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Developing an accurate dynamic model for an Autonomous Underwater Vehicle (AUV) is challenging due to the
diverse array of forces exerted on it in an underwater environment. These forces include hydrodynamic effects
such as drag, buoyancy, and added mass. Consequently, achieving precision in predicting the AUV’s behavior
requires a comprehensive understanding of these dynamic forces and their interplay. In our research, we have
devised a linear data-driven dynamic model rooted in Koopman’s theory. The cornerstone of leveraging Koop-

man theory lies in accurately estimating the Koopman operator. To achieve this, we employ the dynamic mode
decomposition (DMD) method, which enables the generation of the Koopman operator. We have developed a
Fractional Sliding Mode Control (FSMC) method to provide robustness and high tracking performance for AUV
systems. The efficacy of the proposed controller has been verified through simulation results.

1. Introduction

Autonomous Underwater Vehicles (AUVs) represent a cutting-edge
technological innovation in marine exploration and research (Zhang
et al.,, 2024 & Li et al., 2024). These self-propelled, unmanned vehicles
navigate the ocean depths with remarkable precision, offering scientists,
engineers, and various industries invaluable insights into the underwa-
ter world (Er et al., 2023 & Su et al., 2024). Equipped with a myriad of
sensors, cameras, and advanced navigation systems, AUVs can conduct a
wide range of tasks, from mapping the ocean floor to collecting envi-
ronmental data and performing underwater inspections. With their
ability to operate autonomously for extended periods and reach depths
beyond the capabilities of human divers, AUVs are revolutionizing our
understanding of the ocean environment and facilitating discoveries in
fields such as marine biology, geology, archaeology, and offshore in-
dustries. Controlling AUVs is a crucial responsibility in utilizing them for
the purposes above.

Obtaining a nonlinear dynamic model for AUVs poses significant
challenges due to the complex interaction of hydrodynamics, control
systems, and environmental factors. Unlike simpler linear models,
nonlinear models must account for varying buoyancy, drag, hydro-
statics, and hydrodynamics, making their derivation intricate. Addi-
tionally, AUVs operate in an inherently uncertain and dynamic
underwater environment, where factors such as currents, waves, and
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seabed topology can influence their behavior unpredictably. This ne-
cessitates sophisticated modeling techniques, often involving numerical
simulations and experimental data fusion, to capture the vehicle’s dy-
namics accurately. Moreover, nonlinearities in AUV dynamics can lead
to challenges in control design and system identification, requiring
advanced methods like adaptive control and nonlinear optimization.
Overall, the complexity and nonlinearity of AUV dynamics demand
interdisciplinary expertise and computational resources for their accu-
rate modeling and control.

Accuracy in linearizing nonlinear dynamic models using Koopman
theory is crucial for ensuring the reliability and effectiveness of the
resulting linear approximations (Gong et al., 2022). The accuracy of the
linearization process heavily depends on the choice of observable
functions used to span the state space and approximate the nonlinear
dynamics. Selecting an appropriate set of observables that captures the
essential features of the system dynamics is critical for achieving accu-
rate linearizations (Korda and Mezi¢, 2020). Additionally, the accuracy
of the linearized model also depends on the fidelity of the Koopman
operator approximation. Techniques such as data-driven approaches
and numerical methods play a vital role in estimating the Koopman
operator from observed system trajectories, and their accuracy directly
influences the quality of the linearized model. Ultimately, ensuring ac-
curacy in linearizing nonlinear dynamic models using Koopman theory
enhances the reliability of subsequent control and analysis tasks,
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facilitating more precise predictions and effective system manipulation
(Zhang and Wang, 2023; Pan et al., 2023; Abraham and Murphey, 2019)

Dynamic Mode Decomposition (DMD) is a data-driven technique
that analyzes dynamical systems to extract coherent structures and
patterns from time-series data (Rahmani and Redkar, 2023). It aims to
decompose the system’s dynamics into spatial modes and their corre-
sponding temporal dynamics. The DMD method involves constructing a
low-rank approximation of the data’s spatiotemporal dynamics using
singular value decomposition (SVD) and then computing the Koopman
operator, which is a linear operator that evolves the observables of the
system in time (Bakhtiaridoust et al., 2023; Li et al., 2023). The Koop-
man operator allows for analyzing and predicting system behavior in a
transformed space, often revealing underlying dynamical properties that
are not evident in the original state space. By leveraging DMD to obtain
the Koopman operator, one can gain insights into the dominant modes of
behavior, identify essential features, and potentially uncover simplified
representations of complex systems for control, forecasting, or modeling
purposes. Svec et al. (2023) proposes a predictive algorithm for direct
yaw moment control using a finite-dimensional approximation of the
Koopman operator called enhanced extended dynamic mode decom-
position. This approach reduces model complexity while maintaining
accuracy by transforming nonlinear dynamics into a higher-dimensional
space. Williams et al. (2016) discuss the growing popularity of
data-driven Koopman spectral analysis methods like DMD and EDMD for
extracting dynamic features from data. They highlight the limitations of
these methods, which assume data from autonomous systems, especially
in cases involving system actuation. To address this, they propose a
modified version of EDMD that accounts for actuation effects, allowing
accurate recovery of Koopman eigenvalues, eigenfunctions, and modes.
They demonstrate their approach’s effectiveness using periodic forcing
examples, such as the Duffing oscillator and a lattice Boltzmann code
approximating the FitzHugh-Nagumo equation.

Fractional sliding mode control (FSMC) is a robust control method
that extends the classical sliding mode control (SMC) to systems with
fractional order dynamics (Rahmani and Rahman, 2021). The system’s
state trajectory in traditional SMC must slide along a designated mani-
fold to achieve robustness against uncertainties and disturbances. FSMC
introduces fractional calculus concepts to handle systems with
non-integer order dynamics, familiar with many real-world processes
exhibiting complex behaviors. By incorporating fractional derivatives,
FSMC offers improved performance in robustness, tracking accuracy,
and chattering reduction compared to integer-order SMC. Additionally,
FSMC exhibits enhanced adaptability to systems with uncertainties and
nonlinearities, making it suitable for a wide range of applications,
including robotics, power systems, and biomedical engineering. Its
benefits include enhanced robustness, improved tracking accuracy,
reduced chattering, and increased adaptability to complex systems with
fractional order dynamics. Luo and Liu (2023) propose a novel approach
called disturbance observer-based nonsingular fast terminal sliding
mode control for guiding an AUV along a desired trajectory. The method
incorporates a nonlinear disturbance observer to estimate complex
external disturbances, which is then integrated into the proposed control
framework. The construction of sliding surfaces involves an expanded
parameter selection in the exponential terms of nonsingular fast termi-
nal sliding mode control. The stability of the proposed method is proven
using Lyapunov’s second method, demonstrating uniformly ultimately
bounded stability. Simulation results validate the effectiveness of the
proposed controller, showing improved convergence rates compared to
existing nonsingular fast terminal sliding mode control methods.

Additionally, the controller exhibits robustness against smooth
external disturbances and can effectively track random disturbances,
including impulses, showcasing its robust performance. Rong et al.
(2022) present an innovative approach to FSMC for an AUV under the
influence of random disturbances. The proposed method includes the
development of a fractional-order sliding mode disturbance observer
that estimates random disturbances and the AUV’s unknown model
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using adaptive and fixed-time techniques. A motion control strategy
based on adaptive fractional sliding mode control is then implemented,
along with a line-of-sight guidance law featuring a time-varying look--
ahead distance for path following. Additionally, a new FSMC is devised
by constructing a fractional-order mode surface and introducing a pre-
scribed performance function to ensure control effectiveness. The paper
also includes proofs and analyses of closed-loop stability and demon-
strates the controller’s effectiveness and robustness through numerical
simulations. Bingul and Gul (2023) proposes model-free trajectory
tracking control for an AUV, addressing challenges such as ocean cur-
rents, external disturbances, measurement noise, model uncertainty,
initial errors, and thruster malfunctions. It presents a hybrid controller
combining intelligent-PID (i-PID) and PD feedforward controllers to
improve disturbance rejection, compensate for errors, and maintain
precise trajectory tracking. A mathematical AUV model with ocean
current dynamics is developed for accuracy. Computer simulations using
the LIVA AUV demonstrate the proposed controller’s superior perfor-
mance in trajectory tracking and disturbance rejection compared to
other controllers. Wang et al. (2024) proposes a novel control method
for an underactuated AUV using adversarial deep reinforcement
learning. The method includes a long-short-term-memory neural
network for state prediction, a cascaded multilayer perceptron for action
mapping, and an adversarial training scheme for robust control strate-
gies. Simulation-based pre-training and experimental validation in a
towing tank demonstrate superior robustness compared to traditional
PID controllers.

The primary contribution of this research lies in developing an
innovative and robust data-driven control methodology tailored for the
precise regulation of an AUV system. This methodology integrates
advanced theoretical frameworks and computational techniques to
enhance the efficacy of control strategies in challenging underwater
environments. Specifically, the study employs Koopman theory, a so-
phisticated mathematical framework renowned for its ability to effec-
tively linearize complex nonlinear dynamical systems to address the
inherent nonlinearities within the AUV dynamics. Subsequently, the
DMD method is harnessed to accurately estimate the Koopman operator,
thereby facilitating a comprehensive understanding of system behavior.
The proposed control paradigm leverages Fractional Sliding Mode
Control, a robust control technique known for its resilience to un-
certainties and disturbances, to govern the linearized dynamic model
obtained through Koopman theory. Additionally, the stability of the
devised control strategy is rigorously validated utilizing the renowned
Lyapunov theory, ensuring its robustness and effectiveness under vary-
ing operational conditions. Simulation-based evaluations are conducted
to substantiate the superior performance of the proposed control
methodology, benchmarked against conventional controllers, thus
demonstrating its efficacy in real-world applications. Our proposed
control method is designed to handle various sea conditions, including
calm waters and turbulence. It applies to multiple disturbances
encountered during Autonomous Underwater Vehicle (AUV) movement.

The forthcoming sections of this paper are structured as follows: In
Section 2, we delve into the intricate nonlinear dynamics governing the
operation of AUV systems. This section aims to provide a comprehensive
understanding of the mathematical model underpinning the behavior of
AUVs. Section 3 introduces the Koopman theory, offering a robust
framework for analyzing the dynamics of nonlinear systems through the
lens of linear operators. Section 4 elaborates on the Dynamic Mode
Decomposition (DMD) method, a versatile technique for extracting
dominant spatiotemporal patterns from high-dimensional datasets.
Following this, in Section 5, we present the application of fractional
sliding mode control, a robust control strategy capable of handling un-
certainties and disturbances inherent in AUV operations. Section 6 is
dedicated to presenting simulation results, demonstrating the efficacy of
the proposed methodologies in enhancing AUVs’ performance and
maneuverability. Finally, in Section 7, we conclude from our findings
and discuss avenues for future research in AUV dynamics and control.
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2. AUV nonlinear dynamic model

Certainly, when considering the dynamic behavior of an AUV within
the horizontal plane, it’s common to simplify the analysis by dis-
regarding motions in heave (vertical movement), roll (rotation around
the longitudinal axis), and pitch (rotation around the transverse axis).
By doing so, we focus primarily on the movement components of surge
(forward and backward motion), sway (sideways motion), and yaw
(rotation around the vertical axis). An AUV’s kinematic and dynamic
model encompasses various factors that influence its motion and
behavior in water. This model typically involves a complex interplay of
hydrodynamic forces, thruster dynamics, control inputs, and environ-
mental conditions. In the simplified horizontal plane, the model can be
delineated more distinctly, highlighting how surge, sway, and yaw in-
teractions govern the AUV’s motion. Surge pertains to the AUV’s
propulsion-driven forward or backward movement along its longitudi-
nal axis, influenced by thrust from propellers or water jets and hydro-
dynamic resistance. Sway denotes lateral motion perpendicular to the
vehicle’s longitudinal axis, often arising from propulsion or hydrody-
namic forces asymmetries. Yaw refers to the rotational movement
around the vertical axis, affecting the AUV’s heading and direction of
travel, with factors like thruster torque and water currents influencing
its behavior. Focusing on these primary motion components in the
horizontal plane allows us to develop a simplified yet insightful under-
standing of the AUV’s dynamic behavior, which is essential for control
system design, navigation strategies, and overall mission planning in
underwater environments (Yan and Yu, 2018).

n=R(y)v €Y

M= — C(v)v — D(v)o + 7+ E(t) (2)

Within the dynamics of ship motion, the position vector in the Earth-
fixed frame, denoted as n = [x,y,w]", encapsulates crucial spatial in-
formation. Here, x delineates the surge position, y represents the sway
position, while y, bounded within [0, 2x], elucidates the ship’s heading
orientation. Similarly, the velocity vector in the body-fixed frame, v =
[, v,7]", captures the vessel’s dynamic state: u denotes surge velocity, v
signifies sway velocity, and r denotes the vessel’s yaw rate. Control in-
puts, denoted by v = [r1, 72, 73]T, encompass 7; for surge control forces,
7, for sway forces, and 753 for yaw moment. Perturbations from external
factors are amalgamated in the disturbance vector, E(t) =
[E1 (1), Ex(t), Es(t)]", where E; (t) and E(t) signify disturbances in surge
and sway forces, respectively, and E5(t) denotes the disturbance moment
in the yaw direction. The rotation matrix, pivotal for frame trans-
formations and understanding the vessel’s spatial dynamics, remains
central to the analysis.

cos(y) —sin(y) O
R(y)= | sin(y) cos(y) O 3
0 0 1

It can be considered that the expressions ||R|| and ||.|| are indicative of
the two-norms associated with a vector or a matrix. Additionally, let’s
denote C(v) as the function representing the Coriolis and centripetal
forces acting on a system, where v is typically the velocity vector.
Similarly, D(v) represents the restoring force vector exerted on the
system. Moreover, M stands for the inertia matrix, which encapsulates
the distribution of mass and rotational inertia of a rigid body or system.
In dynamic systems analysis, the inertia matrix plays a crucial role in
determining the system’s response to applied forces and moments.

0 0 —myv
Ry)=1| 0 0 myu 4
my —myu 0
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D(D) :diag{du~,dwdr}7du =-Xy *X\u\u‘u|7du =-Y, - Y\u\u|l/‘7dr: - N;

— Nige|r|, M = diag{m,,m,,m,} my=m — X;,my=m—Y;, my=I, — N;

In this mathematical model, the symbol m denotes the mass of the
AUV. The terms X,,Y(), and N, represent the hydrodynamic derivatives
of the system, while d characterizes the hydrodynamic damping effect.
By deriving the expression from Eq. (1) and subsequently substituting
Eq. (2) into Eq. (1), we arrive at the dynamic equation in the following
form:

ii=R(y)o — M~'R(p)C(0)0 — M~ R(y)D(0)0 + M™R(y)7 + M R(p)E(0)
)

According to the fundamental equation represented by Eq. (1),
which describes the relationship between variables #, y, and R(y),
where 1 represents a certain quantity related to the derivative of y with
respect to R(y), the subsequent equation Eq. (5) can be modified by
substituting v with v = 7/R(y).

ii= (RW)R(W) ™" =M 'C(v) ~ M 'D(v) )it + (M 'R(w)7
+ (M'R(y))E(t) (6)
The derivation of Eq. (6) can be elucidated as follows:

ij=Pi+ Qr + NE(t) (@]

Let P = (R(W)R(y/)*l ~ MC(v) - M’lD(v)), Q = (M 'R(y)), and

N = (M 'R(y)). The symbols AP, AQ, and AN represent uncertainties
arising from parameter variations. Consequently, Equation (7) can be
expressed as:

ii=(P+AP)jj + (Q+AQ)r + (N+ AN)E(t) ®

By definition of Lu as lower and upper uncertainty values, the un-
certainties can be bounded as:

AP, <|AP| < AP, and AQ < |AQ| < AQ,

As well as, if we consider z(t) to be equal to u(t), then dynamic
Equation (8) can be expressed as follows:

ii=(P+ AP)i + (Q+ AQ)u(t) + E(t) 9
3. Koopman Theory

In the realm of Koopman operator theory, the pivotal strategy lies in
transforming a nonlinear dynamical system into a linear counterpart by
embedding it within an infinite-dimensional state space. This intricate
maneuver entails mapping the system’s original form into a framework
where linearity prevails, facilitating a more tractable analysis and so-
lution methodology (Ping et al., 2021). The discrete-time definition of
the dynamic evolution of a system is characterized by how the state
variables transition from one time step to the next, encapsulated in the
recursive equation:

Xx11 = F(xx), where x; represents the state at time step n, and f
denotes the transition function governing the system’s behavior.

to+t

Flx(to)) =x(to) + [ f(x(z))dz (10

to

The dynamics of the original system undergo a transformative shift
towards linearity when the intricate behavior of a finite-dimensional
nonlinear system is transposed into the expansive realm of an infinite-
dimensional function space. Within this vast domain, often repre-
sented by an infinite-dimensional Hilbert space, the function g emerges
as a pivotal observable, serving as a conduit for real-valued scalar
measurements. Through the lens of this observable, the Koopman
operator unfolds its transformative prowess. The Koopman operator, a
powerful mathematical construct, operates on the space of observables,
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providing a systematic framework for analyzing the evolution of
dynamical systems. It maps the evolution of functions representing
system observables, effectively capturing the essence of the system’s
dynamics within an infinite-dimensional context.

Kg=goF an

Continuous systems, characterized by their continuous-time pro-
cesses and smooth evolution of state variables according to differential
equations or integral equations, are widely utilized to accurately model
and implement smooth dynamics across various fields such as control
theory, physics, engineering, and computer graphics as:

& 80 = Kg(x) = Vgx) ) a2

The Koopman operator, denoted by K, operates on functions of the
state space, transforming them according to the dynamics of the system.
This operator has an infinite-dimensional representation, which can
make its practical application and representation both important and
troublesome. Applied Koopman analysis employs roughly approximates
the evolution of a subspace covered by a limited number of measure-
ment functions rather than detailing the development of all measure-
ment functions in a Hilbert space. By constraining the operator to an
invariant subspace, the Koopman operator may be represented as a
matrix with limited dimensions. Any combination of the Koopman op-
erator’s eigenfunctions can cover a Koopman invariant subspace (Kaiser
et al., 2021). when the Koopman model’s eigenfunction ¢(x) satisfies
eigenvalue A.

4. DMD method

The DMD for Koopman Theory presents a robust framework for
analyzing and understanding complex dynamical systems. Koopman’s
theory, rooted in functional analysis and dynamical systems theory,
offers a unique perspective by treating the evolution of observables as
linear operators acting on a function space. However, traditional
methods for extracting dynamic modes from data often need help
handling high-dimensional and nonlinear systems. In response, the DMD
introduces an innovative approach that leverages the Koopman opera-
tor’s spectral properties to decompose the dynamics into orthogonal
modes, revealing underlying patterns and simplifying the analysis of
complex systems. This method holds significant promise across various
disciplines, from engineering and physics to biology and finance, of-
fering insights into the fundamental dynamics governing diverse
phenomena.

X ~ AX (13)
Shifting the elements of matrix X along the time dimension as:
X= [X] Xo .l ]

The equation labeled as (13) can be utilized to calculate the value of
A in the following manner:

A=XX" a4

The paragraph suggests using Singular Value Decomposition (SVD)
to compute the Moore-Penrose pseudoinverse X* of a matrix X. This
approach is chosen to avoid the computational complexity that arises
when directly computing X", especially for matrices with large di-
mensions. By employing SVD on the data snapshots, the dominant
characteristics of X* can be identified more efficiently, making com-
putations more manageable (Snyder and Song, 2021).

X~ UzVv* (15)
In Singular Value Decomposition (SVD), the matrices are defined as

follows:
UeR™" represents the left singular vectors,
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>eR™X is a diagonal matrix containing the singular values,

VeR"™X" signifies the right singular vectors.

The symbol * denotes the conjugate transpose operation. In SVD, the
reduced rank for approximating a matrix Z is r. The eigenvectors cor-
responding to Z can be defined as:

o=XVZw (16)

The vector W represents the eigenvectors of dynamic systems that
are characterized by having full rank.
If A is an eigenfunction, then it implies:

KW=w 17)

where K is the Koopman operator.
The demonstration of the linearized dynamic model is as follows:

d
d—tz_Kz+u s

5. Robust Koopman control

FSMC is an advanced control technique that integrates the principles
of SMC with fractional calculus. SMC is a robust control method
designed to ensure system stability and performance in the presence of
uncertainties and disturbances. It achieves this by driving the system
states onto a designated sliding surface, where the dynamics are con-
strained to remain, effectively ignoring the uncertainties. However,
conventional SMC may exhibit chattering phenomena, leading to un-
desirable high-frequency oscillations in control signals. Fractional cal-
culus offers a powerful mathematical tool for describing systems with
non-integer order dynamics, allowing for more flexible modeling of
complex physical processes. In FSMC, fractional-order derivatives and
integrals are employed within the sliding mode control framework to
enhance system robustness and reduce chattering effects. By incorpo-
rating fractional calculus, FSMC offers improved performance, robust-
ness, and stability compared to traditional SMC, making it particularly
suitable

for applications requiring precise control in the presence of un-
certainties and disturbances (see Fig. 1). Additionally, FSMC has shown
promising results in various fields, including robotics, aerospace, and
automotive systems, highlighting its potential as a versatile control
strategy for complex dynamical systems. The diagram in Fig. 2 depicts
the proposed control method. The fractional sliding mode surface, which
is derived from the linearized dynamic model using Koopman theory,
can be formulated as follows:

sk(t) =ex(t) + aD"ex(t) 19)
where the e is the tracking error as:

e(t) =24 —2 (20)
where z; is desired trajectory tracking. To compute the derivative of a

fractional sliding mode surface, it’s essential to elaborate on the concept
of a fractional sliding mode surface itself.

Fig. 1. An AUV body-referenced coordinate system (Rahmani and Rah-
man, 2021).
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+ z
e
Controller
DMD - z
Method
Linearized
AUV
Koopman
Theory
Fig. 2. The proposed controller block diagram.
Sk(t) = éx(t) + auD" e (t) (21)

Taking the derivative of Eq. (20) and subsequently substituting it
into Eq. (21) leads to the derivation of a new expression as:

$6(6) =24 — % + auD* e (¢) 22)

Integrating Eq. (18) into Eq. (22) introduces a novel representation,
amalgamating the interplay of variables delineated within each equa-
tion as:

Sk (t) =z4—Kz—u-+ a,uD““ek (t) (23)

Equating Eq. (23) to zero and then proceeding to simplify it results in
a streamlined and more comprehensible form as:

Ueq (t) = Z;’d —Kz+ a,uD"“ ek(t) 24)

The equivalent control system demonstrates an inability to
adequately counteract external disturbances. Consequently, we intro-
duce the concept of reaching control, which can be characterized as:

Upe(t) = KneSi (t) (25)

where K, represents the reaching control gain, which is a positive
constant value. The new control las based on Koopman theory
(KOFSMC) is characterized by the following definition:

Ugorsmc(t) = Unk(t) + Ueg () (26)

Lyapunov’s theory serves as a fundamental framework for analyzing
the stability of dynamical systems. At its core, it utilizes Lyapunov
functions, which are scalar functions that quantify the system’s energy
or a related metric. The theory posits that if a Lyapunov function exists
for a dynamical system, and if it satisfies certain conditions, then the
system is deemed stable. Specifically, the function must be positive
definite, its derivative must be negative semi-definite, and it must
converge to zero as time progresses. By assessing how the Lyapunov
function evolves over time, one can ascertain whether the system’s
trajectories tend towards equilibrium, signifying stability, or diverge,
indicating instability. This approach provides a rigorous mathematical
framework for stability analysis across various domains, from control
theory to differential equations and beyond. Therefore, Lyapunov theory
in sliding mode control assesses stability by evaluating the convergence
properties of a Lyapunov function along the sliding surface. It estab-
lishes stability by demonstrating that the derivative of the Lyapunov
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function along trajectories remains negative definite or nonpositive,
confirming the system’s ability to maintain robust stability despite un-
certainties or disturbances. The stability of the proposed control
approach can be validated utilizing Lyapunov theory, wherein it is
demonstrated that a Lyapunov function exists and satisfies certain
conditions, thereby ensuring the system’s robust stability as:

V() =55 Os:(0) @)

Deriving the derivative of Eq. (27) yields a new mathematical
expression or equation.

V(t) =s; (£)3(0) (28)

Incorporating Eq. (23) into Eq. (28) generates a revised equation or
expression.

V(t) =st(t) (24 — Kz — u+apD"ex(t)) (29

Substituting Eq. (26) into Eq. (29) produces an altered form or
representation.

V(t) =sp (t) (2d — Kz~ (t) — Ueq(t) + auD* e (t)) (30)

Integrating Eq. (24) into Eq. (30) introduces a novel element or
factor into the equation.

V(t) = st (t) (24 — Kz—u(t) — 2q + Kz — apD* e (t) + auD* e (t))  (31)

Simplifying Eq. (31) leads to a more refined or condensed repre-
sentation of the equation.

V(t) = s (£)(—un(t)) (32)

Integrating Eq. (25) into Eq. (32) yields an updated expression or
equation.

V(t) =g (£)( — Kuese(t)) (33)

The expression presented in Eq. (33) provides evidence of the sta-
bility inherent in the proposed control methodology, affirming its effi-
cacy in maintaining robust performance across varied operational
scenarios.

6. Simulation results

The newly proposed control methods are applied to the lateral dy-
namics model of an AUV system. The initial states are selected as fol-
lows:

x(0) =0,u(0) =0
¥(0) =0,v(0) =0
w(0) =0,r(0)=0

To assess the effectiveness of the proposed control method, reference
trajectories are designated as follows:

Xq4(t) = 2t,y4(t) = 3 sin(0.5t)

The design parameters for the proposed control method are carefully
selected based on a thorough analysis of the system dynamics and per-
formance requirements as:

a=1,u=0.75h = 0.01,Ky = diag{2,2}

Table 1

Parameters of AUV dynamics model (Rahmani and Rahman, 2021).
m = 185kg I, = 50kgm?
X, = — 70kg/s Y, = — 100kg/s N, = — 50kgm?/s
X; = — 30kg Y, = — 80kg N; = — 30kgm?
Xyu = — 100kg/m Y, = — 200kg/m Ny = — 100kgm?
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The detailed model parameters of the AUV system are meticulously
documented and presented in Table 1 for comprehensive insight and
reference purposes. Fig. 3 presents a comparative analysis of position
tracking performance along the x and y axes, showcasing the outcomes
achieved using both the FSMC and the newly devised control approach.
Notably, the FSMC implementation exhibits a discernible chattering
phenomenon, characterized by irregular fluctuations in the system’s
behavior. This chattering effect can potentially compromise the system’s
overall efficiency and stability. Consequently, the pursuit of an inno-
vative compound control strategy is imperative, aiming to mitigate or
eliminate the observed chattering phenomenon while enhancing the
system’s tracking accuracy and robustness. Fig. 4 shows the position

tracking error of x and y under FSMC and KOFSMC. When comparing
the FSMC with the KOFSMC controller, several significant differences
emerge regarding their effectiveness in addressing chattering reduction,
achieving high tracking performance, and minimizing tracking errors.
Firstly, KOFSMC exhibits superior capabilities in chattering reduction
compared to FSMC. Chattering, characterized by rapid and erratic os-
cillations in control signals, can significantly degrade system perfor-
mance and induce wear and tear on mechanical components. KOFSMC
leverages its Koopman approach to smooth out control signals more
effectively, thereby mitigating chattering phenomena and ensuring
smoother operation of the controlled system compared to FSMC.
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Fig. 3. Position tracking of x and y under FSMC and KOFSMC.
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Fig. 4. Position tracking error of x and y under FSMC and KOFSMC.

Moreover, KOFSMC demonstrates a notable advantage in achieving high
tracking performance and minimizing tracking errors over FSMC. The
linearization in KOFSMC enables more accurate modeling of complex
system dynamics and nonlinearities, thereby facilitating enhanced
tracking precision. By effectively capturing the intricate relationships
between input and output variables, KOFSMC can adapt more dynami-
cally to varying system conditions, resulting in superior tracking per-
formance and reduced tracking errors compared to FSMC. Overall, the
comparative analysis highlights the KOFSMC controller’s superiority
over FSMC in addressing chattering reduction, achieving high tracking
performance, and minimizing tracking errors, making it a more favor-
able choice for advanced control applications. Fig. 5 shows Velocity
tracking of AUV versus time using FSMC and KOFSMC.

6.1. Robustness verification

In the intricate domain of underwater operations, an AUV system
continuously grapples with a plethora of external disturbances as it
maneuvers through the dynamic and often unpredictable water envi-
ronment. This reality underscores the critical necessity of devising a
robust control methodology that can withstand and counteract these
persistent disturbances effectively. In order to thoroughly assess the
resilience and noise mitigation capabilities inherent in the proposed
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Fig. 5. Velocity tracking of AUV versus time using FSMC and KOFSMC.

control method, a deliberate strategy is employed wherein random noise
with a standard deviation of 2 is meticulously introduced into the sys-
tem. This controlled noise injection is mathematically characterized by
equation E(t) = 2 * randn(1, 1), where E(t) represents the applied noise
at time t. The ensuing simulation endeavors yield a comprehensive and
insightful depiction of the control method’s performance. Fig. 6 serves
as a visual testament, elucidating the control method’s prowess in
seamlessly suppressing the injected noise. This discernible suppression
not only underscores the control method’s robustness but also un-
derscores its reliability and effectiveness in real-world operational sce-
narios, thereby affirming its potential for practical implementation in
challenging underwater environments.

7. Conclusion

The research presents a novel data-driven control methodology
tailored specifically for managing the intricate dynamics of an AUV
system. This innovative approach stems from the inherent challenges in
accurately modeling the nonlinear dynamics of the AUV, primarily due
to the diverse and complex forces acting upon the system. To address
this, the study leverages the Koopman theory to derive a linearized data-
driven model, which serves as a foundational framework for control
design. Utilizing the Koopman operator generated through the DMD
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Fig. 6. Robustness verification of the proposed controller using random noise.

method, the research team implements a FSMC to control the linearized
model. This FSMC not only enhances trajectory performance but also
bolsters the system’s robustness against external disturbances, leading
to improved trajectory tracking and minimized tracking errors. To
validate the robustness and efficacy of the proposed control methodol-
ogy, the study employs random noise simulations, showcasing its
capability to mitigate disturbances and maintain stability. Looking
ahead, the authors aim to transition this innovative control strategy into
real-time AUV systems, anticipating enhanced performance and adapt-
ability in practical applications. The research substantiates the effec-
tiveness of the proposed control approach through comprehensive
simulation results, underscoring its potential for real-world imple-
mentation and impact in autonomous underwater operations.
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