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ARTICLE INFO ABSTRACT
Keywords: Air traffic control (ATC) is a safety-critical service system that demands constant attention from ground air
Air traffic management traffic controllers (ATCos) to maintain daily aviation operations. The workload of the ATCos can have negative

Aviation human factors
Controller workload
Graph neural network

effects on operational safety and airspace usage. To avoid overloading and ensure an acceptable workload level
for the ATCos, it is important to predict the ATCos’ workload accurately for mitigation actions. In this paper, we
first perform a review of research on ATCo workload, mostly from the air traffic perspective. Then, we briefly
introduce the setup of the human-in-the-loop (HITL) simulations with retired ATCos, where the air traffic data
and workload labels are obtained. The simulations are conducted under three Phoenix approach scenarios while
the human ATCos are requested to self-evaluate their workload ratings (i.e., low-1 to high-7). Preliminary data
analysis is conducted. Next, we propose a graph-based deep-learning framework with conformal prediction to
identify the ATCo workload levels. The number of aircraft under the controller’s control varies both spatially
and temporally, resulting in dynamically evolving graphs. The experiment results suggest that (a) besides
the traffic density feature, the traffic conflict feature contributes to the workload prediction capabilities (i.e.,
minimum horizontal/vertical separation distance); (b) directly learning from the spatiotemporal graph layout
of airspace with graph neural network can achieve higher prediction accuracy, compare to hand-crafted traffic
complexity features; (c) conformal prediction is a valuable tool to further boost model prediction accuracy,
resulting a range of predicted workload labels. The code used is available at Link.

1. Introduction increase [10], it puts more pressure on ATCos, who already have highly
demanding and stressful daily routines [11-13]. Quantifying the effort

The rapid advancement of intelligent systems substantially reduces made to meet these task requirements lead to the concept of workload
the operational effort from the individual user level but escalates the as an air traffic controller, which denotes the subjective qualitative
system-level complexity of real-time decision-making and corporate measure of perception demand placed by the current air traffic situa-
planning, arises from the dynamically changing environments, time tion [4,7,14]. Moreover, proper workload management and scheduling
restrictions, and tactical constraints [1-4]. Workload assessment and are vital to ensure ATCos can perform their duties effectively and fault-

prediction of operating such complex systems have long been regarded
as critical research objects [5-9]. Workload overhead can occur when
the demands exceed the human operator’s capacity and can lead to
efficiency drop and operational safety concerns. Within the aviation do-
main, effective workload management of air traffic controllers (ATCos)
is of utmost importance to maintain safety and rely on accurate ATCo
workload predictions.

Air traffic control (ATC) is a crucial part of aviation safety, ensuring
that aircraft are safely guided through the airspace and landed or taken
off from airports. ATCos are responsible for managing the flow of
aircraft, communicating with pilots, and making critical decisions in
real-time to ensure the safety of all involved. As air traffic continues to can help in several ways, such as ensuring that enough ATCos are

lessly without being overwhelmed. Human performance is a crucial
factor in ensuring the safe operations of the National Airspace System
(NAS). In the past, human operators have been identified as significant
contributors to accidents involving air carrier operations governed by
the 14 Code of Federal Regulations (CFR) Part 121, which covers
commercial airliners frequently used by the public [15]. For instance,
approximately 80% of the 446 air carrier accidents that occurred
between 1997 and 2006 were attributed to personnel-related factors,
while environmental factors were cited in approximately 40% of the
accidents and aircraft-related factors in 20% [16]. Workload prediction
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available to manage the traffic, preventing fatigue and burnout, opti-
mizing shift schedules, and improving overall efficiency. By accurately
predicting the workload, air traffic organizations can ensure that they
have the necessary resources and personnel to maintain a safe and
efficient air traffic system [17-19]. All of these objectives are based
on reliable ATCo workload-level modeling and predictions. Moreover,
artificial intelligence (Al)-enabled human factor studies in aviation
have been identified as one of the core elements of Al taxonomy by
related authorities [20,21], where ATCo workload management is a key
dedicated objective.

A tremendous amount of research has been done to understand
the impact factors and demand patterns that drive the workload of
a controller, such that a better workload prediction performance can
be discovered. Two types of factors are studied extensively in the
literature, (a) physiological and behavioral features including ATCo
mental stress, fatigue level, communication difficulties, and situation
awareness [22-25]; (b) objective factors such as traffic and airspace
complexity measures (i.e., operational errors (OE)), abnormal events,
level of automation, and weather situations [26-32]. In order to collect
features for workload prediction, researchers have proposed to collect
human-subject data (i.e., eye movement, communications, heartbeat
rates, and Electroencephalography (EEG) signals) [33-35], in an intru-
sive and non-intrusive sense. On the other hand, traffic-related features
can be directly obtained from computer flight recordings and opera-
tional recordings. However, some specific traffic features need post-hoc
processing (i.e., loss of separations (LoS), OEs). Specifically, in this
work, we are interested in traffic-related objective features since it is
very unlikely to collect real-time biological features (i.e., EEG/ECG sig-
nals or heartbeat rates) in the near future due to privacy concerns and
regulatory requirements. Moreover, we discover that the existing model
on workload prediction is mostly using handcrafted features, even if
a graph data structure and simple neural networks (i.e., minimum
spanning trees) have been proposed [27]. To the best of the authors’
knowledge, there is no investigation on utilizing advanced data-driven
learning techniques (i.e., graph neural networks (GNNs)) for work-
load prediction possibilities that directly leverage the spatiotemporal
relationships contained in the traffic data and airspace layout.

In this work, we investigate the possibility of using the graph
neural network to predict ATCo workload levels, with an additional
post-processing technique, namely conformal prediction, to boost the
accuracy with a set of prediction labels. The data is collected by
conducting experiments with retired ATC participants who have ex-
perience at FAA Radar Approach Control (TRACON) facilities, under
three different scenarios, (a) baseline conditions; (b) high workload
nominal conditions; (c) high workload off-nominal conditions. The
major difference among scenarios are the peak traffic densities and the
presence of off-nominal events (i.e., runway switch, communication
errors, etc.). The simulation scenario is limited to a few Phoenix ap-
proach procedures for a duration of 25 min for each scenario. A detailed
description of the experimental setup is in Section 3. Specifically, the
ATCo workload we investigated is the executive (R-side) controllers’
workload [17]. Predicting controller workload levels can be viewed
as a pattern recognition problem [28] and thus is suitable for data-
driven learning algorithms. In this work, the problem of predicting
workload based on the spatiotemporal layout of airspace is viewed as a
time-series dynamically evolving graph classification task. Being time-
series classification, we propose to input multiple historical timestamp
graphs into the model for the prediction of workload level at the next
timestamp. Also, the spatiotemporal layout of the graph structure varies
at each timestamp (i.e., number of nodes, graph edge connections),
resulting in a dynamical graph classification problem.

Our contributions are summarized as,

» This paper investigates the possibility of predicting executive
controller workload during approach scenarios directly from the
recorded air traffic data with graph neural networks and discov-
ers that traffic conflict is a nontrivial contributor to improving
workload prediction capabilities.
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» We propose to formulate the ATCo workload prediction task into
a dynamical time-series graph classification problem and show
that the Evolving Graph Convolutional Network (EvolveGCN) can
achieve a higher prediction accuracy than both statistical (i.e., re-
gression, handcrafted features) and classical learning methods
(i.e., MLP, GCN). We show that graph neural networks have
great potential for predicting controller workload with varying
spatiotemporal airspace layouts.

A moving window approach is proposed to build the correct
input-output matching from the collected sparse workload data.
The moving window size represents the temporal length of the
historical information used in workload prediction. The selection
of parameters can be alternated to fit into the operational need.
The data structure formulation transfer complex structured traf-
fic features into a lucid format for research and development
purposes.

To further improve the classification accuracy of the experimental
data. We explore conformal prediction to expand the predic-
tion as set predictions. We show that conformal prediction has
better ground truth label coverage by giving multiple possible
predictions as indicators of model uncertainties. We suggest that
conformal prediction is a valuable machine learning post-hoc
processing tool to boost performance further as well as indicate
prediction uncertainties.

The rest of the paper is organized as follows. First, Section 2
reviews related studies on air traffic controller workload prediction.
We first introduce the impact factors of ATCo workload in Section 2.1,
then list the current practices in predicting workload Section 2.2. In
Section 3, we introduce the detailed workflow of human-in-the-loop
simulations to collect the traffic data and ground truth ATC work-
load labels, along with data analysis of the collected data. Section 4
describes the flowchart of the proposed machine learning framework,
from experiment data handling to innovative modeling. The prediction
performance and evaluation of the conformal prediction set are dis-
cussed in Section 5. Section 6 concludes this paper by giving limitations
of this study and provides future insights.

2. Related works

Due to the surging number of daily aviation operations, the avi-
ation industry is in urgent need of advanced decision support tools
that can accommodate the rapid annual air traffic growth. Numerous
studies have investigated ATCo workload. It is an aviation researchers’
consensus that understanding the impact factors that drive mental
workload can help improve airspace capacity, thus reducing aviation
safety concerns [4,36,37]. With meaningful impact factors collected
or modeled, predictive modeling is critical to building an accurate
workload prediction algorithm. In this section, we discuss the related
works from two aspects, (1) understand the impact factors that drive
the mental workload in Section 2.1; (2) discuss the current practice
in predicting ATCo workload from open literature with a focus on
predicting workload from traffic factors Section 2.2.

2.1. Task demands and impact factors to ATCo workload

In air traffic control, task demand refers to the level of mental and
physical effort required for ATCos to complete their duties effectively.
High task demand leads to increased workload, which negatively im-
pacts aviation safety. Therefore, understanding the level of task demand
and appropriately managing workload is essential for ensuring that AT-
Cos can perform their duties effectively and safely. Correctly modeling
task demand is viewed as the prerequisite for workload prediction for
a long history. It is noteworthy to mention that ATCos workload is
not a simple function of task demands; the ATC strategy the controller
adapted to meet the increased task demands also provides a feedback
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loop to ATCo workload [4]. We discuss each of these aforementioned
grouped impact factors separately.

Air traffic factors refers to both the aircraft count under the
ATCo control and their spatiotemporal relationships. The number of
aircraft under control is viewed as the most important factor that drives
ATCo’s mental workload [38,39]. A high aircraft count leads to higher
communication frequency and a higher possibility of safety events,
resulting in a higher mental and physical workload. Traffic density
is typically measured in aircraft per unit of airspace, such as aircraft
in unit time and unit airspace sector area. Measurements of traffic
density have been developed based on the averaged vertical/horizontal
separation distances [28], as they directly infer loss of separations.
Other research investigates the necessity to consider flight interactions
and flight characteristics, which includes the changes/variability in
heading, speed, or altitude, the pattern of how air traffic flows merges
and separates into a set of air traffic complexity metrics [7,28,39-41].
Their regression analysis shows subjective workload depends on both
aircraft count and other air traffic complexity measures. Additionally,
some other studies also suggest that a lower aircraft count also can
lead to task overload if these aircraft are interacting in a complex
fashion [42,43].

Airspace complexity factors include the number of routes, alti-
tudes, and restrictions, which can also impact the workload of ATCos,
as they need to monitor and manage multiple variables simultaneously.
Airspace-related factors are another key contributor to ATCo mental
workload [44]. Larger airspace size indicates a higher aircraft count
and higher metrics on traffic complexity, while small airspace size
reduces conflict resolution options and higher traffic evolving rates.
It is noteworthy to mention another work considering both the traf-
fic factors and airspace structure complexity and proposes Structural
Complexity Metric (SCM), which incorporates a measure of the orga-
nization, hierarchy, and interdependence into the complexity calcula-
tion [45]. Furthermore, this paper suggests using well-defined ingress
and egress points in the airspace to distinguish normal and abnormal
flights based on real-time monitoring.

Operational Constraints are another major contributor that drives
the ATCo workload. Operational constraints refer to the temporal vari-
ability within the operational conditions of the airspace, as well as the
conditions of related technology and equipment. Several factors are
viewed as operational constraints; (1) pilot-controller communications
are critical for maintaining safe aviation operations. Malfunctions of
communication devices can disrupt air traffic control operations. This
is known as loss of ratio communication (NORDO) (2) convective
weather conditions, such as thunderstorms or heavy fog. These types
of objective factors can affect air traffic control operations by reducing
visibility and creating unsafe flying conditions. (3) subjective airspace
restriction is another type of operation constraint. The restrictions come
from multiple sources, i.e., aircraft holding, no-fly zones, or special-
use airspace [4]. In addition, certain other off-nominal events are
considered operational constraints, i.e, runway switch, and minimum
fuel reported [46,47].

Cognitive states directly contribute to the cognitive task demands
of ATCo. To measure cognitive states, the researchers propose to mea-
sure the physiological states of the air traffic controller, including brain
activities, eye movements, and heartbeat rates. These states can be
quantitatively measured by sensors signals such as electrocardiography
(ECG) signals, electroencephalography (EEG) signals, galvanic skin
response (GSR), blood pressure (BP), and certain biochemical analy-
sis [48-50]. However, using intrusive physiological state measurements
is disruptive to controllers’ normal working conditions, as it creates
additional mental stress and discomfort in maintaining ATC operations.
Alternatively, computer vision (CV) based non-intrusively physiological
state measurements are proposed to collect distractions, drowsiness,
head poses, eye movements, and fatigue levels [19,51,52]. However,
these types of measurements can lead to information security and
privacy concerns [53,54].
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2.2. Workload prediction algorithms

The dynamic density model builds a regression model to find the
linear relationships between traffic complexity factors and ATCo work-
load. The Dynamic Density metric uses a combination of traffic density
and complexity measures to estimate task demands in real-time, with
the goal of providing a more accurate and responsive measure of con-
troller workload from task demands [55]. However, dynamic density
metrics fail to consider human cognitive capacities, which are the
primary source of ATCo workload sources in the real world. In [39],
the traffic complexity, as well as the airspace complexity of different
sections, are considered. The results show that the airspace factor can
actually contribute to workload prediction in a multi-sector study. Sim-
ilarly, in [23], the authors find that the ATCo workload is proportional
to the number of aircraft controlled by the enroute sector. They conduct
HITL experiments and found a linear relationship between aircraft
count and workload ratings.

However, it is still difficult to identify the most contributing impact
factors to workload prediction from regression analysis. The first reason
is the multi-collinearity within these factors. For instance, the number
of conflicts depends on the speed, altitude, and heading variabilities.
The complexity of traffic situations, such as traffic density and potential
conflicts, also mediate the causal connection between traffic count and
workload. The inter-relationship of these factors makes it challenging
to determine the relative importance of each predictor in a regression
equation. The second query is the debate on the linear relationship
between these factors and workload ratings. For instance, the ATCo
can alternate control strategies during a certain period to meet the
increased task demands. Additionally, the online processing or post-
processing of these factors only considers the current situations, and
there is no inference on ATCo’s intent and air traffic intent infor-
mation. Trajectory prediction from flight plans helps with estimating
the workload of ATCos, where prediction and reduction of trajectory
uncertainties can help alleviate ATCo workload [31,56].

Machine learning algorithms have been adopted for workload pre-
diction. In [57], tree-based models, and support vector machines are
included for workload measurements. The authors consider both traffic
complexity and operational constraints as features and show a high F1
score of over 0.9. However, these types of works are not dynamically
considering the traffic pattern of the airspace, but still formulate the
data as a tabular format, which fails to address the aforementioned
concerns [4]. On the other hand, [9] proposes to use a 3-layer simple
neural network to forecast ATCo workload. However, the ATCo work-
load in this work is assessed from voice communication data, which
fails to model the task demand factors mentioned earlier. Impressively,
direct prediction from the spatiotemporal air traffic layout is actually
proposed decades ago. In [26,28], the authors propose to model air
traffic at each timestamp into graph-structured data and calculate the
second-order statistics of time-series of graphs as extracted air traffic
complexity measurements. Then a simple neural network is adopted to
do classification from these features.

In summary, understanding the factors that drive ATCo workload
has been a challenging yet unresolved open question for decades.
Instead of investigating the linear relationship between impact factors
and workload, one should look into the dynamic properties of these
factors and workload. This leads to our study on workload prediction
— we model the spatiotemporal airspace layout into time-series graph
structures and propose to use a time-series learning algorithm to predict
workload levels, in consideration of historical dynamic variabilities
contained within the air traffic data.

3. Human-in-the-loop (HITL) simulations

In this section, we provide an overview and the detailed simulation
setup of the Human-In-The-Loop (HITL) experiment as in Fig. 1. The
scope and objectives will be discussed. Then, data analysis on the
collected data is presented in Section 3.3.
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Human-in-the-loop Simulation Setup
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Fig. 1. Human-In-The-Loop (HITL) experiment setup. The ASU TRACON Simulation facility is equipped with eight simulators. During the HITL experiments, three pseudo pilots
act as pilots and interact with ATCo. We show a simple demonstration of the graphical user interface, where the primary focus of the simulation is on the KPHX arrivals from two
directions, with flight procedures including 1 RNAV (HYDRR1) and 3 STARs (ARLIN4, BLYTHES5, SUBSS8). During the experiment, the ATCo is asked to respond to the questions
shown on the pop-up window. The window acts as either a workload probe or a situational awareness probe, showing every 3 min.

3.1. Simulation overview

The HITL simulation is the first human factor study of our aviation
big data project, which aims at addressing the safety needs and technol-
ogy solutions for future NAS [58]. The backbone of the project lies in
information fusion and uncertainty management for real-time system-
wide safety assurance, where human factors like ATCo workload play a
key role. As mentioned, accurately predicting the ATCos workload can
improve operational efficiency and reduce safety concerns such that
aviation authorities can ensure a reasonable resource allocation and
workload management.

The primary objective of the HITL experiment is to investigate the
correlation between communication patterns (such as content, volume,
and flow patterns) and both controller workload and human perfor-
mance. Fig. 1 gives the overview setup of the HITL simulation process.
The simulation contains two arrival flows including four Phoenix in-
bound Procedures. The top panel of Fig. 1 displays the layout of the
ASU TRACON Simulation facility. The ASU TRACON Simulation facility
boasts a total of eight advanced simulators, designed to provide an
immersive training experience. Within the context of HITL (Human-
in-the-Loop) experiments, the simulation involves the participation of

three pseudo-pilots who assume the role of actual pilots and engage in
interactive communication with Air Traffic Controllers (ATCo).

To illustrate the capabilities of the simulation, we present a captivat-
ing demonstration of the graphical user interface. The simulation places
particular emphasis on the KPHX (Phoenix Sky Harbor International
Airport) arrivals from two distinct directions. The first arrival flow
represents flights from the west coast (KLAX, KSFO, KSAN, KONT, etc.),
with procedures HYDRR1, ARLIN4, and BLYTHES. The second flow
stands for arrival flights from the southeast, including KTUS, KELP,
and Mexico. SUNSSS8 arrival procedure is used here. These procedures
challenge both pilots and ATCos to execute precise maneuvers and
coordinate their actions effectively.

Throughout the experiment, the ATCo is presented with a series
of thought-provoking questions displayed in a pop-up window. This
window either acts as both a workload probe to test the ATCo’s ability
to manage multiple tasks or a situational awareness probe, evaluat-
ing their understanding of the ongoing situation. The questions are
presented at regular intervals of three minutes, ensuring a continuous
evaluation of the ATCo’s performance and cognitive response. Each re-
tired ATCo participant engaged in a within-subjects (3 simulation trials)
study design. Each trial spanned 25 min and varies in workload level
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Human-in-the-loop Data Analysis
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Fig. 2. The visualization of collected data samples from the HITL experiments under three scenarios. Each ATCo was involved in three experiments under normal, high workload
nominal. high workload off-nominal working scenarios, with a time duration of 25 min each. Traffic-related features (e.g., aircraft numbers, minimum separation distance) are

collected every 5 s. Workload levels are interpolated to match the corresponding traffic-related features at each timestamp. Additionally, we obtain the recurrence plot (RP) from
communication transcripts as indicators of system tendency in Fig. 3.

Table 1

A short view of the communication transcripts post-processed from radio recordings in HITL simulation. Three cut-off sections are listed here, which correspond
to off-nominal events, (1) turbulence reported; (2) no radio communications; (3) landing runway switch. Indicator of communication deviations is also shown in
the right-most column. A mark of “0” if the ATCo communication followed a pilot’s communication or vice versa, and “1” will be noted if the communications
are not effective and are immediately followed between the ATCo and the pilot.

Speaker Start Transcriptions End Deviation
time time indicators
Speed bird 281 05:26.9 approach speed bird two eighty-one we are experiencing 05:30.5 1

motor turbulence at one three thousand

PHX approach 05:34.9 speed bird two eighty-one heavy, roger 05:37.7 1
(Speed bird 281)

PHX approach 11:32.8 cumpacity two fifty descending maintain 11:35.4 0

(Cumpacity 250) four thousand one hundred

PHX approach 11:38.8 cumpacity two fifty four thousand one hundred 11:40.5 1

(Cumpacity 250)

Cumpacity 250 11:41.8 cumpacity two fifty dropping down to four one hundred 11:44.6 1

Local south 14:29.1 court this is local south we are switching to runway seven 14:35.9 1
left and right effect immediately

PHX approach 14:38.8 Ok ... move to runway seven 14:40.7 1

(Local south )

PHX approach 14:49.8 shuttle forty-five twenty-seven expect dail is runway seven 14:55.1 1

(Ascer 4527) left turn left in two seven zero maintain five thousand
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by manipulating two variables, namely traffic density, and occurrence
of off-nominal events.

Baseline: Baseline trials contain up to 6 aircraft in the airspace at
a given timestamp. There are no off-nominal events in baseline trials.
Typically, a moderate workload is expected.

High Workload Nominal: High workload nominal trials can have
up to 21 aircraft showing up in the current simulation environment.
Again, there are no off-nominal events.

High Workload Off-Nominal: In addition to the experimental setup
in high workload nominal trials, high workload off-nominal trials incor-
porate four off-nominal events during the 25 min duration. We list the
name of these off-nominal events here,

» Turbulence: Moderate turbulence is simulated in several arrival
flows. In Table 1, speed bird 281 reported experiencing turbu-
lence at a certain altitude, starting from 05:26.9 of simulation
time.

No radio (NORDO): The pilot has no radio communication with
the approach ATCo, which can happen during a radio failure. In
Table 1, the KPHX approach controller repeated the order when
the first order at 11:32.8 was not confirmed.

Runway switch: In this simulation, the landing runway switch
from KPHX 25L to 07R. The order is given by the local tower,
as in Table 1 14:29.1.

Minimum fuel: At the end of each simulation trial, the aircraft
encountered fuel issues.

These corresponding timestamps ¢, t,, t3, and t, to apply these off-
nominal events is indicated in Fig. 3, respectively.

3.2. Simulation setup

HITL was conducted in eight air traffic management system
Metacraft facilities located at the Arizona State University TRACON
Simulation Lab, which can be operated as either ATC terminal radar
positions or pseudo-pilot stations. The human controllers were retired
ATCos who have experience with civilian TRACON facilities within
the past 15 years but do not persist possess experience with Phoenix
TRACON [11]. Six retired ATCos were involved in this study. There
were also three researchers who act as pseudo-pilots to fly along the
assigned arrival routes during each simulation scenario. Metacraft is
the name of the TRACON radar simulation computer cluster system.
It provides ATC functions to maneuver the aircraft in a simulation
environment, including altitude, speed, and heading. Metacraft collects
and maintains data logs such as spatiotemporal tracks, LoS events, and
distance measures.

During each 25 min experiment trial, the pop-up window showed a
questionnaire probe every 3 min, asking either a question on workload
rating or situational awareness questions. Specifically, the workload
rating questions were shown three times at exact 3 min, 12 min, and
21 min timestamps. Fig. 2 visualizes the collected data for one partici-
pant of three scenarios. Features include minimum separations (traffic
conflict), number of aircraft (traffic density), and workload ratings are
reported. A recurrence plot indicating communication tendency is also
provided, visually representing the communication efforts between the
tower controller and the pseudo-pilots.

The workload rating probe was designed based on the subjective
workload assessment technique (SWAT) [59]. The SWAT method is a
situation-present assessment method that is commonly used in human
factors research. It involves participants rating their perceived work-
load using various rating scales, such as the NASA task load index (TLX)
scale [60,61]. The SWAT method also includes measures of mental
effort and task difficulty to provide a more comprehensive assessment
of workload. The workload probe employs a two-step process for
administering questions related to situation awareness or workload.
Participants first press a ready button, followed by selecting a response.
The timing of both actions is recorded, following the methods used in
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the aforementioned studies. Another important measure of SWAT was
the behavioral measure of workload, the time to respond to the ready
button.

The controller workload is self-evaluated by the workload ques-
tion pop-up window, and the human performance is indicated by the
count of separation violations. To facilitate this investigation, we have
gathered preliminary data on three types of metrics: (1) aeronautical
separation violations, which are viewed as traffic conflicts existed in
the airspace and an indicator of ATCo performances; (2) real-time
workload ratings, taken at three different points in each 25-minute
scenario; and (3) audio recordings of controller-pilot transmissions
during the workload ratings. The description of selected features is in
Table 2. These initial settings will serve as a foundation for further
analyses using additional measures, such as facial recognition, heart
rate variability, situation awareness probes, and operational efficiency.
Ultimately, this research provides a solution for the development of a
real-time controller workload level prediction system.

In this paper, we obtain the flight traffic recordings and the real-
time workload ratings from real-world human-in-the-loop simulations.
The subjective workload rating is collected from the question pop-
up windows showing at 3 min, 12 min, and 21 min for each trial.
The originally collected data and adjusted workload rating score has
been discussed in the literature [62]. By doing this, we obtain real-
istic human workload levels, or the ground truth, from participants’
honest ratings of their mental status. This is the most reasonable
data source for obtaining features and labels for building real-world
machine-learning pipelines.

3.3. Empirical data analysis

Communication transcription analysis is performed based on post-
processed radio recordings. There are three major components in this
part, (a) use a speech recognition tool or manual transcription tool to
translate voice to text; (b) identify the named entity of each communi-
cation transcript (i.e., controllers or pilots); (c) perform either statistical
analysis or keyword extraction [63-65]. As mentioned, the deviation
indicator represents the deviation in communications, also known as
closed loop communication deviation (CLCD) [13]. CLCD is based on
an established coding scheme derived from the expected exchange of
closed loop communication (CLC). Deviations occur when consecutive
pilot communications or consecutive air traffic controller communica-
tions take place. CLCs were coded using a binary system to detect CLCD
based on communication patterns between pilots and ATC. An expected
CLC pattern involves alternating communications between pilots and
ATC. CLCD is identified when a pilot’s communication follows another
pilot’s or when consecutive ATC communications occur.

Fig. 3 shows the closed loop communication deviation analysis’s
recurrence plot (RP). RP was originally proposed to visualize the com-
plexity of dynamical systems [67,68], where a detailed mathematical
formulation can be found. In this work, we define the phase vector as
the communication deviations and build the recurrence matrix R as,

R, = { (1) ior % X
, or Xx; #X;
where N indicates the number of current states. X; ~ X; means that
they are approximately equal up to an error round defined as ¢. In
general, the recurrent matrix R compares the state and indicates the
state similarity across the entire series [68]. The selection of similarity
threshold o is critical. Researchers have investigated the selection crite-
rion in the literature based on the system states [69-71]. In Fig. 3, we
choose ¢ = 0.1 for the visualization. Moreover, Fig. 3 suggest a typical
vertical and horizontal lines pattern, which is suggested to be a laminar
state or state idle case, while the sparse region indicates lower system
complexity and vice versa [68].
Beyond the visual approach, recurrence quantification analysis
(RQA) is also widely used to measure system-level complexity [70,72,

1 X

i,j=1,...,N (@)

<
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Description of selected features recorded in the HITL simulations. Traffic density is directly obtained from the Metacraft. The latency variables
are defined and collected following modified SWAT. Workload ratings are collected from the question probe. Latency measures and situational

awareness questions are collected but not used in this work.

Feature Feature Feature
names descriptions values
traffic_density Total number of aircraft under ATC participant’s control Integer: 0-23

ready latency

Time spent from screen appearing “Ready?” to

Decimal: 0.01-60.00 s

participant pressing “Ready?” on the pop-up questionnaire.

query_latency Time spent from pressing “Ready?” to selecting answers Decimal: 0.01-60.00 s
on the pop-up questionnaire
wlrating Workload rating select from the pop-up window Integer: 1-7
sa_correct Evaluation of selected responses on situation awareness questions 0: no resp; 1: correct; 2: incorrect

from the pop-up window

Baseline

High WL Nominal

High WL Off-Nominal
-1.0

100

!

- 0.4

-0.2

Communication Transcription Timestamps

0 50 100 150 200 0 50 100 150

RR = 0.85 RR = 0.65

|
} - ,_!. - i il

i

e

200 250 0 0 100 150 200
RR = 0.58

-0.0

Fig. 3. Communication Transcription Visual Analysis: Recurrence Plot (RP). RP is used to quantify the overall tendency of recurrence in the system. Vertical/Horizontal lines

indicate the laminar states do not change or change slowly over time [66].

(a) Number of Deviations that happened in
each scenario. Showing first three ATCs.

Recurrence

(RQA).

(b) Quantification  Analysis

Fig. 4. Communication data analysis on different scenarios. In (a), we show the histogram of the frequency of the communication deviations for each scenario (up to 3 ATCos). As
discussed, the number of communication deviations indicates communication difficulties. In (b), we show the QRA under three different scenarios, showing the scenario complexities

obtained from communications.

73]. Typically, RQA is based on the diagonal and vertical patterns of
the RP. We use three types of complexity measures here.

Recurrence Rate (RR) is the simplest measure of RP, which is
the averaged density of recurrence points in RP. RR represents the
likelihood of a state returning to its ¢-neighborhood in the phase
space [74]. It is the measure of correlations between the ATCo and pilot
communications.

Determinism (DET) refers to the degree of predictability or order-
liness in a system’s dynamics over time. A deterministic system is one
in which future states can be precisely predicted from knowledge of the
present state and the system’s dynamics. In the context of recurrence
plots, a high degree of DET is indicated by the presence of diagonal
lines in the plot, which represent points in the system’s trajectory
that are close to each other in phase space and recur with a high
degree of regularity. Conversely, a low degree of DET is indicated by
a more random or chaotic pattern in the recurrence plot, with fewer
or no diagonal lines. It indicates the predictability of ATCo and pilot
interaction.

Maximum Line (MaxL) is a diagonal line that represents the
longest connected sequence of recurrent points in the plot. It is the
diagonal line that has the most points along it, and it indicates the
most persistent pattern of recurrence in the system’s dynamics. The
length and frequency of maximum lines can provide insights into the
regularity and predictability of the system’s behavior over time. MaxL
quantifies the stability of ATCo and pilot interaction.

Fig. 4 shows the histograms of communication deviations in (a), and
the calculated measures of complexity in (b). As shown in Fig. 4(a),
there is a notable rise in communication challenges from the baseline
scenarios to the high workload scenarios. The prolonged occurrence
of off-nominal events could contribute to a slightly heightened level
of complexity. Additionally, the deviations in communication patterns
can differ across Air Traffic Control Officers (ATCos), possibly due to
variations in individual experience and seniority. Therefore, it can be
concluded that both airspace density and off-nominal events contribute
to an increase in communication complexity. As depicted in Fig. 4(b), it
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Fig. 5. Schematic illustration of conformalized EvolveGCN set prediction framework. We formulate the ATC workload level prediction as a time-series graph classification task,
where each graph node represents each aircraft under the ATC’s control. The number of nodes and weight (distance) of each edge can change across different timestamps. On the
classifier side, we propose the conformal prediction set for improved ground truth coverage. Conformalization acts as a post-hoc procedure to post-process the prediction labels,

where the softmax probability threshold is inferred on the calibration set.

is evident that the correlation, predictability, and stability of the system
all exhibit a decrease from the baseline scenarios to the high workload
scenarios. These findings provide valuable insights into understanding
the behavior of different scenarios and guide our further studies on
workload prediction.

4. Proposed ATC workload prediction framework

In this section, we describe the proposed workload machine learn-
ing prediction framework in Fig. 5. We first demonstrate the for-
mulation and basic concepts of the graph learning problems in Sec-
tion 4.1. The dynamical graph convolution learning algorithm and
conformal prediction setup are explained in Section 4.2 and Section 4.3,
respectively.

4.1. Problem formulation

As mentioned, the ATCo workload prediction task is viewed as a
time-series dynamical graph classification task. In this paper, we use
subscript ¢ € {1,...,T} to demonstrate the timestamp and superscript
I €{1,..., L} to denote the layer index. Graph neural networks (GNNs)
are introduced to model the spatiotemporal layout of the airspace from
the structured graph data with explicit message passing [75,76]. We
denote a graph at timestamp ¢ with vertices and edges, represented as
G, = (V;,E,), where the number of nodes at timestamp ¢ is N4 =
|V,| and the number of edges at timestamp ¢ is Nfdg” = |E,|. The
adjacency matrix A, € RN/ XN™ The constructed graph structure
can be either directed or undirected depending on whether the edges
are directed from one node to another. The dynamic graph is mentioned
when the graph topology varies with time. Especially, the graphs in our
work are undirected dynamical graphs. The constructed graph inputs
are A, € RN and X, € ]RNIMMXNI/MW“, where 4, is the
adjacency matrix at each timestamp t and X, is the node feature matrix.

Graph structure represents the spatial layout of the airspace. How-
ever, the dynamical graph constructed A4, is based on the geo-distance
between two aircraft pairs, resulting in geospatial graphs on a two-
dimensional space. This type of graph construction is widely adopted
with acceptable complexity. Consequently, in this work, we adopt a
scaling formula described in minimum-spanning-tree-based workload
prediction task [26] to scale the horizontal and vertical distance be-
tween two aircraft pairs into one distance metric. Specifically, the graph
is built by calculating the distance d;; between two aircraft pairs (i, j) at
the same timestamp 7. We use d, ;; to represent the horizontal distance
and h,;; to present the vertical separation distance between aircraft
pairs (i, j). The scaling function is described in Eq. (2).

— 2 2
dyy=Jd2, + 202 )

where s is the spatial scaling factor which equalizes the separation on
the horizontal and vertical dimension, as in Eq. (3).

alt; 29,000 and alt; <29,000

0.005, for .
= iLj=1,...,N
alt; > 29,000 or alt; > 29,000

0.0025, for
3

In this workload prediction task, we first obtain the constructed
input X, and A, at each timestamp . In such a way, we obtain the
series of graphs G,,t € {1,...,T}. Then, we fill the workload ratings
into another time series based on the self-evaluated workload rating
during the HITL simulations, representing the prediction labels. Last,
we use a moving window approach to build the correct input-output
matching for supervised machine learning. The schematic illustration of
the moving window process is shown in Fig. 6. We define a window of
size k and move the window along the time axis of the series of inputs,
with a stride of 1. The time-series graph of size « is denoted as {G,},.
Similarly, we move the window function along the prediction labels
and obtain the workload ratings by claiming the last reported workload
value within the current window. Then, if Y, denotes the ground
truth workload label at timestamp ¢, we mathematically formulate the
problem into,

Y, = EvolveGCN({G, } ) (©)]
4.2. Evolving graph convolution network

Spatial graph convolutional networks (GCN) [77] convolve the
input A, and X, using the derived compact form,

H' =6(AH'W!, with H =X, (5)

where ¢ is the activation function (i.e., ReLU). /i, is a normalized
version of A,, to account of numerical instability. Specially, A, is
1 1

defined as, A, = D, 2A,D, 2, A, = A, + 1, D;; = YA, Itis
clear that H, has the same dimension as X, as H, € R e e
W, € RNseawresXN jeairues is the kernel parameters. For multiple graph con-
volutional layer setup, H,l*l stands for the updated graph embedding
of convolutional layer /+1 at timestamp ¢. Specifically, in classification
problems, the activation function ¢ at the output layer L is the softmax
function.

Evolving Graph Convolution Network (EvolveGCN) improves GCN
by introducing recurrence layers to capture the dynamism underlying
a time-series graph. Two types of EvolveGCN are presented [78],
depending on the recurrent updating architecture.

The first variant treats the GCN kernel parameter W, as the hidden
state of recurrent learning function and updates VK’ with a gated



Y. Pang et al.

Advanced Engineering Informatics 57 (2023) 102113

Moving Window Step 1: Timestamps K,
Stride 1

| Workload
Levels Moving Window Step 1: Timestamps K,
Stride 1
Ground
Truth
Label

i
I
'
'
|
|
]
1
|
i
i Step 1
i
|
i
|
i
|
I
i
i
I
|
|

Time-Series Dynamic Graph Labels g

Fig. 6. Schematic illustration of the moving window approach. At each step, the moving window moves 1 timestamp (5s) along the temporal dimension (stride 1). Each series of
graphs contains a graph of x timestamps. The workload ground truth label for the graph series input is the workload level (1-7) reported at the last timestamp, collected from
the human-in-the-loop experiment. This setup allows the model to capture long-term spatial relationships and result in a prediction at every timestamp since «. For abbreviation,

the graph input is represented by a radar plot.

recurrent unit (GRU), while the node embeddings of node features are
still contained within the GCN hidden state tensor H,’ . EvolveGCN-H
is used to denote this variant Eq. (6). This requires a special design of
GRU computation flows as described in [78].

W/ = GRUH/,WL)) ©)
HY' = 6(A,H'W)) %)

Another variant of EvolveGCN is the -O version Eq. (8), where the
kernel parameter W,’ is treated as input of recurrent learning with-
out considering the temporal correlations between node embeddings.
The implementation of EvolveGCN-O is straightforward by extending
dimensions.

W!=LSTMW! ) ®
HY' = o(A,H!'W} ©)

Either an EvolveGCN-H or EvolveGCN-O is denoted as an Evolving
Graph Convolution Unit (EGCU), as shown in Fig. 5. In both ways,
the EGCU first updates the GCN weights and then propagates the
hidden states through the layers. Several layers of EGCU form a GCN
block in Fig. 5. For a graph learning problem with large feature
space, EvolveGCN-H is more effective since the feature embedding
recurrence is also considered. Otherwise, EvolveGCN-O is more focused
on learning the graph topology structure changes.

4.3. Conformal prediction

In this section, we provide a brief overview of conformal prediction
(CP). For the classification task mentioned above, we have EvolveGCN
acted as the classifier C, which outputs an estimated probability for
each class, i.e., p € [0, 1)* for x classes. We reserve a small amount of
data called calibration set to calculate the probability score threshold §
such that the following condition holds on the test set,

1
l1-a< P(Y,ES, S C(Xzest)) <l-a+ m (10)

where the test dataset is the unused test set to evaluate model per-
formance. « € (0, 1] is the pre-defined tolerated error rate. This is to

guarantee that the model is 1 —a confident that the model prediction set
contains the correct ground truth label. This equation is also known as
the marginal conformal coverage guarantee, which has been proved in
the literature [79,80]. Notably, the calibration is the key step to find 4.
Suppose we define the concept of the conformal score by one minus the
softmax probability of the true class, § is defined to be the w
quantile of the conformal scores. [] is the ceiling function to correct the
quantile. Then, the prediction of a new test sample will be all classes
with a softmax score higher than 4. The prediction set will be larger
if the model is uncertain about the prediction labels or if the input
is out-of-distribution. Intrinsically, the size of the prediction set is the
indicator of model uncertainty.

Conformal prediction (CP) has been studied from various angles
by researchers. However, the classical CP method is susceptible to
coverage issues due to its tendency to produce the smallest average
size of prediction sets [81]. Specifically, CP tends to overcover hard
data samples while undercover simple ones. To address this issue,
researchers have proposed an approach called adaptive conformal pre-
diction [82,83]. The underlying principle of this method is to compute
the conformal threshold 4 based on the cumulative softmax score across
x classes.

It is also noteworthy to discuss conformal evaluation methods,
which are adopted in evaluating our model. To determine the model’s
performance, a straightforward method is to examine the histogram of
prediction set sizes visually. Essentially, a larger size of the prediction
set implies that the model is facing certain data quality problems, while
the variation in the set size can provide insights into the model’s ability
to differentiate between easy and difficult input samples.

P[Yr € C(Xresr)lxlest] 2l-a 11)

est

Conditional coverage is a feasible approach to evaluate the adap-
tivity of conformal prediction. For instance, in a classification setting,
we seek to find the prediction sets with exactly 1 — « coverage for any
input data sample, as in Eq. (11). The conditional coverage concept
is a stronger metric than the marginal coverage mentioned above.
Some literature mentioned that conditional coverage is impossible to
achieve in most general cases [84]. Size-stratified coverage (SSC)
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Table 3
List of fine-tuned model parameters used in EvolveGCN training under three different simulation scenarios.
Baseline High High
Workload Workload
Nominal Off-Nominal
Number of EGCU Layers 2 2 4
EGCU Layer Dimensions 64 128 64
Dropout Ratio 0.25 0.5 0.25
Learning Rate 0.001 0.0015 0.0005

Table 4

Workload Level Prediction: Comparison between different workload prediction methods.

ATC workload Baseline High workload nominal High workload off-nominal
level prediction MicroF1 MacroF1 MicroF1 MacroF1 MicroF1 MacroF1
Simple LRw/ Density 0.306 0.218 0.307 0.198 0.323 0.195
Simple LRw/ Graph Feature 0.331 0.236 0.383 0.263 0.350 0.255
2-layer MLP 0.364 0.283 0.455 0.386 0.459 0.367
GCN 0.404 0.218 0.580 0.401 0.526 0.352
EvolveGCN-O 0.545 0.277 0.740 0.632 0.695 0.472
EvolveGCN-H 0.413 0.221 0.593 0.474 0.581 0.414

metric is a general metric to evaluate how close the model is able to
achieve Eq. (11). SSC metric is a way to evaluate the performance of
conformal prediction models. It is based on the idea that prediction
sets of different sizes may have different properties and should be
evaluated separately. The key is to group test samples into different
size strata based on the size of their prediction sets and compute the
averaged empirical coverage on each size strata. SSC metric can be
useful to diagnose specific issues, such as overcoverage or undercover-
age, that may be related to the size of the prediction sets. In addition,
another conformal prediction evaluation method has been proposed
recently [85], where a calibration plot of the prediction error versus
the specified significance level (a) is used. Remarkably, In Section 5,
we evaluate our model with these metrics.

CP provides a rigorous way to measure the uncertainty associated
with the predictions made by a machine learning model and to express
this uncertainty in the form of prediction intervals or regions that can
be used to guide decision-making. This can be particularly useful in
critical engineering applications where accurate prediction intervals or
regions are essential [86]. CP has been widely adopted in drug dis-
covery [87], medical diagnosis [88], and robotics [89]. CP is a unified
post-hoc softmax score calibration process to generate prediction sets for
any classification model [90-92]. In this work, we propose to use CP for
aviation decision support. Specifically, the prediction set comes from
CP gives uncertain prediction label suggestions, i.e., workload rating
of 3, 5, 7. While the isolated classification label in workload prediction
is not reasonable, we propose to fill the intermediate workload ratings
based on the minimum predicted rating and the maximum predicted
ratings.

5. Experiments

In previous sections, we have introduced the HITL data collection
process, the problem definition, the machine learning model system
design, and conformal prediction for better ground truth label coverage
Section 4. In this section, we present a comprehensive of experiments
to test and evaluate the proposed model. We first discuss several
evaluation metrics used for this classification task. Then we report the
classification accuracy from the machine learning model with a few
implementation details. Lastly, conformal prediction set results are re-
ported with several conformal coverage evaluation methods mentioned
in Section 4.3. The validation set is used to tune hyper-parameters, and
the testing dataset results are evaluated based on the best validation
epoch.
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5.1. Evaluation metrics

The F-score, or F-measure, is a binary classification metric used in
statistical analysis to assess the accuracy of test samples. Specifically,
the Fl-score is defined as the symmetrical harmonic mean of precision
and recall [93]. Fl-score can also be used for multi-class classification
by taking either the micro-averaging (MicroF1) or the macro-averaging
(MacroF1).

TP

Precision = ———— 12)
TP+ FP

Recall = — 13)
TP+ FN

MicroF1 = 2 s Precision x Recall (14)

Precision + Recall

Eq. (12) gives the mathematical formulation of MicroF1, where each
sample is considered independently without considering which class
this sample belongs to. MicroF1 treats each data input equally but is
biased on class frequency. MicroF1 is useful when the classification task
is unbalanced, meaning that some classes have many more instances
than others. In this case, the MicroF1 gives equal weight to each
instance, regardless of its class.

Fly +Fly e +F1,
n

MacroF1 = (15)

On the contrary, MacroF1 average the F1 score across all classes as
in , where n is the number of classes, and F1; + F1,---,+F1, are the
F1 scores for each class. MacroF1 treats each class equally regardless
of the size of samples within each class thus, it is biased on the
number of samples. MacroF1 is useful when the classification task is
balanced, meaning that each class has approximately the same number
of instances. In this case, MacroF1 gives equal weight to each class,
regardless of its frequency.

In this work, we are encountering a highly-imbalanced classification
problem Fig. 2. Thus, MicroF1 is a better indicator than MacroF1. It is
noteworthy to mention that »n in should be adjusted to exclude the class
labels that are not presented in either ground truth or predictions. We
report both metrics in our studies.

5.2. Implementation details

Although the commonly adopted node-level or link-level classifica-
tion objective is prevalent, the proposed workload prediction frame-
work is instead a graph-level classification task [78]. Thus, on the
output layer, we take the aggregated class probability score across
each node to get a unified score of the entire graph. We adopted the
grid-search strategy to search for key parameters and fine-tuned the
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neural network model with the data collected from three different
scenarios. The key parameters used are the number of EvolveGCN
layers (EGCU layers), and the dimensions of these layers. Dropout
is used in the classifier to address overfitting. Table 3 lists the fine-
tuned key model parameters under three simulation scenarios. Other
parameters, such as the dimension of classifiers, are kept the same as
the original implementation [78]. Parameter tuning on the classifiers
might be useful, but it is beyond the scope of this study.

Moreover, as discussed in Section 3, the first reported workload
rating starts at 3 min of the 25 min duration. This corresponds to
the 36¢h timestamp with 5s interval in the collected flight traffic data.
Consequently, the moving window size k in our experiment is 36, with
a stride of 1. We separate the data into train, validation, and test sets
with a ratio of [0.4,0.3,0.3]. The validation set is used for deep learning
model hyper-parameter tuning. Moreover, the validation set is also used
as the calibration set to find the CP threshold 4.

5.3. Experiment results

In this work, we compare our model with both classical methods
(i.e., linear regressions (LRs)) and simple data-driven learning methods
(i.e., fully-connected neural networks/multilayer perceptrons (MLPs)).
In [23], the authors also conducted high-fidelity human-in-the-loop
simulations to study the impact of traffic density features on controller
workload. They found that the workload rating of the enroute center
controller is proportional to the number of aircraft with a slope of 0.306
and bias of —3.373. They also identified the primary sources of workload
for controllers, including airspace and traffic management, communi-
cation, and coordination tasks with workload management suggestions.
In [26,28], the authors create graph-structured airspace data structure —
minimum-spanning trees but propose several handcraft features based
on the histogram of node features. Then a two-layer fully-connected
neural network is used for prediction based on handcrafted features
and shows remarkable performance. However, the workload ratings are
directly generated from the traffic density, where thresholds of 7 and
17 separate workload ratings into low, medium, and high scenarios.
Likewise, inspired by this work, our proposed method adopts a graph
structure to represent the spatiotemporal layout. We utilize the recent
advancement in graph learning and learn from the graph structure
without handcrafted features.

In Table 4, comparing the first two rows, we first show that in-
cluding additional graph node features can achieve higher prediction
accuracy, even for simple LRs. Despite the traffic density features,
additional graph node features are traffic conflict features (i.e., hori-
zontal/vertical minimum separation to nearby aircraft). For the MLP
with handcraft features, we generate second-order statistics of the
sum and difference histograms introduced in [26]. As a reference to
EvolveGCN, we also conduct an experiment on vanilla GCN. This can
be easily achieved by removing the LSTM layer in Eq. (8). We show that
EvolveGCN can achieve significantly higher MicroF1 and MacroF1 than
LP, MLP, and GCN. Moreover, the -O variant EvolveGCN outperforms
the -H variant. One of the major reasons is the selection of top K
indices reduces the hidden dimension of EGCU, due to the low node
feature dimensions and a small number of nodes in graphs (i.e., only
one aircraft showing up at the first timestamp) at certain timestamps.

5.4. Conformal prediction results

As mentioned, we use conformal prediction to improve prediction
accuracy further. In Fig. 7, the prediction on one test participant is
shown. The conformal prediction set coverage is the shaded region. The
conformal prediction is generated with a tolerated error rate of a = 5%.
The blue solid lines show the real-time aircraft density (left axis) in the
simulation, and the red lines are the interpolated workload ratings. At
3 min, 12 min, and 21 min, the participants are required to submit their
workload rating to the computer. The ground truth workload ratings
are colored in red (right axis). The conformal prediction set covers most
of the ground truth but is undercover at several spots. As discussed in
Section 4.3, we further evaluate the conformal prediction coverage.
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Fig. 7. Visualization of conformal predictions on the test sample. For the workload
level prediction task, we set our prediction as the range between the lowest predicted
workload level and the highest predicted workload level.

5.5. Conformal coverage evaluation

We adopt different conformal coverage evaluation metrics to exam-
ine the performance of our conformal set. Firstly, we plot the histogram
of set sizes. A high average set size suggests that the conformal predic-
tion procedure is imprecise, which could indicate issues with the score
or underlying model. Secondly, the range of set sizes indicates whether
the prediction sets adapt properly to the complexity of examples. A
wider range is typically preferred because it implies that the proce-
dure accurately differentiates between simple and challenging inputs.
We show the histograms in Fig. 8. The size of conformal prediction
is typically around 5. The spread for baseline and high workload
nominal conditions looks reasonable. The model is able to distinguish
hard and easy samples. However, the spread for high workload off-
nominal conditions indicates potential scoring issues or simply difficult
data [80].

Following the discussion in Section 4.3, we investigate the size-
stratified coverage (SSC) to evaluate the condition coverage and plot
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Fig. 8. Histogram of set sizes on test set predictions. The spread of the histogram shows the difficulty of making a correct prediction.
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Fig. 9. Conformal coverage evaluation with various desired « values under three workload simulation conditions. We use the Size-Stratified coverage (SSC) metric better to

represent the adaptive coverage of the conformal set coverage.

the figures in Fig. 9. The dash lines are desired coverage values. In
this figure, we consider three desired error rates, a = 0.15,0.1,0.05, for
three scenarios. We use two possible C(x) cardinalities of two bins and
five bins. In other words, we divide the predicted sets into different
size categories (e.g., sets of size 2, sets of size 5.) and calculate the
percentage of times that the true value falls within each category. We
discover that the prediction coverage of baseline conditions shows a
good sign, but the two high workload scenarios tend to under-coverage.

12

Again, the reasons still come from the unsatisfactory of the collected
data, which leads to lower reported F1 values.

To further look at the coverages, we adopt another recently pro-
posed figure to better show the prediction coverage violations [85]. In
Fig. 10, we show three figures for three simulation scenarios. The x-
axis shows the tolerated error rate (the specified significant level), and
the y-axis shows the fractions of failed prediction sets (the number of
prediction samples where the ground truth label is not in the conformal
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Fig. 10. The calibration plot illustrates the observed prediction error, which is the proportion of true labels that are not included in the prediction set, plotted against the
pre-specified significance level ¢, or the tolerated error rate. The conformal predictor is deemed valid only when the observed error rate is within the limit of ¢, i.e., the observed

error rate should align closely with the diagonal line representing the tolerated error rate for all significance levels. One of the key advantages of conformal predictors is their
ability to offer valid predictions even when new examples are independently and identically distributed with the training examples. Additionally, we use Kolmogorov—Smirnov
(K-S) test to test the distributions of predictions in the calibration set and test data under three conditions. In the K-S test, the null hypothesis is that the calibration and test
samples are drawn from the same data distribution. The corresponding p-values obtained for three conditions are, (a) 1.98e — 12; (b) 3.68e — 48; (c) 2.18e — 55. All three values
below 5%, are considered two-sided statistically significant. Thus, the hypothesis holds true.

prediction set). This property holds true in high workload scenarios but
not in the baseline scenarios when the significance level is lower than
0.4 or higher than 0.95.

6. Conclusions

In this paper, we investigate the workload prediction problem.
We formulate the problem into a time-series dynamic graph classi-
fication task with changing graph topologies. We demonstrate the
effectiveness of this proposed method from real-world human-in-the-
loop air traffic control simulations, in which participants are retired
air traffic controllers. We show that traffic density features and traffic
conflict features have a positive influence on workload predictions.
Algorithm-wise, the graph-structured data-driven learning model out-
performs the existing practices in workload prediction research litera-
ture (i.e., simple regressions, simple neural networks with handcrafted
features).

6.1. Limitations

There are several limitations. Firstly, we only have limited resources
to conduct the HITL experiments in a simulation environment. Real-
world scenarios can be immensely different from simulation scenarios,
with either fewer or more deviations. Secondly, data quality is critical
for developing a successful machine-learning algorithm. In this work,
we have to use the corrected workload rating data due to the poor qual-
ity of the originally collected workload ratings, with only six retired
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ATCo participants [62]. Another critical part is modeling the different
ATC strategies adopted by different controllers, which can result in a
multi-modal machine learning setup. The benefit of including ATCo
strategies has also been discussed in the literature [4]. Lastly, better
algorithm development can help with improved workload prediction
performance. The single prediction label made by either EGCU-O or
EGCU-H can be improved, despite the data quality issue.

6.2. Insights

This work is beneficial for the non-intrusive, uninterrupted execu-
tive controller workload prediction, and it is purely based on the flight
traffic data. First, we show that both traffic density and traffic conflict
features contribute to higher prediction accuracy. Then, we show that
model of the spatiotemporal airspace layout as a dynamic time-series
graph learning problem has great potential for ATC workload level
predictions. Additionally, we explore the possibility of further accuracy
improvement by introducing a post-hoc classification score processing
process, namely conformal prediction, which can be used to generate
multiple classification labels adaptively.

Based on these insights, we propose several research directions that
might be interesting to researchers,

» We are expecting a significant performance improvement by con-
ducting more HITL simulations or real-world ATC experiments,
collecting additional high-quality data, and data-driven model re-
finement. Spatiotemporal graph learning is a popular theoretical
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research direction, and better graph learning model architec-
ture is expected, which results in better workload prediction
performances.

The window function setup for input-output data matching is
flexible for any practical requirement in the real world. The
length of the window determines the history length to be con-
sidered, while the stride size defines the prediction horizon.

The workload prediction problem formulation can be alternated
from workload rating classification to workload rating regression
task. This setup is algorithm-wise more reasonable for uncertainty
calibration with conformal prediction but requires significant
experiment setup change. For instance, the current rating-based
question prob in modified SWAT and NASA TLX will be modified
to continuous variables. A considerable modification of the HITL
simulations is desired.

There are still several important questions that remain unan-
swered, such as how to incorporate real-time data and feedback
into the prediction model and how to adapt the model to different
types of air traffic control systems. Future research in this area
could also explore the impact of other factors, such as weather
conditions and aircraft type, on controller workload and safety.
Several works of literature quires the validity of only using traffic-
related factors to predict mental workload, where a significant
part of pilot-controller interactions and feedback are missing [4].
In further studies, we propose to build a predictive model that can
consider reciprocal feedback interactions (i.e., the communication
deviations [7] in Section 3) from a learning perspective.

Further studies can also combine trajectory prediction models
such that the task demands can be predicted first and then per-
form workload forecast in real-time. In such a way, either deter-
ministic or probabilistic trajectory prediction models can act as
moderators of workload models [31,94-96].

We believe the above discussions have practical implications for
aviation authorities, airlines, and air traffic management providers.
Specifically, our workload prediction model could be used to inform
scheduling and staffing decisions, optimize resource allocation, and
support proactive safety management. However, it is important to
note that successfully implementing such interventions will require
collaboration and communication across stakeholders.
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