and yaw in-
teractions govern the AUV’s motion. Surge pertains to the AUV’s 
propulsion-driven forward or backward movement along its longitudi-
nal axis, influenced by thrust from propellers or water jets and hydro-
dynamic resistance. Sway denotes lateral motion perpendicular to the 
vehicle’s longitudinal axis, often arising from propulsion or hydrody-
namic forces asymmetries. Yaw refers to the rotational movement 
around the vertical axis, affecting the AUV’s heading and direction of 
travel, with factors like thruster torque and water currents influencing 
its behavior. Focusing on these primary motion components in the 
horizontal plane allows us to develop a simplified yet insightful under-
standing of the AUV’s dynamic behavior, which is essential for control 
system design, navigation strategies, and overall mission planning in 
underwater environments (Yan and Yu, 2018). 
η̇=R(ψ)υ (1)  

Mυ̇= − C(υ)υ − D(υ)υ + τ + E(t) (2) 
Within the dynamics of ship motion, the position vector in the Earth- 

fixed frame, denoted as η = [x, y,ψ]T, encapsulates crucial spatial in-
formation. Here, x delineates the surge position, y represents the sway 
position, while ψ, bounded within [0, 2π], elucidates the ship’s heading 
orientation. Similarly, the velocity vector in the body-fixed frame, υ =

[u, ν, r]T, captures the vessel’s dynamic state: u denotes surge velocity, ν 

signifies sway velocity, and r denotes the vessel’s yaw rate. Control in-
puts, denoted by τ = [τ1, τ2, τ3]

T, encompass τ1 for surge control forces, 
τ2 for sway forces, and τ3 for yaw moment. Perturbations from external 
factors are amalgamated in the disturbance vector, E(t) =

[E1(t), E2(t),E3(t)]T, where E1(t) and E2(t) signify disturbances in surge 
and sway forces, respectively, and E3(t) denotes the disturbance moment 
in the yaw direction. The rotation matrix, pivotal for frame trans-
formations and understanding the vessel’s spatial dynamics, remains 
central to the analysis. 

R(ψ)=
⎡

⎣

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤

⎦ (3) 

It can be considered that the expressions ||R|| and ||.|| are indicative of 
the two-norms associated with a vector or a matrix. Additionally, let’s 
denote C(υ) as the function representing the Coriolis and centripetal 
forces acting on a system, where υ is typically the velocity vector. 
Similarly, D(υ) represents the restoring force vector exerted on the 
system. Moreover, M stands for the inertia matrix, which encapsulates 
the distribution of mass and rotational inertia of a rigid body or system. 
In dynamic systems analysis, the inertia matrix plays a crucial role in 
determining the system’s response to applied forces and moments. 

R(ψ)=
⎡

⎣

0 0 −mνν

0 0 muu
mνν −muu 0

⎤

⎦ (4)  

D(υ)= diag{du, dν, dr}, du = − Xu − X|u|u|u|, dν = − Yν − Y|ν|ν|ν|, dr = − Nr

− N|r|r|r|,M= diag{mu,mν,mr} mu =m − Xu̇,mν =m − Yν̇,mr = Iz − Nṙ 

In this mathematical model, the symbol m denotes the mass of the 
AUV. The terms X(.),Y(.), and N(.) represent the hydrodynamic derivatives 
of the system, while d(.) characterizes the hydrodynamic damping effect. 
By deriving the expression from Eq. (1) and subsequently substituting 
Eq. (2) into Eq. (1), we arrive at the dynamic equation in the following 
form: 
η̈= Ṙ(ψ)υ − M−1R(ψ)C(υ)υ − M−1R(ψ)D(υ)υ + M−1R(ψ)τ + M−1R(ψ)E(t)

(5) 
According to the fundamental equation represented by Eq. (1), 

which describes the relationship between variables η, ψ , and R(ψ), 
where η represents a certain quantity related to the derivative of ψ with 
respect to R(ψ), the subsequent equation Eq. (5) can be modified by 
substituting υ with υ = η̇/R(ψ). 

η̈=
(

Ṙ(ψ)R(ψ)−1 − M−1C(υ) − M−1D(υ)
)

η̇+
(M−1R(ψ))τ

+
(M−1R(ψ))E(t) (6) 

The derivation of Eq. (6) can be elucidated as follows: 
η̈=Pη̇ + Qτ + NE(t) (7) 

Let P =
(

Ṙ(ψ)R(ψ)−1 − M−1C(υ)− M−1D(υ)
)

, Q =
(M−1R(ψ)), and 

N =
(M−1R(ψ)). The symbols ΔP, ΔQ, and ΔN represent uncertainties 

arising from parameter variations. Consequently, Equation (7) can be 
expressed as: 
η̈=(P+ΔP)η̇ + (Q+ΔQ)τ + (N+ΔN)E(t) (8) 

By definition of l,u as lower and upper uncertainty values, the un-
certainties can be bounded as: 
ΔPl ≤ |ΔP| ≤ ΔPu, and ΔQl ≤ |ΔQ| ≤ ΔQu 

As well as, if we consider τ(t) to be equal to u(t), then dynamic 
Equation (8) can be expressed as follows: 
η̈=(P+ΔP)η̇ + (Q+ΔQ)u(t) + E(t) (9)  

3. Koopman Theory 

In the realm of Koopman operator theory, the pivotal strategy lies in 
transforming a nonlinear dynamical system into a linear counterpart by 
embedding it within an infinite-dimensional state space. This intricate 
maneuver entails mapping the system’s original form into a framework 
where linearity prevails, facilitating a more tractable analysis and so-
lution methodology (Ping et al., 2021). The discrete-time definition of 
the dynamic evolution of a system is characterized by how the state 
variables transition from one time step to the next, encapsulated in the 
recursive equation: 

xk+1 = F(xk), where xk represents the state at time step n, and f 
denotes the transition function governing the system’s behavior. 

F(x(t0))= x(t0) +
∫ t0+t

t0
f(x(τ))dτ (10) 

The dynamics of the original system undergo a transformative shift 
towards linearity when the intricate behavior of a finite-dimensional 
nonlinear system is transposed into the expansive realm of an infinite- 
dimensional function space. Within this vast domain, often repre-
sented by an infinite-dimensional Hilbert space, the function g emerges 
as a pivotal observable, serving as a conduit for real-valued scalar 
measurements. Through the lens of this observable, the Koopman 
operator unfolds its transformative prowess. The Koopman operator, a 
powerful mathematical construct, operates on the space of observables, 

M. Rahmani and S. Redkar                                                                                                                                                                                                                   



Ocean Engineering 307 (2024) 118227

4

providing a systematic framework for analyzing the evolution of 
dynamical systems. It maps the evolution of functions representing 
system observables, effectively capturing the essence of the system’s 
dynamics within an infinite-dimensional context. 
Kg= g∘F (11) 

Continuous systems, characterized by their continuous-time pro-
cesses and smooth evolution of state variables according to differential 
equations or integral equations, are widely utilized to accurately model 
and implement smooth dynamics across various fields such as control 
theory, physics, engineering, and computer graphics as: 
d
dt g(x)=Kg(x) = ∇g(x).f(x) (12) 

The Koopman operator, denoted by K, operates on functions of the 
state space, transforming them according to the dynamics of the system. 
This operator has an infinite-dimensional representation, which can 
make its practical application and representation both important and 
troublesome. Applied Koopman analysis employs roughly approximates 
the evolution of a subspace covered by a limited number of measure-
ment functions rather than detailing the development of all measure-
ment functions in a Hilbert space. By constraining the operator to an 
invariant subspace, the Koopman operator may be represented as a 
matrix with limited dimensions. Any combination of the Koopman op-
erator’s eigenfunctions can cover a Koopman invariant subspace (Kaiser 
et al., 2021). when the Koopman model’s eigenfunction φ(x) satisfies 
eigenvalue λ. 

4. DMD method 

The DMD for Koopman Theory presents a robust framework for 
analyzing and understanding complex dynamical systems. Koopman’s 
theory, rooted in functional analysis and dynamical systems theory, 
offers a unique perspective by treating the evolution of observables as 
linear operators acting on a function space. However, traditional 
methods for extracting dynamic modes from data often need help 
handling high-dimensional and nonlinear systems. In response, the DMD 
introduces an innovative approach that leverages the Koopman opera-
tor’s spectral properties to decompose the dynamics into orthogonal 
modes, revealing underlying patterns and simplifying the analysis of 
complex systems. This method holds significant promise across various 
disciplines, from engineering and physics to biology and finance, of-
fering insights into the fundamental dynamics governing diverse 
phenomena. 
Xʹ ≈ AX (13) 

Shifting the elements of matrix X along the time dimension as: 
X= [ x1 x2 ……. ]

The equation labeled as (13) can be utilized to calculate the value of 
A in the following manner: 
A=XʹX+ (14) 

The paragraph suggests using Singular Value Decomposition (SVD) 
to compute the Moore-Penrose pseudoinverse X+ of a matrix X. This 
approach is chosen to avoid the computational complexity that arises 
when directly computing X+, especially for matrices with large di-
mensions. By employing SVD on the data snapshots, the dominant 
characteristics of X+ can be identified more efficiently, making com-
putations more manageable (Snyder and Song, 2021). 
X ≈ UΣV∗ (15)  

In Singular Value Decomposition (SVD), the matrices are defined as 
follows: 

U∊Rn⨉r represents the left singular vectors, 

Σ∊Rr⨉r is a diagonal matrix containing the singular values, 
V∊Rn⨉r signifies the right singular vectors. 
The symbol * denotes the conjugate transpose operation. In SVD, the 

reduced rank for approximating a matrix Z is r. The eigenvectors cor-
responding to Z can be defined as: 
Φ=XʹVΣ−1W (16) 

The vector W represents the eigenvectors of dynamic systems that 
are characterized by having full rank. 

If λ is an eigenfunction, then it implies: 
KW= λW (17)  

where K is the Koopman operator. 
The demonstration of the linearized dynamic model is as follows: 

d
dt z=Kz + u (18)  

5. Robust Koopman control 

FSMC is an advanced control technique that integrates the principles 
of SMC with fractional calculus. SMC is a robust control method 
designed to ensure system stability and performance in the presence of 
uncertainties and disturbances. It achieves this by driving the system 
states onto a designated sliding surface, where the dynamics are con-
strained to remain, effectively ignoring the uncertainties. However, 
conventional SMC may exhibit chattering phenomena, leading to un-
desirable high-frequency oscillations in control signals. Fractional cal-
culus offers a powerful mathematical tool for describing systems with 
non-integer order dynamics, allowing for more flexible modeling of 
complex physical processes. In FSMC, fractional-order derivatives and 
integrals are employed within the sliding mode control framework to 
enhance system robustness and reduce chattering effects. By incorpo-
rating fractional calculus, FSMC offers improved performance, robust-
ness, and stability compared to traditional SMC, making it particularly 
suitable 

for applications requiring precise control in the presence of un-
certainties and disturbances (see Fig. 1). Additionally, FSMC has shown 
promising results in various fields, including robotics, aerospace, and 
automotive systems, highlighting its potential as a versatile control 
strategy for complex dynamical systems. The diagram in Fig. 2 depicts 
the proposed control method. The fractional sliding mode surface, which 
is derived from the linearized dynamic model using Koopman theory, 
can be formulated as follows: 
sk(t)= ek(t) + αDμek(t) (19)  

where the ek is the tracking error as: 
ek(t)= zd − z (20)  

where zd is desired trajectory tracking. To compute the derivative of a 
fractional sliding mode surface, it’s essential to elaborate on the concept 
of a fractional sliding mode surface itself. 

Fig. 1. An AUV body-referenced coordinate system (Rahmani and Rah-
man, 2021). 

M. Rahmani and S. Redkar                                                                                                                                                                                                                   



Ocean Engineering 307 (2024) 118227

5

ṡk(t)= ėk(t) + αμDμ+1ek(t) (21) 
Taking the derivative of Eq. (20) and subsequently substituting it 

into Eq. (21) leads to the derivation of a new expression as: 
ṡk(t)= żd − ż + αμDμ+1ek(t) (22) 

Integrating Eq. (18) into Eq. (22) introduces a novel representation, 
amalgamating the interplay of variables delineated within each equa-
tion as: 
ṡk(t)= żd − Kz − u + αμDμ+1ek(t) (23) 

Equating Eq. (23) to zero and then proceeding to simplify it results in 
a streamlined and more comprehensible form as: 
ueq(t)= żd − Kz + αμDμ+1ek(t) (24) 

The equivalent control system demonstrates an inability to 
adequately counteract external disturbances. Consequently, we intro-
duce the concept of reaching control, which can be characterized as: 
urk(t)=Krksk(t) (25)  

where Krk represents the reaching control gain, which is a positive 
constant value. The new control las based on Koopman theory 
(KOFSMC) is characterized by the following definition: 
uKOFSMC(t) = urk(t) + ueq(t) (26) 

Lyapunov’s theory serves as a fundamental framework for analyzing 
the stability of dynamical systems. At its core, it utilizes Lyapunov 
functions, which are scalar functions that quantify the system’s energy 
or a related metric. The theory posits that if a Lyapunov function exists 
for a dynamical system, and if it satisfies certain conditions, then the 
system is deemed stable. Specifically, the function must be positive 
definite, its derivative must be negative semi-definite, and it must 
converge to zero as time progresses. By assessing how the Lyapunov 
function evolves over time, one can ascertain whether the system’s 
trajectories tend towards equilibrium, signifying stability, or diverge, 
indicating instability. This approach provides a rigorous mathematical 
framework for stability analysis across various domains, from control 
theory to differential equations and beyond. Therefore, Lyapunov theory 
in sliding mode control assesses stability by evaluating the convergence 
properties of a Lyapunov function along the sliding surface. It estab-
lishes stability by demonstrating that the derivative of the Lyapunov 

function along trajectories remains negative definite or nonpositive, 
confirming the system’s ability to maintain robust stability despite un-
certainties or disturbances. The stability of the proposed control 
approach can be validated utilizing Lyapunov theory, wherein it is 
demonstrated that a Lyapunov function exists and satisfies certain 
conditions, thereby ensuring the system’s robust stability as: 

V(t)=1
2sT

k (t)sk(t) (27) 

Deriving the derivative of Eq. (27) yields a new mathematical 
expression or equation. 
V̇(t)= sT

k (t)ṡk(t) (28) 
Incorporating Eq. (23) into Eq. (28) generates a revised equation or 

expression. 
V̇(t)= sT

k (t)
(żd − Kz − u+αμDμ+1ek(t)

) (29) 
Substituting Eq. (26) into Eq. (29) produces an altered form or 

representation. 
V̇(t)= sT

k (t)
(żd − Kz−urk(t) − ueq(t)+ αμDμ+1ek(t)

) (30) 
Integrating Eq. (24) into Eq. (30) introduces a novel element or 

factor into the equation. 
V̇(t)= sT

k (t)
(żd − Kz−urk(t) − żd +Kz − αμDμ+1ek(t)+αμDμ+1ek(t)

) (31) 
Simplifying Eq. (31) leads to a more refined or condensed repre-

sentation of the equation. 
V̇(t)= sT

k (t)(−urk(t)) (32) 
Integrating Eq. (25) into Eq. (32) yields an updated expression or 

equation. 
V̇(t)= sT

k (t)( − Krksk(t)) (33) 
The expression presented in Eq. (33) provides evidence of the sta-

bility inherent in the proposed control methodology, affirming its effi-
cacy in maintaining robust performance across varied operational 
scenarios. 

6. Simulation results 

The newly proposed control methods are applied to the lateral dy-
namics model of an AUV system. The initial states are selected as fol-
lows: 
x(0) = 0, u(0) = 0
y(0) = 0, ν(0) = 0
ψ(0) = 0, r(0) = 0 

To assess the effectiveness of the proposed control method, reference 
trajectories are designated as follows: 
xd(t)= 2t, yd(t) = 3 sin(0.5t)

The design parameters for the proposed control method are carefully 
selected based on a thorough analysis of the system dynamics and per-
formance requirements as: 
α= 1, μ = 0.75, h = 0.01,Krk = diag{2,2}

Fig. 2. The proposed controller block diagram.  

Table 1 
Parameters of AUV dynamics model (Rahmani and Rahman, 2021).  

m = 185kg Iz = 50kgm2  

Xu = − 70kg/s Yν = − 100kg/s Nr = − 50kgm2/s 
Xu̇ = − 30kg Yν̇ = − 80kg Nṙ = − 30kgm2 

Xu|u| = − 100kg/m Yν|ν| = − 200kg/m Nr|r| = − 100kgm2  
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The detailed model parameters of the AUV system are meticulously 
documented and presented in Table 1 for comprehensive insight and 
reference purposes. Fig. 3 presents a comparative analysis of position 
tracking performance along the x and y axes, showcasing the outcomes 
achieved using both the FSMC and the newly devised control approach. 
Notably, the FSMC implementation exhibits a discernible chattering 
phenomenon, characterized by irregular fluctuations in the system’s 
behavior. This chattering effect can potentially compromise the system’s 
overall efficiency and stability. Consequently, the pursuit of an inno-
vative compound control strategy is imperative, aiming to mitigate or 
eliminate the observed chattering phenomenon while enhancing the 
system’s tracking accuracy and robustness. Fig. 4 shows the position 

tracking error of x and y under FSMC and KOFSMC. When comparing 
the FSMC with the KOFSMC controller, several significant differences 
emerge regarding their effectiveness in addressing chattering reduction, 
achieving high tracking performance, and minimizing tracking errors. 
Firstly, KOFSMC exhibits superior capabilities in chattering reduction 
compared to FSMC. Chattering, characterized by rapid and erratic os-
cillations in control signals, can significantly degrade system perfor-
mance and induce wear and tear on mechanical components. KOFSMC 
leverages its Koopman approach to smooth out control signals more 
effectively, thereby mitigating chattering phenomena and ensuring 
smoother operation of the controlled system compared to FSMC. 

Moreover, KOFSMC demonstrates a notable advantage in achieving high 
tracking performance and minimizing tracking errors over FSMC. The 
linearization in KOFSMC enables more accurate modeling of complex 
system dynamics and nonlinearities, thereby facilitating enhanced 
tracking precision. By effectively capturing the intricate relationships 
between input and output variables, KOFSMC can adapt more dynami-
cally to varying system conditions, resulting in superior tracking per-
formance and reduced tracking errors compared to FSMC. Overall, the 
comparative analysis highlights the KOFSMC controller’s superiority 
over FSMC in addressing chattering reduction, achieving high tracking 
performance, and minimizing tracking errors, making it a more favor-
able choice for advanced control applications. Fig. 5 shows Velocity 
tracking of AUV versus time using FSMC and KOFSMC. 

6.1. Robustness verification 

In the intricate domain of underwater operations, an AUV system 
continuously grapples with a plethora of external disturbances as it 
maneuvers through the dynamic and often unpredictable water envi-
ronment. This reality underscores the critical necessity of devising a 
robust control methodology that can withstand and counteract these 
persistent disturbances effectively. In order to thoroughly assess the 
resilience and noise mitigation capabilities inherent in the proposed Fig. 3. Position tracking of x and y under FSMC and KOFSMC.  

Fig. 4. Position tracking error of x and y under FSMC and KOFSMC.  
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control method, a deliberate strategy is employed wherein random noise 
with a standard deviation of 2 is meticulously introduced into the sys-
tem. This controlled noise injection is mathematically characterized by 
equation E(t) = 2 * randn(1, 1), where E(t) represents the applied noise 
at time t. The ensuing simulation endeavors yield a comprehensive and 
insightful depiction of the control method’s performance. Fig. 6 serves 
as a visual testament, elucidating the control method’s prowess in 
seamlessly suppressing the injected noise. This discernible suppression 
not only underscores the control method’s robustness but also un-
derscores its reliability and effectiveness in real-world operational sce-
narios, thereby affirming its potential for practical implementation in 
challenging underwater environments. 

7. Conclusion 

The research presents a novel data-driven control methodology 
tailored specifically for managing the intricate dynamics of an AUV 
system. This innovative approach stems from the inherent challenges in 
accurately modeling the nonlinear dynamics of the AUV, primarily due 
to the diverse and complex forces acting upon the system. To address 
this, the study leverages the Koopman theory to derive a linearized data- 
driven model, which serves as a foundational framework for control 
design. Utilizing the Koopman operator generated through the DMD 

method, the research team implements a FSMC to control the linearized 
model. This FSMC not only enhances trajectory performance but also 
bolsters the system’s robustness against external disturbances, leading 
to improved trajectory tracking and minimized tracking errors. To 
validate the robustness and efficacy of the proposed control methodol-
ogy, the study employs random noise simulations, showcasing its 
capability to mitigate disturbances and maintain stability. Looking 
ahead, the authors aim to transition this innovative control strategy into 
real-time AUV systems, anticipating enhanced performance and adapt-
ability in practical applications. The research substantiates the effec-
tiveness of the proposed control approach through comprehensive 
simulation results, underscoring its potential for real-world imple-
mentation and impact in autonomous underwater operations. 

CRediT authorship contribution statement 

Mehran Rahmani: Writing – original draft, Software, Methodology, 
Formal analysis, Conceptualization. Sangram Redkar: Writing – review 
& editing, Validation, Supervision, Methodology, Conceptualization. 

Declaration of competing interest 

There is no conflict of interest or competing interest in this research. 

Fig. 5. Velocity tracking of AUV versus time using FSMC and KOFSMC.  Fig. 6. Robustness verification of the proposed controller using random noise.  

M. Rahmani and S. Redkar                                                                                                                                                                                                                   



Ocean Engineering 307 (2024) 118227

8

Data availability 

No data was used for the research described in the article. 

References 
Abraham, I., Murphey, T.D., 2019. Active learning of dynamics for data-driven control 

using Koopman operators. IEEE Trans. Robot. 35 (5), 1071–1083. 
Bakhtiaridoust, M., Yadegar, M., Meskin, N., 2023. Data-driven fault detection and 

isolation of nonlinear systems using deep learning for Koopman operator. ISA Trans. 
134, 200–211. 

Bingul, Z., Gul, K., 2023. Intelligent-PID with PD feedforward trajectory tracking control 
of an autonomous underwater vehicle. Machines 11 (2), 300. 

Er, M.J., Gong, H., Liu, Y., Liu, T., 2023. Intelligent trajectory tracking and formation 
control of underactuated autonomous underwater vehicles: a critical review. IEEE 
Transact. Syst. Man Cybernet.: Systems. 

Gong, X., Wang, X., Joos, G., 2022. An online data-driven method for microgrid 
secondary voltage and frequency control with ensemble Koopman modeling. IEEE 
Trans. Smart Grid 14 (1), 68–81. 

Kaiser, E., Kutz, J.N., Brunton, S.L., 2021. Data-driven discovery of Koopman 
eigenfunctions for control. Mach. Learn.: Sci. Technol. 2 (3), 035023. 
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