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Understanding how people trust autonomous systems is crucial to achieving

better performance and safety in human-autonomy teaming. Trust in automation

is a rich and complex process that has given rise to numerous measures and

approaches aimed at comprehending and examining it. Although researchers

have been developing models for understanding the dynamics of trust in

automation for several decades, these models are primarily conceptual and

often involve components that are di�cult to measure. Mathematical models

have emerged as powerful tools for gaining insightful knowledge about the

dynamic processes of trust in automation. This paper provides an overview

of various mathematical modeling approaches, their limitations, feasibility, and

generalizability for trust dynamics in human-automation interaction contexts.

Furthermore, this study proposes a novel and dynamic approach to model

trust in automation, emphasizing the importance of incorporating di�erent

timescales into measurable components. Due to the complex nature of trust

in automation, it is also suggested to combine machine learning and dynamic

modeling approaches, as well as incorporating physiological data.

KEYWORDS
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1. Introduction

Rapid advances in automation technologies, including autonomous vehicles, robotics,

autonomous web-based systems, and user experience frameworks and decision aids, are

dramatically impacting almost every aspect of our daily life. Understanding how humans

work with automation is vital for automation to work most beneficially for humans. Trust,

which is not always consistently defined and operationalized, has been identified as a key

factor influencing human-automation interactions (Lee and Moray, 1992; Muir, 1994; Lee

and See, 2004; Kohn et al., 2021).

Given the importance of trust in human-automation interactions, it is critical to

understand the different definitions and operationalizations of trust in the literature. Some

researchers define trust using an interpersonal framing, such as the "expectancy held by an

individual that the word, promise or written communication of another can be relied upon"

(Rotter, 1967). Subsequently, Mayer et al. (1995, p. 712) defined trust as the "willingness

of a party to be vulnerable to the actions of another party based on the expectation that the

other will perform a particular action important to the trustor, irrespective of the ability to

monitor or control that party." This definition identifies that individuals must willingly put

themselves at risk. Similarly, Kramer (1999, p. 571) defined trust as a behavioral result or
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state of vulnerability, such as "a state of perceived vulnerability

or risk that is derived from an individual’s uncertainty regarding

the motives, intentions, and perspective actions of others on whom

they depend." Falcone and Castelfranchi (2001) defined trust as a

mental state, a belief of a cognitive agent to achieve a desired goal

through another agent. Based on previous work by Fishbein and

Ajzen (1975), and Lee and See (2004, p. 54) described reliance as a

behavior that can indicate trust and stated that trust itself is "the

attitude that an agent will help achieve an individual’s goals in a

situation characterized by uncertainty and vulnerability." This is a

widely used definition that integrates across several disciplines and

is careful to point out that conflating trust with intent, behaviors, or

beliefs could be misleading for future research (Lee and See, 2004).

To further understand the concept of trust in human-

automation interactions, it is important to examine the different

sources of variability in trust. Hoff and Bashir (2015) reviewed

the empirical work that followed Lee and See (2004) and defined

three sources of variability in trust in automation: dispositional,

situational, and learned. Dispositional trust is a person’s attitude

toward autonomous agents based on pre-existing knowledge

and demographic characteristics. Dispositional trust precedes

interaction with a specific agent; it is based on individuals’ own

personalities, beliefs, and proclivities. Learned trust is based on

prior experience with a specific autonomous system. Through this

experience, operators learn about the system’s capabilities, observe

its performance, and develop expectations about the system’s

reliability. Learned trust is impacted by performance; for example,

operators judge automation that fails on easy tasks more harshly

(greater trust degradation) than agents that fail on difficult tasks

(Madhavan et al., 2006). Situational trust considers conditions

in the environment. This may include the external context, for

example, the impact of weather on task difficulty; it may also

include internal variables, such as the operator’s current mental

load or emotional state. The same system that is trusted in one

situational context may not be trusted in a different context.

Situational variables may change quickly and be difficult to observe,

adding complexity to any effort to assess trust. Learned trust

can change as an operator gains new experience with an agent

and it may shift if an agent suddenly demonstrates a behavior

change or experiences a failure. Situational trust can be unstable;

anything altering the internal or external environment may impact

the operator’s moment-to-moment trust in an agent–even factors

that are not directly related to the agent or its performance. The

categorization of dispositional trust, learned trust, and situational

trust additionally suggests distinguishable time frames at which to

capture trust and its associated outcomes, at various levels of a

system (i.e., from micro to macro-level outcomes).

Understanding the various sources of variability in trust

is crucial for comprehending the relationship between trust

and reliance in human-automation interactions. When choosing

whether to rely on an autonomous agent, trust (an internal state)

precedes reliance (an observable behavior). Reliance (choosing to

use the autonomous agent with some risk involved) is a behavioral

proxy measure for trust. The two are not perfectly related, although

they do generally correlate positively. This relationship has been

demonstrated to increase in strength with the complexity of combat

autonomy and novelty of situations (e.g., Sanders et al., 2019). Like

trust, decisions to rely on another entity can change over time, as

a situation evolves. However, although trust is often examined as

it coincides with observable behaviors like reliance, the strength of

the relationship between an operator’s trust ratings (their reflective

responses) and behavior (how the operators act in the moment)

can vary widely. Literature has found that automation performance,

workload, environment, and risk largely affect decisions to use

automation (Parasuraman and Riley, 1997; Lee and See, 2004;

Lee, 2008; Kohn et al., 2021). Psycho-social models such as the

Technology AcceptanceModel (TAM; Davis, 1989) and the Unified

Theory of Acceptance and Use of Technology (UTAUT; Venkatesh

et al., 2003) also suggest that factors equivalent to automation

performance and workload influence intentions, and subsequently

influence behavior (reliance).

Given the challenges associated with relying solely on

self-report measures and observable behaviors to assess trust

in automation, the use of physiological measures such as

electroencephalography (EEG) and Galvanic skin response (GSR),

gaze behavior, and electrocardiogram (ECG) may serve as

promising real-time indicators that reflect trust dynamics when

interacting with automation. Trust has been measured by surveys,

binary behavioral indicators, sensory-based physiological values,

and communication patterns (Huang et al., 2020, 2021). Binary

behavioral indicators of trust include use or non-use of the

automation and duration of use, as well as eye-tracking fixation

duration (Jenkins and Jiang, 2010; Gremillion et al., 2016).

Sensor-based psychological measures, such as EEG and GSR, are

more nuanced than surveys and binary behavioral indicators for

tracking and deciphering trust dynamics. Recorded physiological

data during human-automation interaction is typically analyzed

through the tools of statistical analysis and machine learning

(Gremillion et al., 2019; Walker et al., 2019; Neubauer et al., 2020;

Oh et al., 2020; He et al., 2022). Although using physiological

measures is not without its challenges largely because their

interpretation depends highly on specific task contexts, and

therefore still requires either time-intensive manual annotation or

highly controlled task environments that are difficult to generalize,

there remains a demand for real-time understanding and indicators

of trust in automation during operation. This suggests that

developing mathematical models of trust in automation that

incorporate both behavioral and physiological data would be

highly valuable.

As the demand for real-time indicators of trust in automation

grows, there is a need for more comprehensive trust models.

Trust definitions and related concepts are crucial for developing

dynamical models to better understand trust in automation

dynamics. Over the past few decades, researchers have been

actively working on models to examine the dynamics of trust

and reliance on automation. Kok and Soh (2020) performed a

comprehensive narrative review that addresses known methods

used to capture trust in automation and proposes future directions

for research. The authors suggest the need for trust measures

that are both lightweight and effective across various levels of

automation, embodiment, and mental perception. They argue that

several popular trust models lack empirical support and do not

easily correspond to existing measures of trust. As a solution, the

authors propose a model based on the measurable components of
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trust, which could be defined in detail and serve as a simplified

framework for discussing and categorizing trust measures. More

recent theoretical work on trust (Chiou and Lee, 2021) has

expanded from the uni-directional information processing model

of trust (and reliance) to discuss a more bi-lateral relational

approach to trust (and cooperation). However, this theory remains

conceptual and requires the specification of the goal environment,

which varies widely, at least compared to task contexts that fit neatly

within signal detection theory. Moreover, few empirical papers

have yet attempted to develop models based on this relational

concept of trust. In this paper, we revisit previous work on

the well-studied information processing perspective of trust and

reliance. We aim to provide the scientific community with an

overview, from the mathematical and human factors perspective,

of different mathematical modeling approaches, their limitations,

feasibility, and generalizability for trust dynamics in various

human-automation interaction contexts. We also emphasize the

importance of incorporating different timescales into measurable

components when modeling trust in automation. Additionally, we

propose a framework and provide an example to model trust in

automation through dynamic measures that capture the variability

of the environment.

2. Mathematical Models of Trust in
Automation

In this section, we will review mathematical models for trust

in automation using a discrete-time modeling approach, including

the application of decision field theory, step-function approach,

and probabilistic approach. In the following subsection, we review

mathematical models that have some component of randomness or

unpredictability in their structure.

2.1. Stochastic Di�erence Equations

Rempel et al. (1985) proposed that trust is a dynamic attitude

that follows a particular sequence of dimensions to form gradually

over time. He also identified predictability, dependability, and faith

as the three dimensions that influence an individual’s acceptance of

a trustee to form the basis of trust. This concept was subsequently

applied to mathematical models of trust in automation by Lee and

Moray (1992, 1994), Muir (1994), Muir and Moray (1996), and Lee

and See (2004), as described below.

2.1.1. Lee and Moray Models
Lee andMoray (1992) used linear regressionmodels to examine

the factors affecting trust in automation and used dynamical

models to explore how trust changes over time. Their model

for trust dynamics was validated using data from a laboratory

experiment of participants operating a simulated orange juice

pasteurization plant. In this experiment, each participant reported

their trust level (on a scale from 1 to 10) at the end of each of 60

trials recorded over 3 days.

Lee and Moray (1994) started with the development of linear

regression models for factors affecting trust. The fitting of these

linear regression models suggested that self-reported trust was

influenced by two factors, namely, the occurrence of a fault in a

system and the performance of the system as measured by the

total output efficiency (total output/total input). Notably, the linear

regression models proposed in Lee and Moray (1994) did not

reflect the dynamic response of trust to these variables. Instead,

they predicted trust as a linear combination of the current level of

performance and the fault in the system. However, the model did

not consider past occurrences of faults, past values of performance,

past values of trust, or the relationship between past and current

values due to the possible changes in the work environment.

To give information about the memory of trust, and/or the

effect of past occurrences of faults and performance, Lee andMoray

(1992, 1994) proposed and used a stochastic difference model for

trust T(t), which depends on the performance P(t) and fault F(t) of

the automation in the current trial t and previous trial at t − 1.

T(t) = φ1T(t − 1)+ A1P(t)+ A1φ2P(t − 1)
︸ ︷︷ ︸

Performance

+A2F(t)+ A2φ3F(t − 1)
︸ ︷︷ ︸

Occurrence of faults

+a(t), (1)

where A1 is the weighting of system performance, A2 is the

weighting of the occurrence of a fault, φ1 and φ2 are time constants

of the Autoregressive Moving Average Vector (ARMAV) model,

and a(t) is a random noise perturbation at trial t. The work of

Lee and Moray (1992) provides a first step toward modeling trust

between humans and machines and its influence on operators’

control strategies and decision-making. Trust model (1) assumes

that trust dynamics at trial t is a linear combination of (1) trust T

at the previous trial (t− 1); (2) performance P of the system at trial

t and t − 1; (3) the occurrence of a fault F at trial t and t − 1; and

(4) environment perturbations a(t) that are beyond the operator’s

control. Items (2) and (3) can be linked to the risk assessment of

using automation when the participant makes a decision to use

automation or not.

One limitation of model (1) is that it does not explain and test

why trust is a linear combination of previous trust, performance,

and fault. The application of trust model (1) may be too restricted,

as it can only be applied to the specifically mentioned experiment

since it requires the input of performance and faults. To have a

more general model, there is a need to define performance, faults,

and other influencing factors (e.g., workload and risk), and the

relationships between these variables.

2.1.2. Muir and Moray Models
Muir (1994) adopted the trust definition from Barber (1983)

and formulated the following definition of trust in automation:

"Trust (T) is the expectation (E), held by a member of a system

(i), of persistence (P) of the natural (n) and moral social (m) orders,

and of technically competent performance (TCP), and of fiduciary

responsibility (FR), from a member (j) of the system, and is related

to, but is not necessarily isomorphic with, objective measures of these

properties." (p. 1,911)
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This definition can be summarized as the equation below:

Ti,j = Ei(P(n,m))
︸ ︷︷ ︸

Expectation of persistence

+ Ei(TCPj)
︸ ︷︷ ︸

Expectation of technically
competent performance

+ Ei(FRj)
︸ ︷︷ ︸

Expectation of fiduciary
responsibility

, (2)

where T is a composite expectation, comprised of three

expectations: P, which is the fundamental expectation of

persistence; TCP, which includes skill-, rule-, and knowledge-

based behaviors; and FR includes notions of intent, power, and

authority. The trust model (2) suggests simple linear impacts from

persistence (P), technically competent performance (TCP), and

fiduciary responsibility (FR), when in fact a multiplicative model

or a more complex model may turn out to be a more accurate

mathematical representation. For example, the three component

expectations need not be equally important; each component

expectation may have to be weighted according to its importance

in a particular context and may have nonlinear impacts. Muir

proposed the following hypothetical regression model of human

trust in a human or machine referent,

Ti,j =B0 + B1Ei(P(n,m))+ B2Ei(TCPj)+ B3Ei(FRj)

+ B4Ei(P(n,m))Ei(TCPj) (3)

+ B5Ei(P(n,m))Ei(FRj)+ B6Ei(TCPj)Ei(FRj)

+ B7Ei(P(n,m))Ei(TCPj)Ei(FRj),

where B0−7 are parameters. According to Muir’s (1994) model

(2), based on the Rempel et al. (1985) stage model, Muir andMoray

(1996) showed that predictability should be the best predictor of

overall trust early in an operator’s experience, followed later by

dependability and then faith. Thus, they proposed model (4) that

was applied to their experiment data. This model was then extended

to model (5) by including three additional components.

Trust = Predictability+ Dependability+ Faith (4)

Trust = Predictability+ Dependability

+ Faith+ Competence+ Responsibility+ Reliability

(5)

Muir’s models (2) and (5) are extended from Barber’s (1983)

and Rempel et al.’s (1985) models and showed that the perceived

predictability is one of the bases of trust, which, in turn, is

the foundation for an operator to estimate the future behavior

of a referent. The accuracy of that prediction may be assessed

by comparing it with the actual behavioral outcome. Besides, a

person who makes an estimate may associate a particular level of

confidence with such an estimate. Hence, confidence is a qualifier

related to a particular estimate. Confidence is not synonymous with

trust. An important limitation is how to operationalize andmeasure

those three components: predictability, dependability, and faith.

2.1.3. Busemeyer and Townsend Model
Decision Field Theory (DFT) is a dynamic-cognitive approach

to human decision-making based on principles psychological

rather than economic ones (Busemeyer and Diederich, 2002). This

type of model has been used to understand the evolution of the

preferences among options of a human decision-maker (Lee et al.,

2008). DFT provides a mathematical approach to understanding

the cognitive and motivational mechanisms that guide people in

the process of decision-making within a changing environment.

Busemeyer and Townsend (1993) applied DFT to the decision-

making process of automation use or disuse, which involves two

options: relying on automation (A) or using manual control (M).

Let S1 and S2 correspond to uncertain events, where S1 is the

occurrence of an automation fault and S2 is the occurrence of a

fault that compromises manual control. Variables yMj and yAj are

the possible payoffs if event Sj occurs, where j = 1, 2. This model

has two basic Subjective Expected Utility (SEU) functions given by:

VA(n) = W(S1)u(yA1)+W(S2)u(yA2),

VM(n) = W(S1)u(yM1)+W(S2)u(yM2),

where u(yMj) and u(yAj) are the utilities of the payoff, W(Sj)

is the subjective probability weight (attention given to event Sj),

and n is the nth sample. Note that
∑

j W(Sj) = 1. Busemeyer and

Townsend (1993) defined P(n) as the weighted preference state of

choosing action automation A over manual M. They assumed that

P(n) is determined by two factors: the previous state of preference

P(n − 1) and the valence difference of VA(n) − VM(n). Thus, P(n)

is defined as follows:

P(n) = (1− s)P(n− 1)+ [VA(n)− VM(n)]

= (1− s)P(n− 1)+ d + ǫ(n), (6)

where VA(n) − VM(n) = d + ǫ(n) has an average of d and

the related residual ǫ(n) represents the change in valence difference

produced by the moment-to-moment fluctuations in attention

during deliberation. The parameter s is the growth-decay rate,

which determines the influence of the previous preference state

P(n− 1). DFT offers an appropriate modeling approach to describe

the decision to adopt automatic or manual control. The preference

for automation over manual model (6) has been extended and

applied in the modeling of trust and self-confidence in Gao and Lee

(2006) and van Maanen and van Dongen (2005).

2.1.4. Gao and Lee Model
Gao and Lee (2006) used Lee and See’s (2004) definition of trust,

a factor that influences decision-making. Gao and Lee (2006) first

provided the formulation of the extended DFT model (EDFT) on

the preference dynamics P(n),

P(n) = (1− s)P(n− 1)+ s× d + ǫ(n), (7)

which is essentially an autoregressive model that considers a

linear combination of the previous preference state P(n − 1) and

the new input on the current preference state d in an uncertain

environment described by ǫ(n). The modeling approach of P(n)

has been applied to develop a quantitative model of trust and self-

confidence that is linked to decision-making in automation usage.

The trust T and self-confidence SC take the following forms:
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T(n) = (1− s)T(n− 1)+ s× BCA(n)+ ǫ(n),

SC(n) = (1− s)SC(n− 1)+ s× BCM(n)+ ǫ(n),
(8)

where BCA and BCM are the input for the evolution of trust and

self-confidence, representing that automation and manual control

capabilities are the primary factors influencing the operator’s

decision to rely on automation or use manual control. The belief

in the automation’s capability (BCA) or the operator’s manual

capability (BCM) is constructed through a piece-wise function

that uses the Fishbein and Ajzen (1975) framework, where beliefs

represent an information base that determines attitudes, and

attitudes determine intent and consequently, behaviors. Let ǫP(n)

be a random variable with zero mean and variance σ 2
P . The authors

defined the preference of A over M P(n) as the difference between

trust and self-confidence:

P(n) = T(n)− SC(n) = (1− s)P(n− 1)+ s

×[BCA(n)− BCM(n)]+ ǫP(n), (9)

which characterizes multiple sequential decisions instead of

the single decisions addressed by DFT. This model is based

on psychological principles and depicts the dynamic interaction

between the operator and automation. The dynamic interactions

involve the relationship between the operator, the state of

the automation, and the interface where the operators receive

information. The model replicates empirical results on the inertia

of trust and the non-linear relationship between trust, self-

confidence, and reliance. The authors acknowledge two limitations

to the model. First, it is assumed that the automation and

operator capabilities are available, which are the primary input

variables. Second, the fit obtained for the model validation is not

enough, given that the fit must be done with a greater range of

experimental data.

A useful feature of the basic DFT and extended DFT

model is that it does not contain an explicit variable for risk,

but it is considered through the SEU functions. Additionally,

the model has the potential to be generalizable to other task

environments involving human-automation interaction because

the model considers the operator’s preference based on their belief

in the automation’s capability and their manual capability, their

trust, and self-confidence. Moreover, the model can be repeatedly

updated with newly available information as the operator interacts

with the automation.

2.1.5. van Maanen et al. Model
van Maanen and van Dongen (2005) used the definition of

trust from Falcone and Castelfranchi (2001) and referred to it

as a mental state and belief of a cognitive agent i regarding the

achievement of a desired goal through another agent j or through

agent i itself. They implemented the framework of Decision Field

Theory (DFT) to derive a model for task allocation where both

humans and machines act together as a team. The model consists

of four mathematical definitions: task execution state, trust state,

allocation preference state, and preferred task execution states. The

task execution and preferred task execution state are sequences of

characters, while the trust state and allocation preference state are

real numbers (∈ R).

The authors considered that trust depends on past experiences

and used the agent’s task execution state to update the trust

state. Furthermore, the model assumed that preferences are

determined by trust in oneself and trust in others. Then, the

allocation preference state was given by the difference of trust

states corresponding to self-trust and trust in the machine.

Finally, the previous states helped the operator make a preferred

decision on the allocation task, which updated the preferred task

execution state.

The authors proposed an experimental design to validate the

model, where the goal was to predict the location of a disturbance

that could only occur at one of three locations as a human-

machine team. However, the authors did not clarify the payoff of

a correct or incorrect task allocation, which is essential for the SEU

(Subjective Expected Utility) functions in the DFT model. Hence,

the assessment of risk in the model was not clearly defined. This

model may not be generalizable for more complex environments

where the operator faces more than three different environmental

factors that can influence several different outcomes.

2.1.6. Akash et al. Model
Akash et al. (2017) proposed a three-state model for trust in

automation (T) by adopting themodeling work of Jonker and Treur

(1999) and the concept of Hoff and Bashir (2015)’s classification of

trust discussed in the introduction.

Jonker and Treur’s (1999) trust model described the change

in trust as proportional to the difference in experience and

trust. Akash et al. (2017) adapted Jonker’s model and introduced

two additional states–Cumulative Trust (CT) and Expectation

Bias (BX)–to accommodate the bias in human behavior due to

perceptions of past trust and expectations as follows:

T(n+ 1)− T(n) = αe

[

E(n)− T(n)
]

+ αc

[

CT(n)− T(n)
]

+αb

[

BX(n)− T(n)
]

,

CT(n+ 1) = [1− γ ]CT(n)+ γT(n),

BX(n+ 1) = BX(n),

(10)

where αe, αc, and αb are called the experience rate

factor, cumulative rate factor, and bias rate factor, respectively.

Additionally, γ discounts older trust levels faster, and thus it can

be called the trust discounting factor.

The specific assumptions of modeling trust in the model (10)

are that the change in trust T(n + 1) − T(n) linearly depends on

three terms: (a) the difference between experience and present trust

E(n)−T(n), (b) the difference between cumulative trust and present

trust CT(n)− T(n), and (c) the difference between expectation bias

and present trust BX(n) − T(n). If the present experience is less

than the present trust level, then the predicted trust level decreases

and vice-versa.

The cumulative trust was defined as an exponentially weighted

moving average of past trust levels to include the learned trust

in the model using a weighted history of past trust levels. The

expectation bias, which accounts for a human’s expectation of
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a particular interaction with an autonomous system, is intended

to be constant during an interaction, but it can change between

different interactions.

Akash et al.’s (2017) model (10) is difficult to generalize

for other scenarios because it is based on specifically asking

participants whether they trust the automation or not. It assumes

there is a way of measuring current levels of trust to predict future

trust, so the prediction of trust based on real-time behaviors is not

possible with this model.

2.2. Step Functions Approaches

Itoh and Tanaka (2000) define trust as the expectation or

belief that automation is dependable. Their definition of trust

evolves from the definition proposed by Rempel et al. (1985),

which states that trust evolves from predictability, dependability,

and faith. This modeling basis is consistent with the definition

used in Muir (1994) and Muir and Moray (1996). Itoh and Tanaka

(2000) proposed a step functional model for trust in automation by

adopting the Rempel et al.’s (1985) definition. The authors define X

as the universal set of all possible automation operating conditions,

where x, y ∈ X and x < y means that y is more difficult than

x. The trust model consists of three different sets: the faithful

condition (F), the dependable condition (D), and the predictable

condition (P). Additionally, the sets UF, UD, and UP refer to the

complement of the faithful (F), dependable (D), and predictable

condition (P), respectively. The Itoh-Tanaka model defines trust as

a function of the automation’s operating condition (x), which takes

the following form:

t(x) =











1 if x ∈ D

0 if x ∈ UD or x ∈ UF

αx if x ∈ UP

(11)

Here, αx ∈ [0, 1] depends on the operator’s personality and/or

experience with the automation. Several experimental studies on

trust in automation measure trust using a 10-point rating scale,

where a value of 1 represents no trust in and a value of 10

represents complete trust. However, this rating only provides a

final measurement of trust and cannot give us a comprehensive

understanding of its dynamics. The authors relate their model to

this trust rating, where the trust rating is given by:

ts =

∫

X t(x)dx

|X|
. (12)

This estimates the perceived trust value after the operator

interacts with automation and is calculated by taking the mean

of the function t(x). However, this model of trust does not assess

task environment or risk as factors that influence the operator’s

trust. Additionally, this model is highly general to describe trust

dynamics not only for automation but also for other beings or

operational devices. Moreover, the authors use variables such

as faith and the operator’s personality but do not describe or

suggest methodologies to measure these variables. As this model

is described as a function of sets, it is not generalizable for use with

other added variables such as risk, environmental factors, and the

operator’s task load.

2.2.1. Monir et al. Model
Monir Rabby et al. (2020) define trust using a step function

in which a person’s level of trust in a robot depends on both

the person’s and the robot’s performances. These two types of

performances determine where the person is in the trust build-up

process. Such regions were obtained from previous works (Rempel

et al., 1985; Muir, 1989, 1994; Muir and Moray, 1996; Itoh and

Tanaka, 2000) that suggest trust can be captured based on three

aspects: predictability, dependability, and faith. The Monir Rabby

et al. (2020) model is given by the following formula:

T(t) =













0 ; for Rp(t) < fP
ǫ ; for fP ≤ Rp(t) < fD

min(1, ǫ + tanh(c1P)) ; for fD ≤ Rp(t) < fF
1 ; for Rp(t) ≥ fF

(13)

where T is the level of trust the person has in the robot, t is the

time, RP is the robot performance, 1P = RP(t)− fD, fP = σHP(t),

fD = ρHP(t), fF is the robot performance at which trust reaches its

maximum value,HP is the person’s performance, σ and ρ are small

numbers, and c and ǫ are variables that depend on the person’s

preferences. In this model, the robot is in the unpredictable region

when RP(t) < fP as its performance is much lower than the person’s

performance, it is in the predictable region when fP ≤ RP(t) < fD, it

is in the dependable region after RP(t) ≥ fD where the trust build-

up process starts, and finally, it is in the faithful region when the

trust value reaches its maximum at Rp(t) = fF .

This model was proposed for the specific scenario of human-

robot interaction in which a human supervises the correct

execution of a classification task made by a robot. The experiment

was conducted in a physical laboratory environment, and the task

consisted of separating cubes of different colors by placing them

on different counters. This model can be applied to other scenarios

by modifying their definitions and measures. The separation of

trust into different regions based on the performance of humans

and robots is applicable to any other scenario of human-robot

interaction. However, the way of measuring the robot and human

performance may differ depending on the priority of the particular

case of analysis. Furthermore, this model appears to assume some

level of stability in the task environment, meaning that it may be

limited in describing what happens with trust when anomalous

factors in the environment generate situations affecting human or

robot performance, specifically situations requiring trust repair.

2.3. Probability Approaches - Bayesian
Network

2.3.1. van Maanen et al. Model
van Maanen et al. (2007) used the Lee and See (2004) definition

of trust, where trust is described as the attitude that an agent

(human or automated aid) will help achieve an individual’s goal

in a situation characterized by uncertainty and vulnerability, and a
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cognitive state (Falcone and Castelfranchi, 2001). The van Maanen

et al. (2007) model is based on the idea that when people work with

automated decision aids, and vice versa, they perform better than

when the person and aid work separately. Humans tend to overtrust

or undertrust the aids or their own performance. Conversely,

an automated aid can make quick and unbiased calculations on

the operator’s and their system performance based on previous

successful and failed tasks. The model’s objective is to verify the

possibility that the aid can make more accurate trust assessments

and accurate reliance decisions. Thus, the decision aid calculates its

trust in the operator and in itself based on the reliance on decision-

making capabilities each time there is feedback information.

In designing the decision aid, the authors derived a probabilistic

model for trust using the binomial likelihood function, the Beta

probability density function (PDF), and Bayes’ rule to update

estimations. Presuming the operator’s and aid’s behavior can be

assessed as a "success" or "failure," then this can be described by

the Bernoulli distribution. Because the Beta distribution is the

conjugate prior to the Bernoulli distribution in Bayesian inference,

this saves numerical computation for the posterior in Bayesian

inference. Hence, the aid uses Bayes’ rule to update its estimations

over the different capability values that the operator or aid can

have. The aid needs to estimate the probability of a successful

outcome in each trial, θxa where x ∈ {prediction, reliance} and a ∈

{operator, aid}.

p(θ |n,N, r, s) ∝ [θk(1− θ)N−n

︸ ︷︷ ︸

Likelihood

][θ r−1(1− θ)s−1

︸ ︷︷ ︸

prior

]

∝ θn+r−1(1− θ)N−n+s−1

(14)

To capture the trust dynamics, participants were asked to

perform a pattern recognition task with the help of a decision aid.

The operators needed to maximize the number of correct answers

by relying on their own predictions or the aid’s predictions for

pattern recognition. Thus, the factors considered in the model

are the number of successes and failures for the person and

the aid, which refer to the number of correct and incorrect

responses each made. Additionally, the task environment and

model do not assess a risk variable. Even though the model could

be modified to calculate the person’s trust assessment, the model

is not generalizable for other human-automation interactions in

more complex environments. However, this model idea could be

incorporated as part of a larger model that enables us to predict

trust and reliance with automation in a high cognitive task with a

complex environment.

2.3.2. Xu and Dudek Model–Dynamic Bayesian
Network

Xu and Dudek (2015) introduced their own definition of trust,

which they defined as a person’s belief in the competence and

reliability of another. They suggested that the level of reliance

indicates the level of trust. To explore this concept further, they

developed a Dynamic Bayesian Network model for a person’s level

of trust in a robot teammate. The model assumes that the person

occasionally intervenes to aid the robot in completing a series of

tasks, acting as a "supervisor" of the robot.

The probabilistic model developed by Xu and Dudek (2015), is

called the Online Probabilistic Trust Inference Model (OPTIMo).

It formulates a Bayesian beliefs network over the person’s moment-

to-moment trust states. The Bayesian model accommodates an

arbitrary categorical belief for initial trust and incorporates

variable-rate sources of information in a probabilistic manner.

The model relates the operator’s latent trust state (tk) to the

robot’s task performance (pk ∈ [0, 1]), uses human interventions

(ik ∈ {0, 1}), trust change reports (ck ∈ {−1, 0,+1, ∅}), absolute

trust feedback (fk ∈ {[0, 1], ∅}), and ek the presence of a

task change for a time window k. The model employs a set of

equations, including:

P(tk, tk−1, pk, pk−1)
︸ ︷︷ ︸

Expected Update of Trust

≈ N (tk; tk−1 + ωtb + ωtppk

+ ωtd(pk − pk−1), σt), (15)

O(tk = 1, tk−1, ik, ek)
︸ ︷︷ ︸

Probability of Interventions

: = S(ωib + ωittk + ωid1tk + ωieek), (16)

Oc(tk, tk−1, ck)
︸ ︷︷ ︸

Change of Trust

: = Prob(ck|tk, tk=1), (17)

Prob(ck = +1|tk, tk=1) = βc + (1− 3βc) · S(κc[1tk − oc]),

Prob(ck = −1|tk, tk=1) = βc + (1− 3βc) · S(κc[−1tk − oc]),

Prob(ck = 0|tk, tk=1) = Of (tk, fk)
︸ ︷︷ ︸

User’s Absolute Trust

: = Prob(fk|tk) ≈ N (fk; tk, σf ). (18)

In the equations above, N (x;µ, σ ) denotes a Gaussian

distribution. Parameters such as ωtb, ωtp and ωtd reflect bias,

current task performance, and difference in robot’s performance,

respectively, of the operator’s updates. The sigmoid function S(x)

is also used, and parameters such as ωib, ωit , ωid and ωie quantify

bias and weights for an intervention ik. Additionally, βc captures

users’ self-reported erroneous trust changes.

The model was validated using data from a laboratory-

simulated experiment, and the authors accurately predicted human

trust-induced behaviors. However, neither the model nor the

experiment used for model validation took risk into account as a

factor. This model differs from others because it uses the operator’s

reliance behavior on automation to infer the level of the operator’s

trust. This framework has the potential to model trust dynamics

for other human-automation interaction task scenarios that involve

an operator’s reliance behaviors throughout a trial. Additionally,

other variables could be added to the model, such as weights for

risk and difficulty of the changing elements in the task, as well as

an expected update of the operator’s self-confidence to complete

the task manually. Lastly, the model can be applied to other types

of automation.

2.3.3. Guo and Yang Model
Guo and Yang (2021) used the definition of trust given by

Lee and See (2004) and acknowledged that trust in automation is

dynamic and can increase or decay as the human interacts with the
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automation. To do so, they used a Beta distribution to develop a

personalized trust prediction model and applied Bayesian inference

to calculate the Beta distribution parameters. The authors adhered

to the following assumptions in their model derivation.

1. Trust at time i is influenced by trust at time i− 1.

2. Trust is more heavily impacted by negative experiences with the

automation compared to positive experiences.

3. As humans engage with an automation multiple times, their

trust in the agent stabilizes.

This study postulates that following the automation’s completion of

the ith task, the human’s temporal trust ti follows a Beta distribution

with parameters αi and βi. These parameters are updated by,

αi =

{

αi−1 + ws, if pi = 1

αi−1, if pi = 0

βi =

{

βi−1 + wf , if pi = 1

βi−1, if pi = 0
,

where pi ∈ {0, 1} is the automation’s performance on the ith

task, which takes a value of one (pi = 1) to indicate a success and

a value of zero (pi = 0) to indicate a failure. Additionally, ws and

wf represent the gains due to positive and negative experiences with

the automation. Therefore, the predicted trust (t̂i) at the completion

of the ith task can be estimated by the mean of ti. Since ti ∼

Beta(αi,βi), then t̂i is given by,

t̂i = E(ti) =
αi

αi + βi
(19)

The model was validated using data from Yang et al. (2017)

and compared with Lee and Moray’s (1992) and Xu and Dudek’s

(2015) models. The model proposed by Guo and Yang (2021)

outperformed the two existing trust prediction models. The

authors acknowledge the following four limitations: (1) the model

assumes that the automation’s ability remains constant across all

interactions; (2) the parameters used in the model are assumed

to be independent of each other; (3) the model assumes that

the automation’s performance is either good or bad and is

immediately available after a task; and (4) each participant in

the experiment had 100 interaction episodes with the automation

in a relatively short period of time. Since the model utilizes

the automation’s performance and reliability, along with the

human’s self-reported trust history, it possesses the potential to be

generalized for other human-automation task scenarios that record

alterations in these measures. Furthermore, the model has the

potential to include other factors that influence trust in automation

and can be enhanced with behavioral data gathered during the

human-automation interaction.

3. A Unified Mathematical Framework

Having discussed the current state of research on trust in

automation and the various models proposed to study it, we

propose a unified mathematical framework to study trust in

automation. In particular, we identify some key areas where further

research is needed to advance our understanding of human-

automation trust and its applications.

Researchers have made significant headway in identifying

and understanding factors that influence trust in automation

and the relationships between those factors through experiments

and mathematical modeling approaches. In a seminal review on

this topic, Lee and See (2004) emphasized the increasing need

to understand how people trust complex automated systems.

However, the utility of trust – and its role in affecting behaviors

and human-automation performance – becomes limited when it is

operationalized as a static outcome, as is often the case in many

experimental studies. Instead, to more closely align with trust

theory, trust should be operationalized as part of an interactive and

dynamic process with multiple sources of influence and at various

timescales (Lee and See, 2004; Hoff and Bashir, 2015; Chiou and

Lee, 2021).

3.1. Time Scales of Mathematical Models

Mathematical models can describe and connect different

dynamical components or variables that operate at different

timescales. These components or variables can be deployed,

tested, and measured through observational experiments. When

dynamical processes have different timescales, dynamical models

allow us tomore deeply explore the relations among themeasurable

components captured and understand which of these has more

weight at different times within the domain of study.

All mathematical models reviewed in this paper support the

idea that trust in automation is shaped by complicated dynamical

processes involving the human operator, automated system, and

environment, all of which intertwine and impact each other over

time. One major limitation of current models of trust is that

they do not adequately explain the relationship between trust

measurements and the overall model or its individual components.

Additionally, some of these models are derived without using

rigorously defined components, making them challenging to

measure through data collection methods. For example, Itoh and

Tanaka’s (2000), Muir’s (1994), and Muir and Moray’s (1996)

models include components such as faith, predictability, and

dependability, but these components are not clearly defined or

measurable during the model development process. Furthermore,

current models have gaps in describing the intricate dynamics

of trust in automation as a function of one or more of the

following interactions: automation’s capabilities and performance,

the operator’s experiences and performance, and the environment

in which such interactions occur. Hence, there is a need for

models that incorporate the aforementioned elements with precise

definitions and methods for their quantification.

This motivates us to develop a unified modeling framework

that defines essential components for trust that are measurable

through experimental trials and/or surveys. To achieve this, we

start with situational, learned, and dispositional trust definitions in

Hoff and Bashir (2015), which can be classified into the following

three timescales:
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1. Short-timescale (i.e., situational; e.g., in seconds/minutes):

decision making that is related to predictability and the present

situation such as risk,

2. Intermediate-timescale (i.e., learned; e.g., in hours/days):

reliance and performance information related to dependability

and learned trust from previous experience, and

3. Long-timescale (i.e., dispositional; e.g., in years/decades):

linked to dispositional trust developed from consistent

messaging or socialization, including culture.

As previously discussed in the introduction, Hoff and Bashir

(2015) identified dispositional, situational, and learned trust and

the specific components that fall under each category. However,

a timescale classification becomes helpful to understand the

timescale of these sources of trust when designing experiments

and selecting data collection methods. One distinction between

Hoff and Bashir’s framework and this timescale classification is

that some components of situational trust described in Hoff

and Bashir (2015) can also occur during the interaction with

automation and be classified as short-timescale. Secondly, Hoff

and Bashir’s classification falls short in offering clear methods for

quantifying each component and in describing the exact nature

of the relationship between these components and trust. Our

timescale classification offers precise definitions and methods for

the quantification of each component, which is particularly helpful

when designing experiments and selecting data collection methods.

The models reviewed in this article incorporate one or two, or

all of these timescales in the dynamic trust process. For example, the

Lee and Moray (1992, 1994) model studies intermediate timescale

processes because it considers the automation’s performance and

occurrence of faults in trials recorded over 3 days. The Muir (1994)

and Muir and Moray (1996) models fall into the long timescale

because they consider either the persistence of natural laws or faith,

which tend to involve a person’s experiences over several years. The

Akash et al. (2017)model studies short and long timescale processes

as it considers learned trust, which is dynamically influenced

by the system’s performance and people’s past experiences based

on their self-reported demographic information. The Itoh and

Tanaka (2000) model considers faith and two other conditions

based on the automation’s performance. Then the model studies

intermediate and long timescale processes. Models constructed

through Decision Field Theory, such as Busemeyer and Townsend

(1993), Gao and Lee (2006), and van Maanen and van Dongen

(2005), model processes within all three timescales because the

models are linked to decision-making, reliance on automation

(short-timescale), performance (intermediate-timescale), and belief

(long-timescale). The Xu and Dudek (2015) model has both short

and intermediate timescale components as it accounts for the

automation’s performance and the human decision-making to

calculate what the authors refer to as a trust state.

Models of trust dynamics in the literature reflect the need

to incorporate multiple timescales since trust dynamics involve

complicated processes that interact with each other at different

timescales. To validate and improve trust models, we must include

components and variables that are measurable and can be evaluated

through experimental trials of human-automation interaction. For

example, the Monir Rabby et al. (2020) model uses the strength of

prior beliefs in the automation’s success or failure, which belongs to

the intermediate or long timescale process. However, the authors

used a dataset in which participants’ trials were separated by

seconds or minutes. This type of mismatch prevents us from having

a better understanding of trust dynamics and originates from the

components of the proposed model that are not defined in the

correct timescales and cannot be measured by experimental trials.

To mathematically study the human-automation interaction

and trust in automation, it is important to identify the essential

components/elements that are measurable, at what timescales these

elements take place, how those elements of the interaction happen,

and how these are influenced by previous experiences. For example,

as an operator uses automation, they will observe and remember

its capabilities, performance, and reliability. Therefore, we cannot

assume that the observable reliance on automation at some point

is independent of all the previous interactions since the operator

started using said automation. Furthermore, as people interact with

automation to accomplish complex cognitive tasks, unforeseen

events may limit the time they have to gather information and

make decisions.

A mathematical model of trust in automation can capture

various processes that occur before, during, and after in-the-

moment interactions. By including short-timescale processes, we

can capture these immediate interactions. Adding intermediate-

timescale processes can help us observe how reliance changes as

the operator learns the automation’s capabilities and performance

under different situations that may occur. Lastly, incorporating

long-timescale processes can help us address individual variability

in reliance behavior due to ingrained preferences, beliefs, social

group relationships, and culture. We can use existing methods and

conceptualized measurements (Kohn et al., 2021) to describe these

processes and expand their definitions if necessary.

For instance, long-timescale factors such as personality,

general experiences, impressions, and beliefs can be measured

using surveys with scaled responses. We can use patterns of

observed behaviors and related session-level measures of decision

performance to capture intermediate timescale processes. For

short-timescale measurements, we can include workload, reaction

times for off-nominal events, perceived risk within specific decision

contexts, and moment-to-moment decisions (e.g., deciding to

continue engaging the automation or switching to manual control).

While survey and observational methods can be applied across

all timescales, we are not suggesting that these methods, more

broadly speaking, are mutually exclusive across the timescales.

However, what perception or behavior you are measuring exactly

(rather than how you are measuring it) is more the point of

these categories.

Mathematical models of trust in automation that incorporate

multiple timescales can become more useful as they capture

processes at different levels/timescales of study, which makes

them capable of connecting and creating feedback between these

timescales. This allows us to analyze mathematically how different

elements (e.g., parameters) in each process affect not only the

process they belong to but also other processes at different

levels/timescales of study.

3.2. Trust in Automation Framework

It is natural to ask how to model the dynamic processes

of trust using these three timescales. By considering where
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mathematical models fall within the three timescales, we propose

that we can better capture yet-identified factors, patterns, and

relationships that impact human trust during interactions with

automated systems or devices. With this proposal in mind, we

propose a unified framework to model trust in automation, as

well as the derivation of the dynamic measurements used by

the mathematical model. The mathematical derivation is done

for a particular human-automation work structure where the

automation could be engaged and disengaged at the operator’s

discretion to receive aid in completing tasks. Furthermore,

the model is aimed at a task environment that tracks the

automation’s and human’s performance, as well as the operator’s

reliance throughout the interaction (see Drnec and Metcalfe,

2016; Gremillion et al., 2016). We aim to develop a practical

model capable of accurately predicting and depicting the dynamics

of trust.

It is known that trust influences decision-making and,

therefore, reliance on automation. Observing reliance on

automation suggests that the operator trusts the automation at

some time t to perform a set of tasks. Conversely, observing

lower reliance implies that the operator may not trust the

automation to successfully perform a set of tasks. Then, what

factors influence decision-making? We can use risk, performance,

workload, and environment, as found by Kohn et al. (2021).

These findings are needed to derive the mathematical model of

trust in automation on the short- and intermediate-timescale.

Recall that we classified the processes of decision-making

and risk as short-timescale and the processes of reliance and

performance as intermediate-timescale. So, how would we

model the decision-making process that occurs on a short

timescale? We need to determine values of risk, performance,

workload, and unforeseeable consequences due to the stochastic

nature of the environment. We start the model derivation

by defining measurable variables for each of the necessary

factors that influence trust in automation, such as relative risk

(belonging to a short timescale) and reliance (belonging to the

intermediate timescale).

3.2.1. Measurable Factors of Trust
Having defined trust as a crucial factor in human-automation

interaction, we can now identify its measurable components, one

of which is risk and reliance. In this subsection, we delve into the

concept of risk, relative risk, reliance, and relative reliance and

propose measures to quantify it in the context of automation usage

and manual control.

3.2.1.1. Risk

According to Sitkin and Pablo (1992), risk is "the extent to

which there is uncertainty about whether potentially significant

and/or disappointing outcomes of decisions will be realized." Thus,

we can define the risk of automation usage over time [t0, t]

as follows:

Ra(t) =

measurements of failed tasks
during automation on over time [t0, t]

measurements of all tasks
during automation on over time [t0, t]

Similarly, we can define the risk of manual control over time [t0, t]

as follows:

Rm(t) =

measurements of failed tasks
during manual control over time [t0, t]

measurements of all tasks
during manual control over time [t0, t]

These definitions allow us to define risk using automation at

varied timescales depending on the length of t0 − t. Based on the

measurements (e.g., varied score systems), these expressions allow

for individual assessment of the risk of automation usage or manual

control, decision-making, and perception of the level of risk in

a constantly changing environment. To compare the level of risk

between automation usage and manual control, we can use the

Relative Risk of using automation to manual over time [t0, t], which

is denoted by RR(t) = Ra(t)
Rm(t)

. These measurements are applicable

to any study tracking the operator’s and automation’s performance

across the trials through scoring systems.

For example, if the study does not include a reward system

for completing tasks (see the work of Drnec and Metcalfe, 2016;

Gremillion et al., 2016), relative risk measurement can be modified

to only include task violation penalties. This measure of association

can be interpreted in three different ways. If RR(t) < 1, then there

is a decreased risk of task violations while using the automation,

and therefore the operator could be predisposed to engage the

automation. If RR(t) > 1, there is an increased risk of task

violations while using the automation, and therefore the operator

should refrain or be careful to engage the automation. Lastly, if

RR(t) = 1, then both engaging the automation and using manual

control have the same amount of risk, and, therefore, the operator

can choose any of the two options. The relative risk measurement

presents an opportunity to deeply study human behavior and

decision-making while performing a highly demanding cognitive

task. The variables used for its computation can be updated

in real-time as the environment changes during a task. The

resulting dynamics allow researchers to study relative risk and

human perception of risk throughout each trial. Refer to Rodriguez

Rodriguez et al. (2022) for an example of the application of

this measurement.

3.2.1.2. Reliance

Reliance on automation is defined as "the fraction of time that

human operators have the automation engaged" (Lee and Moray,

1992). In previous studies, reliance has been measured as a finite

constant describing the total percentage of reliance the operator

had for any given trial. Instead, we propose this measurement as

a time-dependent variable. Similar to the measurement of risk and

relative risk, the reliance measurement can be updated in real time

as the operator chooses to engage and disengage the automation in

a changing environment.

To define the reliance measurement, assume that a human

operator is performing a task over some period of time T. Over

the time interval [0, t] ⊂ [0,T] where t ≥ 0, assume there are

K time sub-intervals in which the operator chooses to engage the

automation, i.e., [t1 , t2 ], [t3 , t4 ], ..., [t2K−1 , t2K ] where t2K ≤ t. Then
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the reliance of the operator at time t ∈ [0,T] is defined as:

RIL(t) =
1

t

K
∑

j=1

(t2j − t2j−1 ) (20)

This definition allows researchers to know what proportion of time

the automation has been used by the operator at any time t during

the whole trial, which lasts some time T. Thus, the measurement

of reliance will always have a value between zero and one, RIL(t) ∈

[0, 1], for any time t in T.

Additionally, reliance can be measured in a shorter time scale

by measuring the percentage of time the automation was used

since it was engaged the previous time. Recall that there are K

time sub-intervals in which the operator chooses to engage with

the automation. If the automation is engaged at time t (e.g., t ∈

[t2j−1 , t2j ] for some positive integer 1 ≤ j ≤ K), then we define

Instant Reliance at time t as IRIL(t) = 1. Otherwise, if t ∈ [t2j , t2j+1 ]

for some positive integer 1 ≤ j ≤ K − 1, then Instant Reliance is

defined as:

IRIL(t) =
t2j − t2j−1

t − t2j−1

< 1 (21)

This measurement allows us to observe when the automation

was engaged and how reliance starts to decrease the moment the

human operators change to manual control. Measuring reliance

through time allows us to observe the operators’ learning time

frame of the automation’s performance and capabilities and the

operators’ shifts of reliance with different types of automation and

specific environmental changes. Refer to Bustamante Orellana et al.

(2022) for an example of the application of this measurement.

3.3. An Application of the Modeling
Framework

Building on the discussion of trust in human-automation

interaction in the previous section, we can now explore an example

of a modeling framework that can be used to model trust with

short and intermediate timescales. Through the measurements we

have discussed, we can provide an example of modeling trust

in automation with short and intermediate timescales based on

available data of people completing a leader-follower task in

a simulated environment with the assistance of an automated

driving system (Drnec and Metcalfe, 2016; Gremillion et al., 2016).

Adopting the modeling approaches of Muir (1994), Muir and

Moray (1996), and Busemeyer and Townsend (1993), we can

propose the mathematical formulation of trust as follows:

Tr(t) = TrM(t)+ TrS(t)+ Environment (22)

An example of the intermediate timescale of modeling trust
in automation TrM(t) at time t can be modeled as a function

of the average relative risk
∑K−1

i=1 RR(ti)
K−1 (where ti and K were

defined for Equation 20), the reliance RIL(t), and the automation’s
performance reflected by:

p(t) =

lost points due to failed tasks
when using automation over [t0, t]

total lost points over [t0, t]
(23)

The larger the value of p(t), the worse the performance, and

the smaller the value of p(t), the better the performance. Thus, an

example of TrM(t) could be expressed as follows:

TrM(t) =

∑K−1
i=1 RR(ti)

K − 1
× RIL(t)× p(t)

This suggests that the operator has a large value of trust

in automation if (1) the reliance RIL(t) is big, (2) the average

relative risk of using automation is high, and (3) the automation’s

performance is bad. On the contrary, the operator has little trust in

automation if the reliance RIL(t) is small, the average relative risk

of using automation is low, and the performance is good.

An example of the trust dynamics in a short timescale can

be modeled as a function of the relative risk over the small time

interval of 1t and instant reliance values at time t. Hence, the short

timescale trust value at time t can be given by:

TrS(t) = RR(1t)× IRIL(t)

The proposed model allows us to include behavioral and

environmental factors through reliance on automation and

the joint human-autonomy team performance in a changing

environment. This example of modeling trust in automation only

considers behavior data with intermediate and short timescales.

Additionally, this example is specific to a particular human-

automation work structure such as the operator having the freedom

to choose when to hand-off partial or complete control to the

automation for the completion of a set of tasks. It is possible that

we could make the short timescale expression of the model more

reliable by implementing real-time data such as physiological data.

4. Discussion

Toward a more reliable and responsive model, there is potential

for including sensor-based physiological measures. Usually, survey

measures are a one-time event; however, some studies administer

questionnaires multiple times during a task to capture changes

in trust over time (Cummings et al., 2021). Yet, no matter how

often surveymeasures are administered, they cannot always capture

a person’s in-the-moment responses to unforeseen perturbations,

workload, and perceived changes in performance (Huang et al.,

2020). Although current efforts in this area remain limited, sensor-

based physiological measures like pupil dilation (Aygun et al.,

2022), electroencephalography (EEG), and Galvanic skin response

(GSR) could allow us to more closely monitor and respond

to trust indicators, and triangulate those data with the task

contexts and other well-established trust measures like associated

behaviors (e.g., reliance data, perceived risk, and changes in
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decisions) to detect weak points of a human-automation team

in real-time (DeCostanza et al., 2018) and paint a fuller picture

of trust dynamics in specific situations and across patterns of

situations over time. In some task environments, interaction or

communication data between operators and automation could also

provide a stream of real-time indicators (Lee and Kolodge, 2020).

Recent work by Kohn et al. (2021) reviews the many methods

that have been used to successfully measure and assess trust

in automation.

Since physiological and behavioral time-series datasets are

typically large and complex, there is value in utilizing both machine

learning and dynamical modeling approaches to interpret the data.

These approaches, along with recent advancements in sensors

and computing, have the potential to provide new insights into

trust in automation and can aid in the development of powerful

mathematical models. However, understanding the inner workings

of machine learning models and their prediction mechanisms

can be challenging (Ribeiro et al., 2016). This can be an issue

when model interpretability is critical, as is often the case in

high-accountability environments. Fortunately, more interpretable

models such as decision trees, linear models, and rule-basedmodels

are available (Molnar et al., 2020) as are techniques to make more

complex models more interpretable (Breiman, 2001; Liaw and

Wiener, 2007).

The combination of real-time data streams and computational

analysis approaches offers a source of analytical insights that

avoids the interruption of tasks to solicit survey responses

from participants. To the extent that these data hold promising

indicators of trust, their analysis can help identify critical factors

and relationships that are predictive of trust-related behaviors

within those data streams. The factors and relationships identified

through machine learning and computational analysis can then

be included in a mathematical model of trust. Our ongoing

research project consists of expanding the framework for a

mathematical model of trust to include dynamical measures

of workload and account for the stochasticity of a changing

environment. We aim to establish the foundation of these powerful

mathematical models by combining dynamic systems and machine

learning components. The advantages of these models are that

they permit rigorous mathematical analyses and validation with

various human-automation interaction settings, thus providing the

research community with a powerful tool to study trust dynamics.

Conclusion

In this review, we have gathered and summarized prominent

mathematical models of trust in automation derived from the

human factors literature and the concept of trust in automation

that has evolved since the nineties. Although researchers have

made significant progress in identifying the complex dynamic

processes involved in trust, there is a need to map how these

processes may interact with each other and become a function

of trust. To this end, we have introduced a three-timescale

classification of these models and the processes they describe.

Because trust is a dynamic process, rigorous definitions of reliance,

risk, and performance are also defined as dynamic measures.

We have described an example of a two-timescale model based

on the proposed framework to show how processes that take

place in the same timescale, such as performance and reliance,

can both contribute to evolving trust. However, the model has

some limitations, such as excluding the third long-timescale

and not including an appropriate mathematical expression that

considers how the environment can affect the operator. The

research community continues to face the challenge of formulating

better data collection methods that would enable better derivation

of trust indicators and thus better measurement of trust. We

hope that our effort serves as a toolbox for different model

formulations previously used by the scientific community and

helps researchers continue to improve trust modeling through our

modeling framework.
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