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Understanding how people trust autonomous systems is crucial to achieving
better performance and safety in human-autonomy teaming. Trust in automation
is a rich and complex process that has given rise to humerous measures and
approaches aimed at comprehending and examining it. Although researchers
have been developing models for understanding the dynamics of trust in
automation for several decades, these models are primarily conceptual and
often involve components that are difficult to measure. Mathematical models
have emerged as powerful tools for gaining insightful knowledge about the
dynamic processes of trust in automation. This paper provides an overview
of various mathematical modeling approaches, their limitations, feasibility, and
generalizability for trust dynamics in human-automation interaction contexts.
Furthermore, this study proposes a novel and dynamic approach to model
trust in automation, emphasizing the importance of incorporating different
timescales into measurable components. Due to the complex nature of trust
in automation, it is also suggested to combine machine learning and dynamic
modeling approaches, as well as incorporating physiological data.
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1. Introduction

Rapid advances in automation technologies, including autonomous vehicles, robotics,
autonomous web-based systems, and user experience frameworks and decision aids, are
dramatically impacting almost every aspect of our daily life. Understanding how humans
work with automation is vital for automation to work most beneficially for humans. Trust,
which is not always consistently defined and operationalized, has been identified as a key
factor influencing human-automation interactions (Lee and Moray, 1992; Muir, 1994; Lee
and See, 2004; Kohn et al., 2021).

Given the importance of trust in human-automation interactions, it is critical to
understand the different definitions and operationalizations of trust in the literature. Some
researchers define trust using an interpersonal framing, such as the "expectancy held by an
individual that the word, promise or written communication of another can be relied upon”
(Rotter, 1967). Subsequently, Mayer et al. (1995, p. 712) defined trust as the "willingness
of a party to be vulnerable to the actions of another party based on the expectation that the
other will perform a particular action important to the trustor, irrespective of the ability to
monitor or control that party.” This definition identifies that individuals must willingly put
themselves at risk. Similarly, Kramer (1999, p. 571) defined trust as a behavioral result or
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state of vulnerability, such as "a state of perceived vulnerability
or risk that is derived from an individual’s uncertainty regarding
the motives, intentions, and perspective actions of others on whom
they depend.” Falcone and Castelfranchi (2001) defined trust as a
mental state, a belief of a cognitive agent to achieve a desired goal
through another agent. Based on previous work by Fishbein and
Ajzen (1975), and Lee and See (2004, p. 54) described reliance as a
behavior that can indicate trust and stated that trust itself is "the
attitude that an agent will help achieve an individual’s goals in a
situation characterized by uncertainty and vulnerability.” This is a
widely used definition that integrates across several disciplines and
is careful to point out that conflating trust with intent, behaviors, or
beliefs could be misleading for future research (Lee and See, 2004).

To further understand the concept of trust in human-
automation interactions, it is important to examine the different
sources of variability in trust. Hoff and Bashir (2015) reviewed
the empirical work that followed Lee and See (2004) and defined
three sources of variability in trust in automation: dispositional,
situational, and learned. Dispositional trust is a person’s attitude
toward autonomous agents based on pre-existing knowledge
and demographic characteristics. Dispositional trust precedes
interaction with a specific agent; it is based on individuals’ own
personalities, beliefs, and proclivities. Learned trust is based on
prior experience with a specific autonomous system. Through this
experience, operators learn about the system’s capabilities, observe
its performance, and develop expectations about the system’s
reliability. Learned trust is impacted by performance; for example,
operators judge automation that fails on easy tasks more harshly
(greater trust degradation) than agents that fail on difficult tasks
(Madhavan et al., 2006). Situational trust considers conditions
in the environment. This may include the external context, for
example, the impact of weather on task difficulty; it may also
include internal variables, such as the operator’s current mental
load or emotional state. The same system that is trusted in one
situational context may not be trusted in a different context.
Situational variables may change quickly and be difficult to observe,
adding complexity to any effort to assess trust. Learned trust
can change as an operator gains new experience with an agent
and it may shift if an agent suddenly demonstrates a behavior
change or experiences a failure. Situational trust can be unstable;
anything altering the internal or external environment may impact
the operator’s moment-to-moment trust in an agent-even factors
that are not directly related to the agent or its performance. The
categorization of dispositional trust, learned trust, and situational
trust additionally suggests distinguishable time frames at which to
capture trust and its associated outcomes, at various levels of a
system (i.e., from micro to macro-level outcomes).

Understanding the various sources of variability in trust
is crucial for comprehending the relationship between trust
and reliance in human-automation interactions. When choosing
whether to rely on an autonomous agent, trust (an internal state)
precedes reliance (an observable behavior). Reliance (choosing to
use the autonomous agent with some risk involved) is a behavioral
proxy measure for trust. The two are not perfectly related, although
they do generally correlate positively. This relationship has been
demonstrated to increase in strength with the complexity of combat
autonomy and novelty of situations (e.g., Sanders et al., 2019). Like
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trust, decisions to rely on another entity can change over time, as
a situation evolves. However, although trust is often examined as
it coincides with observable behaviors like reliance, the strength of
the relationship between an operator’s trust ratings (their reflective
responses) and behavior (how the operators act in the moment)
can vary widely. Literature has found that automation performance,
workload, environment, and risk largely affect decisions to use
automation (Parasuraman and Riley, 1997; Lee and See, 2004;
Lee, 2008; Kohn et al., 2021). Psycho-social models such as the
Technology Acceptance Model (TAM; Davis, 1989) and the Unified
Theory of Acceptance and Use of Technology (UTAUT; Venkatesh
et al., 2003) also suggest that factors equivalent to automation
performance and workload influence intentions, and subsequently
influence behavior (reliance).

Given the challenges associated with relying solely on
self-report measures and observable behaviors to assess trust
in automation, the use of physiological measures such as
electroencephalography (EEG) and Galvanic skin response (GSR),
gaze behavior, and electrocardiogram (ECG) may serve as
promising real-time indicators that reflect trust dynamics when
interacting with automation. Trust has been measured by surveys,
binary behavioral indicators, sensory-based physiological values,
and communication patterns (Huang et al., 2020, 2021). Binary
behavioral indicators of trust include use or non-use of the
automation and duration of use, as well as eye-tracking fixation
duration (Jenkins and Jiang, 2010; Gremillion et al., 2016).
Sensor-based psychological measures, such as EEG and GSR, are
more nuanced than surveys and binary behavioral indicators for
tracking and deciphering trust dynamics. Recorded physiological
data during human-automation interaction is typically analyzed
through the tools of statistical analysis and machine learning
(Gremillion et al., 2019; Walker et al., 2019; Neubauer et al., 2020;
Oh et al,, 2020; He et al, 2022). Although using physiological
measures is not without its challenges largely because their
interpretation depends highly on specific task contexts, and
therefore still requires either time-intensive manual annotation or
highly controlled task environments that are difficult to generalize,
there remains a demand for real-time understanding and indicators
of trust in automation during operation. This suggests that
developing mathematical models of trust in automation that
incorporate both behavioral and physiological data would be
highly valuable.

As the demand for real-time indicators of trust in automation
grows, there is a need for more comprehensive trust models.
Trust definitions and related concepts are crucial for developing
dynamical models to better understand trust in automation
dynamics. Over the past few decades, researchers have been
actively working on models to examine the dynamics of trust
and reliance on automation. Kok and Soh (2020) performed a
comprehensive narrative review that addresses known methods
used to capture trust in automation and proposes future directions
for research. The authors suggest the need for trust measures
that are both lightweight and effective across various levels of
automation, embodiment, and mental perception. They argue that
several popular trust models lack empirical support and do not
easily correspond to existing measures of trust. As a solution, the
authors propose a model based on the measurable components of
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trust, which could be defined in detail and serve as a simplified
framework for discussing and categorizing trust measures. More
recent theoretical work on trust (Chiou and Lee, 2021) has
expanded from the uni-directional information processing model
of trust (and reliance) to discuss a more bi-lateral relational
approach to trust (and cooperation). However, this theory remains
conceptual and requires the specification of the goal environment,
which varies widely, at least compared to task contexts that fit neatly
within signal detection theory. Moreover, few empirical papers
have yet attempted to develop models based on this relational
concept of trust. In this paper, we revisit previous work on
the well-studied information processing perspective of trust and
reliance. We aim to provide the scientific community with an
overview, from the mathematical and human factors perspective,
of different mathematical modeling approaches, their limitations,
feasibility, and generalizability for trust dynamics in various
human-automation interaction contexts. We also emphasize the
importance of incorporating different timescales into measurable
components when modeling trust in automation. Additionally, we
propose a framework and provide an example to model trust in
automation through dynamic measures that capture the variability
of the environment.

2. Mathematical Models of Trust in
Automation

In this section, we will review mathematical models for trust
in automation using a discrete-time modeling approach, including
the application of decision field theory, step-function approach,
and probabilistic approach. In the following subsection, we review
mathematical models that have some component of randomness or
unpredictability in their structure.

2.1. Stochastic Difference Equations

Rempel et al. (1985) proposed that trust is a dynamic attitude
that follows a particular sequence of dimensions to form gradually
over time. He also identified predictability, dependability, and faith
as the three dimensions that influence an individual’s acceptance of
a trustee to form the basis of trust. This concept was subsequently
applied to mathematical models of trust in automation by Lee and
Moray (1992, 1994), Muir (1994), Muir and Moray (1996), and Lee
and See (2004), as described below.

2.1.1. Lee and Moray Models

Lee and Moray (1992) used linear regression models to examine
the factors affecting trust in automation and used dynamical
models to explore how trust changes over time. Their model
for trust dynamics was validated using data from a laboratory
experiment of participants operating a simulated orange juice
pasteurization plant. In this experiment, each participant reported
their trust level (on a scale from 1 to 10) at the end of each of 60
trials recorded over 3 days.

Lee and Moray (1994) started with the development of linear
regression models for factors affecting trust. The fitting of these
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linear regression models suggested that self-reported trust was
influenced by two factors, namely, the occurrence of a fault in a
system and the performance of the system as measured by the
total output efficiency (total output/total input). Notably, the linear
regression models proposed in Lee and Moray (1994) did not
reflect the dynamic response of trust to these variables. Instead,
they predicted trust as a linear combination of the current level of
performance and the fault in the system. However, the model did
not consider past occurrences of faults, past values of performance,
past values of trust, or the relationship between past and current
values due to the possible changes in the work environment.

To give information about the memory of trust, and/or the
effect of past occurrences of faults and performance, Lee and Moray
(1992, 1994) proposed and used a stochastic difference model for
trust T(¢), which depends on the performance P(t) and fault F(¢) of
the automation in the current trial t and previous trial at t — 1.

T(t) = g1 T(t — 1) + A1 P(t) + A1 P(t — 1)
Performance
+ AyF(t) + Axps F(t — 1) +a(t), (1)

Occurrence of faults

where A; is the weighting of system performance, A, is the
weighting of the occurrence of a fault, ¢; and ¢, are time constants
of the Autoregressive Moving Average Vector (ARMAV) model,
and a(t) is a random noise perturbation at trial t. The work of
Lee and Moray (1992) provides a first step toward modeling trust
between humans and machines and its influence on operators’
control strategies and decision-making. Trust model (1) assumes
that trust dynamics at trial ¢ is a linear combination of (1) trust T
at the previous trial (t — 1); (2) performance P of the system at trial
t and t — 1; (3) the occurrence of a fault F at trial t and t — 1; and
(4) environment perturbations a(t) that are beyond the operator’s
control. Items (2) and (3) can be linked to the risk assessment of
using automation when the participant makes a decision to use
automation or not.

One limitation of model (1) is that it does not explain and test
why trust is a linear combination of previous trust, performance,
and fault. The application of trust model (1) may be too restricted,
as it can only be applied to the specifically mentioned experiment
since it requires the input of performance and faults. To have a
more general model, there is a need to define performance, faults,
and other influencing factors (e.g., workload and risk), and the
relationships between these variables.

2.1.2. Muir and Moray Models

Muir (1994) adopted the trust definition from Barber (1983)
and formulated the following definition of trust in automation:

"Trust (T) is the expectation (E), held by a member of a system
(i), of persistence (P) of the natural (n) and moral social (m) orders,
and of technically competent performance (TCP), and of fiduciary
responsibility (FR), from a member (j) of the system, and is related
to, but is not necessarily isomorphic with, objective measures of these
properties." (p. 1,911)
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This definition can be summarized as the equation below:

Tij=  EPnm)  +  E(TCP)

Expectation of persistence  Expectation of technically

competent performance

+ E;(FR;) , (2)
————
Expectation of fiduciary
responsibility

where T is a composite expectation, comprised of three

expectations: P, which is the fundamental expectation of

persistence; TCP, which includes skill-, rule-, and knowledge-

based behaviors; and FR includes notions of intent, power, and

authority. The trust model (2) suggests simple linear impacts from

persistence (P), technically competent performance (TCP), and

fiduciary responsibility (FR), when in fact a multiplicative model

or a more complex model may turn out to be a more accurate

mathematical representation. For example, the three component

expectations need not be equally important; each component

expectation may have to be weighted according to its importance

in a particular context and may have nonlinear impacts. Muir

proposed the following hypothetical regression model of human
trust in a human or machine referent,

T,',j =By + B, E;(P(n,m)) + BzE,(TCP]) + B3E1(FRJ)
+ B4E;(P(n, m))E;(TCP;) A3)
+ BsE;(P(n, m))E;(FR;) + BsE;(TCP;)E;(FR;)

(
(
(
+ B7E;(P(n, m))E;(TCP;)E;(FR;),

where By_7 are parameters. According to Muir’s (1994) model
(2), based on the Rempel et al. (1985) stage model, Muir and Moray
(1996) showed that predictability should be the best predictor of
overall trust early in an operator’s experience, followed later by
dependability and then faith. Thus, they proposed model (4) that
was applied to their experiment data. This model was then extended
to model (5) by including three additional components.

Trust = Predictability + Dependability + Faith (4)

Trust = Predictability + Dependability

+ Faith + Competence + Responsibility + Reliability
(5)

Muir’s models (2) and (5) are extended from Barber’s (1983)
and Rempel et al’s (1985) models and showed that the perceived
predictability is one of the bases of trust, which, in turn, is
the foundation for an operator to estimate the future behavior
of a referent. The accuracy of that prediction may be assessed
by comparing it with the actual behavioral outcome. Besides, a
person who makes an estimate may associate a particular level of
confidence with such an estimate. Hence, confidence is a qualifier
related to a particular estimate. Confidence is not synonymous with
trust. An important limitation is how to operationalize and measure
those three components: predictability, dependability, and faith.

2.1.3. Busemeyer and Townsend Model
Decision Field Theory (DFT) is a dynamic-cognitive approach
to human decision-making based on principles psychological
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rather than economic ones (Busemeyer and Diederich, 2002). This
type of model has been used to understand the evolution of the
preferences among options of a human decision-maker (Lee et al.,
2008). DFT provides a mathematical approach to understanding
the cognitive and motivational mechanisms that guide people in
the process of decision-making within a changing environment.
Busemeyer and Townsend (1993) applied DFT to the decision-
making process of automation use or disuse, which involves two
options: relying on automation (A) or using manual control (M).
Let S; and S, correspond to uncertain events, where S; is the
occurrence of an automation fault and S, is the occurrence of a
fault that compromises manual control. Variables yy; and ya; are
the possible payoffs if event S; occurs, where j = 1,2. This model
has two basic Subjective Expected Utility (SEU) functions given by:

Va(n) = W(SDu(yar) + W(S2)u(yaz),
Vum(n) = W(SDu(yan) + W(S2)u(yaz),

where u(yp;) and u(ya;) are the utilities of the payoff, W(S;)
is the subjective probability weight (attention given to event ),
and # is the " sample. Note that Zj W(S;) = 1. Busemeyer and
Townsend (1993) defined P(n) as the weighted preference state of
choosing action automation A over manual M. They assumed that
P(n) is determined by two factors: the previous state of preference
P(n — 1) and the valence difference of V4 (n) — Vy(n). Thus, P(n)
is defined as follows:

P(n) = (1 —s)P(n — 1) + [Va(n) — Vi (n)]
=1 —9)P(n—1)+d+en), (6)

where Va(n) — Vy(n) = d + €(n) has an average of d and
the related residual €(n) represents the change in valence difference
produced by the moment-to-moment fluctuations in attention
during deliberation. The parameter s is the growth-decay rate,
which determines the influence of the previous preference state
P(n—1). DFT offers an appropriate modeling approach to describe
the decision to adopt automatic or manual control. The preference
for automation over manual model (6) has been extended and
applied in the modeling of trust and self-confidence in Gao and Lee
(2006) and van Maanen and van Dongen (2005).

2.1.4. Gao and Lee Model

Gao and Lee (2006) used Lee and See’s (2004) definition of trust,
a factor that influences decision-making. Gao and Lee (2006) first
provided the formulation of the extended DFT model (EDFT) on
the preference dynamics P(n),

P(n) =1 —s)P(n—1)+sxd+e(n), (7)

which is essentially an autoregressive model that considers a
linear combination of the previous preference state P(n — 1) and
the new input on the current preference state d in an uncertain
environment described by €(n). The modeling approach of P(n)
has been applied to develop a quantitative model of trust and self-
confidence that is linked to decision-making in automation usage.
The trust T and self-confidence SC take the following forms:
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T(n) (1 —=35)T(n—1)+ s x Bea(n) + €(n), ®)
SC(n) = (1 —5)SC(n — 1) + s x Bey(n) + €(n),

where Bca and Bcyy are the input for the evolution of trust and
self-confidence, representing that automation and manual control
capabilities are the primary factors influencing the operator’s
decision to rely on automation or use manual control. The belief
in the automation’s capability (Bcs) or the operator’s manual
capability (Bcy) is constructed through a piece-wise function
that uses the Fishbein and Ajzen (1975) framework, where beliefs
represent an information base that determines attitudes, and
attitudes determine intent and consequently, behaviors. Let ep(n)
be a random variable with zero mean and variance cf}%. The authors
defined the preference of A over M P(n) as the difference between
trust and self-confidence:

P(n)=T(n)—SC(n) =1 —s)P(n—1)+s
x[Bca(n) — Bem(n)] + ep(n), )

which characterizes multiple sequential decisions instead of
the single decisions addressed by DFT. This model is based
on psychological principles and depicts the dynamic interaction
between the operator and automation. The dynamic interactions
involve the relationship between the operator, the state of
the automation, and the interface where the operators receive
information. The model replicates empirical results on the inertia
of trust and the non-linear relationship between trust, self-
confidence, and reliance. The authors acknowledge two limitations
to the model. First, it is assumed that the automation and
operator capabilities are available, which are the primary input
variables. Second, the fit obtained for the model validation is not
enough, given that the fit must be done with a greater range of
experimental data.

A useful feature of the basic DFT and extended DFT
model is that it does not contain an explicit variable for risk,
but it is considered through the SEU functions. Additionally,
the model has the potential to be generalizable to other task
environments involving human-automation interaction because
the model considers the operator’s preference based on their belief
in the automation’s capability and their manual capability, their
trust, and self-confidence. Moreover, the model can be repeatedly
updated with newly available information as the operator interacts
with the automation.

2.1.5. van Maanen et al. Model

van Maanen and van Dongen (2005) used the definition of
trust from Falcone and Castelfranchi (2001) and referred to it
as a mental state and belief of a cognitive agent i regarding the
achievement of a desired goal through another agent j or through
agent i itself. They implemented the framework of Decision Field
Theory (DFT) to derive a model for task allocation where both
humans and machines act together as a team. The model consists
of four mathematical definitions: task execution state, trust state,
allocation preference state, and preferred task execution states. The
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task execution and preferred task execution state are sequences of
characters, while the trust state and allocation preference state are
real numbers (€ R).

The authors considered that trust depends on past experiences
and used the agents task execution state to update the trust
state. Furthermore, the model assumed that preferences are
determined by trust in oneself and trust in others. Then, the
allocation preference state was given by the difference of trust
states corresponding to self-trust and trust in the machine.
Finally, the previous states helped the operator make a preferred
decision on the allocation task, which updated the preferred task
execution state.

The authors proposed an experimental design to validate the
model, where the goal was to predict the location of a disturbance
that could only occur at one of three locations as a human-
machine team. However, the authors did not clarify the payoff of
a correct or incorrect task allocation, which is essential for the SEU
(Subjective Expected Utility) functions in the DFT model. Hence,
the assessment of risk in the model was not clearly defined. This
model may not be generalizable for more complex environments
where the operator faces more than three different environmental
factors that can influence several different outcomes.

2.1.6. Akash et al. Model

Akash et al. (2017) proposed a three-state model for trust in
automation (T) by adopting the modeling work of Jonker and Treur
(1999) and the concept of Hoff and Bashir (2015)’s classification of
trust discussed in the introduction.

Jonker and Treur’s (1999) trust model described the change
in trust as proportional to the difference in experience and
trust. Akash et al. (2017) adapted Jonker’s model and introduced
two additional states—Cumulative Trust (Cr) and Expectation
Bias (Bx)-to accommodate the bias in human behavior due to
perceptions of past trust and expectations as follows:

T(n+ 1) — T(n) = o [E(n) — T(n)] + o [Cr(n) — T(n)]
+ay [Bx(n) — T(n)],

=[1—-y]lCr(n) +yT(n),

= Bx(n),

Cr(n+ 1) (10)

Bx(n+1)

where o,, o, and o, are called the experience rate
factor, cumulative rate factor, and bias rate factor, respectively.
Additionally, y discounts older trust levels faster, and thus it can
be called the trust discounting factor.

The specific assumptions of modeling trust in the model (10)
are that the change in trust T(n + 1) — T(n) linearly depends on
three terms: (a) the difference between experience and present trust
E(n)—T(n), (b) the difference between cumulative trust and present
trust Cr(n) — T(n), and (c) the difference between expectation bias
and present trust Bx(n) — T(n). If the present experience is less
than the present trust level, then the predicted trust level decreases
and vice-versa.

The cumulative trust was defined as an exponentially weighted
moving average of past trust levels to include the learned trust
in the model using a weighted history of past trust levels. The
expectation bias, which accounts for a human’s expectation of
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a particular interaction with an autonomous system, is intended
to be constant during an interaction, but it can change between
different interactions.

Akash et al’s (2017) model (10) is difficult to generalize
for other scenarios because it is based on specifically asking
participants whether they trust the automation or not. It assumes
there is a way of measuring current levels of trust to predict future
trust, so the prediction of trust based on real-time behaviors is not
possible with this model.

2.2. Step Functions Approaches

Itoh and Tanaka (2000) define trust as the expectation or
belief that automation is dependable. Their definition of trust
evolves from the definition proposed by Rempel et al. (1985),
which states that trust evolves from predictability, dependability,
and faith. This modeling basis is consistent with the definition
used in Muir (1994) and Muir and Moray (1996). Itoh and Tanaka
(2000) proposed a step functional model for trust in automation by
adopting the Rempel et al.’s (1985) definition. The authors define X
as the universal set of all possible automation operating conditions,
where x,y € X and x < y means that y is more difficult than
x. The trust model consists of three different sets: the faithful
condition (F), the dependable condition (D), and the predictable
condition (P). Additionally, the sets UF, UD, and UP refer to the
complement of the faithful (F), dependable (D), and predictable
condition (P), respectively. The Itoh-Tanaka model defines trust as
a function of the automation’s operating condition (x), which takes
the following form:

1 if xeD
tx) =40 if xeUD or
o if xeUP

x € UF (11)

Here, o € [0, 1] depends on the operator’s personality and/or
experience with the automation. Several experimental studies on
trust in automation measure trust using a 10-point rating scale,
where a value of 1 represents no trust in and a value of 10
represents complete trust. However, this rating only provides a
final measurement of trust and cannot give us a comprehensive
understanding of its dynamics. The authors relate their model to
this trust rating, where the trust rating is given by:

B fX t(x)dx

t.
’ X

(12)

This estimates the perceived trust value after the operator
interacts with automation and is calculated by taking the mean
of the function t(x). However, this model of trust does not assess
task environment or risk as factors that influence the operator’s
trust. Additionally, this model is highly general to describe trust
dynamics not only for automation but also for other beings or
operational devices. Moreover, the authors use variables such
as faith and the operator’s personality but do not describe or
suggest methodologies to measure these variables. As this model
is described as a function of sets, it is not generalizable for use with
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other added variables such as risk, environmental factors, and the
operator’s task load.

2.2.1. Monir et al. Model

Monir Rabby et al. (2020) define trust using a step function
in which a person’s level of trust in a robot depends on both
the person’s and the robots performances. These two types of
performances determine where the person is in the trust build-up
process. Such regions were obtained from previous works (Rempel
et al.,, 1985; Muir, 1989, 1994; Muir and Moray, 1996; Itoh and
Tanaka, 2000) that suggest trust can be captured based on three
aspects: predictability, dependability, and faith. The Monir Rabby
et al. (2020) model is given by the following formula:

0 s for Ry(t) < fp
_ € sforfp < Ry(t) < fp
() = min(1, € + tanh(cAP)) ;for fp < Ry(t) < fr (13)
1 s for Ry(t) > fr

where T is the level of trust the person has in the robot, t is the
time, Rp is the robot performance, AP = Rp(t) — fp, fp = o Hp(t),
fp = pHp(t), fr is the robot performance at which trust reaches its
maximum value, Hp is the person’s performance, o and p are small
numbers, and ¢ and € are variables that depend on the person’s
preferences. In this model, the robot is in the unpredictable region
when Rp(t) < fp as its performance is much lower than the person’s
performance, it is in the predictable region when fp < Rp(t) < fp, it
is in the dependable region after Rp(t) > fp where the trust build-
up process starts, and finally, it is in the faithful region when the
trust value reaches its maximum at Ry(t) = fr.

This model was proposed for the specific scenario of human-
robot interaction in which a human supervises the correct
execution of a classification task made by a robot. The experiment
was conducted in a physical laboratory environment, and the task
consisted of separating cubes of different colors by placing them
on different counters. This model can be applied to other scenarios
by modifying their definitions and measures. The separation of
trust into different regions based on the performance of humans
and robots is applicable to any other scenario of human-robot
interaction. However, the way of measuring the robot and human
performance may differ depending on the priority of the particular
case of analysis. Furthermore, this model appears to assume some
level of stability in the task environment, meaning that it may be
limited in describing what happens with trust when anomalous
factors in the environment generate situations affecting human or
robot performance, specifically situations requiring trust repair.

2.3. Probability Approaches - Bayesian
Network

2.3.1. van Maanen et al. Model

van Maanen et al. (2007) used the Lee and See (2004) definition
of trust, where trust is described as the attitude that an agent
(human or automated aid) will help achieve an individual’s goal
in a situation characterized by uncertainty and vulnerability, and a
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cognitive state (Falcone and Castelfranchi, 2001). The van Maanen
etal. (2007) model is based on the idea that when people work with
automated decision aids, and vice versa, they perform better than
when the person and aid work separately. Humans tend to overtrust
or undertrust the aids or their own performance. Conversely,
an automated aid can make quick and unbiased calculations on
the operator’s and their system performance based on previous
successful and failed tasks. The model’s objective is to verify the
possibility that the aid can make more accurate trust assessments
and accurate reliance decisions. Thus, the decision aid calculates its
trust in the operator and in itself based on the reliance on decision-
making capabilities each time there is feedback information.

In designing the decision aid, the authors derived a probabilistic
model for trust using the binomial likelihood function, the Beta
probability density function (PDF), and Bayes rule to update
estimations. Presuming the operator’s and aid’s behavior can be
assessed as a "success" or "failure," then this can be described by
the Bernoulli distribution. Because the Beta distribution is the
conjugate prior to the Bernoulli distribution in Bayesian inference,
this saves numerical computation for the posterior in Bayesian
inference. Hence, the aid uses Bayes’ rule to update its estimations
over the different capability values that the operator or aid can
have. The aid needs to estimate the probability of a successful
outcome in each trial, 8 where x € {prediction, reliance} and a €
{operator, aid}.

PO, N, 1,5) oc [0F(1 — N "][07 1 (1 — 6) 1]
Likelihood
o 9n+r71(1 _ 9)N7n+571

(14)

prior

To capture the trust dynamics, participants were asked to
perform a pattern recognition task with the help of a decision aid.
The operators needed to maximize the number of correct answers
by relying on their own predictions or the aid’s predictions for
pattern recognition. Thus, the factors considered in the model
are the number of successes and failures for the person and
the aid, which refer to the number of correct and incorrect
responses each made. Additionally, the task environment and
model do not assess a risk variable. Even though the model could
be modified to calculate the person’s trust assessment, the model
is not generalizable for other human-automation interactions in
more complex environments. However, this model idea could be
incorporated as part of a larger model that enables us to predict
trust and reliance with automation in a high cognitive task with a
complex environment.

2.3.2. Xu and Dudek Model-Dynamic Bayesian
Network

Xu and Dudek (2015) introduced their own definition of trust,
which they defined as a person’s belief in the competence and
reliability of another. They suggested that the level of reliance
indicates the level of trust. To explore this concept further, they
developed a Dynamic Bayesian Network model for a person’s level
of trust in a robot teammate. The model assumes that the person
occasionally intervenes to aid the robot in completing a series of
tasks, acting as a "supervisor" of the robot.
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The probabilistic model developed by Xu and Dudek (2015), is
called the Online Probabilistic Trust Inference Model (OPTIMo).
It formulates a Bayesian beliefs network over the person’s moment-
to-moment trust states. The Bayesian model accommodates an
arbitrary categorical belief for initial trust and incorporates
variable-rate sources of information in a probabilistic manner.

The model relates the operator’s latent trust state (t) to the
robot’s task performance (pr € [0,1]), uses human interventions
(ix € {0,1}), trust change reports (¢ € {—1,0,+1,0}), absolute
trust feedback (f, €
task change for a time window k. The model employs a set of

{[0,1],4}), and e the presence of a

equations, including:

P(trs th—1> P Pr—1) =~ Nt ti1 + o + wpppy
—_————
Expected Update of Trust
+ o1 (pk — Pi—1), 01), (15)
Oty = Litk_1,ipe) + = Swjp + wirty + 0ig Aty + wieek), (16)

Probability of Interventions

Oc(tes te—1> k) : = Prob(ck|ty, tr=1), (17)
— —

Change of Trust

Prob(cy = +1ltg, tr=1) = Bc + (1 — 3B.) - Sk [Aty — oc]),
Prob(cy = —1|tg, ty=1) = Bc + (1 — 38¢) - S(kc[— Aty — o)),
Prob(cy = Ot tiz) = Of(ti fi)

————
User’s Absolute Trust

- = Prob(filt) =~ N (fi;: ti. o). (18)

In the equations above, N (x;u,o0) denotes a Gaussian
distribution. Parameters such as wg, @y and gy reflect bias,
current task performance, and difference in robot’s performance,
respectively, of the operator’s updates. The sigmoid function S(x)
is also used, and parameters such as wj,, wjr, w;g and w;, quantify
bias and weights for an intervention i;. Additionally, 8, captures
users’ self-reported erroneous trust changes.

The model was validated using data from a laboratory-
simulated experiment, and the authors accurately predicted human
trust-induced behaviors. However, neither the model nor the
experiment used for model validation took risk into account as a
factor. This model differs from others because it uses the operator’s
reliance behavior on automation to infer the level of the operator’s
trust. This framework has the potential to model trust dynamics
for other human-automation interaction task scenarios that involve
an operator’s reliance behaviors throughout a trial. Additionally,
other variables could be added to the model, such as weights for
risk and difficulty of the changing elements in the task, as well as
an expected update of the operator’s self-confidence to complete
the task manually. Lastly, the model can be applied to other types
of automation.

2.3.3. Guo and Yang Model

Guo and Yang (2021) used the definition of trust given by
Lee and See (2004) and acknowledged that trust in automation is
dynamic and can increase or decay as the human interacts with the
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automation. To do so, they used a Beta distribution to develop a
personalized trust prediction model and applied Bayesian inference
to calculate the Beta distribution parameters. The authors adhered
to the following assumptions in their model derivation.

1. Trust at time i is influenced by trust at time 7 — 1.

2. Trust is more heavily impacted by negative experiences with the
automation compared to positive experiences.

3. As humans engage with an automation multiple times, their
trust in the agent stabilizes.

This study postulates that following the automation’s completion of
the ith task, the human’s temporal trust ¢; follows a Beta distribution
with parameters «; and S;. These parameters are updated by,

i1 +ws, ifpi=1
o =
ai-1, ifp;=0
5 Bi—1 +wp, ifpi=1
l Bi-1» ifpi=0’

where p; € {0,1} is the automation’s performance on the ith
task, which takes a value of one (p; = 1) to indicate a success and
a value of zero (p; = 0) to indicate a failure. Additionally, ws and
wy represent the gains due to positive and negative experiences with
the automation. Therefore, the predicted trust (%) at the completion
of the ith task can be estimated by the mean of f;. Since t; ~
Beta(w;, fi), then 7 is given by,

oj

ai + Bi

ti = E(t;) = (19)

The model was validated using data from Yang et al. (2017)
and compared with Lee and Moray’s (1992) and Xu and Dudek’s
(2015) models. The model proposed by Guo and Yang (2021)
outperformed the two existing trust prediction models. The
authors acknowledge the following four limitations: (1) the model
assumes that the automation’s ability remains constant across all
interactions; (2) the parameters used in the model are assumed
to be independent of each other; (3) the model assumes that
the automation’s performance is either good or bad and is
immediately available after a task; and (4) each participant in
the experiment had 100 interaction episodes with the automation
in a relatively short period of time. Since the model utilizes
the automation’s performance and reliability, along with the
human’s self-reported trust history, it possesses the potential to be
generalized for other human-automation task scenarios that record
alterations in these measures. Furthermore, the model has the
potential to include other factors that influence trust in automation
and can be enhanced with behavioral data gathered during the
human-automation interaction.

3. A Unified Mathematical Framework

Having discussed the current state of research on trust in
automation and the various models proposed to study it, we
propose a unified mathematical framework to study trust in
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automation. In particular, we identify some key areas where further
research is needed to advance our understanding of human-
automation trust and its applications.

Researchers have made significant headway in identifying
and understanding factors that influence trust in automation
and the relationships between those factors through experiments
and mathematical modeling approaches. In a seminal review on
this topic, Lee and See (2004) emphasized the increasing need
to understand how people trust complex automated systems.
However, the utility of trust — and its role in affecting behaviors
and human-automation performance — becomes limited when it is
operationalized as a static outcome, as is often the case in many
experimental studies. Instead, to more closely align with trust
theory, trust should be operationalized as part of an interactive and
dynamic process with multiple sources of influence and at various
timescales (Lee and See, 2004; Hoff and Bashir, 2015; Chiou and
Lee, 2021).

3.1. Time Scales of Mathematical Models

Mathematical models can describe and connect different
dynamical components or variables that operate at different
timescales. These components or variables can be deployed,
tested, and measured through observational experiments. When
dynamical processes have different timescales, dynamical models
allow us to more deeply explore the relations among the measurable
components captured and understand which of these has more
weight at different times within the domain of study.

All mathematical models reviewed in this paper support the
idea that trust in automation is shaped by complicated dynamical
processes involving the human operator, automated system, and
environment, all of which intertwine and impact each other over
time. One major limitation of current models of trust is that
they do not adequately explain the relationship between trust
measurements and the overall model or its individual components.
Additionally, some of these models are derived without using
rigorously defined components, making them challenging to
measure through data collection methods. For example, [toh and
Tanaka’s (2000), Muir’s (1994), and Muir and Moray’s (1996)
models include components such as faith, predictability, and
dependability, but these components are not clearly defined or
measurable during the model development process. Furthermore,
current models have gaps in describing the intricate dynamics
of trust in automation as a function of one or more of the
following interactions: automation’s capabilities and performance,
the operator’s experiences and performance, and the environment
in which such interactions occur. Hence, there is a need for
models that incorporate the aforementioned elements with precise
definitions and methods for their quantification.

This motivates us to develop a unified modeling framework
that defines essential components for trust that are measurable
through experimental trials and/or surveys. To achieve this, we
start with situational, learned, and dispositional trust definitions in
Hoff and Bashir (2015), which can be classified into the following
three timescales:
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1. Short-timescale (i.e., situational; e.g., in seconds/minutes):
decision making that is related to predictability and the present
situation such as risk,

2. Intermediate-timescale (i.e., learned; e.g., in hours/days):
reliance and performance information related to dependability
and learned trust from previous experience, and

3. Long-timescale (i.e., dispositional; e.g., in years/decades):
linked to dispositional trust developed from consistent
messaging or socialization, including culture.

As previously discussed in the introduction, Hoff and Bashir
(2015) identified dispositional, situational, and learned trust and
the specific components that fall under each category. However,
a timescale classification becomes helpful to understand the
timescale of these sources of trust when designing experiments
and selecting data collection methods. One distinction between
Hoff and Bashir’s framework and this timescale classification is
that some components of situational trust described in Hoff
and Bashir (2015) can also occur during the interaction with
automation and be classified as short-timescale. Secondly, Hoff
and Bashir’s classification falls short in offering clear methods for
quantifying each component and in describing the exact nature
of the relationship between these components and trust. Our
timescale classification offers precise definitions and methods for
the quantification of each component, which is particularly helpful
when designing experiments and selecting data collection methods.

The models reviewed in this article incorporate one or two, or
all of these timescales in the dynamic trust process. For example, the
Lee and Moray (1992, 1994) model studies intermediate timescale
processes because it considers the automation’s performance and
occurrence of faults in trials recorded over 3 days. The Muir (1994)
and Muir and Moray (1996) models fall into the long timescale
because they consider either the persistence of natural laws or faith,
which tend to involve a person’s experiences over several years. The
Akash etal. (2017) model studies short and long timescale processes
as it considers learned trust, which is dynamically influenced
by the system’s performance and people’s past experiences based
on their self-reported demographic information. The Itoh and
Tanaka (2000) model considers faith and two other conditions
based on the automation’s performance. Then the model studies
intermediate and long timescale processes. Models constructed
through Decision Field Theory, such as Busemeyer and Townsend
(1993), Gao and Lee (2006), and van Maanen and van Dongen
(2005), model processes within all three timescales because the
models are linked to decision-making, reliance on automation
(short-timescale), performance (intermediate-timescale), and belief
(long-timescale). The Xu and Dudek (2015) model has both short
and intermediate timescale components as it accounts for the
automation’s performance and the human decision-making to
calculate what the authors refer to as a trust state.

Models of trust dynamics in the literature reflect the need
to incorporate multiple timescales since trust dynamics involve
complicated processes that interact with each other at different
timescales. To validate and improve trust models, we must include
components and variables that are measurable and can be evaluated
through experimental trials of human-automation interaction. For
example, the Monir Rabby et al. (2020) model uses the strength of
prior beliefs in the automation’s success or failure, which belongs to
the intermediate or long timescale process. However, the authors
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used a dataset in which participants’ trials were separated by
seconds or minutes. This type of mismatch prevents us from having
a better understanding of trust dynamics and originates from the
components of the proposed model that are not defined in the
correct timescales and cannot be measured by experimental trials.

To mathematically study the human-automation interaction
and trust in automation, it is important to identify the essential
components/elements that are measurable, at what timescales these
elements take place, how those elements of the interaction happen,
and how these are influenced by previous experiences. For example,
as an operator uses automation, they will observe and remember
its capabilities, performance, and reliability. Therefore, we cannot
assume that the observable reliance on automation at some point
is independent of all the previous interactions since the operator
started using said automation. Furthermore, as people interact with
automation to accomplish complex cognitive tasks, unforeseen
events may limit the time they have to gather information and
make decisions.

A mathematical model of trust in automation can capture
various processes that occur before, during, and after in-the-
moment interactions. By including short-timescale processes, we
can capture these immediate interactions. Adding intermediate-
timescale processes can help us observe how reliance changes as
the operator learns the automation’s capabilities and performance
under different situations that may occur. Lastly, incorporating
long-timescale processes can help us address individual variability
in reliance behavior due to ingrained preferences, beliefs, social
group relationships, and culture. We can use existing methods and
conceptualized measurements (Kohn et al., 2021) to describe these
processes and expand their definitions if necessary.

For instance, long-timescale factors such as personality,
general experiences, impressions, and beliefs can be measured
using surveys with scaled responses. We can use patterns of
observed behaviors and related session-level measures of decision
performance to capture intermediate timescale processes. For
short-timescale measurements, we can include workload, reaction
times for off-nominal events, perceived risk within specific decision
contexts, and moment-to-moment decisions (e.g., deciding to
continue engaging the automation or switching to manual control).
While survey and observational methods can be applied across
all timescales, we are not suggesting that these methods, more
broadly speaking, are mutually exclusive across the timescales.
However, what perception or behavior you are measuring exactly
(rather than how you are measuring it) is more the point of
these categories.

Mathematical models of trust in automation that incorporate
multiple timescales can become more useful as they capture
processes at different levels/timescales of study, which makes
them capable of connecting and creating feedback between these
timescales. This allows us to analyze mathematically how different
elements (e.g., parameters) in each process affect not only the
process they belong to but also other processes at different
levels/timescales of study.

3.2. Trust in Automation Framework

It is natural to ask how to model the dynamic processes
of trust using these three timescales. By considering where
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mathematical models fall within the three timescales, we propose
that we can better capture yet-identified factors, patterns, and
relationships that impact human trust during interactions with
automated systems or devices. With this proposal in mind, we
propose a unified framework to model trust in automation, as
well as the derivation of the dynamic measurements used by
the mathematical model. The mathematical derivation is done
for a particular human-automation work structure where the
automation could be engaged and disengaged at the operator’s
discretion to receive aid in completing tasks. Furthermore,
the model is aimed at a task environment that tracks the
automation’s and human’s performance, as well as the operator’s
reliance throughout the interaction (see Drnec and Metcalfe,
2016; Gremillion et al, 2016). We aim to develop a practical
model capable of accurately predicting and depicting the dynamics
of trust.

It is known that trust influences decision-making and,
therefore, reliance on automation. Observing reliance on
automation suggests that the operator trusts the automation at
some time t to perform a set of tasks. Conversely, observing
lower reliance implies that the operator may not trust the
automation to successfully perform a set of tasks. Then, what
factors influence decision-making? We can use risk, performance,
workload, and environment, as found by Kohn et al. (2021).
These findings are needed to derive the mathematical model of
trust in automation on the short- and intermediate-timescale.
Recall that we classified the processes of decision-making
and risk as short-timescale and the processes of reliance and
performance as intermediate-timescale. So, how would we
model the decision-making process that occurs on a short
timescale? We need to determine values of risk, performance,
workload, and unforeseeable consequences due to the stochastic
nature of the environment. We start the model derivation
by defining measurable variables for each of the necessary
factors that influence trust in automation, such as relative risk
(belonging to a short timescale) and reliance (belonging to the
intermediate timescale).

3.2.1. Measurable Factors of Trust

Having defined trust as a crucial factor in human-automation
interaction, we can now identify its measurable components, one
of which is risk and reliance. In this subsection, we delve into the
concept of risk, relative risk, reliance, and relative reliance and
propose measures to quantify it in the context of automation usage
and manual control.

3.2.1.1. Risk

According to Sitkin and Pablo (1992), risk is "the extent to
which there is uncertainty about whether potentially significant
and/or disappointing outcomes of decisions will be realized." Thus,
we can define the risk of automation usage over time [fy,?]
as follows:

measurements of failed tasks
during automation on over time [fy, ]

measurements of all tasks
during automation on over time [fy, ]

Ra(t) =
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Similarly, we can define the risk of manual control over time [, t]
as follows:

measurements of failed tasks
during manual control over time [fg, ]

measurements of all tasks
during manual control over time [fg, ]

Rin(t) =

These definitions allow us to define risk using automation at
varied timescales depending on the length of t; — t. Based on the
measurements (e.g., varied score systems), these expressions allow
for individual assessment of the risk of automation usage or manual
control, decision-making, and perception of the level of risk in
a constantly changing environment. To compare the level of risk
between automation usage and manual control, we can use the
Relative Risk of using automation to manual over time [#, t], which

is denoted by RR(t) = II;;: (tt)) These measurements are applicable
to any study tracking the operator’s and automation’s performance
across the trials through scoring systems.

For example, if the study does not include a reward system
for completing tasks (see the work of Drnec and Metcalfe, 20165
Gremillion et al., 2016), relative risk measurement can be modified
to only include task violation penalties. This measure of association
can be interpreted in three different ways. If RR(¢) < 1, then there
is a decreased risk of task violations while using the automation,
and therefore the operator could be predisposed to engage the
automation. If RR(t) >
violations while using the automation, and therefore the operator

1, there is an increased risk of task

should refrain or be careful to engage the automation. Lastly, if
RR(t) = 1, then both engaging the automation and using manual
control have the same amount of risk, and, therefore, the operator
can choose any of the two options. The relative risk measurement
presents an opportunity to deeply study human behavior and
decision-making while performing a highly demanding cognitive
task. The variables used for its computation can be updated
in real-time as the environment changes during a task. The
resulting dynamics allow researchers to study relative risk and
human perception of risk throughout each trial. Refer to Rodriguez
Rodriguez et al. (2022) for an example of the application of

this measurement.

3.2.1.2. Reliance

Reliance on automation is defined as "the fraction of time that
human operators have the automation engaged" (Lee and Moray,
1992). In previous studies, reliance has been measured as a finite
constant describing the total percentage of reliance the operator
had for any given trial. Instead, we propose this measurement as
a time-dependent variable. Similar to the measurement of risk and
relative risk, the reliance measurement can be updated in real time
as the operator chooses to engage and disengage the automation in
a changing environment.

To define the reliance measurement, assume that a human
operator is performing a task over some period of time T. Over
the time interval [0,¢] C [0,T] where t > 0, assume there are
K time sub-intervals in which the operator chooses to engage the
automation, i.e., [t,t,], [t;,t,], .. [t ;> L] Where t,,, < t. Then
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the reliance of the operator at time t € [0, T] is defined as:

K
1
RIL(t) = ?Z(tzj ) (20)
j=1

This definition allows researchers to know what proportion of time
the automation has been used by the operator at any time ¢ during
the whole trial, which lasts some time T. Thus, the measurement
of reliance will always have a value between zero and one, RIL(t) €
[0, 1], for any time ¢ in T.

Additionally, reliance can be measured in a shorter time scale
by measuring the percentage of time the automation was used
since it was engaged the previous time. Recall that there are K
time sub-intervals in which the operator chooses to engage with
the automation. If the automation is engaged at time t (e.g., t €
[tzjfl,tzj] for some positive integer 1 < j < K), then we define
Instant Reliance at time ¢ as IRIL(t) = 1. Otherwise, if t € [tzj, t2j+1]
for some positive integer 1 < j < K — 1, then Instant Reliance is
defined as:

tzj—l

[—
IRIL(H) = 22— 7L <

— R

1 (21)

This measurement allows us to observe when the automation
was engaged and how reliance starts to decrease the moment the
human operators change to manual control. Measuring reliance
through time allows us to observe the operators’ learning time
frame of the automation’s performance and capabilities and the
operators’ shifts of reliance with different types of automation and
specific environmental changes. Refer to Bustamante Orellana et al.
(2022) for an example of the application of this measurement.

3.3. An Application of the Modeling
Framework

Building on the discussion of trust in human-automation
interaction in the previous section, we can now explore an example
of a modeling framework that can be used to model trust with
short and intermediate timescales. Through the measurements we
have discussed, we can provide an example of modeling trust
in automation with short and intermediate timescales based on
available data of people completing a leader-follower task in
a simulated environment with the assistance of an automated
driving system (Drnec and Metcalfe, 2016; Gremillion et al., 2016).
Adopting the modeling approaches of Muir (1994), Muir and
Moray (1996), and Busemeyer and Townsend (1993), we can
propose the mathematical formulation of trust as follows:

Tr(t) = Trp(t) + Trs(t) + Environment (22)

An example of the intermediate timescale of modeling trust
in automation Trp(t) at time ¢ can be modeled as a function

LRR(t;

K—
of the average relative risk % (where t; and K were
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defined for Equation 20), the reliance RIL(t), and the automation’s
performance reflected by:

lost points due to failed tasks
when using automation over [fy, t]

23
total lost points over [y, t] (23)

p(t) =

The larger the value of p(t), the worse the performance, and
the smaller the value of p(t), the better the performance. Thus, an
example of Try(t) could be expressed as follows:

Y1 RR(1)

Tru(t) = X1

x RIL(t) x p(t)

This suggests that the operator has a large value of trust
in automation if (1) the reliance RIL(f) is big, (2) the average
relative risk of using automation is high, and (3) the automation’s
performance is bad. On the contrary, the operator has little trust in
automation if the reliance RIL(¢) is small, the average relative risk
of using automation is low, and the performance is good.

An example of the trust dynamics in a short timescale can
be modeled as a function of the relative risk over the small time
interval of At and instant reliance values at time ¢t. Hence, the short
timescale trust value at time ¢ can be given by:

Trs(t) = RR(A?) x IRIL(t)

The proposed model allows us to include behavioral and
environmental factors through reliance on automation and
the joint human-autonomy team performance in a changing
environment. This example of modeling trust in automation only
considers behavior data with intermediate and short timescales.
Additionally, this example is specific to a particular human-
automation work structure such as the operator having the freedom
to choose when to hand-off partial or complete control to the
automation for the completion of a set of tasks. It is possible that
we could make the short timescale expression of the model more
reliable by implementing real-time data such as physiological data.

4. Discussion

Toward a more reliable and responsive model, there is potential
for including sensor-based physiological measures. Usually, survey
measures are a one-time event; however, some studies administer
questionnaires multiple times during a task to capture changes
in trust over time (Cummings et al., 2021). Yet, no matter how
often survey measures are administered, they cannot always capture
a person’s in-the-moment responses to unforeseen perturbations,
workload, and perceived changes in performance (Huang et al,
2020). Although current efforts in this area remain limited, sensor-
based physiological measures like pupil dilation (Aygun et al,
2022), electroencephalography (EEG), and Galvanic skin response
(GSR) could allow us to more closely monitor and respond
to trust indicators, and triangulate those data with the task
contexts and other well-established trust measures like associated
behaviors (e.g., reliance data, perceived risk, and changes in
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decisions) to detect weak points of a human-automation team
in real-time (DeCostanza et al., 2018) and paint a fuller picture
of trust dynamics in specific situations and across patterns of
situations over time. In some task environments, interaction or
communication data between operators and automation could also
provide a stream of real-time indicators (Lee and Kolodge, 2020).
Recent work by Kohn et al. (2021) reviews the many methods
that have been used to successfully measure and assess trust
in automation.

Since physiological and behavioral time-series datasets are
typically large and complex, there is value in utilizing both machine
learning and dynamical modeling approaches to interpret the data.
These approaches, along with recent advancements in sensors
and computing, have the potential to provide new insights into
trust in automation and can aid in the development of powerful
mathematical models. However, understanding the inner workings
of machine learning models and their prediction mechanisms
can be challenging (Ribeiro et al., 2016). This can be an issue
when model interpretability is critical, as is often the case in
high-accountability environments. Fortunately, more interpretable
models such as decision trees, linear models, and rule-based models
are available (Molnar et al., 2020) as are techniques to make more
complex models more interpretable (Breiman, 2001; Liaw and
Wiener, 2007).

The combination of real-time data streams and computational
analysis approaches offers a source of analytical insights that
avoids the interruption of tasks to solicit survey responses
from participants. To the extent that these data hold promising
indicators of trust, their analysis can help identify critical factors
and relationships that are predictive of trust-related behaviors
within those data streams. The factors and relationships identified
through machine learning and computational analysis can then
be included in a mathematical model of trust. Our ongoing
research project consists of expanding the framework for a
mathematical model of trust to include dynamical measures
of workload and account for the stochasticity of a changing
environment. We aim to establish the foundation of these powerful
mathematical models by combining dynamic systems and machine
learning components. The advantages of these models are that
they permit rigorous mathematical analyses and validation with
various human-automation interaction settings, thus providing the
research community with a powerful tool to study trust dynamics.

Conclusion

In this review, we have gathered and summarized prominent
mathematical models of trust in automation derived from the
human factors literature and the concept of trust in automation
that has evolved since the nineties. Although researchers have
made significant progress in identifying the complex dynamic
processes involved in trust, there is a need to map how these
processes may interact with each other and become a function
of trust. To this end, we have introduced a three-timescale
classification of these models and the processes they describe.
Because trust is a dynamic process, rigorous definitions of reliance,
risk, and performance are also defined as dynamic measures.
We have described an example of a two-timescale model based
on the proposed framework to show how processes that take
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place in the same timescale, such as performance and reliance,
can both contribute to evolving trust. However, the model has
some limitations, such as excluding the third long-timescale
and not including an appropriate mathematical expression that
considers how the environment can affect the operator. The
research community continues to face the challenge of formulating
better data collection methods that would enable better derivation
of trust indicators and thus better measurement of trust. We
hope that our effort serves as a toolbox for different model
formulations previously used by the scientific community and
helps researchers continue to improve trust modeling through our
modeling framework.
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