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Abstract
We study uniformly random lozenge tilings of general sim-
ply connected polygons. Under a technical assumption that
is presumably generic with respect to polygon shapes, we
show that the local statistics around a cusp point of the
arctic curve converge to the Pearcey process. This verifies
the widely predicted universality of edge statistics in the
cusp case. Together with the smooth and tangent cases
proved by Aggarwal-Huang and Aggarwal-Gorin, these are
believed to be the three types of edge statistics that can arise
in a generic polygon. Our proof is via a local coupling of
the random tiling with nonintersecting Bernoulli random
walks (NBRW). To leverage this coupling, we establish an
optimal concentration estimate for the tiling height func-
tion around the cusp. As another step and also a result
of potential independent interest, we show that the local
statistics of NBRW around a cusp converge to the Pearcey
process when the initial configuration consists of two parts
with proper density growth, via careful asymptotic analysis
of the determinantal formulas.
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1 INTRODUCTION

The random lozenge tiling model is an exactly solvable two-dimensional statistical mechanical
system that has attracted a significant amount of studies over the past few decades. For thismodel,
many physical quantities of interest such as the partition function and correlation functions can
be expressed in terms of determinants of an inverse Kasteleyn matrix. For random tilings of large
domains, asymptotic analysis of these determinants leads to predictions of various universality
phenomena in the large-scale limit; see, for instance, the book [44] for a comprehensive review.
One such fundamental result is the limit shape phenomenon claiming that the height function of
a uniformly random tiling of a large domain would concentrate (after proper scaling) around a
deterministic function. This behavior was first established for domino tilings of essentially arbi-
trary domains [26, 32], where the limit shape is expressed through a variational principle as the
maximizer of a certain surface tension functional of the height function. This result was later
extended to the case of random lozenge tilings in [51], where the limit shape was written as the
solution to a complex Burgers equation which, in many cases, can be solved easily through the
classical method of characteristics.
An interesting and important feature of the limit shape phenomenon is that the boundary con-

dition induces a phase transition of the local statistics. Depending on the shape of the domain,
it admits both frozen regions, where the associated height function is flat and deterministic, and
liquid regions, where the height function is more rough and random. The curve separating these
two regions is then called the arctic boundary. The reader can refer to [33, 49] for some early stud-
ies of this phenomenon in the context of random tilings, but we remark that a similar notion was
discovered even earlier for Wulff Crystals in the Ising model; see, for example, [27, 31, 37].
It is then natural to ask whether the local statistics are universal inside the liquid region and on

the arctic boundaries, and how the universal limits behave if they exist. It is conjectured in [32]
that around a point inside the liquid region, the local statistics should be given by the ergodicGibbs
translation-invariant (EGTI) measure with slope matching the gradient of the limiting shape. It is
known that the EGTI measure is unique and can be expressed as determinantal point processes
with certain explicit extended discrete sine kernels [53, 59]. This conjecture was completely proved
for random lozenge tilings of essentially arbitrary simply connected domains in [5], based on and
improving many previous proofs under stronger assumptions on the shapes of domains, such as
[20, 43, 45, 50, 54, 58], to name a few.

1.1 Edge statistics and universal conjectures

Comparedwith the bulk statistics inside the liquid region, the edge statistics near the arctic bound-
ary exhibit much richer behaviors due to various possible singularities that the arctic boundary
may develop. In studying edge statistics, the domain is usually taken to be polygonal (see Defini-
tion 2.3 below). Besides being a reasonably general class of domains, such a restriction of being
polygonal seems to be essential in establishing universality of edge statistics. In fact, unlike the
bulk statistics which are only determined by themacroscopic shape of the domain, the edge statis-
tics are also sensitive to microscopic perturbations and can be altered by even a single defect at
the boundary of the domain (as discussed in [6] after the statement of the main result there).
A detailed study of the arctic boundaries on general polygonal domains (which may not be

simply connected) was conducted in [2, 51], which showed that they are actually algebraic curves
determined by the shapes of the polygons. We note that [51] requires the sides to be cyclically
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 3

F IGURE 1 The left panel a uniformly sampled lozenge tiling, from the website of Leonid Petrov
https://lpetrov.cc/2016/08/Tilings-examples/ (using here under CC BY-SA 4.0). There is a cusp point in the blue
box, where the paths formed by green and yellow tiles should converge to the Pearcey process, depicted in the
right panel.

oriented and the domain to be simply connected, and these assumptions were removed in [2]. In
[2], a complete classification of the regularity of these arctic curves is proved, with a total of six
cases identified (this result holds for more general dimer models with periodic weight structure):
(1) a smooth point of the arctic curve; (2) a point where the arctic curve is tangent to a side of the
polygon; (3) a generic cusp point; (4) a cuspidal turning point; (5) and (6) two types of tacnodes.
The first three cases should appear for generic polygonal domains, whereas the last three cases
are often referred to as nongeneric singularities, in the sense that they are believed to be sensitive
to perturbations of the side lengths (although this is not rigorously proved, and even its precise
meaning is subtle; see [6, Remark 2.8] and the discussion below Assumption 2.5). The universal
edge fluctuation conjecture (see, e.g., Section 9 of [2] or Lecture 19.2 of [44]) states that the local
statistics of uniform lozenge tilings for polygonal domains have a universal scaling limit for each
case. This conjecture has been verified for the first two cases. For case (1), the Airy line ensem-
ble is conjectured to appear as the scaling limit. This was first proved for some special classes of
domains, and recently solved in [6] for general simply connected polygonal domains. For case
(2), it is conjectured that the GUE-corners process is the universal scaling limit at such tangency
points. This was proved in [4] for almost general domains, which improved previous results for
some special classes of domains.
The goal of this paper is then to prove the universal edge fluctuation conjecture for case (3)

(i.e., the cusp universality). We will show that at any generic cusp on the arctic boundary, the local
statistics of uniformly random lozenge tilings converge to the Pearcey process.
The Pearcey process is a determinantal process described by the extended Pearcey kernel (given

in (2.12)) and should be realized as a family of continuous random processes (see the right panel
of Figure 1). The name “Pearcey” is from the connection between the kernel and Pearcey inte-
grals. Its first appearance traces back to [21, 22] on certain matrices with Gaussian randomness.
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4 HUANG et al.

The limiting eigenvalue distribution around certain cusp points was shown to be a determinantal
point process, whose kernel is then termed the “Pearcey kernel,” corresponding to a single time
slice of the Pearcey process. Later, the extended Pearcey kernel was obtained at cusps of the arctic
boundaries of random skew 3D partitions (which can be viewed as weighted random tilings of an
infinite domain) [57] and cusps of nonintersecting Brownian bridges starting from the origin and
conditioned to end at two points [60]. The Pearcey universality at cusps of more general nonin-
tersecting Brownian bridges was established in [3, 12]. In random matrix theory, besides [21, 22],
Pearcey limits have been proved for some other Gaussian matrix models, such as [1, 13, 34, 46],
and for general Wigner-type matrices (with non-Gaussian entries) at cusps of the global density
of states [25, 42].
As for random tilings, around any cusp, the local statistics can be encoded by a family of

Bernoulli paths (as will be explained in Section 2.1.2 below). Since [57], Pearcey limits of such
paths have been established for special classes of domains; see, for example, [16, 18, 23, 36, 58]. It
is natural to predict that the Pearcey universality at cusps holds for general polygonal domains,
as stated in case (3) of the universal edge fluctuation conjecture. Such a prediction actually traces
back to [57] and has been stated in many works such as [2, 6, 10, 14, 35, 38, 44, 48]. Our main
result in this paper verifies this prediction for simply connected polygonal domains, under certain
technical conditions of the arctic curve.

Theorem 1.1. Let 𝔓 be a simply connected rational polygonal set forbidding certain presumably
nongeneric behaviors, as specified in Definition 2.3 and Assumption 2.5 below. For a uniformly ran-
dom lozenge tiling of 𝑛𝔓, around any cusp point of the arctic boundary, the corresponding paths
(under appropriate scaling) converge to the Pearcey process as 𝑛 → ∞.

A more formal and precise statement of this result is stated as Theorem 2.7 below. We remark
that, as in all previous works showing Pearcey limits, our convergence to the Pearcey process is in
the sense of convergence of point processes at finitely many times, due to the lack of a continuous
theory of the Pearcey process. See Section 2.6.2 for more discussions.

1.2 Proof ideas

We now outline our proof of the cusp universality. First, we prove an optimal concentration (or
rigidity) estimate for the corresponding Bernoulli paths near the cusp we are considering. For
a simply connected polygon of diameter order 𝑛, near a smooth point of the arctic curve, the
extreme path is concentrated within 𝑛1∕3+𝛿 of the limit shape for any constant 𝛿 > 0 as shown
in [6]. We extend the argument there to the vicinity of a cusp and show that the extreme path is
within 𝑛1∕4+𝛿 of the cusp of the limit shape (the Pearcey fluctuation of the paths near a cusp is
expected to be of order 𝑛1∕4). The concentration estimate is better as we get further away from
the cusp and becomes o(𝑛1∕4) if the distance from the cusp is at least 𝑛1∕2+𝜀 for a constant 𝜀 > 0.
For a smooth point of the arctic curve, such an optimal rigidity estimate almost suffices to deduce
the Airy universality, because, as done in [6], one can sandwich the associated Bernoulli paths
between two Airy line ensembles with different curvatures to approximate the paths with o(𝑛1∕3)
error, which is negligible under the Airy scaling. However, such a straightforward comparison
cannot be carried out at a cusp, since it is mostly surrounded by the liquid region and is connected
to the frozen region only in the tangent direction, and, furthermore, the Pearcey process is not
versatile enough.
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 5

Instead, we will carve out a small domain around the cusp with height and width of order
at least 𝑛1∕2+𝜀. We then rewrite the tiling configuration in this domain using the well-known
representation of a family of nonintersecting Bernoulli paths. We consider the model of nonin-
tersecting Bernoulli random walks (NBRW) introduced in [52]. It can be viewed as a family of
independent simple random walks conditioned on never colliding, or a Markov chain in a dis-
crete Weyl chamber. It also has the local Gibbs resampling property as tilings. We can construct
an NBRW on the domain such that the limiting particle configuration matches the limit shape of
the tiling function well. Then, the monotonicity property of the NBRW together with the con-
centration estimates of order o(𝑛1∕4) on the boundaries of the domain shows that the NBRW
is a good approximation of the tiling Bernoulli paths with a negligible o(𝑛1∕4) error under the
Pearcey scaling.
Now, the problem is reduced to showing the Pearcey universality of the corresponding NBRW,

which is another challenging step of our proof and can be of independent interest (see Theo-
rem 2.9 below). It is known that the trajectories of NBRW is a determinantal point process, and
a contour integral formula for the kernel is given in [45]. We do an asymptotic analysis of the
formula and show that when the initial configuration is appropriate (i.e., has two separate parts
with proper density growth), the kernel near the cusp is close to the extended Pearcey kernel.
We use the steepest descent method, which is well-known and can be traced back to Riemann
in the 19th century. Its application in the study of determinantal point processes was pioneered
by Okounkov (see, e.g., [56]). Since then it has become standard and widely used in such tasks
of asymptotic analysis in integrable probability (see, e.g., [19, Section 5], or [44, Lectures 15–18]
in the context of tilings). There are several technical challenges in applying this method to our
setting (see Section 5.2 for more details). First, to show universality, we need to work with gen-
eral initial conditions, which require extra care. Second, the Pearcey process is associated with a
saddle point of the action to be analyzed with the steepest descent method. This saddle point is
indeed a “triple critical point” as seen in [57], referring to the fact that the first three derivatives of
the action vanish (see Lemma 5.4 below), which adds to the difficulty of the asymptotic analysis.
Besides, the fact that the distance between the cusp point and the boundary of the domain is of
ordermuch smaller than 𝑛makes it hard to tame the behavior of the analyzed function away from
the saddle point. Much technical effort and some innovations (such as a multistep approximation
of the analyzed functions and a discretization of the contours) are presented to overcome these
issues.
Finally, we mention some possible future directions regarding tiling (or dimer) models that are

closely related to this paper. First, the framework developed in this paper for the proof of cusp
universality and Pearcey statistics can be applied to models beyond the realm of tilings. For exam-
ple, it may be used to establish the Pearcey statistics for the Brownian motions on large unitary
groups in certain regimes of interest [11]. Second, the scaling limits of random tilings around the
three types of nongeneric singularities have been proved for some special domains; see, e.g., [35]
for the cusp-Airy process around cuspidal turning points, [8, 14] for the Tacnode process, and
[9, 10, 14] for the discrete Tacnode process. It would be interesting to prove the universality of
these processes in tiling models. The third direction is to establish local statistics universality for
other tiling models. For uniformly random domino tilings, we expect that the existing methods
can be adapted to show universalities at smooth and cusp points, analogous to [6] and this paper.
It would also be interesting to consider random tilings with nonuniform measures, such as the
various weighted ones [15, 17, 24, 30, 36, 55].
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6 HUANG et al.

1.3 Organization of the remaining text

In Section 2, we formally define our model and present the main results regarding the Pearcey
universality of uniform lozenge tilings (Theorem 2.7) and NBRW (Theorem 2.9). In Section 3,
we introduce the monotonicity and Gibbs properties of uniform random tilings that will be used
repeatedly. We will prove Theorem 2.7 in Section 4 by combining three main ingredients: NBRW
universality (from Theorem 2.9), optimal rigidity around cusps, and limiting height function esti-
mates.Wewill prove Theorem 2.9 in Section 5, and complete the remaining two steps in Sections 6
and 7, respectively.

2 SETUP ANDMAIN RESULTS

To facilitate the presentation, we introduce some necessary notations that will be used throughout
the paper. In this paper, we are interested in the asymptotic regime with 𝑛 → ∞. When we refer
to a constant, it will not depend on the parameter 𝑛. Unless otherwise noted, we will use 𝐶 to
denote a large positive constant, whose value may change from line to line. Similarly, we will
use 𝜖, 𝛿, 𝑐, 𝔠, 𝔡, and so forth to denote small positive constants. For an event Ξ𝑛 whose definition
depends on 𝑛, we say that it holdswith overwhelming probability (w.o.p.), if for any constant𝐷 > 0,
there is ℙ(Ξ𝑛) ≥ 1 − 𝑛−𝐷 for all large enough 𝑛. For any two (possibly complex) sequences 𝑎𝑛
and 𝑏𝑛 depending on 𝑛, 𝑎𝑛 = (𝑏𝑛) means that |𝑎𝑛| ≤ 𝐶|𝑏𝑛| for some constant 𝐶 > 0, whereas
𝑎𝑛 = o(𝑏𝑛) or |𝑎𝑛|≪ |𝑏𝑛|means that |𝑎𝑛|∕|𝑏𝑛|→ 0 as 𝑛 → ∞. We say that 𝑎𝑛 ≲ 𝑏𝑛 (or 𝑏𝑛 ≳ 𝑎𝑛)
if 𝑎𝑛 = (𝑏𝑛), and 𝑎𝑛 ≍ 𝑏𝑛 if 𝑎𝑛 = (𝑏𝑛) and 𝑏𝑛 = (𝑎𝑛).
For any 𝑥, 𝑦 ∈ ℝ ∪ {−∞,∞}, 𝑥 ≤ 𝑦, we denote ⟦𝑥, 𝑦⟧ = [𝑥, 𝑦] ∩ ℤ, 𝑥 ∨ 𝑦 = max{𝑥, 𝑦}, and

𝑥 ∧ 𝑦 = min{𝑥, 𝑦}. For an event 𝐴, we let 𝟙𝐴 or 𝟙[𝐴] denote its indicator function. For any set
𝑆, we use |𝑆| to denote its cardinality. For any 𝐷 ⊂ ℝ2 we use 𝐷 to denote its closure. We use
ℍ = {𝑧 ∈ ℂ ∶ Im𝑧 > 0} and ℍ− = {𝑧 ∈ ℂ ∶ Im𝑧 < 0} to denote the upper- and lower-half com-
plex planes, respectively. We also employ the Pochhammer symbols (𝑧)𝑘 = 𝑧(𝑧 + 1)… (𝑧 + 𝑘 − 1)

and the binomial coefficients
(𝑘
𝑎

)
= (−1)𝑎

(−𝑘)𝑎

𝑎!
, for any 𝑧 ∈ ℂ and 𝑘, 𝑎 ∈ ℤ≥0.

2.1 Lozenge tilings

We denote by 𝕋 the triangular lattice, namely, the graph whose vertex set is ℤ2 and whose edge
set consists of edges connecting (𝗑, 𝗍), (𝗑′, 𝗍′) ∈ ℤ2 if (𝗑′ − 𝗑, 𝗍′ − 𝗍) ∈ {(1, 0), (0, 1), (1, 1)}. The axes
of 𝕋 are the lines {𝗑 = 0}, {𝗍 = 0}, and {𝗑 = 𝗍}, and the faces of 𝕋 are triangles with vertices of
the form

{
(𝗑, 𝗍), (𝗑 + 1, 𝗍), (𝗑 + 1, 𝗍 + 1)

}
or
{
(𝗑, 𝗍), (𝗑, 𝗍 + 1), (𝗑 + 1, 𝗍 + 1)

}
. A domain 𝖱 ⊆ ℝ2 is a

finite union of triangular faces that is simply connected. As a slight abuse of this notation, we also
denote by 𝖱 the set of all vertices incident to these triangular faces or the subgraph of 𝕋 induced
by these vertices.
When viewing 𝖱 as a vertex set, the boundary 𝜕𝖱 ⊆ 𝖱 is the set of vertices 𝗏 ∈ 𝖱 adjacent

to a vertex in 𝕋 ⧵ 𝖱; when viewing 𝖱 as a union of triangular faces, 𝜕𝖱 is the union of its
boundary edges.
A dimer covering of a domain 𝖱 ⊆ 𝕋 is defined to be a perfect matching on the dual graph of 𝖱

(which has a vertex for each triangular face of 𝖱, and an edge for each pair of adjacent triangular
faces). A pair of adjacent triangular faces in any such matching forms a parallelogram, which we
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 7

F IGURE 2 Depicted to the right are the three types of lozenges. Depicted in the middle is a lozenge tiling of
a hexagon. One may view this tiling as a packing of boxes (of the type depicted on the left) into a large corner,
which gives rise to a height function (shown in the middle).

will also refer to as a lozenge or tile. Lozenges can be oriented in one of three ways; see the right
side of Figure 2 for all three orientations. The vertices are in the form of

∙
{
(𝗑, 𝗍), (𝗑, 𝗍 + 1), (𝗑 + 1, 𝗍 + 2), (𝗑 + 1, 𝗍 + 1)

}
, the left lozenge in the right side of Figure 2, or

∙
{
(𝗑, 𝗍), (𝗑 + 1, 𝗍), (𝗑 + 2, 𝗍 + 1), (𝗑 + 1, 𝗍 + 1)

}
, the middle lozenge in the right side of Figure 2, or

∙
{
(𝗑, 𝗍), (𝗑 + 1, 𝗍), (𝗑 + 1, 𝗍 + 1), (𝗑, 𝗍 + 1)

}
, the right lozenge in the right side of Figure 2.

These lozenges are referred to as type 1, type 2, and type 3 lozenges, respectively. A dimer cover-
ing of 𝖱 can equivalently be interpreted as a tiling of 𝖱 by lozenges of types 1, 2, and 3. Therefore,
we will also refer to a dimer covering of 𝖱 as a (lozenge) tiling. We call 𝖱 tileable if it admits
a tiling.
Themain object we investigate in this paper is uniformly random tilings, where we consider the

probability measure on the (finite) space of all tilings of a tileable domain where each tiling has
the same probability.

2.1.1 Height function and its restriction at the boundary

For a chosen vertex 𝗏 of 𝖱 and an integer ℎ0 ∈ ℤ, one can associate with any tiling of 𝖱 a height
function𝖧 ∶ 𝖱 → ℝ as follows. First, set𝖧(𝗏) = ℎ0, and then define𝖧 at the remaining vertices of𝖱
in such away that the height functions along the four vertices of any lozenge in the tiling are of the
form depicted on the right side of Figure 2. In particular, we require that𝖧(𝗑 + 1, 𝗍) = 𝖧(𝗑, 𝗍) if and
only if (𝗑, 𝗍) and (𝗑 + 1, 𝗍) are vertices of the same type 1 lozenge, and that𝖧(𝗑, 𝗍) − 𝖧(𝗑, 𝗍 + 1) = 1 if
and only if (𝗑, 𝗍) and (𝗑, 𝗍 + 1) are vertices of the same type 2 lozenge. Since 𝖱 is simply connected,
the height function𝖧 on the vertex set 𝖱 is uniquely determined by these conditions (up to adding
a global constant which is necessarily an integer). This height function 𝖧 can be extended by
linearity to the faces of 𝖱, so that it may also be viewed as a piecewise linear function on 𝖱 ⊆ ℝ2.
For any height function 𝖧, we refer to the restriction 𝗁 = 𝖧|𝜕𝖱 as the boundary height function,

which is a piecewise linear function on the boundary edges. We note that for any tileable domain
𝖱, the boundary height function, up to a global shift, is independent of the choice of the tiling
(thereby uniquely determined by 𝖱). Indeed, along any boundary edge with slope 1 or ∞, any
boundary height function 𝗁 must be constant. Along any boundary edge with slope 0, 𝗁 must
grow linearly with rate 1, that is, for any (𝗑, 𝗍), (𝗑 + 1, 𝗍) ∈ 𝜕𝖱 ∩ 𝕋, there is 𝖧(𝗑 + 1, 𝗍) = 𝖧(𝗑, 𝗍) + 1.
Since 𝖱 is simply connected, 𝜕𝖱 is a closed curve, and the above rules determine 𝗁 once its value
at one point in 𝜕𝖱 is given.
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8 HUANG et al.

F IGURE 3 Depicted to the left is an ensemble consisting of six nonintersecting Bernoulli paths. Depicted to
the right is an associated lozenge tiling. Here the vertical axis is the time axis. In the right graph, to make the
Bernoulli paths clearer, we have shifted them to the right by half unit—these paths should have been along the
edges of the tiles by the formal definition (2.1).

We refer to themiddle of Figure 2 for an example; as depicted there, we can also view a (lozenge)
tiling of 𝖱 (which is a hexagon) as a packing of 𝖱 by boxes of the type shown on the left side of
Figure 2. In this case, the value 𝖧(𝗎) of the height function associated with this tiling at some
vertex 𝗎 ∈ 𝖱 denotes the height of the stack of boxes at 𝗎.
A tiling can also be interpreted as a family of nonintersecting Bernoulli paths.

2.1.2 Nonintersecting Bernoulli paths

A Bernoulli path is a function 𝖻 ∶ ⟦𝗋, 𝗌⟧→ ℤ for some 𝗋, 𝗌 ∈ ℤ, such that 𝖻(𝗍 + 1) − 𝖻(𝗍) ∈ {0, 1}
for each 𝗍 ∈ [[𝗋, 𝗌 − 1]]. It denotes the space–time trajectory of a walk, which takes either a “non-
jump” (𝖻(𝗍 + 1) = 𝖻(𝗍)) or a “right-jump” (𝖻(𝗍 + 1) = 𝖻(𝗍) + 1) at each step. We call the interval
[[𝗋, 𝗌]] the time span of the Bernoulli path 𝖻. As an extension of the notion of Bernoulli paths, for
any 𝐼 ⊂ ⟦𝗋, 𝗌⟧, we also call 𝖻 restricted to 𝐼 a Bernoulli path (whose time span 𝐼 is possibly a union
of several discrete intervals).
Take any 𝑀,𝑁 ∈ ℤ, 𝑀 ≤ 𝑁, and 𝐼𝑖 ⊂ ℤ for each 𝑖 ∈ [[𝑀,𝑁]]. A family of (consecutive)

Bernoulli paths {𝖻𝑖}𝑖∈[[𝑀,𝑁]], with each 𝖻𝑖 having time span 𝐼𝑖 , is called nonintersecting, if for any
𝑀 ≤ 𝑖 < 𝑗 ≤ 𝑁 and any 𝗍 ∈ 𝐼𝑖 ∩ 𝐼𝑗 , there is always 𝖻𝑖(𝗍) − 𝑖 ≤ 𝖻𝑗(𝗍) − 𝑗. Another notation that we
will also use to denote such nonintersecting Bernoulli paths is in the form of a function 𝖡, from
ℤ to the set

{(𝗑𝑖)𝑖∈Φ ∈ ℤΦ ∶ Φ ⊂ ℤ, 𝗑𝑖 − 𝑖 ≤ 𝗑𝑗 − 𝑗, ∀𝑖 < 𝑗 ∈ Φ},

with 𝖡(𝗍) = (𝖻𝑖(𝗍))𝑖∈[[𝑀,𝑁]],𝐼𝑖∋𝗍 for each 𝗍 ∈ ℤ, and Φ ⊂ ℤ is any index set.
For any domain 𝖱 and any tiling ℳ of 𝖱, we may interpret ℳ as a family of nonintersecting

Bernoulli paths by (roughly speaking) first omitting all type 1 lozenges fromℳ, and then view-
ing any type 2 or type 3 tile as a right-jump or nonjump of a Bernoulli path, respectively; see
Figure 3 for a depiction. More formally, the nonintersecting Bernoulli paths are defined by tak-
ing any height function 𝖧 ∶ 𝖱 → ℤ associated with the tilingℳ, and letting 𝖻𝑖(𝗍) be the number
satisfying

𝖧(𝖻𝑖(𝗍), 𝗍) = 𝑖, 𝖧(𝖻𝑖(𝗍) + 1, 𝗍) = 𝑖 + 1, (2.1)

if such a number exists (note that the number is also unique since 𝖧(⋅, 𝗍) is nondecreasing). We
remark that the nonintersecting Bernoulli paths are uniquely determined by the tilingℳ, modulo
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 9

a global shift of the indices of individual paths. Then, we can define the nonintersecting Bernoulli
paths 𝖡(𝗍) as above and the function𝖬 from ℤ to the collection of finite subsets of ℤ as

𝖬(𝗍) ∶= {𝖻𝑖(𝗍) ∶ 𝑖 ∈ [[𝑀,𝑁]], 𝐼𝑖 ∋ 𝗍}, (2.2)

that is,𝖬 is obtained from 𝖡 by ignoring the indices (or order) of paths.

2.2 Limit shapes

To analyze the limits of height functions of random tilings, it will be useful to introduce continuum
analogs of several notions considered in Section 2.1. We set

 =
{
(𝑠, 𝑡) ∈ (0, 1) × (−1, 0) ∶ 𝑠 + 𝑡 > 0

}
⊂ ℝ2, (2.3)

and its closure  =
{
(𝑠, 𝑡) ∈ [0, 1] × [−1, 0] ∶ 𝑠 + 𝑡 ≥ 0

}
. We interpret  as the set of possible gra-

dients, also called slopes, for a continuum height function;  is then the set of “non-frozen” or
“liquid” slopes, whose associated tilings contain tiles of all types. For any simply connected open
setℜ ⊂ ℝ2, we say that a function𝐻 ∶ ℜ → ℝ is admissible if𝐻 is 1-Lipschitz and∇𝐻(𝑣) ∈  for
almost all 𝑣 ∈ ℜ. By the Lipschitz continuity, 𝐻 can be extended continuously to the boundary
𝜕ℜ. For any function ℎ ∶ 𝜕ℜ → ℝ, we then define Adm(ℜ; ℎ) to be the set of admissible func-
tions 𝐻 ∶ ℜ → ℝ with boundary value 𝐻|𝜕ℜ = ℎ; and we say that ℎ ∶ 𝜕ℜ admits an admissible
extension toℜ if Adm(ℜ; ℎ) is not empty.
We say a sequence of domains 𝖱1, 𝖱2, … ⊂ 𝕋 converges to a simplyconnected set ℜ ⊂ ℝ2 if

𝑛−1𝖱𝑛 ⊆ ℜ for each 𝑛 ≥ 1 and lim𝑛→∞ dist(𝑛−1𝜕𝖱𝑛, 𝜕ℜ) = 0. We further say a sequence 𝗁1, 𝗁2, …
of boundary height functions on 𝖱1, 𝖱2, … converges to a boundary height function ℎ ∶ 𝜕ℜ → ℝ if
lim𝑛→∞ 𝑛−1𝗁𝑛(𝑛𝑣𝑛) = ℎ(𝑣) for any sequence of points 𝑣𝑛 → 𝑣 with 𝑣𝑛 ∈ 𝑛−1𝜕𝖱𝑛 and 𝑣 ∈ ⦊𝑅.
To state results on the limiting height function of random tilings, for any 𝑥 ∈ ℝ≥0 and (𝑠, 𝑡) ∈ 

we denote the Lobachevsky function 𝐿 ∶ ℝ≥0 → ℝ and the surface tension 𝜎 ∶  → ℝ by

𝐿(𝑥) = −∫
𝑥

0
log |2 sin 𝑧|d𝑧; 𝜎(𝑠, 𝑡) =

1
𝜋
(𝐿(𝜋(1 − 𝑠)) + 𝐿(−𝜋𝑡) + 𝐿(𝜋(𝑠 + 𝑡))). (2.4)

For any admissible 𝐻 ∶ ℜ → ℝ, we further define the entropy functional

(𝐻) = ∫ℜ 𝜎(∇𝐻(𝑣))d𝑣. (2.5)

The following variational principle of [32] states that the height function associated with a uni-
formly random tiling of a sequence of domains converging toℜ converges to the maximizer of 
with high probability.

Lemma 2.1 [32, Theorem 1.1]. Let 𝖱1, 𝖱2, … ⊂ 𝕋 denote a sequence of tileable domains, with
associated boundary height functions 𝗁1, 𝗁2, …, respectively. Assume that they converge to a simply
connected setℜ ⊂ ℝ2 with piecewise smooth boundary, and a boundary height function ℎ ∶ 𝜕ℜ →
ℝ, respectively. Denoting the height function associated with a uniformly random tiling of 𝖱𝑛 with
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10 HUANG et al.

F IGURE 4 Shown above the complex slope 𝑓∗ = 𝑓∗(𝑥, 𝑡).

boundary height function 𝗁𝑛 by 𝖧𝑛, we have for any constant 𝜀 > 0,

lim
𝑛→∞

ℙ

(
max
𝗏∈𝖱𝑛

||𝑛−1𝖧𝑛(𝗏) − 𝐻∗(𝑛−1𝗏)|| > 𝜀

)
= 0,

where𝐻∗ is the unique maximzer of  onℜ with boundary data ℎ,

𝐻∗ = argmax𝐻∈Adm(ℜ;ℎ) (𝐻). (2.6)

The fact that there is a unique maximizer described as in (2.6) follows from Proposition 4.5 of
[41]. The region where ∇𝐻∗ ∈  is called the liquid region 𝔏 = 𝔏(ℜ) ⊂ ℜ,

𝔏 =
{
𝑣 ∈ ℜ ∶ ∇𝐻∗(𝑣) ∈  }, (2.7)

where we expect to see all three types of lozenges.

2.3 Complex slope

An important quantity that characterizes the limiting height function 𝐻∗ as in (2.6) is the
complex slope 𝑓∗ ∶ 𝔏 → ℍ−. For any (𝑥, 𝑡) ∈ 𝔏, 𝑓∗(𝑥, 𝑡) ∈ ℍ− is the unique complex number
satisfying

arg∗ 𝑓∗(𝑥, 𝑡) = −𝜋𝜕𝑥𝐻
∗(𝑥, 𝑡), arg∗ (𝑓∗(𝑥, 𝑡) + 1) = 𝜋𝜕𝑡𝐻

∗(𝑥, 𝑡); (2.8)

see Figure 4 for a depiction. Hereafter, for any 𝑧 ∈ ℝ ∪ ℍ− ⧵ {0}, we set arg∗ 𝑧 = 𝜃 ∈ [−𝜋, 0] to be
the unique number in [−𝜋, 0] satisfying 𝑒−i𝜃𝑧 ∈ ℝ>0. Note that we interpret 1 − 𝜕𝑥𝐻∗(𝑥, 𝑡) and
−𝜕𝑡𝐻

∗(𝑥, 𝑡) as the approximate proportions of types 1 tiles and type 2 tiles around (𝑛𝑥, 𝑛𝑡) ∈ 𝖱𝑛,
respectively (which follows from the definition of the limiting height function in Section 2.1.1).
Below we also denote 𝑓∗𝑡 (𝑥) = 𝑓∗(𝑥, 𝑡) for any (𝑥, 𝑡) ∈ 𝔏.
The following result from [51] indicates that the complex slope 𝑓∗ satisfies the complex Burgers

equation in the liquid region.

Proposition 2.2 [51, Theorem 1]. For any (𝑥, 𝑡) ∈ 𝔏, we have that

𝜕𝑡𝑓
∗
𝑡 (𝑥) + 𝜕𝑥𝑓

∗
𝑡 (𝑥)

𝑓∗𝑡 (𝑥)

𝑓∗𝑡 (𝑥) + 1
= 0. (2.9)
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 11

2.4 Polygonal domains

This paper concerns tilings of polygonal domains, which we describe now.

Definition 2.3. An open set 𝔓 ⊂ ℝ2 is polygonal if its boundary 𝜕𝔓 consists of a finite union
of line segments, each of which is parallel to an axis of 𝕋. For the rest of this paper, when-
ever we take a polygonal set, it is always assumed to be simply connected. The set is rational
polygonal if, in addition, every endpoint of each segment in 𝜕𝔓 is a rational point. We note
that being rational is equivalent to that there exists some 𝑛0 ∈ ℕ with 𝑛0𝔓 being a tileable
domain.

From this definition, for any 𝑛 ∈ 𝑛0ℕ, 𝖯 ≡ 𝖯𝑛 = 𝑛𝔓 is a tileable domain, and is, therefore, asso-
ciated with a (unique up to a global shift) boundary height function 𝗁 = 𝗁𝑛. We set ℎ ∶ 𝜕𝔓 → ℝ
by ℎ(𝑣) = 𝑛−1𝗁(𝑛𝑣) for each 𝑣 ∈ 𝜕𝔓 ∩ 𝑛−1𝕋, and linearly interpolating between points on 𝑛−1𝕋.
It is straightforward to check that this function ℎ is determined by𝔓 (i.e., independent of 𝑛), up
to a global shift.
Let𝐻∗ be the limiting height function of a uniformly random lozenge tiling of𝔓, as defined in

(2.6). We recall  from (2.3) and the liquid region 𝔏 = 𝔏(𝔓) ⊂ 𝔓 from (2.7). We denote the arctic
boundary𝔄 = 𝔄(𝔓) ⊂ 𝔓 by

𝔏 =
{
𝑣 ∈ 𝔓 ∶ ∇𝐻∗(𝑣) ∈  }, and 𝔄 = 𝜕𝔏. (2.10)

The liquid region and arctic boundary are determined by the set 𝔓, and have the following
properties.

Lemma 2.4 [2, 51]. Assume that𝔓 is a rational polygonal set, then the followings hold.

(1) For themaximizer𝐻∗ = argmax𝐻∈Adm(ℜ;ℎ) (𝐻), which is determined by𝔓 up to a global shift,
∇𝐻∗ is piecewise constant on𝔓 ⧵ 𝔏(𝔓), taking values in

{
(0, 0), (1, 0), (1, −1)

}
.

(2) The arctic boundary𝔄(𝔓) is an algebraic curve, and its singularities are all either ordinary cusps
or tacnodes.

These results are proved in [2, 51] and quoted in this form as [6, Lemma 2.3]. The first statement
is by [2, Theorem 1.9], and the second statement is by [2, Theorem 1.2, Theorem 1.10] (see also [51,
Theorem 2, Proposition 5]).
For polygonal set, it was proved in [2, Theorem 1.2, Theorem 1.5] that the complex slope (𝑥, 𝑡) ↦

𝑓∗𝑡 (𝑥) extends to the arctic boundary. More precisely, the complex slope extends to a continuous
function from (𝔓) to the one point compactification ℂ ∪ {∞}. For any (𝑥, 𝑡) ∈ 𝔄, 𝑓∗𝑡 (𝑥) ∈ ℝ ∪
{∞} and the slope of the arctic boundary at (𝑥, 𝑡) is given by

𝑓∗𝑡 (𝑥) + 1

𝑓∗𝑡 (𝑥)
. (2.11)

For a nonsingular point in 𝔄, we call it a tangency location of 𝔄, if the tangent line to 𝔄 has
slope in {0, 1,∞}. We need to impose the following assumptions of a rational polygonal set𝔓, on
its arctic boundary.
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12 HUANG et al.

Assumption 2.5. For a rational polygonal set 𝔓 ⊂ ℝ2, assume the following four properties
hold.

(1) The arctic boundary𝔄 = 𝔄(𝔓) has no tacnode singularities.
(2) No cusp singularity of𝔄 is also a tangency location of𝔄.
(3) There exists an axis 𝓁 of 𝕋 such that any line connecting two distinct cusp singularities of 𝔄

is not parallel to 𝓁.
(4) Any intersection point between 𝔄 and 𝜕𝔓 must be a tangency location of 𝔄. Moreover,

∇𝐻∗(𝑥, 𝑡) is continuous at any point on𝔄 that is not a tangency location.

As discussed in [6, Remark 2.8], these assumptions are believed to hold for a generic rational
polygonal set with a given number of sides, as violating each assumption is equivalent to that
the side lengths satisfy a certain algebraic equation; but here we do not provide a rigorous proof
of this.

2.5 Pearcey process

As another preparation for our main results, we formally define the Pearcey process  as a time-
dependent random collection of infinitelymany particles onℝ, with themultitime gap probability
given by the Fredholm determinant

ℙ [(𝑡𝑖) ∩ 𝐸𝑖 = ∅, ∀1 ≤ 𝑖 ≤ 𝑚] = det
(
𝐼 − 𝜒Pearcey)

𝐿2({𝑡1,…,𝑡𝑚}×ℝ)

for any 𝑡1 < ⋯ < 𝑡𝑚 and finite unions of intervals 𝐸1, … , 𝐸𝑚. Here, 𝜒 is the projection opera-
tor, acting as 𝜒𝑓(𝑡𝑖, 𝑥) = 𝟙[𝑥 ∈ 𝐸𝑖]𝑓(𝑡𝑖, 𝑥) for 𝑓 ∶ {𝑡1, … , 𝑡𝑚} × ℝ → ℝ, andPearcey is the integral
operator, acting as

Pearcey𝑓(𝑡𝑖, 𝑥) =
𝑚∑
𝑗=1

∫ 𝐾Pearcey(𝑡𝑖, 𝑥; 𝑡𝑗, 𝑦)𝑓(𝑡𝑗, 𝑦)𝑑𝑦,

with the extended Pearcey kernel

𝐾Pearcey(𝑠, 𝑥; 𝑡, 𝑦) = −
𝟙[𝑠 < 𝑡]√
2𝜋(𝑡 − 𝑠)

exp

(
−
(𝑥 − 𝑦)2

2(𝑡 − 𝑠)

)

+
1

(2𝜋𝐢)2 ∬
d𝐳d𝐰
𝐳 −𝐰

exp

(
−𝐳4 + 𝐰4

4
+
𝑡𝐳2 − 𝑠𝐰2

2
− 𝑦𝐳 + 𝑥𝐰

)
, (2.12)

for any 𝑠, 𝑥, 𝑡, 𝑦 ∈ ℝ; see, for example, [12]. The 𝐳 contour is taken to be the straight vertical line
Re(𝐳) = 0 traversed upwards (from −∞𝐢 to ∞𝐢), and the 𝐰 contour contains the straight lines
from∞𝑒𝜋𝐢∕4 and −∞𝑒𝜋𝐢∕4 to 0, and from 0 to∞𝑒−𝜋𝐢∕4 and −∞𝑒−𝜋𝐢∕4.

2.6 Main results

To state our result on the Pearcey process in tilings, we need to define the scaling parameters.
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 13

F IGURE 5 Shown above is an upward oriented cusp at (𝑥𝑐, 𝑡𝑐). Here 𝐸− and 𝐸+ are two pieces of𝔄, defined
at the beginning of Section 4.

Definition 2.6. For a rational polygonal set𝔓, fix a cusp point (𝑥𝑐, 𝑡𝑐) ∈ 𝔄 = 𝔄(𝔓) that is not a
tangency location. We say that (𝑥𝑐, 𝑡𝑐) is upward-oriented, if the slope of the tangent line through
(𝑥𝑐, 𝑡𝑐) is in (1,∞), and there exist (𝔯, 𝔮) = (𝔯(𝑥𝑐, 𝑡𝑐; 𝔄), 𝔮(𝑥𝑐, 𝑡𝑐; 𝔄)) ∈ ℝ2 so that

𝑥 − 𝑥𝑐 =
(𝑡 − 𝑡𝑐)

𝔯
±

2𝔮

3
√
3
(𝑡𝑐 − 𝑡)

3∕2 + ((𝑡𝑐 − 𝑡)2), (2.13)

for all (𝑥, 𝑡) ∈ 𝔄 in a sufficiently small neighborhood of (𝑥𝑐, 𝑡𝑐). See Figure 5 for an illustration.
We note that these conditions can always be achieved by rotating 𝔓. We call (𝔯, 𝔮) the curvature
parameters (𝔯, 𝔮) associated with (𝑥𝑐, 𝑡𝑐). Note that 𝔯 =

𝑓∗𝑡𝑐 (𝑥𝑐)+1

𝑓∗𝑡𝑐 (𝑥𝑐)
, according to (2.11).

Our main cusp universality result is as follows.

Theorem 2.7. Take a rational polygonal set 𝔓 ⊂ ℝ2 satisfying Assumption 2.5, and let 𝐻∗ be a
limiting height function of it. Fix some point (𝑥𝑐, 𝑡𝑐) that is a cusp location of𝔄(𝔓). Assume (without
loss of generality) that this cusp is upward-oriented as stated in Definition 2.6. Denote the associated
curvature parameters by (𝔯, 𝔮), with 𝔯 ∈ (1,∞) and 𝔮 > 0.
Take 𝑛 ∈ ℕ such that 𝖯 = 𝑛𝔓 is a tileable domain. Letℳ denote a uniformly random tiling of 𝖯. It

is associated with a (random) family of nonintersecting Bernoulli paths (as defined in Section 2.1.2),
which we denote by a function𝖬 in (2.2). Then as 𝑛 → ∞, the process

𝑡 ↦
𝖬
(⌊𝑛𝑡𝑐 −√𝔯 − 1𝑛1∕2𝑡∕(𝔯𝔮)⌋) − 𝑛𝑥𝑐 +√𝔯 − 1𝑛1∕2𝑡∕(𝔯2𝔮)

(𝔯 − 1)3∕4𝑛1∕4∕
√
𝔮𝔯3

(2.14)

converges to the Pearcey process  , in the sense of convergence as point processes, in any set of the
form {𝑡1, … , 𝑡𝑚} × 𝐸 with 𝑡1 < ⋯ < 𝑡𝑚 and 𝐸 being a compact interval.

Remark 2.8. Here, we have used the Pearcey process whose boundary is like 𝑥 = 2(𝑡∕3)3∕2 (see,
e.g., [1]). In our setting, the arctic boundary around the cusp (𝑥𝑐, 𝑡𝑐) is parametrized by (2.13).
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14 HUANG et al.

Hence, we need to rescale it to 𝑥 = 2(𝑡∕3)3∕2. Each path in the Pearcey process locally behaves like
a Brownian motion. Locally around the cusp, the nonintersecting Bernoulli paths have drift 1∕𝔯,
so each step has variance (1∕𝔯)(1 − 1∕𝔯). To make them behave like Brownian motions without
drift, we need to do the following Brownian scaling:

𝖬̂ = 𝑎
(𝖬 − 𝑛𝑥𝑐) − (𝗍 − 𝑛𝑡𝑐)∕𝔯√

(1∕𝔯)(1 − 1∕𝔯)
, 𝗍̂ = 𝑎2(𝑛𝑡𝑐 − 𝗍), 𝑎 =

√
𝔮𝔯√
𝔯 − 1

, (2.15)

where 𝑎 is determined by 𝖬̂∕𝑛 = 2(̂𝗍∕3𝑛)3∕2. To get the Pearcey process, we further rescale the
space by 𝑛−1∕4 and time by 𝑛−1∕2 so that the gaps between two paths are of order one:

𝖬̃ = 𝑛−1∕4𝖬̂, 𝗍̃ = 𝑛−1∕2̂𝗍, (2.16)

which leads to (2.14).

2.6.1 Universality of nonintersecting Bernoulli random walks (NBRW)

As already indicated, in proving Theorem 2.7, a key step is to understand the universality of the
Pearcey process in the related model of NBRW, which we now define formally.
NBRW as a Markov chain. The NBRW 𝖠 ∶ [[0,∞]] → ℤ[[−𝑀,𝑁]] that we will consider can be

defined as a Markov chain on time [[0,∞]], with state space being the Weyl chamber{
{𝗑𝑖}𝑖∈[[−𝑀,𝑁]] ∈ ℤ⟦−𝑀,𝑁⟧ ∶ 𝗑−𝑀 < ⋯ < 𝗑𝑁

}
for some 𝑀,𝑁 ∈ ℕ. The transition probability is given as follows. Take 𝛽 ∈ (0, 1), which is the
drift parameter. For any 𝗍 ∈ [[0,∞]], let ℙ

[
𝖠(𝗍 + 1) = {𝗒𝑖}𝑖∈[[−𝑀,𝑁]] ∣ 𝖠(𝗍) = {𝗑𝑖}𝑖∈[[−𝑀,𝑁]]

]
equal

(1 − 𝛽)𝑀+𝑁+1
∏

−𝑀≤𝑖≤𝑁

(
𝛽

1 − 𝛽

)𝗒𝑖−𝗑𝑖 ∏
−𝑀≤𝑖<𝑗≤𝑁

(𝗒𝑖 − 𝗒𝑗)

(𝗑𝑖 − 𝗑𝑗)
,

when each 𝗒𝑖 − 𝗑𝑖 ∈ {0, 1}; and 0 otherwise. Alternatively, 𝖠 can be defined as a collection of𝑀 +
𝑁 + 1 independent Bernoulli (𝛽) random walks on [[0,∞]], conditioned on never intersect. It can
also be viewed as a discrete analog of the Dyson Brownian motion with parameter 2.
With the relation between tilings and nonintersecting Bernoulli paths given in Section 2.1.2, we

can view NBRW on ⟦0,∞⟧ as a random tiling of the upper-half plane, where the boundary height
function on the horizontal axis is in correspondence with the initial configuration 𝖠(0).
We next describe a universal convergence of NBRW to the Pearcey process. Roughly speaking,

it says that if the initial configuration of NBRW contains two separated groups of particles, with
the gap between them and their density growth being of “proper” orders, then the Pearcey process
appears when these two groups of particles merge together.
We start with the setup. Fix any 𝜙 ∈ (0, 1∕2). Let 𝜖1 > 0 be a small enough constant (depending

on 𝜙), and then 𝜖4 > 0 be a small enough constant (depending on 𝜙 and 𝜖1). To state the
asymptotic result, we consider a sequence of NBRWs: for each integer 𝑛 > 0, we consider
NBRW 𝖠 on [[0,∞]] with drift parameter 𝛽 ∈ (𝜙, 1 − 𝜙) and (possibly random) initial condition
𝖠(0) = {𝖽𝑖}𝑖∈⟦−𝑀,𝑁⟧ for some 𝑀,𝑁 ≍ 𝑛. We assume that {𝖽𝑖}𝑖∈⟦−𝑀,𝑁⟧ (with scaling 𝑛−1) can be
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 15

approximated by the quantiles of a density function 𝜌0 ∶ ℝ → [0, 1] up to order 𝑛−1+𝜖4 , and 𝜌0
satisfies certain cusp growth at scale 𝑛 and up to distance 𝑡, with 𝑛−1∕2+𝜖1 < 𝑡 ≲ 1, in the sense
to be specified in Assumption 5.1 below. Let 𝑥𝑐, 𝑡𝑐, 𝐴, 𝐵 be real numbers determined by 𝜌0 and
𝛽, via Lemma 5.2 and (5.12) below (in particular, we have 𝑡𝑐 ≍ 𝑡). We remark that all of 𝛽,𝑀, 𝑁,
{𝖽𝑖}𝑖∈⟦−𝑀,𝑁⟧, 𝜌0, 𝑡, 𝑥𝑐, 𝑡𝑐, 𝐴, 𝐵 can depend on 𝑛.
Theorem 2.9. As 𝑛 → ∞, the process

Bernoulli ∶ 𝑡 ↦
𝖠(⌊𝑛𝑡𝑐 − 2𝐴1∕2𝐵(1 − 𝐵)𝑛1∕2𝑡⌋) − 𝑛𝑥𝑐√

2𝐴1∕4𝐵(1 − 𝐵)𝑛1∕4
+
√
2𝐴1∕4𝐵𝑛1∕4𝑡,

converges to the Pearcey process, in the sense of convergence as point processes, in any set of the form
{𝑡1, … , 𝑡𝑚} × 𝐸 with 𝑡1 < ⋯ < 𝑡𝑚 and 𝐸 being a compact interval.

We note that this is a “normal and smaller distance” result, in the sense that while the Pearcey
process has temporal and spatial scalings of order 𝑛1∕2 × 𝑛1∕4, the time when it appears is of order
𝑛𝑡𝑐 ≍ 𝑛𝑡, which is ≳ 𝑛1∕2+𝜖1 and ≲ 𝑛. We cannot expect a Pearcey process of order 𝑛1∕2 × 𝑛1∕4 at
any time much beyond this window: on one hand, the time to the boundary must be much larger
than the temporal scaling 𝑛1∕2; on the other hand, at any timemuch larger than 𝑛, the spatial fluc-
tuation of the paths should bemuch larger than𝑛1∕4 around a cusp. Therefore, Theorem2.9 covers
almost thewhole possible timewindowwhere a Pearcey process of order𝑛1∕2 × 𝑛1∕4 could appear.
Theorem 2.9 is an immediate consequence of Proposition 5.3 below, which gives a stronger

prelimit estimate of the NBRW determinantal kernel at the cusp.

2.6.2 On the continuous theory of the Pearcey process and convergence

Intuitively, for the nonintersecting Bernoulli paths from a tiling or NBRW around a cusp, they
should converge to a family of continuous processes, under, for example, the topology of uniform
convergence in any compact interval. This limiting family should be a continuous path version of
the Pearcey process  , which has been expected to exist (see, e.g., [60], at the end of the introduc-
tion), and should have Brownian Gibbs property, as that of the Airy line ensemble given in [28]
(see, e.g., [7, Problem 2.34]). Such an object could be called the “Pearcey line ensemble” (PLE),
following the naming convention of the Airy and Bessel line ensembles, constructed in [28] and
[61]. However, as far as we know, such a construction has not yet been accomplished in the lit-
erature, despite that the Pearcey limit has been established for various probabilistic models, such
as random matrices, nonintersecting Brownian motions, and tilings, as stated in the introduc-
tion. Compared to the Airy and Bessel cases, one additional difficulty is that paths in the PLE
are indexed by ℤ rather than ℕ. This causes a labeling issue: in Airy or Bessel, the point process
distribution at a fixed time gives the distribution of the continuous paths at this time, since the 𝑖th
highest point must be in the 𝑖th path. However, for Pearcey, given the point process at one time,
additional information is needed to determine which points correspond to the paths that would
→∞ or −∞ as 𝑡 → ∞.
In terms of the convergence to the Pearcey process, all the proven results are (more or less equiv-

alently) in the sense of convergence as point processes at finitely many times, as our Theorems 2.7
and 2.9; and this is what one can hope for without having the PLE defined. We expect that once
the PLE is built, there should be a general theorem upgrading all such point process convergence
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16 HUANG et al.

to uniform in compact convergence, as long as the prelimiting model has some local Gibbs prop-
erties (such as Lemma 3.4 below for tilings). For the Airy line ensemble such a theorem exists; see
[40, Theorem 4.2].

3 MONOTONICITY AND GIBBS PROPERTIES

In the study of uniformly random tilings and related models of random nonintersecting paths, an
important and widely used monotonicity property roughly says that: for two random configura-
tions, if they are “close to each other” at the boundary of a region, they should also be “close to
each other” inside the region. It has various versions in the literature (see, e.g., [26, Lemma 18],
[28, Lemmas 2.6 and 2.7], [29, Lemmas 2.6 and 2.7], and [39, Lemma 5.6]). Here, we record some
that will be used later.
The first one is for random nonintersecting Bernoulli paths. To proceed, we need some more

notations. Take a family of nonintersecting Bernoulli paths 𝖡 = {𝖻𝑖}𝑖∈[[1,𝑚]], consisting of𝑚 paths,
with each 𝖻𝑖 having the same time span [[0, 𝗋]]. Given functions 𝖿 , 𝗀 ∶ [[0, 𝗋]] → ℝ, we say that 𝖡
has 𝖿 and 𝗀 as boundary conditions if 𝖿(𝗍) ≤ 𝖻𝑖(𝗍) ≤ 𝗀(𝗍) for each 𝗍 ∈ [[0, 𝗋]] and 𝑖 ∈ [[1,𝑚]]. We refer
to 𝖿 and 𝗀 as the left boundary and the right boundary, respectively, and allow 𝖿 and 𝗀 to be −∞ or
∞. We say that 𝖡 has entrance condition 𝖽 = (𝖽1, 𝖽2, … , 𝖽𝑚) and exit condition 𝖾 = (𝖾1, 𝖾2, … , 𝖾𝑚)
if 𝖡(0) = 𝖽 and 𝖡(𝗋) = 𝖾. There are a finite number of nonintersecting Bernoulli paths with given
entrance, exit, and (possibly infinite) boundary conditions.
In what follows, for any functions 𝖿 , 𝖿 ′ ∶ [[0, 𝗋]] → ℝ, we write 𝖿 ≤ 𝖿 ′ if 𝖿(𝗍) ≤ 𝖿 ′(𝗍) for

each 𝗍 ∈ [[0, 𝗋]] and denote |𝖿 − 𝖿′| = max𝗍∈⟦0,𝗋⟧ |𝖿(𝗍) − 𝖿′(𝗍)|. Similarly, for any 𝑚-tuples 𝖽 =
(𝖽1, 𝖽2, … , 𝖽𝑚) ∈ ℝ𝑚 and 𝖽′ = (𝖽′1, 𝖽

′
2, … , 𝖽

′
𝑚) ∈ ℝ𝑚, we write 𝖽 ≤ 𝖽′ if 𝖽𝑖 ≤ 𝖽′𝑖 for each 𝑖 ∈ [[1,𝑚]]

and denote |𝖽 − 𝖽′| = max𝑖∈⟦1,𝑚⟧ |𝖽𝑖 − 𝖽′𝑖 |.
Lemma 3.1. Fix integers 𝗋,𝑚 ≥ 1, functions 𝖿 , 𝖿 ′, 𝗀, 𝗀′ ∶ [[0, 𝗋]] → ℝ, and 𝑚-tuples 𝖽, 𝖽′, 𝖾, 𝖾′
with coordinates indexed by [[1,𝑚]]. Let 𝖰 = {𝗊𝑖}𝑖∈[[1,𝑚]] denote uniformly random nonintersecting
Bernoulli pathswith boundary, entrance, and exit conditions given by 𝖿 , 𝗀, 𝖽, 𝖾; define𝖰′ = {𝗊′𝑖 }𝑖∈[[1,𝑚]]
similarly, but using 𝖿 ′, 𝗀′, 𝖽′, 𝖾′ instead. If |𝖿 − 𝖿′| ≤ 𝐾, |𝗀 − 𝗀′| ≤ 𝐾, |𝖽 − 𝖽′| ≤ 𝐾, and |𝖾 − 𝖾′| ≤ 𝐾,
for some 𝐾 > 0, then there exists a coupling between 𝖰 and 𝖰′ such that |𝗊𝑖 − 𝗊′𝑖 | ≤ 𝐾 almost surely
for each 𝑖 ∈ [[1,𝑚]].

This lemma is in the spirit of [28, Lemmas 2.6 and 2.7] and can be proved using the same idea
of constructing the coupling using the Glauber dynamics of the paths. We give a sketch here
for completeness.

Proof of Lemma 3.1. We introduce a continuous-time Markovian dynamic on the nonintersecting
Bernoulli paths (which is the Glauber dynamics). We write the nonintersecting Bernoulli paths
at time 𝜏 as 𝖸𝜏 = ({𝗒𝑖,𝜏}𝑖∈[[1,𝑚]])𝜏 and 𝖸′𝜏 = ({𝗒′𝑖,𝜏}𝑖∈[[1,𝑚]])𝜏, with the time 0 configurations 𝖸0 and
𝖸′0 being the lowest possible nonintersecting Bernoulli paths with boundary, entrance, and exit
conditions being 𝖿 , 𝗀, 𝖽, 𝖾, and 𝖿 ′, 𝗀′, 𝖽′, 𝖾′, respectively. It is clear that such lowest configurations
exist, are unique, and satisfy |𝗒′𝑖,0 − 𝗒𝑖,0| ≤ 𝐾 for all 𝑖 ∈ [[1,𝑚]]. For simplicity of notations, denote
𝗒0,𝜏 = 𝖿 , 𝗒𝑚+1,𝜏 = 𝗀, 𝗒′0,𝜏 = 𝖿′, 𝗒′𝑚+1,𝜏 = 𝗀′, for any 𝜏 ≥ 0. The dynamics are as follows: for each
𝗍 ∈ [[1, 𝗋 − 1]], 𝑖 ∈ [[1,𝑚]], and 𝑒 ∈ {1, −1}, there is an independent exponential clock which rings
at rate 1. If the clock labeled (𝗍, 𝑖, 𝑒) rings at time 𝜏, one attempts to set 𝗒𝑖,𝜏(𝗍) = 𝗒𝑖,𝜏−(𝗍) + 𝑒 (where
𝗒𝑖,𝜏−(𝗍) is the limit of 𝗒𝑖,𝜏′ (𝗍) as 𝜏′ → 𝜏 from the left). This setting is only successful if 𝗒𝑖,𝜏 remains a
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 17

F IGURE 6 Shown to the left is the dynamic: if the clock labeled (𝗍, 𝑖, 𝑒) rings at time 𝜏, one attempts to set
𝗒𝑖,𝜏(𝗍) = 𝗒𝑖,𝜏−(𝗍) + 𝑒. Shown to the right are the two cases under the assumption that 𝗒𝑖∗,𝜏(𝗍∗) = 𝗒𝑖∗,𝜏−(𝗍

∗) + 1 and
𝗒′𝑖∗,𝜏(𝗍

∗) = 𝗒′𝑖∗,𝜏−(𝗍
∗).

Bernoulli path, and the condition of nonintersection with 𝗒𝑖−1,𝜏 and 𝗒𝑖+1,𝜏 is not broken. One also
attempts to set 𝗒′𝑖,𝜏(𝗍) = 𝗒′𝑖,𝜏−(𝗍) + 𝑒, and the same conditions apply.
The first key fact is that the maximum difference max𝑖∈[[0,𝑚+1]] |𝗒𝑖,𝜏 − 𝗒′𝑖,𝜏| is nonincreasing in

𝜏. As a consequence, for all 𝜏 ≥ 0, |𝗒𝑖,𝜏 − 𝗒′𝑖,𝜏| ≤ 𝐾 for each 𝑖 ∈ [[1,𝑚]]. The second key fact is that
the distributions of these nonintersecting Bernoulli paths converge to the invariant measures for
this Markovian dynamics, which are given by the nonintersecting Bernoulli paths randomly sam-
pled under the uniformmeasure on the set of paths with prescribed entrance, exit, and boundary
conditions. This fact is true since these dynamics have finite state spaces which are irreducible
with the obvious invariant measures. Then, Lemma 3.1 follows immediately from these two facts.
For the rest of this proof, we prove the first key fact above, that is, the maximum difference is

nonincreasing in time. Suppose that a clock labeled (𝗍∗, 𝑖∗, 𝑒) rings at some time 𝜏 > 0. We denote
by {𝗒𝑖,𝜏−}𝑖∈[[0,𝑚+1]], {𝗒′𝑖,𝜏−}𝑖∈[[0,𝑚+1]] the paths before the ringing, and {𝗒𝑖,𝜏}𝑖∈[[0,𝑚+1]], {𝗒

′
𝑖,𝜏}𝑖∈[[0,𝑚+1]]

the paths after the ringing. If (𝗍∗, 𝑖∗) is not an argmax of |𝗒𝑖,𝜏−(𝗍) − 𝗒′𝑖,𝜏−(𝗍)| for 𝗍 ∈ [[0, 𝗋]] and
𝑖 ∈ [[0,𝑚 + 1]], then the maximum difference is obviously nonincreasing at the instant 𝜏. Hence,
below we assume that |𝗒𝑖,𝜏−(𝗍) − 𝗒′𝑖,𝜏−(𝗍)| achieves maximum at (𝗍∗, 𝑖∗).
Without loss of generality, we assume that 𝗒𝑖∗,𝜏−(𝗍∗) − 𝗒′𝑖∗,𝜏−(𝗍

∗) ≥ 0 and 𝑒 = 1. It suffices to
prove that the following scenario is impossible: 𝗒𝑖∗,𝜏(𝗍∗) = 𝗒𝑖∗,𝜏−(𝗍

∗) + 1 and 𝗒′𝑖∗,𝜏(𝗍
∗) = 𝗒′𝑖∗,𝜏−(𝗍

∗).
Assume the contrary, there are two cases (see Figure 6):

(i) 𝗒′𝑖∗,𝜏−(𝗍
∗ + 1) = 𝗒′𝑖∗,𝜏−(𝗍

∗) or 𝗒′𝑖∗,𝜏−(𝗍
∗ − 1) = 𝗒′𝑖∗,𝜏−(𝗍

∗) − 1. Then, we have 𝗒𝑖∗,𝜏−(𝗍
∗ + 1) −

𝗒′𝑖∗,𝜏−(𝗍
∗ + 1) > 𝗒𝑖∗,𝜏−(𝗍

∗) − 𝗒′𝑖∗,𝜏−(𝗍
∗) or 𝗒𝑖∗,𝜏−(𝗍∗ − 1) − 𝗒′𝑖∗,𝜏−(𝗍

∗ − 1) > 𝗒𝑖∗,𝜏−(𝗍
∗) − 𝗒′𝑖∗,𝜏−(𝗍

∗),
because wemust have 𝗒𝑖∗,𝜏−(𝗍∗ + 1) = 𝗒𝑖∗,𝜏−(𝗍

∗) + 1 and 𝗒𝑖∗,𝜏−(𝗍∗) = 𝗒𝑖∗,𝜏−(𝗍
∗ − 1) in order for

the update 𝗒𝑖∗,𝜏(𝗍∗) = 𝗒𝑖∗,𝜏−(𝗍
∗) + 1 to be permissible. This contradicts the assumption that

(𝗍∗, 𝑖∗) is an argmax of the difference.
(ii) 𝗒′𝑖∗,𝜏−(𝗍

∗ + 1) = 𝗒′𝑖∗,𝜏−(𝗍
∗) + 1 and 𝗒′𝑖∗,𝜏−(𝗍

∗ − 1) = 𝗒′𝑖∗,𝜏−(𝗍
∗). In this case, since we have

assumed that 𝗒′𝑖∗,𝜏(𝗍
∗) = 𝗒′𝑖∗,𝜏−(𝗍

∗), that is, the attempt to set 𝗒′𝑖∗,𝜏(𝗍
∗) = 𝗒′𝑖∗,𝜏−(𝗍

∗) + 𝑒 fails,
we must have 𝗒′𝑖∗+1,𝜏−(𝗍

∗) = 𝗒′𝑖∗,𝜏−(𝗍
∗) + 1. Moreover, since we have assumed that 𝗒𝑖∗,𝜏(𝗍∗) =

𝗒𝑖∗,𝜏−(𝗍
∗) + 1, we must have

𝗒𝑖∗+1,𝜏−(𝗍
∗) = 𝗒𝑖∗+1,𝜏(𝗍

∗) ≥ 𝗒𝑖∗,𝜏(𝗍
∗) + 1 = 𝗒𝑖∗,𝜏−(𝗍

∗) + 2.

This leads to 𝗒𝑖∗+1,𝜏−(𝗍∗) − 𝗒′𝑖∗+1,𝜏−(𝗍
∗) > 𝗒𝑖∗,𝜏−(𝗍

∗) − 𝗒′𝑖∗,𝜏−(𝗍
∗), which again contradicts the

assumption that (𝗍∗, 𝑖∗) is an argmax of the difference.

Putting these cases together yields the first key fact, thereby, the conclusion follows. □
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18 HUANG et al.

We will also use the following version of monotonicity, in terms of the height function of a
tiling. For this purpose, we define uniformly random tilings on general subsets of ℝ2, but with
given boundary functions, in the sense of a uniformly chosen height function.

Definition 3.2. Take any compact set 𝖱 ⊂ ℝ2 with piecewise smooth boundary, and a function
𝗁 ∶ 𝜕𝖱 → ℝ. If there exists a tileable domain 𝖱+ containing 𝖱, and a tiling of 𝖱+ whose height
function on 𝜕𝖱 equals 𝗁, we call 𝗁 a plausible boundary height function of 𝖱. In this case, there
must be finitely many such height functions of 𝖱+, and for a uniformly chosen one, we call its
restriction to 𝖱 the uniformly random height function of 𝖱with boundary 𝗁. By the Gibbs property
in Lemma 3.4 below, it is straightforward to check that this uniformly chosen height function is
independent of the choice of 𝖱+.

Lemma 3.3 [26, Lemma 18]. Consider a compact set 𝖱1 ⊂ ℝ2 with piecewise smooth boundary,
and its translation 𝖱2 = 𝖱1 + 𝑣0 for some 𝑣0 ∈ ℝ2. Take plausible boundary height functions 𝗁1 ∶
𝜕𝖱1 → ℝ and 𝗁2 ∶ 𝜕𝖱2 → ℝ. Let𝖧1 and𝖧2 be uniformly random height functions of 𝖱1 and 𝖱2 with
boundaries 𝗁1 and 𝗁2, respectively. If 𝗁1 ≤ 𝗁2(⋅ + 𝑣0), then there exists a coupling between𝖧1 and𝖧2,
such that 𝖧1 ≤ 𝖧2(⋅ + 𝑣0) almost surely.

We note that [26, Lemma 18] is proved in the setting of random domino tilings, but the
arguments carry over to lozenge tilings verbatim.
Finally, we record the Gibbs property for uniformly random tilings here, for the convenience

of later reference. It is directly implied by the definition of uniformly random tilings.

Lemma3.4. Take compact sets𝖱, 𝖱′ ⊂ ℝ2with piecewise smooth boundaries, such that𝖱 ⊂ 𝖱′. Take
plausible boundary height functions 𝗁 ∶ 𝜕𝖱 → ℝ and 𝗁′ ∶ 𝜕𝖱′ → ℝ, and let 𝖧 and 𝖧′ be uniformly
random height functions of 𝖱 and 𝖱′ with boundaries 𝗁 and 𝗁′, respectively. Consider the event where
the restriction of 𝖧′ on 𝜕𝖱 equals 𝗁. Suppose that this event happens with positive probability. Then,
conditioning on this event, the restriction of 𝖧′ on 𝖱 has the same distribution as 𝖧.

4 TILING CUSP UNIVERSALITY: PROOF OF THEOREM 2.7

In this section, we present the main steps for the proof of Theorem 2.7 as several lemmas and
deduce Theorem 2.7 from them. The proofs of these lemmas will be given in subsequent sections.

4.1 Basic setup

Take any rational polygonal set 𝔓 satisfying Assumption 2.5, and recall that its liquid region
and arctic curve are denoted by 𝔏 and 𝔄, respectively. Take a cusp point (𝑥𝑐, 𝑡𝑐) ∈ 𝔄. Let 𝑛
be any large enough integer such that 𝑛𝔓 is a tileable domain. As in Theorem 2.7, by rotating
𝔓 if necessary, we assume that (𝑥𝑐, 𝑡𝑐) is upward oriented in the sense of Definition 2.6, with
curvature parameters 𝔯, 𝔮. In this section, all the constants (including those implicitly used in
≲,≳,≍,) can depend on𝔓.
As indicated in the introduction, we will compare paths from tilings and NBRW in a region

around (𝑥𝑐, 𝑡𝑐). More precisely, we denote Δ𝑡 = 𝑛−𝜔 for some constant 𝜔 ∈ (0, 1∕2). Then we
take 𝑡0 < 𝑡𝑐 < 𝑡1, such that 𝑡0, 𝑡1 ∈ 𝑛−1ℤ, 𝑡𝑐 − 𝑡0, 𝑡1 − 𝑡𝑐 ≍ Δ𝑡. Take a small constant 𝔠 > 0. We
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 19

are mainly interested in the region [𝑥𝑐 − 𝔠, 𝑥𝑐 + 𝔠] × [𝑡0, 𝑡1], where 𝔄 contains two analytic
pieces {(𝐸−(𝑡), 𝑡) ∶ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑐} and {(𝐸+(𝑡), 𝑡) ∶ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑐}, with 𝐸−(𝑡) < 𝑥𝑐 + (𝑡 − 𝑡𝑐)∕𝔯 < 𝐸+(𝑡)
and 𝑥𝑐 + (𝑡 − 𝑡𝑐)∕𝔯 − 𝐸−(𝑡), 𝐸+(𝑡) − 𝑥𝑐 − (𝑡 − 𝑡𝑐)∕𝔯 ≍ (𝑡𝑐 − 𝑡)

3∕2 for each 𝑡 ∈ [𝑡0, 𝑡𝑐]. Moreover, as
pointed out in Definition 2.6, we have 𝔯 = (𝑓∗𝑡𝑐 (𝑥𝑐) + 1)∕𝑓

∗
𝑡𝑐
(𝑥𝑐). Then, we have 𝑓∗𝑡𝑐 (𝑥𝑐) ∈ (0,∞),

implying that∇𝐻∗(𝑥𝑐, 𝑡𝑐) = (0, 0) by (2.8). Therefore, we can assume that𝐻∗(𝑥, 𝑡) = 0 for all (𝑥, 𝑡)
in the frozen region with 𝑡0 ≤ 𝑡 ≤ 𝑡𝑐 and 𝐸−(𝑡) ≤ 𝑥 ≤ 𝐸+(𝑡).

4.2 Tiling path estimates

We next present estimates of the paths associated with tilings. Let 𝖧 ∶ 𝑛𝔓 → ℝ be the height
function of the uniformly random tiling, satisfying 𝖧(𝑛𝑣) = 𝑛𝐻∗(𝑣) for each 𝑣 ∈ 𝜕𝔓. We then
consider a (random) family of nonintersecting Bernoulli paths as in Section 2.1.2: for each 𝑖, 𝗍 ∈
ℤ, we define 𝗊𝑖(𝗍) to be the number satisfying 𝖧(𝗊𝑖(𝗍), 𝗍) = 𝑖 and 𝖧(𝗊𝑖(𝗍) + 1, 𝗍) = 𝑖 + 1, if such a
number exists.
The typical locations of the paths are deterministic numbers given by the quantiles of 𝐻∗, as

follows. Let 𝔠 > 0 be a small enough constant depending on 𝔓 and (𝑥𝑐, 𝑡𝑐). Take𝑀,𝑁 ∈ ℕ such
that

[[−𝑀,𝑁]] =
{
𝑖 ∈ ℤ ∶ 𝐻∗(𝑥𝑐 − 𝔠, 𝑡0) ≤ 𝐻∗(𝑥𝑐, 𝑡𝑐) + 𝑖∕𝑛 < 𝐻∗(𝑥𝑐 + 𝔠, 𝑡0)

}
.

For each 𝑡 ∈ [𝑡0, 𝑡1] and 𝑖 ∈ [[−𝑀,𝑁]], we let

𝛾𝑖(𝑡) = sup{𝑥 ∶ (𝑥, 𝑡) ∈ 𝔓,𝐻∗(𝑥, 𝑡) − 𝐻∗(𝑥𝑐, 𝑡𝑐) = 𝑖∕𝑛}. (4.1)

In particular, notice that 𝛾0(𝑡) = 𝐸+(𝑡) when 𝑡 ≤ 𝑡𝑐. We have the following estimates on 𝛾𝑖 .

Lemma 4.1. For any 𝑖 ∈ ℕ, if 1 ≤ 𝑖 ≲ Δ𝑡2𝑛, we have

𝛾𝑖(𝑡0) − 𝐸+(𝑡0) ≍ Δ𝑡1∕6(𝑖∕𝑛)2∕3, 𝐸−(𝑡0) − 𝛾−𝑖(𝑡0) ≍ Δ𝑡1∕6(𝑖∕𝑛)2∕3. (4.2)

If 𝑖 ≥ 𝐶Δ𝑡2𝑛 for a large enough constant 𝐶 > 0, we have that for any 𝑡 ∈ [𝑡0, 𝑡1],

𝛾𝑖(𝑡) − (𝑥𝑐 + (𝑡 − 𝑡𝑐)∕𝔯) ≍ (𝑖∕𝑛)3∕4, 𝑖 ≤ 𝑁; (𝑥𝑐 + (𝑡 − 𝑡𝑐)∕𝔯) − 𝛾−𝑖(𝑡) ≍ (𝑖∕𝑛)3∕4, 𝑖 ≤ 𝑀.
(4.3)

We next give the estimate on the fluctuations of the tiling paths around these quantiles.

Lemma 4.2. For an arbitrarily small constant 𝔡 > 0, with overwhelming probability, we have

𝗊0(𝑛𝑡0)∕𝑛 − 𝐸+(𝑡0), 𝗊−1(𝑛𝑡0)∕𝑛 − 𝐸−(𝑡0) ≲ 𝑛−2∕3+𝔡Δ𝑡1∕6, (4.4)

|{𝑖 ∈ ⟦−𝑀,𝑁⟧ ∶ 𝗊𝑖(𝑛𝑡0) < 𝑥𝑛}| − |{𝑖 ∈ ⟦−𝑀,𝑁⟧ ∶ 𝛾𝑖(𝑡0) < 𝑥}| ≲ 𝑛𝔡, (4.5)

uniformly for all 𝑥 ∈ ℝ. Take a constant 𝛿 ∈ (0, 𝜔∕2), and let 𝐿 = ⌈𝑛1+𝛿Δ𝑡2⌉. When 𝔡 is small
enough (depending on 𝜔 and 𝛿), the following estimates hold with overwhelming probability:
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20 HUANG et al.

𝗊𝐿(𝑛𝑡)∕𝑛 − 𝛾𝐿(𝑡), 𝗊−𝐿(𝑛𝑡)∕𝑛 − 𝛾−𝐿(𝑡) ≲ 𝑛−3∕4−𝔡, ∀𝑡 ∈ [𝑡0, 𝑡1] ∩ 𝑛
−1ℤ, (4.6)

𝗊𝑖(𝑛𝑡1)∕𝑛 − 𝛾𝑖(𝑡1) ≲ 𝑛−3∕4−𝔡, ∀𝑖 ∈ [[−𝐿, 𝐿]]. (4.7)

The proofs of the above two lemmas rely on careful analysis of the limiting height function
𝐻∗ through the complex slope. The proof Lemma 4.2 also uses the optimal rigidity estimate of the
height function𝖧 around cusps, to be presented in Section 6. The detailed proofs will be presented
in Section 7.

4.3 Construction and estimates of NBRW

To prove that the random paths associated with tilings around (𝑥𝑐, 𝑡𝑐) converge to the Pearcey
process, our strategy is to compare them with a certain NBRW starting from time 𝑛𝑡0.
We consider the NBRW 𝖰̃ = {𝗊̃𝑖}

𝑁
𝑖=−𝑀 ∶ [[𝑛𝑡0,∞]] → ℤ[[−𝑀,𝑁]], with initial data 𝖰̃(𝑛𝑡0) =

{𝗊̃𝑖(𝑛𝑡0)}
𝑁
𝑖=−𝑀 = {𝗊𝑖(𝑛𝑡0)}

𝑁
𝑖=−𝑀 . Next, we explain the procedure to choose the drift parameter 𝛽.

For any time 𝑡 ∈ [𝑡0, 𝑡1], we denote the density 𝜌∗𝑡 (𝑥) = 𝜕𝑥𝐻
∗(𝑥, 𝑡), which is defined almost every-

where and is in [0,1] since 𝐻∗ is admissible. We can interpret 𝜌∗𝑡 (𝑥) as approximately the density
of paths (or equivalently, type 2 and type 3 lozenges) around (𝑛𝑥, 𝑛𝑡). We denote

𝜌𝑡0 = 𝜌∗𝑡0𝟙([𝛾−𝑀(𝑡0), 𝛾𝑁(𝑡0)]), 𝑚̃𝑡0 (𝑧) = ∫
𝜌𝑡0(𝑥)d𝑥

𝑧 − 𝑥
, (4.8)

which are the restriction of 𝜌∗𝑡0 on [𝛾−𝑀(𝑡0), 𝛾𝑁(𝑡0)] and its Stieltjes transform. Denote

𝑧𝑐 = 𝑥𝑐 − (𝑡𝑐 − 𝑡0)∕𝔯, (4.9)

which is the intersection of the tangent line at the cusp with the line 𝑡 = 𝑡0. We take 𝛽 to satisfy

𝛽

1 − 𝛽
=
𝑓∗𝑡𝑐 (𝑥𝑐)

𝑒𝑚̃𝑡0 (𝑧𝑐)
. (4.10)

It turns out that by choosing such a 𝛽, the limit shape of NBRW will have a cusp at (𝑥𝑐, 𝑡̃𝑐) that
is close to (𝑥𝑐, 𝑡𝑐). Here, 𝑥𝑐 and 𝑡̃𝑐 are determined by 𝜌𝑡0 and 𝛽, through Lemma 5.2 below. More
precisely, let 𝑓𝑡0(𝑧) = 𝑒𝑚̃𝑡0 (𝑧)𝛽∕(1 − 𝛽), we then take 𝑥𝑐 ∈ ℝ, 𝑡̃𝑐 > 𝑡0, and 𝑧𝑐 ∈ (𝐸−(𝑡0), 𝐸+(𝑡0)) as
the solutions to the following system of equations:

𝑥𝑐 = 𝑧𝑐 + 𝑡̃𝑐
𝑓𝑡0(𝑧𝑐)

𝑓𝑡0(𝑧𝑐) + 1
, 1 + 𝑡̃𝑐

𝑓′𝑡0 (𝑧𝑐)

(𝑓𝑡0(𝑧𝑐) + 1)
2
= 0, 𝑓′′𝑡0 (𝑧𝑐) −

2𝑓′𝑡0(𝑧𝑐)
2

𝑓𝑡0(𝑧𝑐) + 1
= 0. (4.11)

By Lemma 5.2, these numbers exist and are unique, and there is 𝑡̃𝑐 − 𝑡0 ≍ Δ𝑡.

Lemma 4.3. We have 𝑥𝑐 − 𝑥𝑐, 𝑡̃𝑐 − 𝑡𝑐, 𝑧𝑐 − 𝑧𝑐 ≲ Δ𝑡2, and
𝑓𝑡0 (𝑧𝑐)

𝑓𝑡0 (𝑧𝑐)+1
− 𝔯−1 ≲ Δ𝑡.

We next state a fluctuation estimate of 𝖰̃ that is necessary for the proof.
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 21

Lemma 4.4. For 𝜔 ∈ (0, 1∕2) chosen in the basic setup above, assume that 𝜔 > 3∕8 and take a
constant 0 < 𝛿 < (𝜔∕2) ∧ (2𝜔 − 3∕4). Let 𝐿 = ⌈𝑛1+𝛿Δ𝑡2⌉. Fix a constant 𝔡 > 0 that is small enough
(depending on 𝜔 and 𝛿), then the following estimates hold with overwhelming probability:

𝗊̃𝐿(𝑛𝑡)∕𝑛 − 𝛾𝐿(𝑡), 𝗊̃−𝐿(𝑛𝑡)∕𝑛 − 𝛾−𝐿(𝑡) ≲ 𝑛−3∕4−𝔡, ∀𝑡 ∈ [𝑡0, 𝑡1] ∩ 𝑛
−1ℤ,

𝗊̃𝑖(𝑛𝑡1)∕𝑛 − 𝛾𝑖(𝑡1) ≲ 𝑛−3∕4−𝔡, ∀𝑖 ∈ [[−𝐿, 𝐿]].

The proofs of the above two lemmas are deferred to Section 7.

4.4 Pearcey limit and the comparison between tilings and NBRW

Given the construction of the NBRW 𝖰̃, using the estimates of the fluctuations of 𝖰̃ (Lemma 4.4)
and the paths from tilings (Lemma 4.2), we can now prove Theorem 2.7 through comparison, by
using the following convergence of 𝖰̃ to the Pearcey process.

Lemma 4.5. Fix the constant𝜔 ∈ (3∕8, 1∕2). Recall the curvature parameters 𝔯, 𝔮 in Definition 2.6.
For each 𝗍 ∈ [[𝑛𝑡0,∞]], we regard 𝖰̃(𝗍) as a finite subset of ℤ. Then, as 𝑛 → ∞, the process

𝑡 ↦
𝖰̃(⌊𝑛𝑡𝑐 −√𝔯 − 1𝑛1∕2𝑡∕(𝔯𝔮)⌋) − 𝑛𝑥𝑐 +√𝔯 − 1𝑛1∕2𝑡∕(𝔯2𝔮)

(𝔯 − 1)3∕4𝑛1∕4∕
√
𝔮𝔯3

,

converges to the Pearcey process in the same sense as in Theorem 2.7.

This lemma is deduced fromTheorem2.9, the Pearcey universality forNBRW.There, the scaling
of the Pearcey process is described by the following two parameters:

𝐴 = (̃𝑡𝑐 − 𝑡0)
4 ∫

𝜌𝑡0(𝑥)

4(𝑧𝑐 − 𝑥)4
d𝑥 −

(̃𝑡𝑐 − 𝑡0)
4

12(̃𝑡𝑐 − 𝑡0 + 𝑧𝑐 − 𝑥𝑐)3
−

(̃𝑡𝑐 − 𝑡0)
4

12(𝑥𝑐 − 𝑧𝑐)3
, 𝐵 =

𝑥𝑐 − 𝑧𝑐
𝑡̃𝑐 − 𝑡0

,

as defined in (5.12) below.We need the following relation between𝐴, 𝐵 and 𝔯, 𝔮. We defer its proof
to Section 7.

Lemma 4.6. As 𝑛 → ∞, we have 𝐵 → 𝔯−1 and 𝐴 → 𝔯2(𝔯 − 1)−1𝔮−2∕4.

Proof of Lemma 4.5. Take 𝔡 > 0 to be arbitrarily small depending on 𝜔. By Lemmas 4.1 and 4.2,
the quantiles of 𝜌𝑡0 (which are precisely 𝛾𝑖(𝑡0)) satisfy the growth specified in Assumption 5.1,
with 𝑡 = Δ𝑡 = 𝑛−𝜔; and with overwhelming probability, the initial data 𝖰̃(𝑛𝑡0) = {𝗊̃𝑖(𝑛𝑡0)}

𝑁
𝑖=−𝑀 =

{𝗊𝑖(𝑛𝑡0)}
𝑁
𝑖=−𝑀 is approximated by𝜌𝑡0 in the sense stated inAssumption 5.1,with 𝜖4 = 𝔡. In addition,

we know that 𝛽 is bounded away from 0 and 1, uniformly in 𝑛. Indeed, by (4.10), it suffices to show
that 𝑚̃𝑡0(𝑧𝑐) ≲ 1. From the definition of 𝑧𝑐, we obtain 𝐸+(𝑡0) − 𝑧𝑐, 𝑧𝑐 − 𝐸−(𝑡0) ≍ Δ𝑡3∕2. Then, by
decomposing the integral ∫ 𝜌𝑡0(𝑥)∕(𝑧𝑐 − 𝑥)d𝑥 according to the quantiles 𝛾𝑖(𝑡0), we can readily
deduce 𝑚̃𝑡0(𝑧𝑐) ≲ 1 with the help of Lemma 4.1.
With the above preparations, we can now apply Theorem 2.9 to conclude the convergence of

𝑡 ↦
𝖰̃(⌊𝑛𝑡̃𝑐 − 2𝐴1∕2𝐵(1 − 𝐵)𝑛1∕2𝑡⌋) − 𝑛𝑥𝑐√

2𝐴1∕4𝐵(1 − 𝐵)𝑛1∕4
+
√
2𝐴1∕4𝐵𝑛1∕4𝑡
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22 HUANG et al.

to the Pearcey process. Then, by Lemmas 4.3 and 4.6, and noticing that Δ𝑡 = o(𝑛−3∕8) (so 𝑛𝑥𝑐 −
𝑛𝑥𝑐, 𝑛𝑡̃𝑐 − 𝑛𝑡𝑐 = o(𝑛1∕4)), the conclusion follows. □

We now finish the comparison arguments.

Proof of Theorem 2.7. We take constants 𝜔 ∈ (3∕8, 1∕2) and 0 < 𝛿 < (𝜔∕2) ∧ (2𝜔 − 3∕4), and
let Δ𝑡 = 𝑛−𝜔 and 𝐿 = ⌈𝑛1+𝛿Δ𝑡2⌉. For the random paths {𝗊𝑖(𝗍)}𝑖∈[[−𝐿,𝐿]],𝗍∈[[𝑛𝑡0,𝑛𝑡1]] associated with
tilings around (𝑛𝑥𝑐, 𝑛𝑡𝑐) and the NBRWpaths {𝗊̃𝑖(𝗍)}𝑖∈[[−𝐿,𝐿]],𝗍∈[[𝑛𝑡0,𝑛𝑡1]], by Lemma 4.2, Lemma 4.4,
and the monotonicity property in Lemma 3.1, we can couple them so that with overwhelming
probability,

max{|𝗊𝑖(𝗍) − 𝗊̃𝑖(𝗍)| ∶ 𝑖 ∈ [[−𝐿, 𝐿]], 𝗍 ∈ [[𝑛𝑡0, 𝑛𝑡1]]} = o(𝑛1∕4). (4.12)

By Lemmas 4.1 and 4.2, with overwhelming probability, we have

max{𝗊−𝐿(𝗍) − (𝗍 − 𝑛𝑡𝑐)∕𝔯 ∶ 𝗍 ∈ [[𝑛𝑡0, 𝑛𝑡1]]} < −𝑛1∕4+𝔡,

min{𝗊𝐿(𝗍) − (𝗍 − 𝑛𝑡𝑐)∕𝔯 ∶ 𝗍 ∈ [[𝑛𝑡0, 𝑛𝑡1]]} > 𝑛1∕4+𝔡,

for a small enough 𝔡 > 0 depending on 𝛿. These ensure that the paths {𝗊𝑖}𝑖∈[[−𝐿,𝐿]] and {𝗊̃𝑖}𝑖∈[[−𝐿,𝐿]]
contain all paths around (𝑛𝑥𝑐, 𝑛𝑡𝑐) in 𝖰 and 𝖰̃, respectively. Then, the conclusion follows from
Lemma 4.5. □

5 CUSP UNIVERSALITY FOR NONINTERSECTING BERNOULLI
RANDOMWALKS

In this section, we study NBRW

𝖠 = {𝖺𝑖}𝑖∈⟦−𝑀,𝑁⟧ ∶ [[0,∞]] → ℤ[[−𝑀,𝑁]],

with drift parameter 𝛽 ∈ (0, 1) and initial configuration 𝖠(0) = {𝖽𝑖}𝑖∈[[−𝑀,𝑁]] ∈ ℤ⟦−𝑀,𝑁⟧ for
𝑀,𝑁 ≍ 𝑛, as defined in Section 2.6.1. We will assume that {𝖽𝑖}𝑖∈[[−𝑀,𝑁]] contains two separated
parts {𝖽𝑖}𝑖∈[[−𝑀,−1]] and {𝖽𝑖}𝑖∈[[0,𝑁]], so that cusp forms when the two parts meet, and we prove that
the Pearcey process appears around the cusp location. Our proof uses the fact that both NBRW
and the Pearcey process are determinantal point processes, and we bound the difference between
their kernels (see Proposition 5.3 below).
We now set up the parameters we will use. First, we take 𝜙 ∈ (0, 1∕2), and we assume that the

drift parameter 𝛽 ∈ (𝜙, 1 − 𝜙). Then, we take small positive constants 𝜖1, 𝜖2, 𝜖3, 𝜖4, in the following
way:

(1) 𝜖1 > 0 is any number small enough depending on 𝜙;
(2) 𝜖2 > 0 is any number small enough depending on 𝜙, 𝜖1;
(3) 𝜖3 > 0 is any number small enough depending on 𝜙, 𝜖1, 𝜖2;
(4) 𝜖4 > 0 is any number small enough depending on 𝜙, 𝜖1, 𝜖2, 𝜖3.

The precise requirements for the choice of these parameters will be clear in the proofs below. All
other constants (𝑐, 𝐶 > 0 and those implicitly used in≲,≳,≍,) can depend on these parameters.

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22202 by Stanford U

niversity, W
iley O

nline Library on [13/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 23

We next describe the assumptions on the initial configuration {𝖽𝑖}𝑖∈[[−𝑀,𝑁]]. We approximate it
with a density function 𝜌0 ∶ ℝ → [0, 1], when rescaled by 𝑛. Take 𝑡 > 0 satisfying that 𝑛−1∕2+𝜖1 <
𝑡 ≲ 1. The density function 𝜌0 can depend on 𝑛, and needs to satisfy certain assumptions to form
a cusp at the distance of order 𝑛𝑡.

Assumption 5.1. We assume that 𝜌0 = 0 on [𝐸−, 𝐸+], for some 𝐸− < 𝐸+ with 𝐸+ − 𝐸− ≍ 𝑡
3∕2
.

Let {𝛾𝑖}𝑖∈⟦−𝑀,𝑁⟧ be the scale 𝑛−1 quantiles starting from 𝐸− and 𝐸+. Namely, we let 𝛾0 = 𝐸+; for
𝑖 ∈ ⟦1,𝑁⟧ or 𝑖 ∈ ⟦1,𝑀⟧, let 𝛾𝑖 or 𝛾−𝑖 satisfy that,

∫
𝛾𝑖

𝐸+

𝜌0(𝑥)d𝑥 = 𝑖∕𝑛, or ∫
𝐸−

𝛾−𝑖

𝜌0(𝑥)d𝑥 = 𝑖∕𝑛.

We assume that 𝜌0 = 0 on (−∞, 𝛾−𝑀) ∪ (𝛾𝑁,∞). In addition, we assume that for 𝑖 ∈ ℕ, when
𝑖 ≲ 𝑡

2
𝑛,

𝛾𝑖 − 𝐸+ ≍ 𝑡
1∕6
(𝑖∕𝑛)2∕3, 𝐸− − 𝛾−𝑖 ≍ 𝑡

1∕6
(𝑖∕𝑛)2∕3;

and when 𝑖 ≳ 𝑡
2
𝑛, 𝑖 ≤ 𝑁 or𝑀,

𝛾𝑖 − 𝐸+ ≍ (𝑖∕𝑛)3∕4, 𝐸− − 𝛾−𝑖 ≍ (𝑖∕𝑛)3∕4.

For {𝖽𝑖}𝑖∈[[−𝑀,𝑁]], we assume that it is approximated by 𝜌0, in the following sense:

∙ |𝖽0 − 𝐸+𝑛| ≲ 𝑛1∕3+𝜖4𝑡
1∕6

and |𝖽−1 − 𝐸−𝑛| ≲ 𝑛1∕3+𝜖4𝑡
1∕6
;

∙ for any 𝑥 ∈ ℝ, we have

|{𝑖 ∈ ⟦−𝑀,𝑁⟧ ∶ 𝖽𝑖 < 𝑥𝑛}| − |{𝑖 ∈ ⟦−𝑀,𝑁⟧ ∶ 𝛾𝑖 < 𝑥}| ≲ 𝑛𝜖4 . (5.1)

5.1 Cusp location

We now determine the cusp location of NBRW under Assumption 5.1, in a way indicated by
Lemma 7.6. For this purpose, we consider the Stieltjes transform 𝑚0(𝑧) = ∫ 𝜌0(𝑥)

𝑧−𝑥
d𝑥. Below

are some basic properties of 𝑚0 for 𝑧 in various regimes with Re 𝑧 ∈ (𝐸−, 𝐸+), which are
straightforward to check.

(1) 𝑚′
0(𝑧) = − ∫ 𝜌0(𝑥)

(𝑧−𝑥)2
d𝑥 < 0 for any 𝑧 ∈ (𝐸−, 𝐸+), and

|𝑚′
0(𝑧)| = ∫

𝜌0(𝑥)

(𝑧 − 𝑥)2
d𝑥 ≍

1
𝑛

𝑁∑
𝑖=−𝑀

1

(𝑧 − 𝛾𝑖)2
≍ 𝑡

−1∕4
((𝑧 − 𝐸−) ∧ (𝐸+ − 𝑧))

−1∕2, (5.2)

when 𝑧 ∈ (𝐸− + 𝑛
−2∕3𝑡

1∕6
, 𝐸+ − 𝑛

−2∕3𝑡
1∕6
).

(2) When 𝑧 ∈ (𝐸− + 𝑛
−2∕3𝑡

1∕6
, 𝐸+ − 𝑛

−2∕3𝑡
1∕6
), we have

|𝑚0(𝑧)| ≤ ∫
𝜌0(𝑥)|𝑧 − 𝑥|d𝑥 ≍ 1

𝑛

𝑁∑
𝑖=−𝑀

1|𝑧 − 𝛾𝑖| ≲ 1. (5.3)
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24 HUANG et al.

(3) With 𝑚′′
0 (𝑧) = ∫ 2𝜌0(𝑥)

(𝑧−𝑥)3
d𝑥, we can deduce that 𝑚′′

0 (𝐸− + 𝑛
−2∕3𝑡

1∕6
) > 0, 𝑚′′

0 (𝐸+ −

𝑛−2∕3𝑡
1∕6
) < 0, and

𝑚′′
0 (𝑧) ≍ 𝑡

−1∕4
((𝑧 − 𝐸−) ∧ (𝐸+ − 𝑧))

−3∕2, (5.4)

for any 𝑧 ∈ (𝐸−, 𝐸+) with (𝑧 − 𝐸−) ∧ (𝐸+ − 𝑧) < 𝑐𝑡
3∕2

for a small enough constant 𝑐 > 0.
(4) 𝑚′′′

0 (𝑧) = − ∫ 6𝜌0(𝑥)

(𝑧−𝑥)4
d𝑥 < 0 for any 𝑧 ∈ (𝐸−, 𝐸+), so𝑚′′

0 is decreasing in (𝐸−, 𝐸+). Moreover,

𝑚′′′
0 (𝑧) = −∫

6𝜌0(𝑥)

(𝑧 − 𝑥)4
d𝑥 ≍

1
𝑛

𝑁∑
𝑖=−𝑀

1

(𝑧 − 𝛾𝑖)4
≍ 𝑡

−4
, (5.5)

whenever (𝑧 − 𝐸−) ∧ (𝐸+ − 𝑧) ≍ 𝑡
3∕2
.

(5) For any 𝑧 ∈ ℂ with Re 𝑧 ∈ (𝐸−, 𝐸+) and (Re 𝑧 − 𝐸−) ∧ (𝐸+ − Re 𝑧) ≍ 𝑡
3∕2
, we have

𝑚′′′′
0 (𝑧) = ∫

24𝜌0(𝑥)

(𝑧 − 𝑥)5
d𝑥 ≲ 𝑡

−11∕2
. (5.6)

We further denote (see Proposition 7.7 below) 𝑓0(𝑧) = 𝑒𝑚0(𝑧) 𝛽

1−𝛽
. We then find the cusp location,

using formulas inspired by the complex slope (see Lemma 7.6 below).

Lemma 5.2. There exist 𝑥𝑐 ∈ ℝ, 𝑡𝑐 > 0, and 𝑧𝑐 ∈ (𝐸−, 𝐸+), such that

𝑥𝑐 = 𝑧𝑐 + 𝑡𝑐
𝑓0(𝑧𝑐)

𝑓0(𝑧𝑐) + 1
, (5.7)

1 + 𝑡𝑐
𝑓′0(𝑧𝑐)

(𝑓0(𝑧𝑐) + 1)2
= 0, (5.8)

𝑓′′0 (𝑧𝑐) −
2𝑓′0(𝑧𝑐)

2

𝑓0(𝑧𝑐) + 1
= 0. (5.9)

In addition, we have

𝑡𝑐 ≍ 𝑡, (𝐸+ − 𝑧𝑐) ∧ (𝑧𝑐 − 𝐸−) ≍ 𝑡
3∕2
, −𝑡𝑐 < 𝑧𝑐 − 𝑥𝑐 < 0, 𝑥𝑐 − 𝑧𝑐, 𝑡𝑐 + 𝑧𝑐 − 𝑥𝑐 ≍ 𝑡𝑐. (5.10)

The cusp should be present around the location (𝑛𝑥𝑐, 𝑛𝑡𝑐). The strategy to prove this lemma is
to first determine 𝑧𝑐 using (5.9), then 𝑡𝑐 using (5.8), and finally 𝑥𝑐 using (5.7).

Proof of Lemma 5.2. Note that (5.9) is equivalent to 𝑔(𝑧𝑐) = 0, where for 𝑧 ∈ (𝐸−, 𝐸+), 𝑔(𝑧) is
defined as

𝑔(𝑧) ∶= [(𝑚′
0(𝑧))

2 + 𝑚′′
0 (𝑧)]𝛽(𝛽 + (1 − 𝛽)𝑒

−𝑚0(𝑧)) − 2(𝑚′
0(𝑧))

2𝛽2.

Using the above basic properties (5.2), (5.3), and (5.4), we get that 𝑔(𝐸− + 𝑛−2∕3𝑡
1∕6
) > 0 and

𝑔(𝐸+ − 𝑛
−2∕3𝑡

1∕6
) < 0. Thus, we can find 𝑧𝑐 ∈ (𝐸− + 𝑛

−2∕3𝑡
1∕6
, 𝐸+ − 𝑛

−2∕3𝑡
1∕6
) such that
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 25

𝑔(𝑧𝑐) = 0. For such 𝑧𝑐, (5.2) and 𝑔(𝑧𝑐) = 0 imply that

𝑚′′
0 (𝑧𝑐) ≲ (𝑚′

0(𝑧𝑐))
2 ≲ 𝑡

−1∕2
((𝑧𝑐 − 𝐸−) ∧ (𝐸+ − 𝑧𝑐))

−1.

Then by (5.4), we must have that (𝑧𝑐 − 𝐸−) ∧ (𝐸+ − 𝑧𝑐) ≍ 𝑡
3∕2
. So by (5.2), we have𝑚′

0(𝑧𝑐) ≍ 𝑡
−1
,

and by (5.3), we have𝑚0(𝑧𝑐) ≲ 1. The number 𝑡𝑐 is then determined by (5.8), which yields that

𝑡𝑐 = −
(𝑒𝑚0(𝑧𝑐)𝛽 + (1 − 𝛽))2

𝑚′
0(𝑧𝑐)𝛽(1 − 𝛽)𝑒

𝑚0(𝑧𝑐)
≍ 𝑡.

Finally, 𝑥𝑐 is solved from (5.7). In particular, (5.7) and the fact that 𝑚0(𝑧𝑐) ≲ 1 imply that
−𝑡𝑐 < 𝑧𝑐 − 𝑥𝑐 < 0 and 𝑥𝑐 − 𝑧𝑐, 𝑡𝑐 + 𝑧𝑐 − 𝑥𝑐 ≍ 𝑡𝑐. □

5.2 Kernel approximation

As discussed before, for the NBRW 𝖠, the set {(𝖺𝑖(𝗍), 𝗍)}𝑖∈⟦−𝑀,𝑁⟧,𝗍∈ℤ≥0 is a determinantal point
process on ℤ2. The kernel is given in [45, Theorem 2.1] as

𝐾Bernoulli(𝗍1, 𝗑1; 𝗍2, 𝗑2) = 𝟙𝗑1≥𝗑2𝟙𝗍1>𝗍2(−1)𝗑1−𝗑2+1
( 𝗍1 − 𝗍2
𝗑1 − 𝗑2

)

+
𝗍1!

(𝗍2 − 1)!

1

(2𝜋𝐢)2

𝗑2−𝗍2+
1

2
+𝐢∞

∫
𝗑2−𝗍2+

1

2
−𝐢∞

d𝗓 ∮
all𝗐poles

d𝗐
(𝗓 − 𝗑2 + 1)𝗍2−1

(𝗐 − 𝗑1)𝗍1+1

1
𝗐 − 𝗓

sin(𝜋𝗐)

sin(𝜋𝗓)

(
1 − 𝛽

𝛽

)𝗐−𝗓 𝑁∏
𝑖=−𝑀

𝗓 − 𝖽𝑖
𝗐 − 𝖽𝑖

, (5.11)

for any 𝗑1, 𝗑2 ∈ ℤ and 𝗍1, 𝗍2 ∈ ℤ+. Here, we recall the Pochhammer symbols and the binomial
coefficients defined at the beginning of Section 2. The integration contours for 𝗓 and 𝗐 are as
follows: the 𝗓 contour is the straight vertical line Re(𝗓) = 𝗑2 − 𝗍2 +

1

2
traversed upwards, and the

𝗐 contour is a positively (counter-clockwise) oriented circle or a union of two circles encircling
all the𝗐 poles {𝗑1 − 𝗍1, 𝗑1 − 𝗍1 + 1,… , 𝗑1 − 1, 𝗑1} ∩ {𝖽𝑖}𝑖∈[[−𝑀,𝑁]] of the integrand, except the pole at
𝗐 = 𝗓.
With proper scaling, this kernel 𝐾Bernoulli should be approximated by the Pearcey kernel

𝐾Pearcey, given by (2.12). This is the main task of this section. For this purpose, we denote

𝐴 = 𝑡4𝑐 ∫
𝜌0(𝑥)

4(𝑧𝑐 − 𝑥)4
d𝑥 −

𝑡4𝑐
12(𝑡𝑐 + 𝑧𝑐 − 𝑥𝑐)3

−
𝑡4𝑐

12(𝑥𝑐 − 𝑧𝑐)3
, 𝐵 = (𝑥𝑐 − 𝑧𝑐)𝑡

−1
𝑐 . (5.12)

By (5.10), we have 𝐵 > 0 and 𝐵 ≍ 1. We also have 𝐴 > 0 and 𝐴 ≍ 1, which will be proved later as
Lemma 5.6. Then, Theorem 2.9 is an immediate consequence of the next proposition.

Proposition 5.3. Suppose Assumption 5.1 holds. Take 𝑥𝑐 ∈ ℝ and 𝑡𝑐 > 0 from Lemma 5.2,
and define 𝐴, 𝐵 as in Equation (5.12). Take any 𝜏1, 𝜏2, 𝛾1, 𝛾2 ∈ ℝ, 𝗑1, 𝗑2 ∈ ℤ, and 𝗍1, 𝗍2 ∈ ℤ+
such that |𝜏1|, |𝜏2|, |𝛾1|, |𝛾2| ≲ 1, and 𝗍1 = 𝑛𝑡𝑐 + 𝑛

1∕2𝜏1 + (1), 𝗍2 = 𝑛𝑡𝑐 + 𝑛
1∕2𝜏2 + (1),
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26 HUANG et al.

F IGURE 7 An illustration of the initial configuration {𝖽𝑖}𝑖∈[[−𝑀,𝑁]] (blue), and the locations of 𝐸−, 𝐸+, 𝑧𝑐 ,
−𝑡𝑐 , 0, and (𝗑1 − 𝗍1)∕𝑛, 𝗑1∕𝑛.

𝗑1 = 𝑛𝑥𝑐 + 𝐵𝑛
1∕2𝜏1 + 𝑛

1∕4𝛾1 + (1), 𝗑2 = 𝑛𝑥𝑐 + 𝐵𝑛
1∕2𝜏2 + 𝑛

1∕4𝛾2 + (1). Then, we have

|||(−1)𝗑1−𝗑2𝐵𝗑1−𝗑2(1 − 𝐵)𝗍1−𝗍2+𝗑2−𝗑1𝐾Bernoulli(𝗍1, 𝗑1; 𝗍2, 𝗑2) −
1√

2𝑛1∕4𝐴1∕4𝐵(1 − 𝐵)

× 𝐾Pearcey

(
−𝜏1

2𝐴1∕2𝐵(1 − 𝐵)
,

𝛾1√
2𝐴1∕4𝐵(1 − 𝐵)

;
−𝜏2

2𝐴1∕2𝐵(1 − 𝐵)
,

𝛾2√
2𝐴1∕4𝐵(1 − 𝐵)

)||| ≲ 𝑛−1∕4−𝜖3 ,

if 𝜏1 = 𝜏2 and 𝗍1 = 𝗍2, or |𝜏1 − 𝜏2| > 𝑛−𝜖3 .

The rest of this section is devoted to proving this proposition. Without loss of generality, below
we assume that 𝑥𝑐 = 0, by shifting 𝜌0 and {𝖽𝑖}𝑖∈[[−𝑀,𝑁]]. Then by (5.10) and Lemma 5.6 below,

we have−𝑡𝑐 < 𝐸− < 𝑧𝑐 < 𝐸+ < 0 and𝐸+, 𝐸− + 𝑡𝑐 ≍ 𝑡𝑐, and𝐸+ − 𝑧𝑐, 𝑧𝑐 − 𝐸− ≍ 𝑡
3∕2
. Therefore, we

have (see Figure 7)

(𝗑1 − 𝗍1 + 1)∕𝑛, (𝗑2 − 𝗍2 + 1)∕𝑛 < 𝖽−1∕𝑛 < 𝑧𝑐 < 𝖽0∕𝑛 < (𝗑1 − 1)∕𝑛, (𝗑2 − 1)∕𝑛. (5.13)

Our main task is now to analyze the contour integral in (5.11). By separating the terms contain-
ing 𝗓 or𝗐, weneed to study the integral of 𝖿(𝗓, 𝗐) = 1

𝗐−𝗓
exp(𝑛𝖣2(𝗓∕𝑛) − 𝑛𝖣1(𝗐∕𝑛)), with the same

contours. Here, 𝖣1 and 𝖣2 are two key functions to be defined in Section 5.3. These functions have
three critical points near 𝑧𝑐. From that, we will show that 𝖣1(𝑧) − 𝖣1(𝑧𝑐) and 𝖣2(𝑧) − 𝖣2(𝑧𝑐) are
approximately−𝑡−4𝑐 𝐴(𝑧 − 𝑧𝑐)

4 around 𝑧𝑐. In light of this, we then use the steepest descentmethod
as follows: we deform the contours of 𝗓 and 𝗐, so that 𝗓∕𝑛 passes through 𝑧𝑐 vertically, and 𝗐∕𝑛
passes through 𝑧𝑐 in the 𝑒𝜋𝐢∕4, 𝑒3𝜋𝐢∕4, 𝑒5𝜋𝐢∕4, 𝑒7𝜋𝐢∕4 directions, and these contours roughly follow
the steepest descent curves of Re(𝖣2) and Re(𝖣1) away from 𝑧𝑐. Then, for the integral of 𝖿(𝗓, 𝗐),
the main contribution comes from the part of the contours where |𝗓∕𝑛 − 𝑧𝑐| and |𝗐∕𝑛 − 𝑧𝑐| are
of order(𝑡𝑐𝑛−1∕4). We will later call this part the “inner part,” and the remaining part the “outer
part.”Wewill do a careful asymptotic analysis of the inner part to obtain the Pearcey kernel (2.12),
and show that (under appropriate scaling) the outer part decays to zero as 𝑛 → ∞.
As already mentioned in the introduction, the steepest descent method has been extensively

used to do asymptotic analysis for determinantal point processes. In particular, it has been used in
[57] around a triple critical point to obtain the extendedPearcey kernel forweighted random tilings
of special domains; in [45], it was used to prove convergence to the extended discrete Sine kernel in
the bulk of NBRW. Our task here is more intricate than these previous works, due to the following
reasons. (1) Compared to [57], weworkwith general initial configurations rather than special ones.
(2) Compared to [45] where the key saddle points are a pair of complex conjugate critical points
away from the real line, here we need to handle three critical points near 𝑧𝑐 ∈ ℝ, which can lead
tomore complicated behaviors for𝖣1 and𝖣2. (3) The fact that we seek for a “small distance” result
(i.e., having a cusp at time 𝑛𝑡𝑐, which is allowed to be much smaller than 𝑛) adds to the technical
difficulty. Therefore, delicate computations are needed to achieve the desired approximation of
𝖣1 and 𝖣2 in the inner part of the contours. For the outer part of the contours, which are taken to
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 27

be the steepest descent curves of Re𝖣1 and Re𝖣2 outside a ball of radius 𝑡𝑐𝑛−1∕4 around 𝑧𝑐, it is
hard to precisely describe them, as controlling the behavior of 𝖣1, 𝖣2 is challenging in this region.
For example, at distance ≍ 𝑡

3∕2
from 𝑧𝑐, there already exist singular points (i.e., 𝖽−1∕𝑛 and 𝖽0∕𝑛).

In the next two subsections, we will introduce and analyze the key functions 𝖣1, 𝖣2, and study
their steepest descent curves. Using them, we finish the proof of Proposition 5.3 in Sections 5.5
and 5.6.

5.3 Key functions

We now define two functions 𝖣2 and 𝖣1, through the following expressions:

𝖣2(𝑧) =
1
𝑛

𝑁∑
𝑖=−𝑀

log

(
𝑧 −

𝖽𝑖
𝑛

)
+
1
𝑛

−𝗑2+𝗍2−1∑
𝑖=−𝗑2+1

log

(
𝑧 +

𝑖
𝑛

)
−
1
𝑛
log(sin(𝜋𝑛𝑧)) + 𝑧 log(𝛽∕(1 − 𝛽)),

𝖣1(𝑧) =
1
𝑛

𝑁∑
𝑖=−𝑀

log

(
𝑧 −

𝖽𝑖
𝑛

)
+
1
𝑛

−𝗑1+𝗍1∑
𝑖=−𝗑1

log

(
𝑧 +

𝑖
𝑛

)
−
1
𝑛
log(sin(𝜋𝑛𝑧)) + 𝑧 log(𝛽∕(1 − 𝛽)).

We note that these expressions define 𝖣2 and 𝖣1 as holomorphic functions in the upper-half
complex plane ℍ, up to adding a pure imaginary constant. They are also analytically extended
to ℝ ⧵ 𝐸(𝖣2) and ℝ ⧵ 𝐸(𝖣1), respectively, where

𝐸(𝖣2) = 𝑛−1
[
({𝖽𝑖}

𝑁
𝑖=−𝑀 ∩ [𝗑2 − 𝗍2 + 1, 𝗑2 − 1]) ∪ ([[−∞, 𝗑2 − 𝗍2]] ∪ [[𝗑2,∞]] ⧵ {𝖽𝑖}

𝑁
𝑖=−𝑀)

]
,

𝐸(𝖣1) = 𝑛−1
[
({𝖽𝑖}

𝑁
𝑖=−𝑀 ∩ [𝗑1 − 𝗍1, 𝗑1]) ∪ ([[−∞, 𝗑1 − 𝗍1 − 1]] ∪ [[𝗑1 + 1,∞]] ⧵ {𝖽𝑖}

𝑁
𝑖=−𝑀)

]
are the sets of poles of 𝖣′2 and 𝖣

′
1, respectively. We note that Im𝖣2 (respectively, Im𝖣1) is constant

in each interval of ℝ ⧵ 𝐸(𝖣2) (respectively, ℝ ⧵ 𝐸(𝖣1)); in particular, Im𝖣2 and Im𝖣1 are both
constant in (𝖽−1∕𝑛, 𝖽0∕𝑛). We then choose the pure imaginary constants for 𝖣2 and 𝖣1 such that
for 𝑧 ∈ ℝ,

𝖣2(𝑧) =
1
𝑛

𝑁∑
𝑖=−𝑀

log
||||𝑧 − 𝖽𝑖

𝑛

|||| + 1
𝑛

−𝗑2+𝗍2−1∑
𝑖=−𝗑2+1

log
||||𝑧 + 𝑖

𝑛

|||| − 1
𝑛
log(sin(𝜋𝑛𝑧)) + 𝑧 log(𝛽∕(1 − 𝛽)),

𝖣1(𝑧) =
1
𝑛

𝑁∑
𝑖=−𝑀

log
||||𝑧 − 𝖽𝑖

𝑛

|||| + 1
𝑛

−𝗑1+𝗍1∑
𝑖=−𝗑1

log
||||𝑧 + 𝑖

𝑛

|||| − 1
𝑛
log(sin(𝜋𝑛𝑧)) + 𝑧 log(𝛽∕(1 − 𝛽)).

In particular, under this choice, we have Im𝖣2 = Im𝖣1 = 0 in (𝖽−1∕𝑛, 𝖽0∕𝑛). Finally, we
analytically extend 𝖣2 and 𝖣1 to the lower-half plane ℍ− from ℍ ∪ (𝖽−1∕𝑛, 𝖽0∕𝑛).
Now, by a change of variables of 𝑧 = 𝗓∕𝑛 and 𝑤 = 𝗐∕𝑛, we can rewrite (5.11) as

𝐾Bernoulli(𝗍1, 𝗑1; 𝗍2, 𝗑2) = 𝟏𝗑1≥𝗑2𝟏𝗍1>𝗍2(−1)𝗑1−𝗑2+1
( 𝗍1 − 𝗍2
𝗑1 − 𝗑2

)

+ (−1)𝗑1−𝗑2+1
𝗍1!

(𝗍2 − 1)!

𝑛𝗍2−𝗍1−1

(2𝜋𝐢)2

(
𝗑2−𝗍2+

1

2

)
∕𝑛+𝐢∞

∫(
𝗑2−𝗍2+

1

2

)
∕𝑛−𝐢∞

d𝑧 ∮
all𝑤poles

d𝑤
𝑤 − 𝑧

exp(𝑛𝖣2(𝑧) − 𝑛𝖣1(𝑤)), (5.14)
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28 HUANG et al.

where the 𝑧 contour is the straight vertical line Re 𝑧 =
(
𝗑2 − 𝗍2 +

1

2

)
∕𝑛 traversed upwards, and

the 𝑤 contour encircles all the 𝑤 poles, except the pole at 𝑤 = 𝑧.
For the rest of this subsection, we derive some estimates of𝖣1 and𝖣2 near 𝑧𝑐, by approximating

them with some easier-to-analyze functions in several steps.

5.3.1 The function 𝖦

It would be more convenient to work with a “continuous version” of the functions 𝖣1 and 𝖣2,
defined as

𝖦(𝑧) =∫
𝐸−

−∞
log(𝑧 − 𝑥)𝜌0(𝑥)d𝑥 + ∫

∞

𝐸+

log(𝑥 − 𝑧)𝜌0(𝑥)d𝑥

+ (𝑧 + 𝑡𝑐) log(𝑧 + 𝑡𝑐) − 𝑧 log(−𝑧) + 𝑧 log(𝛽∕(1 − 𝛽)).

(5.15)

We first define this function𝖦 for 𝑧 ∈ (𝐸−, 𝐸+), and then analytically extend it toℂ ⧵ ((−∞,𝐸−] ∪
[𝐸+,∞)). A key advantage of 𝖦 is that, while each of 𝖣1 and 𝖣2 should have three critical points
very close to 𝑧𝑐,𝖦has a triple critical point precisely at 𝑧𝑐, due to our choice of (𝑥𝑐, 𝑡𝑐) in Lemma5.2.

Lemma 5.4. We have 𝖦′(𝑧𝑐) = 𝖦′′(𝑧𝑐) = 𝖦′′′(𝑧𝑐) = 0, and 𝖦′′′′(𝑧𝑐) = −24𝑡−4𝑐 𝐴.

Proof. The fact that 𝖦′(𝑧𝑐) = 𝖦′′(𝑧𝑐) = 𝖦′′′(𝑧𝑐) = 0 is follows straightforwardly from (5.7), (5.8),
and (5.9). Also, we have

𝖦′′′′(𝑧) = 𝑚′′′
0 (𝑧) +

2

(𝑡𝑐 + 𝑧)3
−

2

𝑧3
= −∫

6𝜌0(𝑥)

(𝑧 − 𝑥)4
d𝑥 +

2

(𝑡𝑐 + 𝑧)3
−

2

𝑧3
,

so 𝖦′′′′(𝑧𝑐) = −24𝑡−4𝑐 𝐴 by (5.12). □

Lemma 5.4 indicates that, when |𝑧 − 𝑧𝑐| is small, we can approximate𝖦(𝑧) by𝖦(𝑧𝑐) − 𝑡−4𝑐 𝐴(𝑧 −
𝑧𝑐)

4.

Lemma 5.5. There exists a constant 𝑐 > 0, such that for any 𝑧 ∈ ℂ with |𝑧 − 𝑧𝑐| ≤ 𝑐𝑡
3∕2
𝑐 , we have

𝖦′(𝑧) + 4𝑡−4𝑐 𝐴(𝑧 − 𝑧𝑐)
3 ≲ 𝑡

−11∕2
𝑐 |𝑧 − 𝑧𝑐|4,

𝖦(𝑧) − 𝖦(𝑧𝑐) + 𝑡
−4
𝑐 𝐴(𝑧 − 𝑧𝑐)

4 ≲ 𝑡
−11∕2
𝑐 |𝑧 − 𝑧𝑐|5.

Proof. It suffices to bound the fifth derivative of𝖦. For any 𝑧 ∈ ℂ ⧵ ((−∞,𝐸−] ∪ [𝐸+,∞)), we have

𝖦′′′′′(𝑧) = 𝑚′′′′
0 (𝑧) −

6

(𝑡𝑐 + 𝑧)4
+

6

𝑧4
.

Take any 𝑧 ∈ ℂ with |𝑧 − 𝑧𝑐| ≤ 𝑐𝑡
3∕2
𝑐 . For a sufficiently small 𝑐, we have (Re(𝑧) − 𝐸−) ∧

(𝐸+ − Re(𝑧)) ≍ 𝑡
3∕2
𝑐 by (5.10). Then, with (5.6) and (5.10), we get that 𝑚′′′′

0 (𝑧) ≲ 𝑡
−11∕2
𝑐 and

−
6

(𝑡𝑐+𝑧)4
+

6

𝑧4
≲ 𝑡−4𝑐 . These two estimates imply that 𝖦′′′′′(𝑧) ≲ 𝑡

−11∕2
𝑐 , which give the bound
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 29

𝖦′′′′(𝑧) − 𝖦′′′′(𝑧𝑐) ≲ 𝑡
−11∕2
𝑐 |𝑧 − 𝑧𝑐| for any 𝑧 ∈ ℂ with |𝑧 − 𝑧𝑐| ≤ 𝑐𝑡

3∕2
𝑐 . Then, the conclusion

follows from the Taylor expansion of 𝖦(𝑧) and Lemma 5.4. □

We next use Lemma 5.4 to deduce some results that were mentioned earlier.

Lemma 5.6. We have𝐴 > 0 and𝐴 ≍ 1. In addition, we have 𝐸+ < 0, 𝐸− > −𝑡𝑐, and 𝐸+, 𝐸− + 𝑡𝑐 ≳
𝑡.

Proof. By (5.5) and (5.10), we have𝑚′′′
0 (𝑧𝑐) < 0 and𝑚′′′

0 (𝑧𝑐) ≍ 𝑡
−4
. If the following estimate holds,

−𝑚′′′
0 (𝑧𝑐) >

3
2

[
2

(𝑡𝑐 + 𝑧𝑐)3
−

2

𝑧3𝑐

]
, (5.16)

then 𝖦′′′′(𝑧𝑐) < 0 and 𝖦′′′′(𝑧𝑐) ≍ 𝑡
−4
, which gives that 𝐴 > 0 and 𝐴 ≍ 1.

Otherwise, if (5.16) fails, then we must have 𝑡 ≍ 𝑡𝑐 ≍ 1. Define

𝑈− = ∫
𝑧𝑐

−∞

𝜌0(𝑥)

(𝑧𝑐 − 𝑥)2
d𝑥, 𝑉− = ∫

𝑧𝑐

−∞

𝜌0(𝑥)

(𝑧𝑐 − 𝑥)3
d𝑥,

𝑈+ = ∫
∞

𝑧𝑐

𝜌0(𝑥)

(𝑥 − 𝑧𝑐)2
d𝑥, 𝑉+ = ∫

∞

𝑧𝑐

𝜌0(𝑥)

(𝑥 − 𝑧𝑐)3
d𝑥.

For simplicity of notations, we denote 𝑃 = (𝑡𝑐 + 𝑧𝑐)
−1 and𝑄 = −𝑧−1𝑐 , which are positive by (5.10).

Then, equations 𝖦′′(𝑧𝑐) = 0 and 𝖦′′′(𝑧𝑐) = 0 can be written as

𝑈− + 𝑈+ = 𝑃 + 𝑄, 2𝑉− − 2𝑉+ = 𝑃2 − 𝑄2. (5.17)

Also, denote 𝐺− = 2𝑉− − 𝑈
2
− and 𝐺+ = 2𝑉+ − 𝑈

2
+ (which are positive by Lemma 5.7 below).

Then,

𝐺− − 𝐺+ = 𝑃2 − 𝑄2 − 𝑈2
− + 𝑈

2
+. (5.18)

By Lemma 5.7 below, using 𝑉2− ≥ 𝑈4
−∕4 + 𝑈

2
−𝐺−∕2 and 𝑉2+ ≥ 𝑈4

+∕4 + 𝑈
2
+𝐺+∕2, we get that

−𝖦′′′′(𝑧𝑐) ≥ (𝑈3
− + 𝑈

3
+)∕2 + 6(𝑉

2
−∕𝑈− + 𝑉

2
+∕𝑈+) − 2𝑃

3 − 2𝑄3

≥ 2(𝑈3
− + 𝑈

3
+) + 3(𝑈−𝐺− + 𝑈+𝐺+) − 2𝑃

3 − 2𝑄3.
(5.19)

Without loss of generality, we assume that 𝑃 ≤ 𝑄. If 𝑈− ≤ 𝑃 or 𝑈− ≥ 𝑄, we have −𝖦′′′′(𝑧𝑐) ≥
3𝑈−𝐺− + 3𝑈+𝐺+. Otherwise, we have 𝑈−,𝑈+ ∈ (𝑃, 𝑄). Then, we can write the last line of (5.19)
as

2(𝑈3
− + 𝑈

3
+ − 𝑃

3 − 𝑄3) + 3𝑈+(𝐺+ − 𝐺−) + 3(𝑈− + 𝑈+)𝐺− = 2(𝑈− − 𝑃)

(𝑈2
− + 𝑈−𝑃 + 𝑃

2 − 𝑈2
+ − 𝑈+𝑄 − 𝑄

2 + 3𝑈+(𝑈− + 𝑈+)) + 3(𝑈− + 𝑈+)𝐺− ≥ 3(𝑈− + 𝑈+)𝐺−,

wherewe used (5.18) and the first identity in (5.17) in the first step, and the second step simply uses
𝑃 ≥ 0 and𝑄 ≤ 𝑈− + 𝑈+. From Assumption 5.1 and (5.10), it is straightforward to check that simi-
larly to (5.2), we have𝑈−,𝑈+ ≍ 𝑡

−1
. Using Lemma 5.7 below and the fact that 𝜌0 is supported in an

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22202 by Stanford U

niversity, W
iley O

nline Library on [13/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



30 HUANG et al.

order 1 interval, we obtain that 𝐺− ≳ 𝑈− ≳ 𝑡
−1
and 𝐺+ ≳ 𝑈+ ≳ 𝑡

−1
. Thus, we have −𝖦′′′′(𝑧𝑐) > 0

and −𝖦′′′′(𝑧𝑐) ≳ 𝑡
−2
. Since we have assumed that 𝑡 ≍ 𝑡𝑐 ≍ 1, we still get that 𝐴 > 0 and 𝐴 ≍ 1.

We now deduce that 𝐸+ < 0 with 𝐸+ ≳ 𝑡. Otherwise, using that 𝜌0(𝑥) ∈ [0, 1] and the growth
of 𝜌0 in Assumption 5.1, we can deduce that 𝑈+ < ∫ ∞

0

1

(𝑥−𝑧𝑐)2
d𝑥 = 𝑄 and 𝑉+ < ∫ ∞

0

1

(𝑥−𝑧𝑐)3
d𝑥 =

𝑄2∕2. Therefore, by (5.17), we have 𝑈− > 𝑃 while 2𝑉− < 𝑃2, contradicting Lemma 5.7 below.
Similarly, we can deduce that 𝐸− > −𝑡𝑐 with 𝐸− + 𝑡𝑐 ≳ 𝑡. □

The following elementary lemma is used in the proof of Lemma 5.6.

Lemma 5.7. Take any 𝑟 > 0 and function 𝜂 ∶ (0, 𝑟) → [0, 1], denote𝑈 = ∫ 𝑟

0

𝜂(𝑥)d𝑥

𝑥2
,𝑉 = ∫ 𝑟

0

𝜂(𝑥)d𝑥

𝑥3
,

and𝑊 = ∫ 𝑟

0

𝜂(𝑥)d𝑥

𝑥4
. Then, we have 2𝑉 − 𝑈2 ≥ 2𝑈𝑟−1 and𝑊 ≥ 𝑈3∕12 + 𝑉2∕𝑈.

Proof. Note that 𝜂 ↦ ∫ 𝑟

0

𝜂(𝑥)

𝑥𝑖
d𝑥, for 𝑖 ∈ {2, 3, 4}, are linear functionals. It would then be straight-

forward to deduce that, given 𝑈 < ∞, 𝑉 is minimized when 𝜂 is the indicator function of an
interval (𝑎, 𝑟), for some 0 < 𝑎 < 𝑟. In this case, we have 𝑈 = 𝑎−1 − 𝑟−1 and 𝑉 = 𝑎−2∕2 − 𝑟−2∕2,
so 2𝑉 − 𝑈2 = 2(𝑎𝑟)−1 − 2𝑟−2 = 2𝑈𝑟−1.
Similarly, given 𝑈,𝑉 < ∞,𝑊 is minimized when 𝜂 is the characteristic function of an inter-

val (𝑎, 𝑏), for some 0 < 𝑎 < 𝑏 ≤∞. Then, we have 𝑈 = 𝑎−1 − 𝑏−1, 𝑉 = (𝑎−2 − 𝑏−2)∕2, 𝑊 =
(𝑎−3 − 𝑏−3)∕3. These imply that 𝑎−1 = 𝑈∕2 + 𝑉∕𝑈 and 𝑏−1 = −𝑈∕2 + 𝑉∕𝑈, so 𝑊 = 𝑈3∕12 +
𝑉2∕𝑈. □

5.3.2 Discrete approximation

We next use the above-obtained information on 𝖦 to extract properties of 𝖣2 and 𝖣1. As a first
step, we discretize 𝖦. For the rest of this section, we denote 𝗍𝑐 = ⌊𝑡𝑐𝑛⌋. Define

𝖦(𝑧) =
1
𝑛

𝑁∑
𝑖=−𝑀

log

(
𝑧 −

𝖽𝑖
𝑛

)
+
1
𝑛

𝗍𝑐−1∑
𝑖=0

log

(
𝑧 +

𝑖
𝑛

)
−
1
𝑛
log(sin(𝜋𝑛𝑧)) + 𝑧 log(𝛽∕(1 − 𝛽)).

(5.20)
As in the case of 𝖣2 and 𝖣1, this expression defines a holomorphic function on ℍ, up to adding a
pure imaginary constant, and it can be analytically extended to ℝ ⧵ 𝐸(𝖦) from ℍ, where

𝐸(𝖦) = 𝑛−1
[
({𝖽𝑖}

𝑁
𝑖=−𝑀 ∩ [−𝗍𝑐 + 1, 0]) ∪ ((−∞,−𝗍𝑐] ∪ [1,∞) ⧵ {𝖽𝑖}

𝑁
𝑖=−𝑀)

]
.

We then choose the pure imaginary constant to ensure Im𝖦 = 0 in the interval (𝖽−1∕𝑛, 𝖽0∕𝑛).
Finally, we analytically extend 𝖦 to ℍ− from ℍ ∪ (𝖽−1∕𝑛, 𝖽0∕𝑛). For the next two lemmas, we
show that 𝖦 is a good approximation of 𝖦, by bounding the difference between their derivatives.

Lemma 5.8. For any 𝑧 ∈ ℍ, we have

𝖦′(𝑧) − 𝖦
′
(𝑧) ≲

𝑛−1+𝜖4

inf𝑥∈(−∞,𝐸−∨(𝖽−1∕𝑛)]∪[𝐸+∧(𝖽0∕𝑛),∞) |𝑥 − 𝑧| .
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 31

Proof. By (5.15) and (5.20), we can write 𝖦′(𝑧) − 𝖦
′
(𝑧) for 𝑧 ∈ ℍ as

∫
𝜌0(𝑥)

𝑧 − 𝑥
d𝑥 + log(𝑧 + 𝑡𝑐) − log(−𝑧) −

𝑁∑
𝑖=−𝑀

1
𝑛𝑧 − 𝖽𝑖

−
𝗍𝑐−1∑
𝑖=0

1
𝑛𝑧 + 𝑖

+ 𝜋 cot(𝜋𝑛𝑧), (5.21)

which is defined first for (𝖽−1∕𝑛, 𝖽0∕𝑛) ∩ (𝐸−, 𝐸+), and then analytically extended to ℍ. We note
that

𝜋 cot(𝜋𝑛𝑧) = lim
𝑚→∞

∑
𝑖∈⟦−𝑚,𝑚⟧

1
𝑛𝑧 + 𝑖

, (5.22)

for any 𝑧 ∈ ℍ, so we have

||| log(𝑧 + 𝑡𝑐) − log(−𝑧) −
𝗍𝑐−1∑
𝑖=0

1
𝑛𝑧 + 𝑖

+ 𝜋 cot(𝜋𝑛𝑧)|||
= lim
𝑚→∞

||| − ∫
0

−𝑚

1
𝑛𝑧 + 𝑥

d𝑥 − ∫
𝑚

𝑛𝑡𝑐

1
𝑛𝑧 + 𝑥

d𝑥 +
−1∑

𝑖=−𝑚

1
𝑛𝑧 + 𝑖

+
𝑚∑
𝑖=𝗍𝑐

1
𝑛𝑧 + 𝑖

|||
≤

−1∑
𝑖=−∞

|||∫ 𝑖+1

𝑖

1
𝑛𝑧 + 𝑥

d𝑥 −
1

𝑛𝑧 + 𝑖
||| + ∞∑

𝑖=𝗍𝑐

|||∫ 𝑖+𝑛𝑡𝑐−𝗍𝑐+1

𝑖+𝑛𝑡𝑐−𝗍𝑐

1
𝑛𝑧 + 𝑥

d𝑥 −
1

𝑛𝑧 + 𝑖
|||

≤
−1∑

𝑖=−∞

1

inf𝑥∈[𝑖,𝑖+1] |𝑛𝑧 + 𝑥|2 +
∞∑
𝑖=𝗍𝑐

1

inf𝑥∈[𝑖,𝑖+2] |𝑛𝑧 + 𝑥|2 ≲ 1
𝑛 inf𝑥∈(−∞,𝗍𝑐∕𝑛]∪[0,∞) |𝑥 − 𝑧| .

We next bound the remaining terms in (5.21). Recall the quantiles 𝛾𝑖 , 𝑖 ∈ [[−𝑀,𝑁]], defined in
Assumption 5.1. We have

|||∫ 𝜌0(𝑥)

𝑧 − 𝑥
d𝑥 −

𝑁∑
𝑖=−𝑀

1
𝑛𝑧 − 𝖽𝑖

||| ≤ ||| 𝑁−1∑
𝑖=−𝑀

∫
𝛾𝑖+1

𝛾𝑖

𝜌0(𝑥)

(
1

𝑧 − 𝑥
−

1

𝑧 − 𝖽𝑖∕𝑛

)
d𝑥||| + ||| 1

𝑛𝑧 − 𝖽𝑁

|||.
(5.23)

For each 𝑖 ∈ ⟦−𝑀,𝑁 − 1⟧ and 𝑥 ∈ [𝛾𝑖, 𝛾𝑖+1], we have

||| 1
𝑧 − 𝑥

−
1

𝑧 − 𝖽𝑖∕𝑛
||| ≤ ∫

𝑥∨(𝖽𝑖∕𝑛)

𝑥∧(𝖽𝑖∕𝑛)

d𝑦|𝑧 − 𝑦|2 .
Thus, (5.23) can be bounded by

𝑁−1∑
𝑖=−𝑀

∫
𝛾′𝑖+1∨(𝖽𝑖∕𝑛)

𝛾𝑖∧(𝖽𝑖∕𝑛)

d𝑦

𝑛|𝑧 − 𝑦|2 + ||| 1
𝑛𝑧 − 𝖽𝑁

|||, (5.24)

where we denote 𝛾′0 = 𝐸− (in contrast to 𝛾0 = 𝐸+) and 𝛾′𝑖 = 𝛾𝑖 for 𝑖 ∈ ⟦−𝑀,𝑁⟧ ⧵ {0}.
For each 𝑖 ∈ [[−𝑀,𝑁]] and 𝑦 ∈ [𝛾𝑖 ∧ (𝖽𝑖∕𝑛), 𝛾

′
𝑖+1 ∨ (𝖽𝑖∕𝑛)], we have either 𝛾𝑖 ≤ 𝑦 ≤ 𝖽𝑖∕𝑛 or

𝖽𝑖∕𝑛 ≤ 𝑦 ≤ 𝛾′𝑖+1. We note that by (5.1), for any 𝑦 ∈ (−∞,𝐸− ∨ (𝖽−1∕𝑛)] ∪ [𝐸+ ∧ (𝖽0∕𝑛),∞), we
have

|{𝑖 ∈ ⟦−𝑀,𝑁 − 1⟧ ∶ 𝛾𝑖 ≤ 𝑦 ≤ 𝖽𝑖∕𝑛}| + |{𝑖 ∈ ⟦−𝑀,𝑁 − 1⟧ ∶ 𝖽𝑖∕𝑛 ≤ 𝑦 ≤ 𝛾′𝑖+1}| ≲ 𝑛𝜖4 ;
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32 HUANG et al.

and for 𝑦 ∈ (𝐸− ∨ (𝖽−1∕𝑛), 𝐸+ ∧ (𝖽0∕𝑛)) we have

|{𝑖 ∈ ⟦−𝑀,𝑁 − 1⟧ ∶ 𝛾𝑖 ≤ 𝑦 ≤ 𝖽𝑖∕𝑛}| + |{𝑖 ∈ ⟦−𝑀,𝑁 − 1⟧ ∶ 𝖽𝑖∕𝑛 ≤ 𝑦 ≤ 𝛾′𝑖+1}| = 0.

Thus, we can further bound (5.24) by

∫(−∞,𝐸−∨(𝖽−1∕𝑛)]∪[𝐸+∧(𝖽0∕𝑛),∞)

𝑛−1+𝜖4d𝑦|𝑧 − 𝑦|2 + ||| 1
𝑛𝑧 − 𝖽𝑁

|||,
so the conclusion follows. □

Combining Lemmas 5.5 and 5.8, we can deduce the following result.

Lemma 5.9. For any 𝑧 ∈ ℂ with |𝑧 − 𝑧𝑐| < 𝑐𝑡
3∕2
𝑐 , we have that

𝖦(𝑧) − 𝖦(𝑧𝑐) + 𝑡
−4
𝑐 𝐴(𝑧 − 𝑧𝑐)

4 ≲ 𝑡
−11∕2
𝑐 |𝑧 − 𝑧𝑐|5 + 𝑛−1+𝜖4𝑡−3∕2𝑐 |𝑧 − 𝑧𝑐|.

Proof. By Lemma 5.8, for any 𝑧 ∈ ℂ with |𝑧 − 𝑧𝑐| < 𝑐𝑡
3∕2
𝑐 , we have |𝖦′(𝑧) − 𝖦′(𝑧)| ≲ 𝑛−1+𝜖4𝑡

−3∕2
𝑐 .

Then, by integrating over 𝑧, we get |𝖦(𝑧) − 𝖦(𝑧) − 𝖦(𝑧𝑐) + 𝖦(𝑧𝑐)| ≲ 𝑛−1+𝜖4𝑡
−3∕2
𝑐 |𝑧 − 𝑧𝑐|. Together

with Lemma 5.5, this concludes the proof. □

5.3.3 Estimates of 𝖣1 and 𝖣2

We next show that 𝖦 is close to 𝖣1 and 𝖣2.

Lemma 5.10. For any 𝑧 ∈ ℂ with |𝑧 − 𝑧𝑐| ≤ 𝑐𝑡𝑐, we have

𝖦
′
(𝑧) − 𝖣′1(𝑧), 𝖦

′
(𝑧) − 𝖣′2(𝑧) ≲ 𝑛−3∕4𝑡−1𝑐 + 𝑛−1∕2𝑡−2𝑐 |𝑧 − 𝑧𝑐|.

Proof. For 𝑧 ∈ ℂ with |𝑧 − 𝑧𝑐| ≤ 𝑐𝑡𝑐, we can write that

𝖦
′
(𝑧) − 𝖣′2(𝑧) =

𝗍𝑐−1∑
𝑖=0

1
𝑛𝑧 + 𝑖

−
−𝗑2+𝗍2−1∑
𝑖=−𝗑2+1

1
𝑛𝑧 + 𝑖

.

Since 𝗑2, 𝗍2 − 𝗍𝑐 ≲ 𝑛1∕2 and |𝑧 − 𝑧𝑐| ≤ 𝑐𝑡𝑐 (so 𝑧, 𝑧 + 𝑡𝑐 ≍ 𝑡𝑐 according to (5.10)), we estimate it as

log

(
𝑛𝑧 − 𝗑2 + 1

𝑛𝑧

)
− log

(
𝑛𝑧 − 𝗑2 + 𝗍2
𝑛𝑧 + 𝗍𝑐

)
+ 
(
∫

0∨(−𝗑2+1)

0∧(−𝗑2+1)

d𝑦|𝑛𝑧 + 𝑦|2
)

+ 
(
∫

𝗍𝑐∨(−𝗑2+𝗍2)

𝗍𝑐∧(−𝗑2+𝗍2)

d𝑦|𝑛𝑧 + 𝑦|2
)
= log

(
(𝑛𝑧 − 𝗑2 + 1)(𝑛𝑧 + 𝗍𝑐)

𝑛𝑧(𝑛𝑧 − 𝗑2 + 𝗍2)

)
+ (𝑛−3∕2𝑡−2𝑐 ).

We note that

log

(
(𝑛𝑧 − 𝗑2 + 1)(𝑛𝑧 + 𝗍𝑐)

𝑛𝑧(𝑛𝑧 − 𝗑2 + 𝗍2)

)
= log

(
1 +

𝑛𝑧(𝗍𝑐 − 𝗍2 + 1) + (−𝗑2 + 1)𝗍𝑐
𝑛𝑧(𝑛𝑧 − 𝗑2 + 𝗍2)

)
.
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 33

Again, using that 𝗑2, 𝗍2 − 𝗍𝑐 ≲ 𝑛1∕2 and 𝑧, 𝑧 + 𝑡𝑐 ≍ 𝑡𝑐, we get that

𝑛𝑧𝑐(𝗍𝑐 − 𝗍2 + 1) + (−𝗑2 + 1)𝗍𝑐

𝑛2𝑡2𝑐
+ (𝑛−1∕2𝑡−2𝑐 |𝑧 − 𝑧𝑐|) = (𝑛−3∕4𝑡−1𝑐 + 𝑛−1∕2𝑡−2𝑐 |𝑧 − 𝑧𝑐|),

where we used that 𝗑2 +
𝑧𝑐

𝑡𝑐
(𝗍2 − 𝗍𝑐) = 𝗑2 − 𝐵(𝗍2 − 𝗍𝑐) ≲ 𝑛1∕4. Thus, we have

𝖦
′
(𝑧) − 𝖣′2(𝑧) ≲ 𝑛−3∕2𝑡−2𝑐 + 𝑛−3∕4𝑡−1𝑐 + 𝑛−1∕2𝑡−2𝑐 |𝑧 − 𝑧𝑐|.

Since 𝑛−1∕2+𝜖1 < 𝑡 ≍ 𝑡𝑐, we have 𝑛−3∕2𝑡−2𝑐 ≲ 𝑛−3∕4𝑡−1𝑐 , which gives the desired bound for 𝖦
′
(𝑧) −

𝖣′2(𝑧). The bound for 𝖦
′
(𝑧) − 𝖣′1(𝑧) is proved similarly. □

Putting together Lemmas 5.5, 5.8, and 5.10, we get the following estimate for 𝖣′1 and 𝖣
′
2 near 𝑧𝑐.

Lemma 5.11. For any 𝑧 ∈ ℂ with |𝑧 − 𝑧𝑐| ≤ 𝑐𝑡
3∕2
𝑐 , we have

𝖣′1(𝑧) + 4𝑡
−4
𝑐 𝐴(𝑧 − 𝑧𝑐)

3, 𝖣′2(𝑧) + 4𝑡
−4
𝑐 𝐴(𝑧 − 𝑧𝑐)

3 ≲ 𝑛−3∕4𝑡−1𝑐 + 𝑛−1∕2𝑡−2𝑐 |𝑧 − 𝑧𝑐| + 𝑡−11∕2𝑐 |𝑧 − 𝑧𝑐|4.
Note that here we use that 𝑛−1+𝜖4𝑡−3∕2𝑐 ≲ 𝑛−3∕4𝑡−1𝑐 (since 𝑛−1∕2+𝜖1 < 𝑡 ≍ 𝑡𝑐, and 𝜖4 is chosen

small enough depending on 𝜖1).

5.3.4 Away from 𝑧𝑐

So far, we have obtained estimates on 𝖣′1 and 𝖣
′
2 near 𝑧𝑐, using the approximations 𝖦 and 𝖦. We

will also need some estimates on 𝖣′1 and 𝖣
′
2 away from 𝑧𝑐, which are stated as follows.

Lemma 5.12. For any 𝑧 ∈ ℍ, suppose that 𝑥∗ is the element in 𝐸(𝖣2) with the smallest |𝑧 − 𝑥∗|.
Then, we have that

𝖣′2(𝑧) −
𝑠

𝑛(𝑧 − 𝑥∗)
≲ log 𝑛,

for some 𝑠 ∈ {1, −1}, depending on the residue of 𝖣′2 at 𝑥∗. A similar estimate holds for 𝖣
′
1.

Proof. We only prove the bound for 𝖣′2(𝑧), and the bound for 𝖣′1(𝑧) follows from a similar
argument. With the definition of 𝖣2 and (5.22), we can write that

𝖣′2(𝑧) =
𝑁∑

𝑖=−𝑀

1
𝑛𝑧 − 𝖽𝑖

+
−𝗑2+𝗍2−1∑
𝑖=−𝗑2+1

1
𝑛𝑧 + 𝑖

− 𝜋 cot(𝜋𝑛𝑧) + log(𝛽∕(1 − 𝛽))

=
𝑁∑

𝑖=−𝑀

1
𝑛𝑧 − 𝖽𝑖

− lim
𝑚→∞

(
−𝗑2∑
𝑖=−𝑚

1
𝑛𝑧 + 𝑖

+
𝑚∑

𝑖=−𝗑2+𝗍2

1
𝑛𝑧 + 𝑖

)
+ log(𝛽∕(1 − 𝛽)). (5.25)
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34 HUANG et al.

Thus, we have

|||𝖣′2(𝑧) − 𝑠

𝑛(𝑧 − 𝑥∗)
||| ≤ ∑

𝑥∈𝐸(𝖣2)∩(−𝐶0,𝐶0),𝑥≠𝑥∗
1

𝑛|𝑧 − 𝑥|
+ lim

𝑚→∞

||| ∑
𝑖∈[[−𝑚,𝑚]],|𝑖|≥𝐶0𝑛,𝑖≠𝑥∗𝑛

1
𝑛𝑧 − 𝑖

||| + | log(𝛽∕(1 − 𝛽))|,
where 𝐶0 > 0 is a large enough constant so that −𝐶0𝑛 < 2𝖽−𝑀 < 2𝖽𝑁 < 𝐶0𝑛. The first term is
bounded by

∑
𝑥∈𝐸(𝖣2)∩(−𝐶0,𝐶0),𝑥≠𝑥∗

1
𝑛|𝑧 − 𝑥| ≲

⌈2𝐶0𝑛⌉∑
𝑖=1

1

𝑖 − 1∕2
≲ log 𝑛.

We also have that

∑
𝑖∈[[−𝑚,𝑚]],|𝑖|≥𝐶0𝑛,𝑖≠𝑥∗𝑛

1
𝑛𝑧 − 𝑖

= ∫𝐼
d𝑦

𝑛𝑧 + 𝑦
+ 
(
∫𝐼

d𝑦|𝑛𝑧 + 𝑦|2
)
,

where 𝐼 is the union of [𝑖 − 1, 𝑖] for all 𝑖 ∈ [[−𝑚,𝑚]], |𝑖| ≥ 𝐶0𝑛, 𝑖 < 𝑥∗𝑛, and [𝑖, 𝑖 + 1] for all 𝑖 ∈
[[−𝑚,𝑚]], |𝑖| ≥ 𝐶0𝑛, 𝑖 > 𝑥∗𝑛. It is straightforward to check that

lim
𝑚→∞∫𝐼

d𝑦

𝑛𝑧 + 𝑦
= (log 𝑛), ∫𝐼

d𝑦|𝑛𝑧 + 𝑦|2 = (1),

and the conclusion follows. □

When |𝑧| is large, we can directly approximate 𝖣1(𝑧) and 𝖣2(𝑧) using the linear function 𝑧 ↦
𝑧[𝜋𝐢 + log(𝛽∕(1 − 𝛽))], as follows.

Lemma 5.13. For any 𝑧 ∈ ℍ with |𝑧| > 𝑛, we have

𝖣1(𝑧) − 𝑧[𝜋𝐢 + log(𝛽∕(1 − 𝛽))], 𝖣2(𝑧) − 𝑧[𝜋𝐢 + log(𝛽∕(1 − 𝛽))]

≲ [−𝑛−1 log(min
𝑖∈ℤ
|𝑛𝑧 − 𝑖|)] ∨ 0 + log |𝑧|.

Proof. We only prove the bound for 𝖣2, while the proof for 𝖣1 is similar. Since 𝑀,𝑁 ≍ 𝑛,|𝖽−𝑀|, |𝖽𝑁| ≍ 𝑛, |𝗑2|, |𝗍2| ≲ 𝑛, and |𝑧| > 𝑛, we have

1
𝑛

𝑁∑
𝑖=−𝑀

log

(
𝑧 −

𝖽𝑖
𝑛

)
+
1
𝑛

−𝗑2+𝗍2−1∑
𝑖=−𝗑2+1

log

(
𝑧 +

𝑖
𝑛

)
≲ log |𝑧|, (5.26)

where the left-hand side is defined to be holomorphic in ℍ and real near (2𝑛)−1. Next,
we consider −1

𝑛
log(sin(𝜋𝑛𝑧)), which is defined first for 𝑧 ∈ (0, 𝑛−1), and then analytically

extended to ℂ ⧵ ((−∞, 0] ∪ [𝑛−1,∞)). We note that 1

𝑛
log(sin(𝜋𝑛𝑧)) + 𝑧𝜋𝐢 is periodic: for any

𝑧 ∈ ℍ, we have 1

𝑛
log(sin(𝜋𝑛𝑧)) + 𝑧𝜋𝐢 =

1

𝑛
log(sin(𝜋𝑛(𝑧 + 2𝑛−1))) + (𝑧 + 2𝑛−1)𝜋𝐢. This gives
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 35

Im
[
1

𝑛
log(sin(𝜋𝑛𝑧)) + 𝑧𝜋𝐢

]
≲ 𝑛−1 for any 𝑧 ∈ ℍ. For Re

[
1

𝑛
log(sin(𝜋𝑛𝑧)) + 𝑧𝜋𝐢

]
, it is equal to

1
𝑛
log(| sin(𝜋𝑛𝑧)𝑒𝐢𝜋𝑛𝑧|) = 1

𝑛
log

(|||𝑒2𝜋𝐢𝑛𝑧 − 12𝐢
|||
)
,

which is of order(𝑛−1)when Im 𝑧 > 𝑛−1∕5, and of order(𝑛−1(1 − log(min𝑖∈ℤ |𝑛𝑧 − 𝑖|)))when
0 < Im(𝑧) ≤ 𝑛−1∕5. Thus, we conclude that for any 𝑧 ∈ ℍ,

1
𝑛
log(sin(𝜋𝑛𝑧)) + 𝑧𝜋𝐢 ≲ [−𝑛−1 log(min

𝑖∈ℤ
|𝑛𝑧 − 𝑖|)] ∨ 0 + 𝑛−1.

Finally, to get 𝖣2 from the left-hand side of (5.26) (which is taken to be real near (2𝑛)−1) and
−
1

𝑛
log(sin(𝜋𝑛𝑧)) (which is taken to be real in (0, 𝑛−1)), one only needs to add a pure imaginary

number, which is (1) since𝑀,𝑁 ≍ 𝑛. Therefore, the conclusion follows. □

5.4 Contour deformation

To obtain the estimates of kernels and prove Proposition 5.3, we will use the steepest descent
method. For this purpose,we need to deform the contours for𝐾Bernoulli in (5.14). In this subsection,
we construct these deformed contours.
From the above computations on 𝖣1 and 𝖣2, we expect to deform the contours so that both

pass through 𝑧𝑐, and the integrand in (5.14) decays fast for 𝑧 and 𝑤 away from 𝑧𝑐. Specifically, we
consider the contours inside and outside {𝑧 ∈ ℂ ∶ |𝑧 − 𝑧𝑐| ≤ 𝑛−1∕4+𝜖2𝑡𝑐} separately. (Recall that 𝜖2
is one of the parameters defined at the beginning of this section.) We now record a useful lemma.

Lemma 5.14. For any 𝑧 ∈ ℂ with |𝑧 − 𝑧𝑐| ≲ 𝑛−1∕4+𝜖2𝑡𝑐, we have

𝖣′1(𝑧) + 4𝑡
−4
𝑐 𝐴(𝑧 − 𝑧𝑐)

3, 𝖣′2(𝑧) + 4𝑡
−4
𝑐 𝐴(𝑧 − 𝑧𝑐)

3 ≲ 𝑛−3∕4+𝜖2𝑡−1𝑐 ,

𝖣1(𝑧) − 𝖣1(𝑧𝑐) + 𝑡
−4
𝑐 𝐴(𝑧 − 𝑧𝑐)

4, 𝖣2(𝑧) − 𝖣2(𝑧𝑐) + 𝑡
−4
𝑐 𝐴(𝑧 − 𝑧𝑐)

4 ≲ 𝑛−1+2𝜖2 .

The first estimate is directly implied by Lemma 5.11 and the facts that 𝑛−1∕2+𝜖1 < 𝑡 ≍ 𝑡𝑐. The
second estimate is obtained by integrating over 𝑧.
For the rest of this section,we use [𝑧1 → ⋯ → 𝑧𝑘] to denote the contour obtained by connecting

𝑧1, … , 𝑧𝑘 ∈ ℂ sequentially using straight line segments. In such notations, we may also take 𝑧1 or
𝑧𝑘 to be∞𝑒𝜋𝐢𝜃 for some 𝜃 ∈ ℝ, in which case the first or last segment is an infinite straight line
in the corresponding direction. Our first step is the following deformation.

Lemma 5.15. For (5.14), the contours can be replaced by the followings: the 𝑤 contour is the union
of

[𝑧𝑐 → 𝑧𝑐 + 𝑒
3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → −𝑡𝑐 − 1 → 𝑧𝑐 + 𝑒

5𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 𝑧𝑐], (5.27)

[𝑧𝑐 → 𝑧𝑐 + 𝑒
7𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 1 → 𝑧𝑐 + 𝑒

𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 𝑧𝑐], (5.28)

and the 𝑧 contour is the straight vertical line passing through 𝑧𝑐, traversed upwards.
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36 HUANG et al.

Proof. We first assume that the contour of𝑤 in (5.14) is taken to be small circles around the𝑤 poles.
Then we fix𝑤 and deform the contour of 𝑧, from the vertical line through (𝗑2 − 𝗍2 + 1∕2)∕𝑛 to the
vertical line through 𝑧𝑐. It is straightforward to check that, by Lemma 5.13, the integral over 𝑧 along
[(𝗑2 − 𝗍2 + 1∕2)∕𝑛 + 𝐢𝑋 → 𝑧𝑐 + 𝐢𝑋] for some 𝑋 ∈ ℝ would→ 0 as |𝑋|→∞. Thus, it remains to
consider the poles of 𝑧.
We note that there is no pole of 𝑧 in [(𝗑2 − 𝗍2 + 1∕2)∕𝑛, 𝑧𝑐], except for 𝑤 (when 𝑤 is in a small

circle around a point in this interval). For the residue at 𝑧 = 𝑤, it can be written as a coefficient
multiplying

∮
all𝑤poles in[(𝗑2−𝗍2+1∕2)∕𝑛,𝑧𝑐]

(𝑛𝑤 − 𝗑2 + 1)𝗍2−1

(𝑛𝑤 − 𝗑1)𝗍1+1
d𝑤,

which vanishes since the integrand has no 𝑤 pole in [(𝗑2 − 𝗍2 + 1∕2)∕𝑛, 𝑧𝑐]. Thus, we are done
with deforming the contour of 𝑧.
For𝑤, the contours (5.27) and (5.28) enclose all the𝑤 poles ({𝗑1 − 𝗍1, 𝗑1 − 𝗍1 + 1,… , 𝗑1 − 1, 𝗑1} ∩

{𝖽−𝑀,… , 𝖽𝑁})∕𝑛, since −𝑛𝑡𝑐 − 𝑛 < 𝗑1 − 𝗍1 < 𝗑1 < 𝑛. Hence, 𝑤 can be integrated along the union
of (5.27) and (5.28). □

5.4.1 Steepest descent curves

For the part of the contours (5.27), (5.28) and {𝑧 ∈ ℂ ∶ Re(𝑧) = 𝑧𝑐} outside {𝑧 ∈ ℂ ∶ |𝑧 − 𝑧𝑐| ≤
𝑛−1∕4+𝜖2𝑡𝑐}, we will further deform them to follow the steepest descent curves of Re(𝖣1) and
Re(𝖣2). For this purpose, we need to analyze the critical points of 𝖣1 and 𝖣2. Define

Γ𝑙 = (−∞, 𝑧𝑐 − 𝑛
−1∕4+𝜖2𝑡𝑐] ∪ [𝑧𝑐 + 𝑛

−1∕4+𝜖2𝑡𝑐,∞), Γ𝑐 = {𝑧 ∶ Im(𝑧) ≥ 0, |𝑧 − 𝑧𝑐| = 𝑛−1∕4+𝜖2𝑡𝑐},

and let Γ = Γ𝑙 ∪ Γ𝑐. Let 𝑈 = {𝑧 ∶ Im(𝑧) ≥ 0, |𝑧 − 𝑧𝑐| ≥ 𝑛−1∕4+𝜖2𝑡𝑐}. Note Γ is the boundary of 𝑈.

Lemma 5.16. The functions 𝖣1 and 𝖣2 have no critical point in the interior of𝑈.

Proof. Recall that 𝖣′2(𝑧) can be written as (5.25) for 𝑧 ∈ ℍ. By Hurwitz’s theorem, it suffices to
show that for all large enough𝑚,

𝑁∑
𝑖=−𝑀

1
𝑛𝑧 − 𝖽𝑖

−
−𝗑2∑
𝑖=−𝑚

1
𝑛𝑧 + 𝑖

−
𝑚∑

𝑖=−𝗑2+𝗍2

1
𝑛𝑧 + 𝑖

+ log
𝛽

1 − 𝛽
(5.29)

has no zero in the interior of 𝑈. For this purpose, we multiply (5.29) by
∏

𝑥∈𝐸(𝖣2)∩[−𝑚∕𝑛,𝑚∕𝑛]
(𝑧 −

𝑥), and obtain a polynomial with degree at most |𝐸(𝖣2) ∩ [−𝑚∕𝑛,𝑚∕𝑛]|. So (5.29) has at most|𝐸(𝖣2) ∩ [−𝑚∕𝑛,𝑚∕𝑛]|many zeros.
Consider the poles of (5.29), that is, 𝐸(𝖣2) ∩ [−𝑚∕𝑛,𝑚∕𝑛], which divide ℝ into |𝐸(𝖣2) ∩

[−𝑚∕𝑛,𝑚∕𝑛]| + 1 many intervals. By (5.13), except for at most four of these intervals (the left-
most and right-most open intervals, and two intervals in themiddlewhere the residues of the poles
change signs), there is at least one zero in each interval. By Rouché’s theorem and Lemma 5.14,
we see that there are precisely three zeros inside {𝑧 ∈ ℂ ∶ |𝑧 − 𝑧𝑐| < 𝑛−1∕4+𝜖2𝑡𝑐}. Now, we have
found at least |𝐸(𝖣2) ∩ [−𝑚∕𝑛,𝑚∕𝑛]|many zeros of (5.29) inℝ ∪ {𝑧 ∈ ℂ ∶ |𝑧 − 𝑧𝑐| < 𝑛−1∕4+𝜖2𝑡𝑐}.
Hence, 𝖣′2 has no zero in the interior of 𝑈.
The statement for 𝖣1 follows a similar argument. □
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 37

F IGURE 8 An illustration of the set {𝑧 ∈ ℂ ⧵ 𝐸(𝖣2) ∶ Im(𝖣2(𝑧)) = 0} ∩ 𝑈.

Since Re(𝖣2) and Im(𝖣2) are harmonic conjugates, the steepest descent curves of Re(𝖣2)
starting from around 𝑧𝑐 are given by the set Im𝖣2 = 0, which can be described as follows.

Lemma 5.17. The set 𝔄 = {𝑧 ∈ ℂ ⧵ 𝐸(𝖣2) ∶ Im(𝖣2(𝑧)) = 0} ∩ 𝑈 contains the following parts
(cf. Figure 8):

(1) Γ𝑙 ∩ (𝖽−1∕𝑛, 𝖽0∕𝑛);
(2) Two open intervals 𝑃2,− ⊂ (−∞, (𝗑2 − 𝗍2)∕𝑛) and 𝑃2,+ ⊂ (𝗑2∕𝑛,∞), defined as

𝑃2,− ∶= {𝑥 ∈ 𝔄, 𝑥 < (𝗑2 − 𝗍2)∕𝑛 ∶ |{−𝑀 ≤ 𝑖 ≤ −1 ∶ 𝖽𝑖 > 𝑥𝑛}| = |{𝑖 ∈ ℤ ∶ 𝑥𝑛 < 𝑖 ≤ 𝗑2 − 𝗍2}|},
𝑃2,+ ∶= {𝑥 ∈ 𝔄, 𝑥 > 𝗑2∕𝑛 ∶ |{0 ≤ 𝑖 ≤ 𝑁 ∶ 𝖽𝑖 < 𝑥𝑛}| = |{𝑖 ∈ ℤ ∶ 𝗑2 ≤ 𝑖 < 𝑥𝑛}|}.

By (5.13), 𝑃2,− and 𝑃2,+ are nonempty finite intervals.
(3) Three disjoint, smooth, and self-avoiding curves 𝓁2,1, 𝓁2,2, and 𝓁2,3, such that 𝓁2,1 is from 𝑧𝑐 +

𝑒𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐 ∈ Γ𝑐 to some 𝑧− ∈ 𝑃2,−, 𝓁2,3 is from 𝑧𝑐 + 𝑒
𝐢𝜃3𝑛−1∕4+𝜖2𝑡𝑐 ∈ Γ𝑐 to some 𝑧+ ∈ 𝑃2,+,

and 𝓁2,2 is from 𝑧𝑐 + 𝑒
𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐 ∈ Γ𝑐 to∞. Here, 𝜃1, 𝜃2, 𝜃3 ∈ ℝ and satisfy

|𝜃3 − 𝜋∕4|, |𝜃2 − 𝜋∕2|, |𝜃1 − 3𝜋∕4| ≲ 𝑛−2𝜖2 . (5.30)

Except for the endpoints, these curves (𝓁2,1, 𝓁2,2, and 𝓁2,3) are contained in the interior of𝑈.

Starting from Γ𝑐,Re𝖣2 is strictly decreasing along 𝓁2,2, and strictly increasing along each of 𝓁2,1 and
𝓁2,3. Moreover, we have

𝖣2(𝑧𝑐 + 𝑒
𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐) − 𝖣2(𝑧𝑐) − 𝐴𝑛

−1+4𝜖2 ≲ 𝑛−1+2𝜖2 ,

𝖣2(𝑧𝑐 + 𝑒
𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐) − 𝖣2(𝑧𝑐) + 𝐴𝑛

−1+4𝜖2 ≲ 𝑛−1+2𝜖2 ,

𝖣2(𝑧𝑐 + 𝑒
𝐢𝜃3𝑛−1∕4+𝜖2𝑡𝑐) − 𝖣2(𝑧𝑐) − 𝐴𝑛

−1+4𝜖2 ≲ 𝑛−1+2𝜖2 .

(5.31)

Similar statements hold for 𝖣1 and the set {𝑧 ∈ ℂ ⧵ 𝐸(𝖣1) ∶ Im(𝖣1(𝑧)) = 0} ∩ 𝑈.

Proof. It is straightforward to check (from the definition of 𝖣2) that for 𝑧 ∈ Γ𝑙 ∩ (𝖽−1∕𝑛, 𝖽0∕𝑛) or
𝑧 ∈ 𝑃2,− ∪ 𝑃2,+, we have Im(𝖣2(𝑧)) = 0, and Im(𝖣2(𝑧)) ≠ 0 for all other 𝑧 ∈ Γ𝑙 ⧵ 𝐸(𝖣2).
We next consider the half-circle Γ𝑐. Define the function 𝑓 ∶ [0, 𝜋] → ℝ as

𝑓 ∶ 𝜃 ↦ Im(𝖣2(𝑧𝑐 + 𝑒
𝐢𝜃𝑛−1∕4+𝜖2𝑡𝑐)).
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38 HUANG et al.

Note that 𝑓(0) = 𝑓(𝜋) = 0. By Lemma 5.14, we have

𝑓′(𝜃) + 4 cos(4𝜃)𝑛−1+4𝜖2𝐴 ≲ 𝑛−1+2𝜖2 .

With this estimate, we can conclude that 𝑓 has five zeros 0 < 𝜃3 < 𝜃2 < 𝜃1 < 𝜋, and they satisfy
(5.30) and (5.31). Using Lemma 5.14 again, we get that

𝖣′2(𝑧𝑐 + 𝑒
𝐢𝜃3𝑛−1∕4+𝜖2𝑡𝑐) = −4𝐴𝑒3𝐢𝜋∕4𝑛−3∕4+3𝜖2𝑡−1𝑐 (1 + (𝑛−2𝜖2)),

𝖣′2(𝑧𝑐 + 𝑒
𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐) = −4𝐴𝑒3𝐢𝜋∕2𝑛−3∕4+3𝜖2𝑡−1𝑐 (1 + (𝑛−2𝜖2)),

𝖣′2(𝑧𝑐 + 𝑒
𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐) = −4𝐴𝑒𝐢𝜋∕4𝑛−3∕4+3𝜖2𝑡−1𝑐 (1 + (𝑛−2𝜖2)).

(5.32)

It is straightforward to check that 𝖣′′2 > 0 on 𝑃2,− and 𝑃2,+, so 𝖣2 has a unique critical point
inside each of 𝑃2,− and 𝑃2,+, and we denote them by 𝑧− and 𝑧+, respectively.
As𝖣2 is holomorphic and contains no critical point in the interior of𝑈 by Lemma 5.16, for each

𝑧∗ in the interior of 𝑈, if Im(𝖣2(𝑧∗)) = 0, one can then take the steepest descent curve of Re𝖣2
from 𝑧∗. Along this curve Im𝖣2 = 0, and Re𝖣2 is strictly monotone due to the absence of critical
points. This curve inside𝑈 is smooth and self-avoiding; in each direction, it either ends at one of
𝑧𝑐 + 𝑒

𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐, 𝑧𝑐 + 𝑒𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐, 𝑧𝑐 + 𝑒𝐢𝜃3𝑛−1∕4+𝜖2𝑡𝑐, or ends at a critical point of 𝖣2 in 𝑃2,−
or 𝑃2,+ (i.e., one of 𝑧− and 𝑧+), or goes to∞. All such curves do not intersect each other.
Consider the Re𝖣2 steepest descent curves starting from 𝑧𝑐 + 𝑒

𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐,
𝑧𝑐 + 𝑒

𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐, 𝑧𝑐 + 𝑒𝐢𝜃3𝑛−1∕4+𝜖2𝑡𝑐, and 𝑧−, 𝑧+, towards the interior of 𝑈. Due to the
above estimates (5.32) on 𝖣′2, and the fact 𝖣′′2 > 0 on 𝑃2,− and 𝑃2,+, we observe that Re𝖣2 is
decreasing along the curves from 𝑧𝑐 + 𝑒

𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐 and 𝑧−, 𝑧+, while Re𝖣2 is increasing along
the curves from 𝑧𝑐 + 𝑒

𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐 and 𝑧𝑐 + 𝑒𝐢𝜃3𝑛−1∕4+𝜖2𝑡𝑐.
By Lemma 5.13, we have that any Im𝖣2 = 0 curve in the ascending direction of Re𝖣2 cannot

go to∞ in 𝑈, and thus must terminate at one of 𝑧𝑐 + 𝑒𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐, 𝑧−, 𝑧+. These imply that the
Re𝖣2 steepest descent curves from 𝑧𝑐 + 𝑒

𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐, 𝑧−, 𝑧+ are all such Im𝖣2 = 0 curves, and
we denote them by 𝓁2,2, 𝓁2,1, and 𝓁2,3.
For the Re(𝖣2) steepest descent curves from 𝑧𝑐 + 𝑒

𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐 and 𝑧𝑐 + 𝑒𝐢𝜃3𝑛−1∕4+𝜖2𝑡𝑐, they
cannot end at 𝑧𝑐 + 𝑒𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐. This is because, by (5.31), we have that

𝖣2(𝑧𝑐 + 𝑒
𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐) − 𝖣2(𝑧𝑐 + 𝑒

𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐) − 2𝐴𝑛
−1+4𝜖2 ≲ 𝑛−1+2𝜖2 ,

so 𝖣2(𝑧𝑐 + 𝑒𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐) > 𝖣2(𝑧𝑐 + 𝑒
𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐); similarly, we have 𝖣2(𝑧𝑐 + 𝑒𝐢𝜃3𝑛−1∕4+𝜖2𝑡𝑐) >

𝖣2(𝑧𝑐 + 𝑒
𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐). Thus, we conclude that 𝓁2,2 must go to∞ in 𝑈. Since 𝓁2,2 does not inter-

sect 𝓁2,1 or 𝓁2,3 in the interior of 𝑈, we must have that 𝓁2,1 connects 𝑧− and 𝑒𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐, and
𝓁2,3 connects 𝑧+ and 𝑒𝐢𝜃3𝑛−1∕4+𝜖2𝑡𝑐. □

For the convenience of later applications, for the similar statement on 𝖣1, we denote the
corresponding intervals as 𝑃1,− and 𝑃1,+, and the corresponding curves as 𝓁1,1 from 𝑧𝑐 +
𝑒𝐢𝜗1𝑛−1∕4+𝜖2𝑡𝑐 ∈ Γ𝑐 to some𝑤− ∈ 𝑃1,−, 𝓁1,3 from 𝑧𝑐 + 𝑒

𝐢𝜗3𝑛−1∕4+𝜖2𝑡𝑐 ∈ Γ𝑐 to some𝑤+ ∈ 𝑃1,+, and
𝓁1,2 from 𝑧𝑐 + 𝑒

𝐢𝜗2𝑛−1∕4+𝜖2𝑡𝑐 ∈ Γ𝑐 to∞. Here, 𝜗1, 𝜗2, 𝜗3 are real numbers satisfying that

|𝜗3 − 𝜋∕4|, |𝜗2 − 𝜋∕2|, |𝜗1 − 3𝜋∕4| ≲ 𝑛−2𝜖2 .

We next provide a technical lemma that will be used later.
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 39

Lemma 5.18. The curve 𝓁1,1 (respectively, 𝓁1,2, 𝓁1,3, 𝓁2,1, 𝓁2,2, 𝓁2,3) is disjoint from the 𝑛−3
neighborhood ofℝ ⧵ 𝑃1,− (respectively,ℝ,ℝ ⧵ 𝑃1,+,ℝ ⧵ 𝑃2,−,ℝ,ℝ ⧵ 𝑃2,+).

Proof. We first show that 𝓁2,1 is disjoint from the 𝑛−2 neighborhood of 𝐸(𝖣2). For any 𝑥∗ ∈ 𝐸(𝖣2),
take 𝑧 ∈ ℍ such that |𝑧 − 𝑥∗| < 1

2𝑛
. By Lemma 5.12, we have that

𝖣′2(𝑧) =
𝑠

𝑛(𝑧 − 𝑥∗)
+ (log 𝑛),

where 𝑠 ∈ {1, −1}, depending on the residue of 𝖣′2 at 𝑥∗. Without loss of generality, assume that
Re 𝑧 ≥ 𝑥∗. Then, by integrating over 𝑧, we get that

Im(𝖣2(𝑧)) − Im(𝖣2(𝑥∗ + (2𝑛)
−1)) = 𝑛−1𝑠 arg(𝑧 − 𝑥∗) + (log 𝑛 ⋅ Im 𝑧),

where arg takes value in (0, 𝜋∕2] as 𝑧 − 𝑥∗ ∈ ℍ and Re(𝑧 − 𝑥∗) ≥ 0. Note that Im 𝑧 < arg(𝑧 −
𝑥∗)|𝑧 − 𝑥∗|. Hence, when |𝑧 − 𝑥∗| ≲ 𝑛−2, we have that

Im(𝖣2(𝑧)) − Im(𝖣2(𝑥∗ + (2𝑛)
−1)) = 𝑛−1𝑠 arg(𝑧 − 𝑥∗)(1 + (log(𝑛)∕𝑛)) ∈ (−𝜋𝑛−1, 𝜋𝑛−1) ⧵ {0}.

Since 𝑥∗ + (2𝑛)
−1 ∈ ℝ, we have Im(𝖣2(𝑥∗ + (2𝑛)

−1)) ∈ 𝜋𝑛−1ℤ. Thus, we conclude that
Im(𝖣2(𝑧)) ∉ 𝜋𝑛−1ℤ whenever |𝑧 − 𝑥∗| ≲ 𝑛−2. This implies that 𝓁2,1 is at least 𝑛−2 away from
𝐸(𝖣2).
For any 𝑧 ∈ ℍ and 𝑦 ∈ ℝ, by Lemma 5.12, integrating 𝖣′2(𝑧) along a curve connecting 𝑦 and 𝑧

yields that

𝖣2(𝑧) − 𝖣2(𝑦) ≲
|𝑧 − 𝑦|

inf𝑥∈𝐸(𝖣2) 𝑛(|𝑧 − 𝑥| ∧ |𝑦 − 𝑥|) + log(𝑛)|𝑧 − 𝑦|. (5.33)

If 𝑧 is in the 𝑛−3 neighborhood of ℝ ⧵ (𝑃2,− ∪ 𝑃2,+ ∪ (𝖽−1∕𝑛, 𝖽0∕𝑛)) but not the 𝑛−2 neighbor-
hood of 𝐸(𝖣2), then we must have that inf𝑥∈𝐸(𝖣2) |Re 𝑧 − 𝑥| ≳ 𝑛−2 and Re 𝑧 ∈ ℝ ⧵ (𝑃2,− ∪ 𝑃2,+ ∪
(𝖽−1∕𝑛, 𝖽0∕𝑛)), which give that | Im(𝖣2(Re 𝑧))| ≥ 𝜋𝑛−1. Then, (5.33) for 𝑦 = Re 𝑧 implies that|𝖣2(𝑧) − 𝖣2(Re 𝑧)| ≲ 𝑛−2, so Im(𝖣2(𝑧)) ≠ 0, meaning that 𝑧 ∉ 𝓁2,1.
So far, we have shown that 𝓁2,1 is disjoint from the 𝑛−3 neighborhood of ℝ ⧵ (𝑃2,− ∪ 𝑃2,+ ∪

(𝖽−1∕𝑛, 𝖽0∕𝑛)), and the 𝑛−2 neighborhood of 𝐸(𝖣2). Similarly, these statements also hold for 𝓁2,2
and 𝓁2,3.
We next consider 𝑧 ∈ ℍ in the 𝑛−3 neighborhood of (𝖽−1∕𝑛, 𝖽0∕𝑛), while |𝑧 − 𝑧𝑐| > 𝑛−1∕4+𝜖2𝑡𝑐

and |𝑧 − 𝖽−1∕𝑛|, |𝑧 − 𝖽0∕𝑛| ≥ 𝑛−2. Take 𝑦 to be some point in (𝖽−1∕𝑛, 𝑧𝑐 − 𝑛
−1∕4+𝜖2𝑡𝑐) ∪ (𝑧𝑐 +

𝑛−1∕4+𝜖2𝑡𝑐, 𝖽0∕𝑛) with 𝑧 − 𝑦 ≲ 𝑛−3. By Lemma 5.14, we have that 𝖣′2 > 0 in (𝖽−1∕𝑛, 𝑧𝑐 −
𝑛−1∕4+𝜖2𝑡𝑐) and 𝖣′2 < 0 in (𝑧𝑐 + 𝑛

−1∕4+𝜖2𝑡𝑐, 𝖽0∕𝑛), and that 𝖣2(𝑦) − 𝖣2(𝑧𝑐) < −𝑐𝑛−1+4𝜖2 for a
constant 𝑐 > 0. So by (5.33), we have

Re(𝖣2(𝑧)) < Re(𝖣2(𝑦)) + (𝑛−2) < Re(𝖣2(𝑧𝑐)) − 𝑐𝑛
4𝜖2−1 + (𝑛−2).

On the other hand, by Lemma 5.17 (more precisely, (5.31) and the fact that Re(𝖣2) is increasing
along 𝓁2,1 and 𝓁2,3 from Γ𝑐), we conclude that 𝑧 ∉ 𝓁2,1 ∪ 𝓁2,3. In other words, 𝓁2,1 and 𝓁2,3 are
disjoint from the 𝑛−3 neighborhood of (𝖽−1∕𝑛, 𝖽0∕𝑛). By similar arguments, we can show that
𝓁2,2 is disjoint from the 𝑛−3 neighborhood of 𝑃2,− ∪ 𝑃2,+.
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40 HUANG et al.

Since 𝓁2,1, 𝓁2,2, 𝓁2,3 are disjoint, by planarity, we must have that 𝓁2,2 is disjoint from the 𝑛−3
neighborhood of (𝖽−1∕𝑛, 𝖽0∕𝑛), 𝓁2,1 is disjoint from the 𝑛−3 neighborhood of 𝑃2,+, and 𝓁2,3 is
disjoint from the 𝑛−3 neighborhood of 𝑃2,−.
The results for 𝓁1,1, 𝓁1,2, 𝓁1,3 can be proved analogously. Putting all these together concludes

the proof. □

With all the above preparations (on the properties of𝖣1,𝖣2 around 𝑧𝑐 and their steepest descent
curves) in the above two subsections, we are now ready to prove the approximation of the NBRW
kernel by the Pearcey kernel, that is, Proposition 5.3.

5.5 Convergence to Pearcey

Using (5.14) and Lemma 5.15, Proposition 5.3 can be deduced from the following lemma, plus an
estimate of the binomial term

( 𝗍1−𝗍2
𝗑1−𝗑2

)
in Lemma 5.21 below.

Lemma 5.19. Under the setting of Proposition 5.3, consider the integral

𝐵𝗑1−𝗑2(1 − 𝐵)𝗍1−𝗍2+𝗑2−𝗑1
𝗍1!

(𝗍2 − 1)!

𝑛𝗍2−𝗍1−1

(2𝜋𝐢)2 ∬
𝑑𝑤𝑑𝑧
𝑤 − 𝑧

exp(𝑛𝖣2(𝑧) − 𝑛𝖣1(𝑤)). (5.34)

We divide the contours into two parts: inside or outside {𝑧 ∈ ℂ ∶ |𝑧 − 𝑧𝑐| ≤ 𝑛−1∕4+𝜖2𝑡𝑐}.

Inner part: When the 𝑤 contour is taken to be [𝑧𝑐 + 𝑒
𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 𝑧𝑐 → 𝑧𝑐 +

𝑒3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐] and [𝑧𝑐 + 𝑒
5𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 𝑧𝑐 → 𝑧𝑐 + 𝑒

7𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐], and
the 𝑧 contour is taken to be [𝑧𝑐 + 𝑒

3𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐 → 𝑧𝑐 + 𝑒
𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐], the

integral (5.34) is equal to

1√
2𝑛1∕4𝐴1∕4𝐵(1 − 𝐵)

1

(2𝜋𝐢)2 ∬
𝑑𝐰𝑑𝐳
𝐰 − 𝐳

exp

(
−𝐳4 + 𝐰4

4
+

𝛾1𝐰 − 𝛾2𝐳√
2𝐴1∕4𝐵(1 − 𝐵)

+
𝜏1𝐰

2 − 𝜏2𝐳
2

4𝐴1∕2𝐵(1 − 𝐵)

)

+(𝑛−1∕4−𝜖3), (5.35)

where the𝐰 and 𝐳 contours are, respectively,

[∞𝑒𝜋𝐢∕4 → 0 → ∞𝑒3𝜋𝐢∕4] ∪ [∞𝑒5𝜋𝐢∕4 → 0 → ∞𝑒7𝜋𝐢∕4], [∞𝑒3𝜋𝐢∕2 → 0 → ∞𝑒𝜋𝐢∕2].
(5.36)

Outer part: When either (i) the 𝑤 contour is taken to be [𝑧𝑐 + 𝑒3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → −𝑡𝑐 − 1 → 𝑧𝑐 +
𝑒5𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐] and [𝑧𝑐 + 𝑒7𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 1 → 𝑧𝑐 + 𝑒

𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐], and the 𝑧
contour is taken to be [∞𝑒3𝜋𝐢∕2 → 𝑧𝑐 → ∞𝑒𝜋𝐢∕2], or (ii) the 𝑤 contour is taken to
be [𝑧𝑐 + 𝑒𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 𝑧𝑐 → 𝑧𝑐 + 𝑒

3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐] and [𝑧𝑐 + 𝑒5𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 →
𝑧𝑐 → 𝑧𝑐 + 𝑒

7𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐], and the 𝑧 contour is taken to be [∞𝑒3𝜋𝐢∕2 → 𝑧𝑐 +
𝑒3𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐] and [𝑧𝑐 + 𝑒

𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐 → ∞𝑒𝜋𝐢∕2], the integral (5.34) is ≲
exp(−𝑐𝑛4𝜖2).

We next prove the inner part of Lemma 5.19, and the outer part will be proved in Section 5.6.
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 41

5.5.1 Inner contour integral

We first analyze the factor in front of the integral in (5.34) at 𝑧 = 𝑧𝑐.

Lemma 5.20. We have

log

(
𝐵𝗑1−𝗑2(1 − 𝐵)𝗍1−𝗍2+𝗑2−𝗑1

𝗍1!

(𝗍2 − 1)!

)
+ 𝑛𝖣2(𝑧𝑐) − 𝑛𝖣1(𝑧𝑐)

= (𝗍1 − 𝗍2 + 1) log 𝑛 − log(𝑡𝑐𝐵(1 − 𝐵)) + (𝑛−1∕2𝑡−1𝑐 ). (5.37)

Proof. The left-hand side of (5.37) is equal to

(𝗑1 − 𝗑2) log 𝐵 + (𝗍1 − 𝗍2 + 𝗑2 − 𝗑1) log(1 − 𝐵) + log(𝗍1!∕(𝗍2 − 1)!)

+
−𝗑2+𝗍2−1∑
𝑖=−𝗑2+1

log |||𝑧𝑐 + 𝑖
𝑛
||| − −𝗑1+𝗍1∑

𝑖=−𝗑1

log |||𝑧𝑐 + 𝑖
𝑛
|||. (5.38)

Using 𝗑1, 𝗑2, 𝗍1 − 𝑛𝑡𝑐, 𝗍2 − 𝑛𝑡𝑐 ≲ 𝑛1∕2 and 𝑧𝑐, 𝑡𝑐 + 𝑧𝑐 ≍ 𝑡𝑐, we obtain that

−𝗑2+𝗍2−1∑
𝑖=−𝗑2+1

log |||𝑧𝑐 + 𝑖
𝑛
||| − −𝗑1+𝗍1∑

𝑖=−𝗑1

log |||𝑧𝑐 + 𝑖
𝑛
|||

=𝑛 ∫
−𝗑2+𝗍2

𝑛

−
𝗑2
𝑛

log |𝑧𝑐 + 𝑥|d𝑥 − 𝑛 ∫
−𝗑1+𝗍1

𝑛

−
𝗑1
𝑛

log |𝑧𝑐 + 𝑥|d𝑥 − log(−𝑧𝑐) − log(𝑡𝑐 + 𝑧𝑐) + (𝑛−1∕2𝑡−1𝑐 ).

The first two terms in the last line are equal to

(−𝑛𝑧𝑐 + 𝗑2) log
(
−𝑧𝑐 +

𝗑2
𝑛

)
− (−𝑛𝑧𝑐 + 𝗑2) + (𝑛𝑧𝑐 − 𝗑2 + 𝗍2) log

(
𝑧𝑐 +

−𝗑2 + 𝗍2
𝑛

)
− (𝑛𝑧𝑐 − 𝗑2 + 𝗍2) − (−𝑛𝑧𝑐 + 𝗑1) log

(
−𝑧𝑐 +

𝗑1
𝑛

)
+ (−𝑛𝑧𝑐 + 𝗑1)

− (𝑛𝑧𝑐 − 𝗑1 + 𝗍1) log

(
𝑧𝑐 +

−𝗑1 + 𝗍1
𝑛

)
+ (𝑛𝑧𝑐 − 𝗑1 + 𝗍1),

which further simplifies to (recall that 𝐵 = −𝑧𝑐𝑡
−1
𝑐 )

(−𝑛𝑧𝑐 + 𝗑2) log

(
1 +

𝗑2
−𝑛𝑧𝑐

)
− (−𝑛𝑧𝑐 + 𝗑1) log

(
1 +

𝗑1
−𝑛𝑧𝑐

)

+(𝑛𝑧𝑐 − 𝗑2 + 𝗍2) log

(
1 +

−𝗑2 + 𝗍2 − 𝑛𝑡𝑐
𝑛(𝑧𝑐 + 𝑡𝑐)

)
− (𝑛𝑧𝑐 − 𝗑1 + 𝗍1) log

(
1 +

−𝗑1 + 𝗍1 − 𝑛𝑡𝑐
𝑛(𝑧𝑐 + 𝑡𝑐)

)
+(𝗑2 − 𝗑1) log(𝐵) + (−𝗑2 + 𝗑1 + 𝗍2 − 𝗍1) log(1 − 𝐵) + (𝗍2 − 𝗍1) log(𝑡𝑐) + 𝗍1 − 𝗍2.

Using Stirling’s approximation and that 𝗍1 − 𝑛𝑡𝑐, 𝗍2 − 𝑛𝑡𝑐 ≲ 𝑛1∕2, we also get that
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42 HUANG et al.

log(𝗍1!∕(𝗍2 − 1)!) = 𝗍1 log(𝗍1) − 𝗍2 log(𝗍2) − 𝗍1 + 𝗍2 + log(𝑛𝑡𝑐) + (𝑛−1∕2𝑡−1𝑐 )

= (𝗍1 − 𝗍2 + 1) log(𝑛𝑡𝑐) + 𝗍1 log

(
1 +

𝗍1 − 𝑛𝑡𝑐
𝑛𝑡𝑐

)
− 𝗍2 log

(
1 +

𝗍2 − 𝑛𝑡𝑐
𝑛𝑡𝑐

)
− 𝗍1 + 𝗍2 + (𝑛−1∕2𝑡−1𝑐 ).

By summing up the above expressions, we have that (5.38) is equal to

(−𝑛𝑧𝑐 + 𝗑2) log

(
1 +

𝗑2
−𝑛𝑧𝑐

)
− (−𝑛𝑧𝑐 + 𝗑1) log

(
1 +

𝗑1
−𝑛𝑧𝑐

)

+(𝑛𝑧𝑐 − 𝗑2 + 𝗍2) log

(
1 +

−𝗑2 + 𝗍2 − 𝑛𝑡𝑐
𝑛(𝑧𝑐 + 𝑡𝑐)

)
− (𝑛𝑧𝑐 − 𝗑1 + 𝗍1) log

(
1 +

−𝗑1 + 𝗍1 − 𝑛𝑡𝑐
𝑛(𝑧𝑐 + 𝑡𝑐)

)

+𝗍1 log

(
1 +

𝗍1 − 𝑛𝑡𝑐
𝑛𝑡𝑐

)
− 𝗍2 log

(
1 +

𝗍2 − 𝑛𝑡𝑐
𝑛𝑡𝑐

)
+(𝗍1 − 𝗍2 + 1) log 𝑛 − log(𝑡𝑐𝐵(1 − 𝐵)) + (𝑛−1∕2𝑡−1𝑐 ).

(5.39)

The last line matches the right-hand side of (5.37). It remains to show that the first three lines are
of order (𝑛−1∕2𝑡−1𝑐 ). We first consider

(−𝑛𝑧𝑐 + 𝗑2) log

(
1 +

𝗑2
−𝑛𝑧𝑐

)
+ (𝑛𝑧𝑐 − 𝗑2 + 𝗍2) log

(
1 +

−𝗑2 + 𝗍2 − 𝑛𝑡𝑐
𝑛(𝑧𝑐 + 𝑡𝑐)

)
− 𝗍2 log

(
1 +

𝗍2 − 𝑛𝑡𝑐
𝑛𝑡𝑐

)
.

(5.40)
For this expression, its derivative with respect to 𝗑2 is

log

(
1 +

𝗑2
−𝑛𝑧𝑐

)
− log

(
1 +

−𝗑2 + 𝗍2 − 𝑛𝑡𝑐
𝑛(𝑧𝑐 + 𝑡𝑐)

)
= log

(
1 +

𝑡𝑐(𝗑
′
2 − 𝗑2)

𝑧𝑐(𝑛𝑧𝑐 − 𝗑2 + 𝗍2)

)
≲ 𝑛−3∕4𝑡−1𝑐 ,

where 𝗑′2 =
−𝑧𝑐

𝑡𝑐
(𝗍2 − 𝑛𝑡𝑐) and we used that 𝗑′2 − 𝗑2 ≲ 𝑛1∕4. In addition, we have that that value of

(5.40) vanishes when we replace 𝗑2 by 𝗑′2, that is,

(−𝑛𝑧𝑐 + 𝗑
′
2) log

(
1 +

𝗑′2
−𝑛𝑧𝑐

)
+ (𝑛𝑧𝑐 − 𝗑

′
2 + 𝗍2) log

(
1 +

−𝗑′2 + 𝗍2 − 𝑛𝑡𝑐

𝑛(𝑧𝑐 + 𝑡𝑐)

)

−𝗍2 log

(
1 +

𝗍2 − 𝑛𝑡𝑐
𝑛𝑡𝑐

)
= 0.

By integrating over 𝗑2, we obtain that (5.40) is of order (𝑛−1∕2𝑡−1𝑐 ). Similarly, we have

(−𝑛𝑧𝑐 + 𝗑1) log

(
1 +

𝗑1
−𝑛𝑧𝑐

)
+ (𝑛𝑧𝑐 − 𝗑1 + 𝗍1) log

(
1 +

−𝗑1 + 𝗍1 − 𝑛𝑡𝑐
𝑛(𝑧𝑐 + 𝑡𝑐)

)

−𝗍1 log

(
1 +

𝗍1 − 𝑛𝑡𝑐
𝑛𝑡𝑐

)
≲ 𝑛−1∕2𝑡−1𝑐 .

Plugging these two estimates into (5.39), the conclusion follows. □

We now finish the estimate on the contour integral inside {𝑧 ∈ ℂ ∶ |𝑧 − 𝑧𝑐| ≤ 𝑛−1∕4+𝜖2𝑡𝑐}.
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 43

Proof of Lemma 5.19 Inner part. By Lemma 5.20, using 𝑛−1∕2𝑡−1𝑐 ≲ 𝑛−𝜖3 (due to that 𝑛−1∕2+𝜖1 <
𝑡 ≍ 𝑡𝑐), it suffices to prove the same estimate for

1

𝑡𝑐𝐵(1 − 𝐵)

1

(2𝜋𝐢)2 ∬
𝑑𝑤𝑑𝑧
𝑤 − 𝑧

exp (𝑛𝖣2(𝑧) − 𝑛𝖣1(𝑤) − 𝑛𝖣2(𝑧𝑐) + 𝑛𝖣1(𝑧𝑐)), (5.41)

where the contours for 𝑤 and 𝑧 are as stated in Lemma 5.19 (inner part).
We want to approximate 𝖣1 and 𝖣2 by 𝖦. For this purpose, we estimate 𝖣′2 − 𝖦

′
. Compared to

Lemma 5.10, here we consider 𝑧 much closer to 𝑧𝑐, thereby getting more refined estimates. Take
any 𝑧 ∈ ℂ with |𝑧 − 𝑧𝑐| ≲ 𝑡

3∕2
𝑐 , we have that

𝖣′2(𝑧) − 𝖦
′
(𝑧) =

−𝗑2+𝗍2−1∑
𝑖=−𝗑2+1

1
𝑛𝑧 + 𝑖

−
𝗍𝑐−1∑
𝑖=0

1
𝑛𝑧 + 𝑖

= log(𝑛𝑧∕(𝑛𝑧 − 𝗑2)) + log((𝑛𝑧 − 𝗑2 + 𝗍2)∕(𝑛𝑧 + 𝗍𝑐)) + (𝑛−1𝑡−1𝑐 )

= log

(
1 +

𝑛𝑧(𝗍2 − 𝗍𝑐) + 𝗑2𝗍𝑐
(𝑛𝑧 − 𝗑2)(𝑛𝑧 + 𝗍𝑐)

)
+ (𝑛−1𝑡−1𝑐 ).

Using 𝑧𝑐

𝑡𝑐
(𝗍2 − 𝑛𝑡𝑐) + 𝗑2 = 𝑛1∕4𝛾2 + (1) ≲ 𝑛1∕4, |𝑧 − 𝑧𝑐| ≲ 𝑡

3∕2
𝑐 , and 𝑧𝑐, 𝑧𝑐 + 𝑡𝑐 ≍ 𝑡𝑐, we obtain

that

𝑛𝑧(𝗍2 − 𝗍𝑐) + 𝗑2𝗍𝑐
(𝑛𝑧 − 𝗑2)(𝑛𝑧 + 𝗍𝑐)

= (𝑛−3∕4𝑡−1𝑐 ).

With this estimate, we can derive that

𝖣′2(𝑧) − 𝖦
′
(𝑧) =

𝑛𝑧(𝗍2 − 𝗍𝑐) + 𝗑2𝗍𝑐
(𝑛𝑧 − 𝗑2)(𝑛𝑧 + 𝗍𝑐)

+ (𝑛−1𝑡−1𝑐 ) =
𝑛1∕2(𝑧 − 𝑧𝑐)𝜏2 + 𝑛

1∕4𝑡𝑐𝛾2
(𝑛𝑧 − 𝗑2)(𝑧 + 𝑡𝑐)

+ (𝑛−1𝑡−1𝑐 ),

(5.42)
where we also used 𝗍2 − 𝗍𝑐 = 𝑛1∕2𝜏2 + (1) for the second equality. Then, using |𝑧 − 𝑧𝑐| ≲ 𝑡

3∕2
𝑐 ,

𝗑2 ≲ 𝑛1∕2, and 𝑧𝑐, 𝑧𝑐 + 𝑡𝑐 ≍ 𝑡𝑐, we get that

𝑛1∕2(𝑧 − 𝑧𝑐)𝜏2 + 𝑛
1∕4𝑡𝑐𝛾2

(𝑛𝑧 − 𝗑2)(𝑧 + 𝑡𝑐)
=
𝑛−1∕2(𝑧 − 𝑧𝑐)𝜏2 + 𝑛

−3∕4𝑡𝑐𝛾2
𝑧𝑐(𝑧𝑐 + 𝑡𝑐)

[
1 +  (|𝑧 − 𝑧𝑐|𝑡−1𝑐 + 𝑛−1∕2𝑡−1𝑐

)]
.

If we further assume that |𝑧 − 𝑧𝑐| ≤ 𝑛−1∕4+𝜖2𝑡𝑐, this expression reduces to

𝑛1∕2(𝑧 − 𝑧𝑐)𝜏2 + 𝑛
1∕4𝑡𝑐𝛾2

(𝑛𝑧 − 𝗑2)(𝑧 + 𝑡𝑐)
= −

𝑛−1∕2(𝑧 − 𝑧𝑐)𝜏2

𝑡2𝑐𝐵(1 − 𝐵)
−

𝑛−3∕4𝛾2
𝑡𝑐𝐵(1 − 𝐵)

+  (𝑛−3∕4+𝜖2𝑡−1𝑐 (𝑛−1∕4+𝜖2 + 𝑛−1∕2𝑡−1𝑐 )
)
.

Plugging this estimate into (5.42) and taking an integration over 𝑧, we obtain that

𝖣2(𝑧) − 𝖣2(𝑧𝑐) − 𝖦(𝑧) + 𝖦(𝑧𝑐) +
𝑛−1∕2(𝑧 − 𝑧𝑐)

2𝜏2

2𝑡2𝑐𝐵(1 − 𝐵)
+
𝑛−3∕4(𝑧 − 𝑧𝑐)𝛾2
𝑡𝑐𝐵(1 − 𝐵)

≲ 𝑛−5∕4+3𝜖2 + 𝑛−3∕2+2𝜖2𝑡−1𝑐 ,

when |𝑧 − 𝑧𝑐| ≤ 𝑛−1∕4+𝜖2𝑡𝑐. By Lemma 5.9, when |𝑧 − 𝑧𝑐| ≤ 𝑛−1∕4+𝜖2𝑡𝑐, we have that

𝖦(𝑧) − 𝖦(𝑧𝑐) + 𝑡
−4
𝑐 𝐴(𝑧 − 𝑧𝑐)

4 ≲ 𝑛−5∕4+5𝜖2 𝑡
−1∕2
𝑐 .
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44 HUANG et al.

Then, using 𝑛−1∕2+𝜖1 < 𝑡 ≍ 𝑡𝑐 and the fact that 𝜖2 is small enough depending on 𝜖1, we conclude
that

𝖣2(𝑧) − 𝖣(𝑧𝑐) + 𝑡
−4
𝑐 𝐴(𝑧 − 𝑧𝑐)

4 +
𝑛−1∕2(𝑧 − 𝑧𝑐)

2𝜏2

2𝑡2𝑐𝐵(1 − 𝐵)
+
𝑛−3∕4(𝑧 − 𝑧𝑐)𝛾2
𝑡𝑐𝐵(1 − 𝐵)

≲ 𝑛−1−𝜖3 ,

where 𝜖3 > 0 is a small enough constant depending on 𝜖1 and 𝜖2. Similarly, we have

𝖣1(𝑤) − 𝖣(𝑧𝑐) + 𝑡
−4
𝑐 𝐴(𝑤 − 𝑧𝑐)

4 +
𝑛−1∕2(𝑤 − 𝑧𝑐)

2𝜏1

2𝑡2𝑐𝐵(1 − 𝐵)
+
𝑛−3∕4(𝑤 − 𝑧𝑐)𝛾1
𝑡𝑐𝐵(1 − 𝐵)

≲ 𝑛−1−𝜖3 ,

when |𝑤 − 𝑧𝑐| ≤ 𝑛−1∕4+𝜖2𝑡𝑐. Plugging the above two estimates into (5.41), we obtain

1

𝑡𝑐𝐵(1 − 𝐵)

1

(2𝜋𝐢)2 ∬
𝑑𝑤𝑑𝑧
𝑤 − 𝑧

exp
(
−𝑛𝑡−4𝑐 𝐴(𝑧 − 𝑧𝑐)

4 + 𝑛𝑡−4𝑐 𝐴(𝑤 − 𝑧𝑐)
4

−𝑛1∕2
𝜏2(𝑧 − 𝑧𝑐)

2 − 𝜏1(𝑤 − 𝑧𝑐)
2

2𝑡2𝑐𝐵(1 − 𝐵)
− 𝑛1∕4

𝛾2(𝑧 − 𝑧𝑐) − 𝛾1(𝑤 − 𝑧𝑐)

𝑡𝑐𝐵(1 − 𝐵)
+ (𝑛−𝜖3)

)
.

Introducing the rescaled variables𝐰 =
√
2(𝑤 − 𝑧𝑐)𝑛

1∕4𝑡−1𝑐 𝐴1∕4 and 𝐳 =
√
2(𝑧 − 𝑧𝑐)𝑛

1∕4𝑡−1𝑐 𝐴1∕4,
we get (5.35), with the𝐰 contour being[√

2𝑒𝜋𝐢∕4𝑛𝜖2𝐴1∕4 → 0 →
√
2𝑒3𝜋𝐢∕4𝑛𝜖2𝐴1∕4

]
∪
[√

2𝑒5𝜋𝐢∕4𝑛𝜖2𝐴1∕4 → 0 →
√
2𝑒7𝜋𝐢∕4𝑛𝜖2𝐴1∕4

]
,

and the 𝐳 contour being [√
2𝑒3𝜋𝐢∕2𝑛𝜖2𝐴1∕4 →

√
2𝑒𝜋𝐢∕2𝑛𝜖2𝐴1∕4

]
.

We note that by replacing the 𝐰 and 𝐳 contours with (5.36), the integral in (5.35) changes by
(exp(−𝑛4𝜖2𝐴∕2)), because the integrand along these contours is at most ≲ exp((−𝐳4 + 𝐰4)∕8).
This concludes the proof. □

5.5.2 Binomial and Gaussian

By classical CLT, it is expected that the binomial term in the NBRW kernel would lead to the
Gaussian term in the Pearcey kernel. We provide a detailed derivation here.

Lemma 5.21. If 𝜏1 − 𝜏2 > 𝑛−𝜖3 , then we have that

𝐵𝗑1−𝗑2(1 − 𝐵)𝗍1−𝗍2+𝗑2−𝗑1
( 𝗍1 − 𝗍2
𝗑1 − 𝗑2

)
=

𝑛−1∕4√
2𝜋(𝜏1 − 𝜏2)𝐵(1 − 𝐵)

exp

[
−

(𝛾1 − 𝛾2)
2

2𝐵(1 − 𝐵)(𝜏1 − 𝜏2)

]
+  (𝑛−1∕2+3𝜖3).

Proof. Denote 𝗍′ = 𝗍1 − 𝗍2 and 𝗑′ = 𝗑1 − 𝗑2. If 𝜏1 − 𝜏2 > 𝑛−𝜖3 , then we have 𝗍′ − 𝗑′ = 𝗍1 −
𝗍2 − 𝗑1 + 𝗑2 > (1 − 𝐵)𝑛1∕2−𝜖3 − 𝐶𝑛1∕4 and 𝗑′ = 𝗑1 − 𝗑2 > 𝐵𝑛1∕2−𝜖3 − 𝐶𝑛1∕4. Then, by Stirling’s
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 45

approximation, we have

( 𝗍1 − 𝗍2
𝗑1 − 𝗑2

)
=
(𝗍′
𝗑′

)
=

𝗍′!

𝗑′!(𝗍′ − 𝗑′)!
=
[
1 + (𝑛−1∕2+𝜖3)]√ 𝗍′

2𝜋𝗑′(𝗍′ − 𝗑′)
(𝗍′)𝗍

′
(𝗑′)−𝗑

′
(𝗍′ − 𝗑′)−𝗍

′+𝗑′ .

Using 𝗍′ = (𝜏1 − 𝜏2)𝑛
1∕2 + (1) and 𝗑′ = 𝐵(𝜏1 − 𝜏2)𝑛

1∕2 + (𝛾1 − 𝛾2)𝑛
1∕4 + (1), we get that√

𝗍′

2𝜋𝗑′(𝗍′ − 𝗑′)
=
𝑛−1∕4(1 + (𝑛−1∕4+𝜖3))√
2𝜋(𝜏1 − 𝜏2)𝐵(1 − 𝐵)

, (5.43)

and

log
(
𝐵𝗑

′
(1 − 𝐵)𝗍

′−𝗑′ (𝗍′)𝗍
′
(𝗑′)−𝗑

′
(𝗍′ − 𝗑′)−𝗍

′+𝗑′
)
= 𝗑′ log

𝐵𝗍′

𝗑′
+ (𝗍′ − 𝗑′) log

(1 − 𝐵)𝗍′

𝗍′ − 𝗑′

= −
[
𝐵(𝜏1 − 𝜏2)𝑛

1∕2 + (𝛾1 − 𝛾2)𝑛
1∕4
]
log

(
1 + 𝐵−1

𝛾1 − 𝛾2
𝜏1 − 𝜏2

𝑛−1∕4
)

−
[
(1 − 𝐵)(𝜏1 − 𝜏2)𝑛

1∕2 − (𝛾1 − 𝛾2)𝑛
1∕4
]
log

(
1 − (1 − 𝐵)−1

𝛾1 − 𝛾2
𝜏1 − 𝜏2

𝑛−1∕4
)
+ (𝑛−1∕4+𝜖3),

(5.44)

where for the second estimate, we used that the derivatives of the left-hand side with respect to 𝗑′
and 𝗍′ are

log
𝐵

1 − 𝐵
− log

𝗑′

𝗍′ − 𝗑′
≲ 𝑛−1∕4+𝜖3 , log(1 − 𝐵) − log

𝗍′ − 𝗑′

𝗍′
≲ 𝑛−1∕4+𝜖3 .

Taking the Taylor expansion of the logarithms in (5.44), we get

(5.44) = −
(𝛾1 − 𝛾2)

2

2𝐵(1 − 𝐵)(𝜏1 − 𝜏2)
+ (𝑛−1∕4+3𝜖3).

Multiplying the exponential of this estimate with the right-hand side of (5.43) concludes the
proof. □

5.6 Smallness of outer contour integral

It remains to prove the outer part of Lemma 5.19. By Lemma 5.20, it suffices to show that the
following integral

∬
𝑑𝑤𝑑𝑧
𝑤 − 𝑧

exp (𝑛𝖣2(𝑧) − 𝑛𝖣1(𝑤) − 𝑛𝖣2(𝑧𝑐) + 𝑛𝖣1(𝑧𝑐)) (5.45)

over the contours stated in the outer part of Lemma 5.19 is bounded by (exp(−𝑐𝑛4𝜖2)).
We recall from Section 5.4.1 the curves 𝓁2,1, 𝓁2,2, 𝓁2,3 on which Im(𝖣2) = 0, and the curves 𝓁1,1,

𝓁1,2, 𝓁1,3 on which Im(𝖣1) = 0. We will deform the 𝑤 contours [𝑧𝑐 + 𝑒3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → −𝑡𝑐 −
1 → 𝑧𝑐 + 𝑒

5𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐] and [𝑧𝑐 + 𝑒7𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 1 → 𝑧𝑐 + 𝑒
𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐] to curves that

closely follow 𝓁1,1, 𝓁1,3 and their complex conjugates (denoted by 𝓁1,1 and 𝓁1,3). We will deform
the 𝑧 contours [∞𝑒3𝜋𝐢∕2 → 𝑧𝑐 + 𝑒

3𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐] and [𝑧𝑐 + 𝑒𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐 → ∞𝑒𝜋𝐢∕2] to curves
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46 HUANG et al.

that closely follow 𝓁2,2 and its complex conjugate (denoted by 𝓁2,2). Along these curves, 𝑛(𝖣2(𝑧) −
𝖣2(𝑧𝑐)) and −𝑛(𝖣1(𝑤) − 𝖣1(𝑧𝑐)) are (almost) real and negative, and of order at least ≳ 𝑛4𝜖2 by
Lemma 5.17.
As indicated earlier, some issues may appear as we lose precise control of the behaviors of these

curves. First, it is unclear whether 𝓁1,1 and 𝓁1,3 are disjoint from 𝓁2,2, so we need to consider the
residues resulting from their possible intersections. Second, it could be technical to control the
length of these curves. We will circumvent this issue by discretizing these curves.

5.6.1 Intersections

For possible intersections between the curves 𝓁1,1, 𝓁1,3, and 𝓁2,2, we consider the zero set of
Im(𝖣1 − 𝖣2) (which must contain all these intersections). We denote

𝐸(𝖣1 − 𝖣2) = 𝑛−1([[𝗑1 − 𝗍1, 𝗑1]]△ [[𝗑2 − 𝗍2 + 1, 𝗑2 − 1]]),

which is the set of poles of 𝖣′1 − 𝖣
′
2 (△ denotes the symmetric difference). Similar to Lemma 5.12,

we have that for any 𝑧 ∉ 𝐸(𝖣1 − 𝖣2),

𝖣′1(𝑧) − 𝖣
′
2(𝑧) ≲

1
min𝑥∈𝐸(𝖣1−𝖣2) 𝑛|𝑧 − 𝑥| + log 𝑛. (5.46)

The zero set of Im(𝖣1 − 𝖣2) can be described as follows.

Lemma 5.22. The set {𝑧 ∈ ℍ ∪ ℝ ⧵ 𝐸(𝖣1 − 𝖣2) ∶ Im(𝖣1(𝑧) − 𝖣2(𝑧)) = 0} contains the following
parts:

(1) The connected component ofℝ ⧵ 𝐸(𝖣1 − 𝖣2) containing 𝑧𝑐;
(2) If either (i) 𝗑1 − 𝗍1 < 𝗑2 − 𝗍2 + 1 and 𝗑1 > 𝗑2 − 1, or (ii) 𝗑1 − 𝗍1 > 𝗑2 − 𝗍2 + 1 and 𝗑1 < 𝗑2 − 1,

the set {𝑧 ∈ ℍ ∪ ℝ ⧵ 𝐸(𝖣1 − 𝖣2) ∶ Im(𝖣1(𝑧) − 𝖣2(𝑧)) = 0} also contains a smooth and self-
avoiding curve 𝓁𝑑 from the connected component ofℝ ⧵ 𝐸(𝖣1 − 𝖣2) containing 𝑧𝑐 to∞. Except
for the starting point, 𝓁𝑑 is contained inℍ. Moreover,Re(𝖣1 − 𝖣2) is strictly monotone along 𝓁𝑑,
and 𝓁𝑑 is disjoint from the 𝑛−3 neighborhood of 𝐸(𝖣1 − 𝖣2).

For convenience, if neither (i) nor (ii) in (2) holds, we denote 𝓁𝑑 = ∅. This lemma can be
proved by analyzing the critical points of 𝖣1 − 𝖣2 and using arguments similar to the proofs of
Lemmas 5.17 and 5.18. We omit the details here.

5.6.2 Curve discretization

Choose 𝜉 = 𝑛−100, we denote

Λ = 2𝜉ℤ + 2𝐢𝜉ℤ, Λ′ = Λ + (1 + 𝐢)𝜉.

For any discrete interval 𝐼 (i.e., 𝐼 is a set of consecutive integers) and {𝑧𝑖}𝑖∈𝐼 , we call {𝑧𝑖}𝑖∈𝐼 a
Λ-path (respectively, Λ′-path) if the followings hold: all these 𝑧𝑖 are different points in Λ (respec-
tively, Λ′), and every pair 𝑧𝑖 and 𝑧𝑖+1 are nearest neighbors on the lattice Λ (respectively, Λ′).
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 47

The curve obtained by connecting every pair of points 𝑧𝑖 and 𝑧𝑖+1 using a line segment is called
the corresponding Λ-curve (respectively, Λ′-curve). We first discretize (i.e., approximate) 𝓁2,2 by a
Λ′-curve.

Lemma 5.23. There exists a Λ′-curve 𝓁∗2,2 from a point in the intersection of Λ′ and the 2𝜉-
neighborhood of 𝑧𝑐 + 𝑒𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐 to∞, such that (1) for any 𝑧 ∈ Λ′ ∩ 𝓁∗2,2, we have (𝑧 + [−𝜉, 𝜉] +
𝐢[−𝜉, 𝜉]) ∩ 𝓁2,2 ≠ ∅, and (2) 𝓁∗2,2 is disjoint from the 𝑛−3∕2-neighborhood ofℝ.

Proof. Let 𝑧∗ be a vertex in Λ′ ∩ (𝑧𝑐 + 𝑒𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐 + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]). Denote

Λ′2,2 ∶= {𝑧 ∈ 𝑈 ∩ Λ′ ∶ (𝑧 + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]) ∩ 𝓁2,2 ≠ ∅}.

If we cannot find a Λ′-curve satisfying (1), then the set of points that are connected to 𝑧∗ through
a Λ′-curve contained in Λ′2,2 must be finite. Then, we can find a sequence of numbers 𝑧1, … , 𝑧𝑘 ∈
Λ′ ⧵ Λ′2,2, such that 𝑧𝑘 = 𝑧1, |𝑧𝑖+1 − 𝑧𝑖| ≤ 2

√
2𝜉 for each 𝑖, and 𝑧𝑐 + 𝑒𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐 is enclosed

by [𝑧1 → ⋯ → 𝑧𝑘]. In this case, 𝓁2,2 must intersect [𝑧1 → ⋯ → 𝑧𝑘], contradicting the fact that
𝑧1, … , 𝑧𝑘 ∉ Λ′2,2. The statement (2) follows immediately from (1) and Lemma 5.18. □

For 𝓁𝑑 from Lemma 5.22, we have a similar discretization. Its proof is similar to that of
Lemma 5.23, so we omit the details.

Lemma 5.24. For any two points 𝑧1, 𝑧2 ∈ 𝓁𝑑, there exists aΛ′-curve connecting twoΛ′ points lying
in the 2𝜉-neighborhoods of 𝑧1 and 𝑧2, respectively, such that this Λ′-curve is in the 2𝜉-neighborhood
of the part of 𝓁𝑑 between 𝑧1 and 𝑧2, and is disjoint from the 𝑛−3∕2-neighborhood of 𝐸(𝖣1 − 𝖣2).

We next state the discretizations for 𝓁1,1 and 𝓁1,3, which use the lattice Λ instead of Λ′, so
that their possible intersections with 𝓁∗2,2 are points in the lattice Λ + {𝜉, 𝐢𝜉}. We also require
these points to be close to 𝓁𝑑, in order to handle the residues resulting from these intersections.
Therefore, the discretizations for 𝓁1,1 and 𝓁1,3 are slightly more delicate than that for 𝓁2,2.

Lemma 5.25. There exists a Λ-curve 𝓁∗1,1 (respectively, 𝓁
∗
1,3) from a point in the intersection of Λ

and the 5𝜉-neighborhood of 𝑧𝑐 + 𝑒𝐢𝜗1𝑛−1∕4+𝜖2𝑡𝑐 (respectively, 𝑧𝑐 + 𝑒𝐢𝜗3𝑛−1∕4+𝜖2𝑡𝑐) to 𝑃1,− (respec-
tively, 𝑃1,+), such that (1) it is contained in the 5𝜉 neighborhood of 𝓁1,1 (respectively, 𝓁1,3), (2) it is
disjoint from the 𝑛−3∕2-neighborhood of ℝ ⧵ 𝑃1,− (respectively, ℝ ⧵ 𝑃1,+), and (3) the set 𝓁∗1,1 ∩ 𝓁

∗
2,2

(respectively, 𝓁∗1,3 ∩ 𝓁
∗
2,2) is contained in the 3𝜉-neighborhood of 𝓁𝑑 .

Proof. We note that the set (ℍ ∪ ℝ) ⧵ (𝓁1,1 ∪ [𝑧𝑐 → 𝑧𝑐 + 𝑒
𝐢𝜗1𝑛−1∕4+𝜖2𝑡𝑐]) contains two connected

components, and we denote the bounded one by𝑈1,−, and the unbounded one plus the boundary
𝓁1,1 ∪ [𝑧𝑐 → 𝑧𝑐 + 𝑒

𝐢𝜗1𝑛−1∕4+𝜖2𝑡𝑐] by 𝑈1,+. Let Λ′− denote the set of 𝑧 ∈ ℍ ∩ Λ′, such that either
(𝑧 + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]) ⊂ 𝑈1,−, or

(𝑧 + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]) ∩ (𝑈1,− ∩ 𝓁2,2) ≠ ∅, (𝑧 + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]) ∩ (𝑈1,+ ∩ 𝓁2,2) = ∅.
(5.47)

Then, Λ′− is a finite set. In particular, we have

(𝑧 + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]) ∩ 𝑈1,− ≠ ∅, ∀𝑧 ∈ Λ′−; (𝑧 + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]) ∩ 𝑈1,+

≠ ∅, ∀𝑧 ∈ (ℍ ∩ Λ′) ⧵ Λ′−. (5.48)
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48 HUANG et al.

F IGURE 9 An illustration of discretizing 𝓁1,1 into 𝓁∗1,1.

Denote by 𝑊− the union of the set {𝑧 ∈ ℍ ∪ ℝ ∶ |𝑧 − 𝑧𝑐| ≤ 𝑛−1∕4+𝜖2𝑡𝑐} ∩ 𝑈1,− and the 𝑛−3
neighborhood of [𝑤−, 𝑧𝑐 − 𝑛−1∕4+𝜖2𝑡𝑐] ⧵ 𝑃1,− in 𝑈. Denote by 𝑊+ the 𝑛−3 neighborhood of
(−∞,𝑤−] ⧵ 𝑃1,− in 𝑈. See Figure 9 for an illustration of these sets. By Lemma 5.18, we have
𝑊− ⊂ 𝑈1,− and 𝑈1,− ∩𝑊+ = ∅. Thus, we have

{𝑧 ∈ Λ′ ∶ 𝑧 + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉] ⊂ 𝑊−} ⊂ Λ′−, {𝑧 ∈ Λ′ ∶ 𝑧 + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉] ⊂ 𝑊+} ∩ Λ
′
− = ∅.

Now, consider the set ∪𝑧∈Λ′−(𝑧 + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]), and denote its connected component that
intersects𝑊− as𝑊∗. The boundary of𝑊∗ is a Λ-curve, which contains a vertex in Λ (denoted by
𝑧∗,𝑐) within distance 5𝜉 to 𝑧𝑐 + 𝑒𝐢𝜗1𝑛−1∕4+𝜖2𝑡𝑐. It also contains [𝑤−, 𝑧𝑐 − 5𝜉] ⧵ 𝑃1,− and is disjoint
from (−∞,𝑤−] ⧵ 𝑃1,−. We denote its left-most intersection with 𝑃1,− as 𝑧∗,𝑙. We let 𝓁∗1,1 be the part
of the boundary of𝑊∗, going from 𝑧∗,𝑐 to 𝑧∗,𝑙 counter-clockwisely. See Figure 9 for an illustration
of 𝓁∗1,1 and these related objects.
Next, we check that 𝓁∗1,1 constructed this way satisfies the requirements (1), (2), and (3).

(1) By (5.48), Λ′− is contained in the
√
2𝜉 neighborhood of 𝑈1,−, and (ℍ ∩ Λ′) ⧵ Λ′− is contained

in the
√
2𝜉 neighborhood of 𝑈1,+. Hence, any point in 𝓁∗1,1 is within distance 2

√
2𝜉 to both

𝑈1,− and 𝑈1,+, thereby within distance 2
√
2𝜉 to 𝓁1,1 ∪ [𝑧𝑐 → 𝑧𝑐 + 𝑒

𝐢𝜗1𝑛−1∕4+𝜖2𝑡𝑐]. As 𝓁∗1,1 is
from 𝑧∗,𝑐 to 𝑧∗,𝑙, we have that it must be contained in the 5𝜉 neighborhood of 𝓁1,1.

(2) This follows from (1) and Lemma 5.18.
(3) Take any 𝑧0 ∈ 𝓁∗1,1 ∩ 𝓁

∗
2,2, we can find 𝑧0,−, 𝑧0,+ ∈ Λ′ ∩ 𝓁∗2,2 such that |𝑧0,+ − 𝑧0,−| = 2𝜉, 𝑧0 =

(𝑧0,+ + 𝑧0,−)∕2, and 𝑧0,−, 𝑧0,+ are in different sides of 𝓁∗1,1. Then, only one of them is in𝑊∗,
and hence only one of them is in Λ′−. Without loss of generality, we assume that 𝑧0,− ∈ Λ′−
and 𝑧0,+ ∈ (ℍ ∩ Λ′) ⧵ Λ′−.
As 𝑧0,+ ∈ 𝓁∗2,2, we can find 𝑧𝑏,+ ∈ 𝓁2,2 ∩ (𝑧0,+ + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]). We can always choose

𝑧𝑏,+ so that 𝑧𝑏,+ ∈ 𝑈1,+, since otherwise 𝑧0,+ ∈ Λ′− by (5.47). On the other hand, we can also
find 𝑧𝑏,− ∈ 𝓁2,2 ∩ (𝑧0,− + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]). Since 𝑧0,− ∈ Λ′−, if (𝑧0,− + [−𝜉, 𝜉] + 𝐢[−𝜉, 𝜉]) ⊂
𝑈1,−, we can always choose 𝑧𝑏,− such that 𝑧𝑏,− ∈ 𝑈1,−. Now, we have found 𝑧𝑏,− ∈ 𝑈1,− ∩ 𝓁2,2
and 𝑧𝑏,+ ∈ 𝑈1,+ ∩ 𝓁2,2, with |𝑧𝑏,− − 𝑧0|, |𝑧𝑏,+ − 𝑧0| < 3𝜉. Then, we have 𝑧𝑏,−, 𝑧𝑏,+ ∈ 𝑈 (since
𝓁2,2 ⊂ 𝑈), and

Im(𝖣2(𝑧𝑏,−)) = Im(𝖣2(𝑧𝑏,+)) = 0. (5.49)
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Also, notice that

Im(𝖣1(𝑧𝑏,−)) > 0, (5.50)

since Im𝖣1 > 0 on 𝑈1,− ⧵ ℝ and 𝓁2,2 ∩ ℝ = ∅.
We next claim that

Im(𝖣1(𝑧𝑏,+)) ≤ 0. (5.51)

Otherwise, 𝑧𝑏,− and 𝑧𝑏,+ must be in different components of 𝑈 ⧵ 𝓁1,2, so [𝑧𝑏,− → 𝑧𝑏,+]
(which is in 𝑈 and has length ≲ 𝜉) intersects both 𝓁1,1 and 𝓁1,2. Take any 𝑧𝑏,1 ∈ [𝑧𝑏,− →
𝑧𝑏,+] ∩ 𝓁1,1 and 𝑧𝑏,2 ∈ [𝑧𝑏,− → 𝑧𝑏,+] ∩ 𝓁1,2. By property (2) above, we have that 𝑧𝑏,1 and
𝑧𝑏,2 are not in the 𝑛−3∕3 neighborhood of ℝ ⧵ 𝑃1,−, so Lemma 5.12 implies that 𝖣1(𝑧𝑏,1) −
𝖣1(𝑧𝑏,2) ≲ 𝑛2𝜉. On the other hand, since 𝑧𝑏,1 ∈ 𝓁1,1 and 𝑧𝑏,2 ∈ 𝓁1,2, we have 𝖣1(𝑧𝑏,1) −
𝖣1(𝑧𝑐), 𝖣1(𝑧𝑏,2) − 𝖣1(𝑧𝑐) ∈ ℝ, and 𝖣1(𝑧𝑏,1) − 𝖣1(𝑧𝑐) ≥ 𝖣1(𝑒

𝐢𝜗1𝑛−1∕4+𝜖2𝑡𝑐) − 𝖣1(𝑧𝑐) ≍ 𝑛−1+4𝜖2 ,
−𝖣1(𝑧𝑏,2) + 𝖣1(𝑧𝑐) ≥ −𝖣1(𝑒

𝐢𝜗2𝑛−1∕4+𝜖2𝑡𝑐) + 𝖣1(𝑧𝑐) ≍ 𝑛−1+4𝜖2 by (the 𝖣1 version of) (5.31).
Hence, we have 𝖣1(𝑧𝑏,1) − 𝖣1(𝑧𝑏,2) ≳ 𝑛−1+4𝜖2 , which leads to a contradiction. Thus, we
conclude (5.51).
Now, combining (5.49), (5.50), and (5.51), we obtain that Im(𝖣1(𝑧𝑏,−) − 𝖣2(𝑧𝑏,−)) > 0 ≥

Im(𝖣1(𝑧𝑏,+) − 𝖣2(𝑧𝑏,+)). Thus, there exists some 𝑧𝑏,∗ ∈ [𝑧𝑏,− → 𝑧𝑏,+] such that Im(𝖣1(𝑧𝑏,∗) −
𝖣2(𝑧𝑏,∗)) = 0, that is, 𝑧𝑏,∗ ∈ 𝓁𝑑. Note that we must have |𝑧𝑏,∗ − 𝑧0| < 3𝜉 since |𝑧𝑏,− −
𝑧0|, |𝑧𝑏,+ − 𝑧0| < 3𝜉, so 𝑧0 is contained in the 3𝜉-neighborhood of 𝓁𝑑.

Finally, the construction of 𝓁∗1,3 and corresponding properties follow similar arguments. □

We are now ready to finish the proof of Lemma 5.19 by deforming the contours to 𝓁∗2,2 and 𝓁
∗
1,1,

𝓁∗1,3.

Proof of Lemma 5.19 Outer part. As stated above, we just need to control (5.45) over the contours
stated in Lemma 5.19 (Outer part). For the convenience of notation, we introduce the follow-
ing definitions. Let 𝐿1 be the contour of [𝑧𝑐 + 𝑒3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 𝜄(𝓁∗1,1)] followed by 𝓁

∗
1,1, where

𝜄(𝓁∗1,1) is the starting point of 𝓁
∗
1,1, with |𝜄(𝓁∗1,1) − (𝑧𝑐 + 𝑒𝐢𝜗1𝑛−1∕4+𝜖2𝑡𝑐)| < 5𝜉. Let 𝐿2 be the contour

of [𝑧𝑐 + 𝑒𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐 → 𝜄(𝓁∗2,2)] followed by 𝓁
∗
2,2, where 𝜄(𝓁

∗
2,2) is the starting point of 𝓁

∗
2,2, with|𝜄(𝓁∗2,2) − (𝑧𝑐 + 𝑒𝐢𝜃2𝑛−1∕4+𝜖2𝑡𝑐)| < 2𝜉.

We first claim that there exists a constant 𝑐 > 0 such that

Re(𝖣1(𝑤) − 𝖣1(𝑧𝑐)) > 𝑐𝑛−1+4𝜖2 , Re(𝖣2(𝑧) − 𝖣2(𝑧𝑐)) < −𝑐𝑛−1+4𝜖2 , (5.52)

for any 𝑤 ∈ 𝐿1 and 𝑧 ∈ 𝐿2.
We now prove this claim. For any 𝑤 ∈ 𝓁∗1,1, by Lemma 5.25, we can find 𝑤

′ ∈ 𝓁1,1 such that|𝑤 − 𝑤′| < 5𝜉; and 𝑤 is disjoint from the 𝑛−3∕2-neighborhood of ℝ ⧵ 𝑃1,−. By Lemma 5.17,
we have Re(𝖣1(𝑤′) − 𝖣1(𝑧𝑐)) > 𝑐𝑛−1+4𝜖2 . Then, by Lemma 5.12, the first inequality in (5.52)
holds for any 𝑤 ∈ 𝓁∗1,1. For any 𝑤 ∈ [𝑧𝑐 + 𝑒

𝐢𝜃1𝑛−1∕4+𝜖2𝑡𝑐 → 𝜄(𝓁∗1,1)], we must have that |𝑤 − (𝑧𝑐 +

𝑒𝐢𝜗1𝑛−1∕4+𝜖2𝑡𝑐)| ≲ 𝑛−1∕4−𝜖2𝑡𝑐 by Lemmas 5.17 and 5.25. Then, using Lemma 5.14, we obtain the
first inequality in (5.52). The second inequality in (5.52) can be proved in a similar way by using
Lemmas 5.12, 5.14, 5.17, and 5.23.
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50 HUANG et al.

We next analyze the contours in the outer part of Lemma 5.19, which can be further deformed
and decomposed into several parts. By symmetry, it suffices to consider the following few cases.

(a) The contour of 𝑧 is 𝐿′2 ∶= [𝑧𝑐 + 𝑒
3𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐 → 𝑧𝑐 + 𝑒

𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐], and the contour of
𝑤 is 𝐿1. We note that 𝐿1 is deformed from [𝑧𝑐 + 𝑒

3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → −𝑡𝑐 − 1], and this defor-
mation is allowed because the integrand in (5.45) has no 𝑤 pole in ℍ or [−𝑡𝑐 − 1,𝑤−] ∪ 𝑃1,−.
Note that the contours 𝐿′2 and 𝐿1 do not intersect, and the distance between them is of order
≳ 𝑛−1∕4+𝜖2𝑡𝑐 by Lemma 5.25 and the fact that the distance between 𝓁1,1 and 𝐿′2 is of order
≳ 𝑛−1∕4+𝜖2𝑡𝑐.
For any 𝑧 ∈ 𝐿′2, we haveRe(𝖣2(𝑧) − 𝖣2(𝑧𝑐)) ≤ 𝐶𝑛−1+2𝜖2 for a constant𝐶 > 0 by Lemma 5.14

(note it can be negative). Then, by (5.52), for any 𝑧 ∈ 𝐿′2 and 𝑤 ∈ 𝐿1, we have Re(𝖣2(𝑧) −
𝖣1(𝑤) − 𝖣2(𝑧𝑐) + 𝖣1(𝑧𝑐)) < −𝑐𝑛−1+4𝜖2 . By Lemma 5.13, 𝓁1,1 is contained in a ball of radius
≲ 𝑛. Thus, 𝐿1 is also contained in a ball of radius ≲ 𝑛, from which we see that its length
satisfies ≲ 𝑛2𝜉−1. Now, the integral (5.45) along these contours is at most of order

𝑛2𝜉−1 ⋅ 𝑛1∕4−𝜖2𝑡−1𝑐 ⋅ exp(−𝑐𝑛4𝜖2) ≲ exp(−𝑐𝑛4𝜖2∕2).

(b) The contour of 𝑤 is 𝐿′1 ∶= [𝑧𝑐 + 𝑒
5𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 𝑧𝑐 → 𝑧𝑐 + 𝑒

3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐], and the con-
tour of 𝑧 is 𝐿2. We note that 𝐿2 is deformed from [𝑧𝑐 + 𝑒

𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐 → ∞𝑒𝜋𝐢∕2]. This
deformation is allowed because the integrand of (5.45) has no 𝑧 pole in ℍ, and | exp(𝑛𝖣2(𝑧))|
decays exponentially along any direction between 𝐢 and the asymptotic direction of 𝓁∗2,2, due
to Lemma 5.13. Not that the contours 𝐿′1 and 𝐿2 do not intersect, and the distance between
them is of order ≳ 𝑛−1∕4+𝜖2𝑡𝑐 by Lemma 5.23 and the fact that the distance between 𝓁2,2 and
𝐿′1 is of order ≳ 𝑛−1∕4+𝜖2𝑡𝑐.
For any𝑤 ∈ 𝐿′1, we have Re(−𝖣1(𝑤) + 𝖣1(𝑧𝑐)) ≤ 𝐶𝑛−1+2𝜖2 by Lemma 5.14. Then, by (5.52),

for any 𝑧 ∈ 𝐿2 and 𝑤 ∈ 𝐿′1, we have Re(𝖣2(𝑧) − 𝖣1(𝑤) − 𝖣2(𝑧𝑐) + 𝖣1(𝑧𝑐)) < −𝑐𝑛−1+4𝜖2 . In
addition, if |𝑧| > 𝑛, by Lemma 5.13, there is

Re(𝖣2(𝑧) − 𝖣2(𝑧𝑐)) < −𝑐|𝑧|. (5.53)

Therefore, the integral (5.45) along these contours is at most of order

𝑛2𝜉−1 ⋅ 𝑛1∕4−𝜖2 𝑡−1𝑐 ⋅ exp(−𝑐𝑛4𝜖2 ) +
∑

𝑊∈ℤ,𝑊>𝑛

𝑊𝜉−1 ⋅ 𝑛1∕4−𝜖2 𝑡−1𝑐 ⋅ exp(−𝑐𝑛𝑊) ≲ exp(−𝑐𝑛4𝜖2∕2),

where the first term accounts for the part of 𝐿2 where |𝑧| ≤ 𝑛 (and hence has length≲ 𝑛2𝜉−1),
and the summand for each𝑊 accounts for the part of 𝐿2 where ||𝑧| −𝑊| ≤ 1 (and hence has
length ≲ 𝑊𝜉−1).

(c) The contour of 𝑤 is 𝐿1, and the contour of 𝑧 is the complex conjugate of 𝐿2. The distance
between them is ≳ 𝑛−3 by Lemmas 5.23 and 5.25. By bounding the lengths of the contours
as in (a) and (b), and using (5.52) and (5.53), we conclude that the integral (5.45) along these
contours is also ≲ exp(−𝑐𝑛4𝜖2).

(d) The contour of 𝑤 is 𝐿1, and the contour of 𝑧 is 𝐿2. These contours 𝐿1 and 𝐿2 may inter-
sect, since 𝓁∗1,1 and 𝓁

∗
2,2 may intersect. (As we have seen in (a) and (b), the distance between

[𝑧𝑐 + 𝑒
3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 𝜄(𝓁∗1,1)] and 𝓁

∗
2,2 is of order ≳ 𝑛−1∕4+𝜖2 , and the distance between

[𝑧𝑐 + 𝑒
3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → 𝜄(𝓁∗2,2)] and𝓁

∗
1,1 is also of order≳ 𝑛−1∕4+𝜖2 .) Denote 𝑆 = 𝓁∗1,1 ∩ 𝓁

∗
2,2 =

𝐿1 ∩ 𝐿2. Since 𝓁∗1,1 is aΛ-curve and 𝓁
∗
2,2 is aΛ

′-curve, 𝑆 is contained in the latticeΛ + {𝜉, 𝐢𝜉} =
Λ′ + {𝜉, 𝐢𝜉}. Using the fact that 𝐿1 is contained in a ball of radius ≲ 𝑛 as shown above, we
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 51

get the trivial bound |𝑆| ≲ (𝑛𝜉−1)2. For any 𝑤 ∈ 𝐿1 and 𝑧 ∈ 𝐿2, unless 𝑤, 𝑧 ∈ 𝑧∗ + (−𝜉, 𝜉) +
𝐢(−𝜉, 𝜉) for some 𝑧∗ ∈ 𝑆, we must have |𝑤 − 𝑧| ≥ 𝜉. For each 𝑧∗ ∈ 𝑆, the parts of 𝐿1 and 𝐿2
inside 𝑧∗ + (−𝜉, 𝜉) + 𝐢(−𝜉, 𝜉) are two orthogonal line segments, each having length 2𝜉. There-
fore, by (5.52), the integral (5.45) over these segments is ≲ 𝜉−1 exp(−𝑐𝑛4𝜖2). Summing over all
𝑧∗ ∈ 𝑆 and bounding the integral (5.45) over the rest parts of the 𝑤 and 𝑧 contours as in (a)
and (b), we again get the bound ≲ exp(−𝑐𝑛4𝜖2).

In case (d), the 𝑤 and 𝑧 contours are deformed from [𝑧𝑐 + 𝑒
3𝜋𝐢∕4𝑛−1∕4+𝜖2𝑡𝑐 → −𝑡𝑐 − 1] and [𝑧𝑐 +

𝑒𝜋𝐢∕2𝑛−1∕4+𝜖2𝑡𝑐 → ∞𝑒𝜋𝐢∕2], respectively. When 𝑆 ≠ ∅, this procedure potentially leads to residues
at 𝑤 = 𝑧, which are given by

∫ 𝑑𝑧 exp(𝑛𝖣2(𝑧) − 𝑛𝖣1(𝑧) − 𝑛𝖣2(𝑧𝑐) + 𝑛𝖣1(𝑧𝑐)), (5.54)

where the integral is along some curves [𝑧∗,1 → 𝑧∗,2], …, [𝑧∗,2𝑘−1 → 𝑧∗,2𝑘], such that {𝑧∗,𝑖}2𝑘𝑖=1 = 𝑆.
We assume that 𝑆 ≠ ∅ and bound the integral (5.54) along [𝑧∗,2𝑖−1 → 𝑧∗,2𝑖] for each 𝑖 = 1, … , 𝑘.

By Lemmas 5.24 and 5.25, the curve 𝓁𝑑 ≠ ∅ and we can find 𝑧′′∗,2𝑖−1, 𝑧
′′
∗,2𝑖 ∈ 𝓁𝑑 and a Λ′-curve

𝐿∗,𝑖 with endpoints 𝑧′∗,2𝑖−1, 𝑧
′
∗,2𝑖 , such that |𝑧∗,2𝑖−1 − 𝑧′′∗,2𝑖−1|, |𝑧∗,2𝑖 − 𝑧′′∗,2𝑖| ≤ 5𝜉, and |𝑧′∗,2𝑖−1 −

𝑧′′∗,2𝑖−1, |𝑧′∗,2𝑖 − 𝑧′′∗,2𝑖| ≤ 2𝜉. In addition, the Λ′-curve 𝐿∗,𝑖 is contained in the 2𝜉 neighborhood of
𝓁𝑑 between 𝑧′′∗,2𝑖−1 and 𝑧

′′
∗,2𝑖 , and is disjoint from the 𝑛−3∕2-neighborhood of 𝐸(𝖣1 − 𝖣2).

We deform the contour [𝑧∗,2𝑖−1 → 𝑧∗,2𝑖] into the contour consisting of [𝑧∗,2𝑖−1 → 𝑧′∗,2𝑖−1], 𝐿∗,𝑖 ,
and [𝑧′∗,2𝑖 → 𝑧∗,2𝑖]. For each 𝑧 on this contour, by (5.46) and the fact that Re(𝖣1 − 𝖣2) is monotone
along 𝓁𝑑, we have that

Re(𝖣2(𝑧) − 𝖣1(𝑧)) < Re(𝖣2(𝑧
′′) − 𝖣1(𝑧

′′)) + (𝜉𝑛2)
<Re(𝖣2(𝑧

′′
∗,2𝑖−1) − 𝖣1(𝑧

′′
∗,2𝑖−1)) ∨ Re(𝖣2(𝑧

′′
∗,2𝑖) − 𝖣1(𝑧

′′
∗,2𝑖)) + (𝜉𝑛2)

<Re(𝖣2(𝑧∗,2𝑖−1) − 𝖣1(𝑧∗,2𝑖−1)) ∨ Re(𝖣2(𝑧∗,2𝑖) − 𝖣1(𝑧∗,2𝑖)) + (𝜉𝑛2),
(5.55)

where 𝑧′′ is a point in 𝓁𝑑 between 𝑧′′∗,2𝑖−1 and 𝑧
′′
∗,2𝑖 , with |𝑧′′ − 𝑧| ≤ 5𝜉. Using Lemma 5.12 and the

facts that 𝑧∗,2𝑖−1 ∈ 𝑆 ⊂ 𝓁∗1,1 and𝓁1,1 is disjoint from the𝑛−3 neighborhood of𝐸(𝖣1) byLemma5.18,
we obtain that

Re(𝖣1(𝑧∗,2𝑖−1)) > Re(𝖣1(𝑧
′′′
∗,2𝑖−1)) + (𝜉𝑛2), (5.56)

for some 𝑧′′′∗,2𝑖−1 ∈ 𝓁1,1 with |𝑧′′′∗,2𝑖−1 − 𝑧∗,2𝑖−1| ≲ 𝜉. By Lemma 5.17, we have Re(𝖣1(𝑧′′′∗,2𝑖−1) −
𝖣1(𝑧𝑐)) > 𝑐𝑛−1+4𝜖2 , which, together with (5.56), implies that Re(𝖣1(𝑧∗,2𝑖−1) − 𝖣1(𝑧𝑐)) > 𝑐𝑛−1+4𝜖2 .
Similarly, we have

Re(𝖣1(𝑧∗,2𝑖) − 𝖣1(𝑧𝑐)) > 𝑐𝑛−1+4𝜖2 , Re(𝖣2(𝑧∗,2𝑖−1) − 𝖣2(𝑧𝑐)), Re(𝖣2(𝑧∗,2𝑖) − 𝖣2(𝑧𝑐)) < −𝑐𝑛−1+4𝜖2 .

Combining the above estimates with (5.55), we conclude that

Re(𝖣2(𝑧) − 𝖣1(𝑧) − 𝖣2(𝑧𝑐) + 𝖣1(𝑧𝑐)) < −𝑐𝑛−1+4𝜖2 . (5.57)

We next bound the length of 𝐿∗,𝑖 . Since 𝑧∗,2𝑖−1, 𝑧∗,2𝑖 ∈ 𝑆 ⊂ 𝓁∗1,1, we have that 𝑧∗,2𝑖−1, 𝑧∗,2𝑖 ≲ 𝑛
by Lemma 5.25, because 𝓁1,1 is contained in a ball of radius ≲ 𝑛 as discussed above. We claim
that 𝐿∗,𝑖 is also contained in a ball of radius ≲ 𝑛. First, we have 𝑧′′∗,2𝑖−1, 𝑧

′′
∗,2𝑖 ≲ 𝑛. Next, consider
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52 HUANG et al.

the semi-circle {𝑧 ∈ ℍ ∶ |𝑧| = 𝑟} for 𝑟 = |𝑧′′∗,2𝑖−1| + |𝑧′′∗,2𝑖| + 𝑛. Since 𝓁𝑑 ≠ ∅, by Lemma 5.22, we
have either (i) 𝗑1 − 𝗍1 < 𝗑2 − 𝗍2 + 1 and 𝗑1 > 𝗑2 − 1, or (ii) 𝗑1 − 𝗍1 > 𝗑2 − 𝗍2 + 1 and 𝗑1 < 𝗑2 − 1.
In either case, the function Im(𝖣1 − 𝖣2) is strictly monotone along the semi-circle. Therefore, the
semi-circle {𝑧 ∈ ℍ ∶ |𝑧| = 𝑟} intersects 𝓁𝑑 (which is contained in ℍ and goes to∞) exactly once,
so the intersection cannot lie on the part of 𝓁𝑑 between 𝑧′′∗,2𝑖−1 and 𝑧

′′
∗,2𝑖 . As a result, the part of 𝓁𝑑

between 𝑧′′∗,2𝑖−1 and 𝑧
′′
∗,2𝑖 is contained in a ball of radius≲ 𝑛, and the claim holds. Thus, the length

of 𝐿∗,𝑖 is at most ≲ 𝑛2𝜉−1.
Using the estimate (5.57), the bound on the length of 𝐿∗,𝑖 , and |𝑧∗,2𝑖−1 − 𝑧′∗,2𝑖−1|, |𝑧∗,2𝑖 − 𝑧′∗,2𝑖| ≲

𝜉, we conclude that the integral (5.54) along [𝑧∗,2𝑖−1 → 𝑧′∗,2𝑖−1], 𝐿∗,𝑖 , and [𝑧
′
∗,2𝑖 → 𝑧∗,2𝑖] is at most

≲ exp(−𝑐𝑛4𝜖2). Since |𝑆| ≲ (𝑛𝜉−1)2 (by Lemma 5.13), summing over 𝑖 yields the desired bound
≲ exp(−𝑐𝑛4𝜖2). □

6 OPTIMAL RIGIDITY AROUND CUSPS

In this section, we prove the optimal height function concentration estimate for random lozenge
tilings around cusps, which will imply the first part of Lemma 4.2.

6.1 Concentration of height function

Fix a rational polygonal set 𝔓 satisfying Assumption 2.5, and denote its liquid region and arctic
curve by 𝔏 = 𝔏(𝔓) and 𝔄 = 𝔄(𝔓), respectively. Let 𝐻∗ denote the limiting height function of
𝔓. Let 𝑛 be a large integer such that 𝖯 = 𝑛𝔓 is a tileable domain, and let 𝖧 denote the height
function associated with the uniformly random tiling of 𝖯, that has boundary value 𝑛𝐻∗ on 𝜕𝖯.
As in Section 4, all the constants in this section (including those hidden in≲,≳,≍,) can depend
on𝔓.
We recall the following height function concentration statement from [47].

Theorem 6.1. Take any constant 𝛿 > 0. Let 𝔏+(𝔓) = {𝑢 ∈ 𝔓 ∶ dist(𝑢, 𝔏) ≤ 𝑛𝛿−2∕3} be the
augmented liquid region. Then, the following two statements hold with overwhelming probability.

(1) ||𝖧(𝑛𝑣) − 𝑛𝐻∗(𝑣)|| < 𝑛𝛿 for any 𝑣 ∈ 𝔓.
(2) For any 𝑣 ∈ 𝔓 ⧵ 𝔏+(𝔓), we have 𝖧(𝑛𝑣) = 𝑛𝐻∗(𝑣).

Theorem 6.1 does not give optimal rigidity estimates close to cusp locations. In this section, we
prove an optimal version, as stated in the following theorem.

Theorem 6.2. Fix a cusp point (𝑥𝑐, 𝑡𝑐) ∈ 𝔄. By possibly rotating𝔓 by 180◦, the arctic curve𝔄 in a
neighborhood of (𝑥𝑐, 𝑡𝑐) consists of two analytic pieces {(𝐸−(𝑡), 𝑡) ∶ 𝑡𝑐 − 𝔰 ≤ 𝑡 ≤ 𝑡𝑐} and {(𝐸+(𝑡), 𝑡) ∶
𝑡𝑐 − 𝔰 ≤ 𝑡 ≤ 𝑡𝑐}, for some small constant 𝔰 > 0. Then, for any constant 𝛿 > 0, the following holds
with overwhelming probability: for any 𝑣 = (𝑥, 𝑡) such that 𝑡𝑐 − 𝔰 ≤ 𝑡 ≤ 𝑡𝑐 and 𝑥 ∈ [𝐸−(𝑡) + (𝑡𝑐 −
𝑡)1∕6𝑛𝛿−2∕3, 𝐸+(𝑡) − (𝑡𝑐 − 𝑡)

1∕6𝑛𝛿−2∕3], there is

𝖧(𝑛𝑣) = 𝑛𝐻∗(𝑣), (6.1)
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 53

F IGURE 10 Shown above are the four possibilities for𝔇.

Remark 6.3. When 𝑡𝑐 − 𝑡 ≍ 1, the statement (6.1) reduces to item (2) in Theorem 6.1. However,
when 𝑡𝑐 − 𝑡 ≪ 1, (6.1) is stronger than Theorem 6.1. Such optimal height function concentration
is crucial for the tiling path estimate (Lemma 4.2), where we consider a mesoscopic box around
the cusp location (𝑥𝑐, 𝑡𝑐).

This optimal rigidity estimate will be proved based on an estimate from [47] on random lozenge
tilings in a trapezoid with random boundary, stated as Proposition 6.4 below, and a comparison
argument invokingLemma3.3. For this,we start by carving out a trapezoid domain from𝔓 around
a cusp.

6.2 Trapezoid domain

As 𝔓 satisfies Assumption 2.5, for definiteness, for the rest of this section, we assume (without
loss of generality) that the axis 𝓁 in Assumption 2.5 is the horizontal axis {𝗍 = 0}. We take a cusp
point (𝑥𝑐, 𝑡𝑐) ∈ 𝔄. Then, (𝑥𝑐, 𝑡𝑐) is not a tangency location. By possibly rotating𝔓 by 180◦, we can
assume that the cusp “points upwards,” that is, in a small neighborhood of (𝑥𝑐, 𝑡𝑐) the arctic curve
𝔄 is contained on or below the line 𝑡 = 𝑡𝑐. Note this notion is weaker than “upward oriented” from
Definition 2.6, because the axis 𝓁 is now fixed as the horizontal axis. Next, we carve out a trapezoid
around (𝑥𝑐, 𝑡𝑐).
A trapezoid is a subset of ℝ2 of the following form:

𝔇 =
{
(𝑥, 𝑡) ∈ ℝ × [𝔱0, 𝔱1] ∶ 𝔞(𝑡) ≤ 𝑥 ≤ 𝔟(𝑡)

}
, (6.2)

where 𝔱0 < 𝔱1, and 𝔞, 𝔟 are linear functions on [𝔱0, 𝔱1] with 𝔞′(𝑡), 𝔟′(𝑡) ∈ {0, 1} and 𝔞(𝑡) ≤ 𝔟(𝑡) for
each 𝑡 ∈ [𝔱0, 𝔱1]. We denote its four boundaries by

𝜕so(𝔇) =
{
(𝑥, 𝑡) ∈ 𝔇 ∶ 𝑡 = 𝔱0

}
; 𝜕no(𝔇) =

{
(𝑥, 𝑡) ∈ 𝔇 ∶ 𝑡 = 𝔱1

}
;

𝜕we(𝔇) =
{
(𝑥, 𝑡) ∈ 𝔇 ∶ 𝑥 = 𝔞(𝑡)

}
; 𝜕ea(𝔇) =

{
(𝑥, 𝑡) ∈ 𝔇 ∶ 𝑥 = 𝔟(𝑡)

}
.

(6.3)

We refer to Figure 10 for a depiction.
We now construct the trapezoid 𝔇 associated with (𝑥𝑐, 𝑡𝑐). Let 𝑥1 ∈ ℝ and 𝑥2 ∈ ℝ be the

maximal and minimal numbers such that 𝑥1 < 𝑥0 < 𝑥2, 𝑢1 = (𝑥1, 𝑡𝑐) ∈ 𝔄, and 𝑢2 = (𝑥2, 𝑡𝑐) ∈ 𝔄.
By Assumption 2.5, neither 𝑢1 nor 𝑢2 is a cusp of 𝔄. If 𝑢1 ∈ 𝜕𝔓, then it is a (nonhorizon-
tal) tangency location of 𝔄, so it lies along a side of 𝜕𝔓 with slope 1 or ∞. We then let this
side contain the west boundary of 𝔇. If instead 𝑢1 ∉ 𝜕𝔓, then there exist 𝜀 = 𝜀(𝔓, 𝑢) > 0 and
𝑟 = 𝑟(𝔓, 𝑢) ∈ (0, 𝜀) such that the radius 𝑟 disk 𝔹𝑟(𝑥1 − 𝜀, 𝑡𝑐) does not intersect 𝔏. Then, depend-
ing on whether ∇𝐻∗(𝑥1, 𝑡𝑐) = (1, −1) or ∇𝐻∗(𝑥1, 𝑡𝑐) ∈

{
(0, 0), (1, 0)

}
(one of them must hold by

the first statement of Lemma 2.4), the west boundary of𝔇 is contained in the segment obtained
as the intersection between 𝔹𝑟(𝑥1 − 𝜀, 𝑡𝑐) and the line passing through (𝑥1 − 𝜀, 𝑡𝑐) with slope 1 or
∞, respectively.
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54 HUANG et al.

F IGURE 11 Left: the tangency locations (𝐸′−(𝑡1), 𝑡1), (𝐸′+(𝑡2), 𝑡2), and the cusp (𝑥𝑐, 𝑡𝑐). Right: the enlarged
liquid region, with its time slices 𝐼+𝑡 as in (6.5) and (6.6).

So far, we have specified a segment containing the west boundary of𝔇, and one containing its
east boundary can be specified similarly. Then, we choose the interval [𝔱0, 𝔱1] as 𝔱0 = 𝑡𝑐 − 𝔰 and
𝔱1 = 𝑡𝑐 + 𝔰, where 𝔰 is chosen sufficiently small so that the east and west boundary of𝔇 are con-
tained in the segments specified above. These information determine the trapezoid𝔇 associated
with (𝑥𝑐, 𝑡𝑐).
In summary, for a polygonal set𝔓 satisfying Assumption 2.5, and a cusp point (𝑥𝑐, 𝑡𝑐) ∈ 𝔄, (by

possibly rotating 𝔓 by 180◦) we can carve out a trapezoid 𝔇 contained in 𝔓 and the time strip
[𝔱0 = 𝑡𝑐 − 𝔰, 𝔱1 = 𝑡𝑐 + 𝔰] for a small enough 𝔰 > 0, such that the followings hold.

(1) The limiting height function𝐻∗ is constant along both 𝜕ea(𝔇) and 𝜕we(𝔇).
(2) Denote by 𝔄(𝔇) = 𝔇 ∩𝔄, the arctic curve in 𝔇, 𝔏(𝔇) = 𝔇 ∩ 𝔏 the liquid region restricted

to 𝔇, and by 𝐼∗𝑡 , the closure of {𝑥 ∶ (𝑥, 𝑡) ∈ 𝔏(𝔇)} for each 𝔱0 ≤ 𝑡 ≤ 𝔱1. Then, 𝔄(𝔇) =
{(𝐸−(𝑡), 𝑡), (𝐸+(𝑡), 𝑡) ∶ 𝔱0 ≤ 𝑡 ≤ 𝑡𝑐} ∪ {(𝐸

′
−(𝑡), 𝑡), (𝐸

′
+(𝑡), 𝑡) ∶ 𝔱0 ≤ 𝑡 ≤ 𝔱1} (see Figure 11). For

𝑡𝑐 ≤ 𝑡 ≤ 𝔱1, the slice 𝐼∗𝑡 is a single interval 𝐼∗𝑡 =
[
𝐸′−(𝑡), 𝐸

′
+(𝑡)
]
; for 𝔱0 ≤ 𝑡 ≤ 𝑡𝑐, the slice 𝐼∗𝑡

consists of two intervals 𝐼∗𝑡 =
[
𝐸′−(𝑡), 𝐸−(𝑡)

]
∪
[
𝐸+(𝑡), 𝐸

′
+(𝑡)
]
. The complement {𝑥 ∶ (𝑥, 𝑡) ∈

𝔇} ⧵ 𝐼∗𝑡 consists of several intervals. On each interval, we have either 𝜕𝑥𝐻∗(𝑥, 𝑡) ≡ 0 or
𝜕𝑥𝐻

∗(𝑥, 𝑡) ≡ 1.
(3) Any tangency location along 𝔄(𝔇) is of the form min 𝐼∗𝑡 or max 𝐼

∗
𝑡 for some 𝑡 ∈ (𝔱0, 𝔱1). At

most one tangency location is of the form min 𝐼∗𝑡 , and at most one is of the form max 𝐼∗𝑡 .
Moreover, these tangent locations are contained in either 𝜕we(𝔇) or 𝜕ea(𝔇).

6.3 Lozenge tilings in a trapezoid with random boundary

For the trapezoid 𝔇 given above, we next state an optimal rigidity estimate for uniformly ran-
dom lozenge tilings on it, with a random north boundary height function. To state it, we need an
enlarged version of the time slice 𝐼∗𝑡 . Fix an arbitrarily small constant 𝔡 > 0. For any

(
𝐸′±(𝑡), 𝑡

)
on

the arctic curve𝔄(𝔇), we define the distance function

𝜏
(
𝐸′±(𝑡), 𝑡

)
= |𝑡 − 𝑡𝑐|2∕3𝑛6𝔡−2∕3 ∨ 𝑛−1+10𝔡. (6.4)

Moreover, for any
(
𝐸±(𝑡), 𝑡

)
on the arctic curve 𝔄(𝔇) with 𝑡 ≤ 𝑡𝑐, we define the distance

function 𝜏
(
𝐸±(𝑡), 𝑡

)
∶= (𝑡𝑐 − 𝑡)

1∕6𝑛6𝔡−2∕3. We then define the enlarged intervals: for 𝑡𝑐 ≤ 𝑡 ≤ 𝔱1,

𝐼+𝑡 =
[
𝐸′−(𝑡) − 𝜏(𝐸

′
−(𝑡), 𝑡), 𝐸

′
+(𝑡) + 𝜏(𝐸

′
+(𝑡), 𝑡)

]
, (6.5)

and for 𝔱0 ≤ 𝑡 < 𝑡𝑐,

𝐼+𝑡 =
[
𝐸′−(𝑡) − 𝜏(𝐸

′
−(𝑡), 𝑡), 𝐸−(𝑡) + 𝜏(𝐸−(𝑡), 𝑡)

]
∪
[
𝐸+(𝑡) − 𝜏(𝐸+(𝑡), 𝑡), 𝐸

′
+(𝑡) + 𝜏(𝐸

′
+(𝑡), 𝑡)

]
. (6.6)
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 55

By Proposition 7.1 below, 𝐸+(𝑡) − 𝐸−(𝑡) ≍ (𝑡𝑐 − 𝑡)
3∕2. Hence, for 𝑡 ≥ 𝑡𝑐 − 𝑛

−1∕2+4𝔡, (6.6) reduces
to a single interval

𝐼+𝑡 =
[
𝐸′−(𝑡) − 𝜏

(
𝐸′−(𝑡), 𝑡

)
, 𝐸′+(𝑡) + 𝜏

(
𝐸′+(𝑡), 𝑡

)]
. (6.7)

See Figure 11 for an illustration.
Due to some rounding issues, the set𝑛𝔇maynot be a tileable domain for lozenge tilings. There-

fore, we use the notions of plausible boundary height functions and uniformly random height
functions from Definition 3.2.

Proposition 6.4. Denote 𝖣 = 𝑛𝔇. Let 𝗁 ∶ 𝜕𝖣 → ℝ be a plausible boundary height functions of 𝖣,
such that (1) 𝗁 is constant on 𝜕we𝖣 and on 𝜕ea𝖣, respectively, and (2) on 𝜕so𝖣,||𝗁(𝑛𝑣) − 𝑛𝐻∗(𝑣)|| ≤ 𝑛𝔡∕3, for 𝑣 = (𝑥, 𝔱0), dist(𝑥, 𝐼∗𝔱0

) ≤ 𝑛𝔡∕3−2∕3,

𝗁(𝑛𝑣) = 𝑛𝐻∗(𝑣), for 𝑣 = (𝑥, 𝔱0), dist(𝑥, 𝐼∗𝔱0
) > 𝑛𝔡∕3−2∕3.

(6.8)

Then, there exists a randomplausible boundary height function 𝗁̃ of𝖣, which is equal to 𝗁 on 𝜕we𝖣 ∪
𝜕ea𝖣 ∪ 𝜕so𝖣, such that the following holds with overwhelming probability. Denote by 𝖧̃ the uniformly
random height function of 𝖣 with boundary 𝗁̃. For any 𝔱0 ≤ 𝑡 ≤ 𝔱1, we have||𝖧̃(𝑛𝑣) − 𝑛𝐻∗(𝑣)|| ≤ 𝑛3𝔡, for 𝑣 = (𝑥, 𝑡), 𝑥 ∈ 𝐼+𝑡 ,

𝖧̃(𝑛𝑣) = 𝑛𝐻∗(𝑣), for 𝑣 = (𝑥, 𝑡), 𝑥 ∉ 𝐼+𝑡 .
(6.9)

This proposition is the same as [47, Proposition 4.4], via the equivalence between lozenge tilings
and nonintersecting Bernoulli paths stated in Section 2.1.2.
With the above preparations, we complete the proof of Theorem 6.2 using the height func-

tion comparison (i.e., Lemma 3.3) between the uniformly random tiling of 𝑛𝔓 and the uniformly
random tiling of 𝑛𝔇 (carved out around a cusp point) with random boundary.

Proof of Theorem 6.2. We carve out a trapezoid𝔇 around the cusp point (𝑥𝑐, 𝑡𝑐), as given above,
and denote 𝖣 = 𝑛𝔇. By Lemma 2.4, ∇𝐻∗ ≡ (0, 0), (1,0), or (1, −1) in {(𝑥, 𝑡) ∶ 𝔱0 ≤ 𝑡 ≤ 𝑡𝑐, 𝑥 ∈
[𝐸−(𝑡), 𝐸+(𝑡)]}. For the rest of the proof, we assume the first case, while the proofs in the other
two cases are very similar and thus omitted. This assumption implies that 𝐻∗ is constant in this
region. We assume that𝐻∗ ≡ 0 without loss of generality, as we can always add a global constant
to𝐻∗.
Take an arbitrarily small constant 𝔡 > 0. We denote by Ω the set of plausible boundary height

functions 𝗁 ∶ 𝜕𝖣 → ℝ, such that (1) 𝗁 is constant on 𝜕we𝖣 and on 𝜕ea𝖣, respectively, and (2) (6.8)
holds on 𝜕so𝖣, and (3) with overwhelming probability, the uniformly random height function 𝖧̂
of 𝖣 with boundary 𝗁 satisfies

|𝖧̂(𝑛𝑣) − 𝑛𝐻∗(𝑣)| ≤ 𝑛𝔡, 𝑣 ∈ 𝔓 ∩𝔇. (6.10)

Then, using Theorem 6.1 and the fact that the west and east boundaries of𝔇 either coincide with
the boundary of 𝔓 or are in the frozen region and bounded away from the liquid region, we see
that: with overwhelming probability, the restriction of 𝖧 on 𝜕𝖣 is in Ω.
In the rest of the proof, we fix a 𝗁 ∈ Ω, and denote by 𝖧̂ the uniformly random height function

𝖣with boundary 𝗁. By Proposition 6.4, there is a random plausible boundary height function 𝗁̃ of
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56 HUANG et al.

𝖣, such that (1) 𝗁̃ = 𝗁 on 𝜕we𝖣 ∪ 𝜕ea𝖣 ∪ 𝜕so𝖣, and (2) if 𝖧̃ is a uniformly random height function
of 𝖣 with boundary 𝗁̃, then with overwhelming probability, (6.9) holds for any 𝔱0 ≤ 𝑡 ≤ 𝔱1.
We consider a small box around the cusp location: 𝔅 ∶= [𝑥𝑐 − 𝔠, 𝑥𝑐 + 𝔠] × [𝔱0 = 𝑡𝑐 − 𝔰, 𝔱1 =

𝑡𝑐 + 𝔰] with 𝔠 > 0 being a small constant. By taking 𝔠 small and then 𝔰 small, we can ensure that
𝔅 ⊂ 𝔇 and the west, north, and east boundaries of𝔅 are all in the liquid region. In particular, we
have𝑥𝑐 − 𝔠 ≤ 𝐸−(𝑡) and𝑥𝑐 + 𝔠 ≥ 𝐸+(𝑡) for each 𝔱0 ≤ 𝑡 ≤ 𝑡𝑐.We next show thatwith overwhelming
probability, for any (𝑥, 𝑡) ∈ 𝜕𝔅,

𝖧̃(𝑛𝑥 − 𝑛4𝔡, 𝑛𝑡) ≤ 𝖧̂(𝑛𝑥, 𝑛𝑡), (𝑡, 𝑥) ∈ 𝜕𝔅. (6.11)

For the south boundary, since 𝖧̃(𝑛𝑥, 𝑛𝔱0) = 𝖧̂(𝑛𝑥, 𝑛𝔱0) = 𝗁(𝑛𝑥, 𝔱0) for 𝑥 ∈ [𝑥𝑐 − 𝔠, 𝑥𝑐 + 𝔠], (6.11)
follows trivially from the monotonicity of 𝖧̃. For (𝑥, 𝑡) ∈ 𝜕𝔅 ⧵ 𝜕s𝑜𝔇, it is in the liquid region, so
𝜕𝑥𝐻

∗ is bounded away from 0 and 1 in a neighborhood of (𝑥, 𝑡). Therefore,

𝐻∗(𝑥, 𝑡) − 𝐻∗(𝑥 − 𝑛4𝔡−1, 𝑡) ≥ 𝑐𝑛4𝔡−1, 𝐻∗(𝑥 + 𝑛4𝔡−1, 𝑡) − 𝐻∗(𝑥, 𝑡) ≥ 𝑐𝑛4𝔡−1, (6.12)

for some constant 𝑐 > 0. Combining (6.9) with (6.12), we then obtain that

𝖧̃(𝑛𝑥, 𝑛𝑡) ≥ 𝑛𝐻∗(𝑥, 𝑡) − 𝑛𝔡 ≥ 𝑛𝐻∗(𝑥 − 𝑛4𝔡−1, 𝑡) + 𝑐𝑛4𝔡 − 𝑛𝔡 ≥ 𝖧̃(𝑛𝑥 − 𝑛4𝔡, 𝑛𝑡).

Now, given (6.11), using Lemma 3.3, we can couple 𝖧̃ on 𝑛𝔅 − (𝑛4𝔡, 0) with 𝖧̂ on 𝑛𝔅 such that

𝖧̃(𝑛𝑥 − 𝑛4𝔡, 𝑛𝑡) ≤ 𝖧̂(𝑛𝑥, 𝑛𝑡) (6.13)

for any (𝑥, 𝑡) ∈ 𝔅. Thus, under the above assumption that 𝐻∗ ≡ 0 in {(𝑥, 𝑡) ∶ 𝔱0 ≤ 𝑡 ≤ 𝑡𝑐, 𝑥 ∈
[𝐸−(𝑡), 𝐸+(𝑡)]}, (6.9) and (6.13) imply that with overwhelming probability, 𝖧̂(𝑛𝑥, 𝑛𝑡) ≥ 0 for any
𝔱0 ≤ 𝑡 ≤ 𝑡𝑐 and

𝑥 ∈
[
𝐸−(𝑡) + (𝑡𝑐 − 𝑡)

1∕6𝑛6𝔡−2∕3 + 𝑛−1+4𝔡, 𝐸+(𝑡) − (𝑡𝑐 − 𝑡)
1∕6𝑛6𝔡−2∕3 − 𝑛−1+4𝔡

]
. (6.14)

With a similar inequality 𝖧̃(𝑛𝑥 + 𝑛4𝔡, 𝑛𝑡) ≥ 𝖧̂(𝑛𝑥, 𝑛𝑡), we can show that with overwhelming
probability, 𝖧̂(𝑛𝑥, 𝑛𝑡) ≤ 0 for all such 𝑡 and 𝑥, thereby concluding 𝖧̂(𝑛𝑥, 𝑛𝑡) = 0. Recall that the
interval in (6.14) is nonempty only when 𝑡 ≤ 𝑡𝑐 − 𝑛

−1∕2+4𝔡, in which case the term 𝑛−1+4𝔡 is neg-
ligible. Hence, we have obtained that 𝖧̂(𝑛𝑥, 𝑛𝑡) = 0 for any 𝔱0 ≤ 𝑡 ≤ 𝑡𝑐 and 𝑥 ∈ [𝐸−(𝑡) + (𝑡𝑐 −
𝑡)1∕6𝑛𝛿−2∕3, 𝐸+(𝑡) − (𝑡𝑐 − 𝑡)

1∕6𝑛𝛿−2∕3] as long as we take 𝛿 > 6𝔡. Since 𝗁 is arbitrarily taken from
Ω, by Lemma 3.4 and the above fact that the restriction of 𝖧 on 𝜕𝖣 is in Ω with overwhelming
probability, the conclusion follows. □

7 COMPLEX SLOPE AND PROOFS OF SOME DETERMINISTIC
ESTIMATES

In this section, we analyze the limiting height function using the complex Burgers equa-
tion (Proposition 2.2). Combining the obtained estimates with the optimal height function
concentration results from Section 6, we will finish the proofs of the remaining statements in
Section 4.
We work under the same setup as in Section 4. More precisely, we fix a rational polygonal

set 𝔓 satisfying Assumption 2.5 and a cusp point (𝑥𝑐, 𝑡𝑐) ∈ 𝔄, which is upward oriented as in
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 57

Definition 2.6 with curvature parameters 𝔯, 𝔮. Let 𝑛 be a large integer such that 𝑛𝔓 is a tileable
domain. All the constants in this section may depend on𝔓.
We denote Δ𝑡 = 𝑛−𝜔 for some constant 𝜔 ∈ (0, 1∕2), and take 𝑡0 < 𝑡𝑐 < 𝑡1, such that 𝑡0, 𝑡1 ∈

𝑛−1ℤ and 𝑡𝑐 − 𝑡0, 𝑡1 − 𝑡𝑐 ≍ Δ𝑡. Around (𝑥𝑐, 𝑡𝑐) and between time 𝑡0 and 𝑡1, the arctic curve𝔄 con-
tains two analytic pieces {(𝐸−(𝑡), 𝑡) ∶ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑐} and {(𝐸+(𝑡), 𝑡) ∶ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑐}. Let 𝔠 > 0 be a small
enough constant depending on𝔓 and (𝑥𝑐, 𝑡𝑐). Then,𝑀,𝑁 ∈ ℕ are defined such that

[[−𝑀,𝑁]] =
{
𝑖 ∈ ℤ ∶ 𝐻∗(𝑥𝑐 − 𝔠, 𝑡0) ≤ 𝐻∗(𝑥𝑐, 𝑡𝑐) + 𝑖∕𝑛 < 𝐻∗(𝑥𝑐 + 𝔠, 𝑡0)

}
,

where 𝐻∗ is the limiting height function. We denote the density 𝜌∗𝑡 (𝑥) = 𝜕𝑥𝐻
∗(𝑥, 𝑡), which is

defined almost everywhere and takes values in [0,1] since𝐻∗ is admissible.
Besides the setup in Section 4, we further assume that 𝐻∗(𝑥, 𝑡) = 0 for 𝑡0 ≤ 𝑡 ≤ 𝑡𝑐 and 𝐸−(𝑡) ≤

𝑥 ≤ 𝐸+(𝑡). Then, the 𝜌∗𝑡 quantiles 𝛾𝑖(𝑡) are defined through the relation 𝐻
∗(𝛾𝑖(𝑡), 𝑡) = 𝑖∕𝑛 (and

𝛾0(𝑡) is chosen to equal 𝐸+(𝑡)). We also denote 𝑐(𝑡) = 𝑥𝑐 + (𝑡 − 𝑡𝑐)∕𝔯.

7.1 Density estimate: Proofs of Lemmas 4.1 and 4.2

We start with the following estimate of the density 𝜌∗𝑡 in a neighborhood of the cusp location
(𝑥𝑐, 𝑡𝑐).

Proposition 7.1. The followings hold for a sufficiently small constant 𝑐0 > 0 and arbitrarily large
𝐶 > 0:

(1) For 𝑡0 ≤ 𝑡 ≤ 𝑡𝑐, we have𝐸+(𝑡) − 𝐸−(𝑡) ≍ (𝑡𝑐 − 𝑡)
3∕2. For 0 ≤ 𝑥 − 𝐸+(𝑡) ≤ 𝐶(𝑡𝑐 − 𝑡)

3∕2, we have

𝜌∗𝑡 (𝑥) =

√
𝐶∗(𝑥 − 𝐸+(𝑡))

(𝑡𝑐 − 𝑡)1∕4
+ 
(
(𝑡𝑐 − 𝑡)

1∕4|𝑥 − 𝐸+(𝑡)|1∕2 + |𝑥 − 𝐸+(𝑡)|𝑡𝑐 − 𝑡

)
, (7.1)

where 𝐶∗ > 0 is a constant. For 𝐶(𝑡𝑐 − 𝑡)3∕2 ≤ 𝑥 − 𝐸+(𝑡) ≤ 𝑐0, we have 𝜌∗𝑡 (𝑥) ≍ |𝑥 − 𝑐(𝑡)|1∕3.
Analogous statements hold for 0 ≤ 𝐸−(𝑡) − 𝑥 ≤ 𝑐0.

(2) For 𝑡𝑐 < 𝑡 ≤ 𝑡1, we have 𝜌∗𝑡 (𝑥) ≍ (𝑡 − 𝑡𝑐)
1∕2 ∨ |𝑥 − 𝑐(𝑡)|1∕3 when |𝑥 − 𝑐(𝑡)| ≤ 𝑐0.

Part (1) of this lemma has been proved in [47, Proposition 3.3]. The proof of part (2) will be given
in Section 7.4.
The following lemma gives an estimate on 𝛾0(𝑡), which will be proved in Section 7.6.

Lemma 7.2. There exists a constant ℭ > 0 such that for any 𝑡𝑐 < 𝑡 ≤ 𝑡1, |𝛾0(𝑡) − 𝑐(𝑡)| ≤ ℭ(𝑡 −
𝑡𝑐)

3∕2.

Combining Proposition 7.1 and Lemma 7.2, we readily conclude the proof of Lemma 4.1.

Proof of Lemma 4.1. Recall that 𝑡𝑐 − 𝑡0 ≍ Δ𝑡 = 𝑛−𝜔 with 𝜔 ∈ (0, 1∕2). For 1 ≤ 𝑖 ≲ Δ𝑡2𝑛, we can
integrate (7.1) to get

𝑖
𝑛
= ∫

𝛾𝑖(𝑡0)

𝐸+(𝑡0)
𝜌∗𝑡0(𝑥)d𝑥 ≍

(𝛾𝑖(𝑡0) − 𝐸+(𝑡0))
3∕2

Δ𝑡1∕4
, (7.2)
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58 HUANG et al.

which yields 𝛾𝑖(𝑡0) − 𝐸+(𝑡0) ≍ Δ𝑡1∕6(𝑖∕𝑛)2∕3. This gives the first relation in (4.2). The second one
follows similarly.
Next, we prove the first relation in (4.3), and the second relation can be proven in the same

way. We recall that 𝑐(𝑡) = 𝑥𝑐 + (𝑡 − 𝑡𝑐)∕𝔯 ∈ [𝐸−(𝑡), 𝐸+(𝑡)]. For 𝑡 ≤ 𝑡𝑐, similar to (7.2), using Item 1
of Proposition 7.1, we have that for 𝑖 ≳ Δ𝑡2𝑛,

𝑖
𝑛
= ∫

𝛾𝑖(𝑡)

𝐸+(𝑡)
𝜌∗𝑡 (𝑥)d𝑥 ≍ (𝛾𝑖(𝑡) − 𝑐(𝑡))

4∕3, (7.3)

which concludes that 𝛾𝑖(𝑡) − 𝑐(𝑡) ≍ (𝑖∕𝑛)3∕4.
For 𝑡 ≥ 𝑡𝑐, by Lemma 7.2 and Item 2 of Proposition 7.1, for any 𝑥 ≥ 𝑐(𝑡) + 2ℭ(𝑡 − 𝑡𝑐)

3∕2, we have

∫
𝑥

𝛾0(𝑡)
𝜌∗𝑡 (𝑦)d𝑦 ≤ ∫

𝑥

𝑐(𝑡)−ℭΔ𝑡3∕2
𝜌∗𝑡 (𝑦)d𝑦 ≲ ∫

𝑥

𝑐(𝑡)−ℭΔ𝑡3∕2
(𝑡 − 𝑡𝑐)

1∕2 ∨ |𝑦 − 𝑐(𝑡)|1∕3d𝑦 ≲ (𝑥 − 𝑐(𝑡))4∕3,

∫
𝑥

𝛾0(𝑡)
𝜌∗𝑡 (𝑦)d𝑦 ≥ ∫

𝑥

𝑐(𝑡)+ℭΔ𝑡3∕2
𝜌∗𝑡 (𝑦)d𝑦 ≳ ∫

𝑥

𝑐(𝑡)+ℭΔ𝑡3∕2
(𝑡 − 𝑡𝑐)

1∕2 ∨ |𝑦 − 𝑐(𝑡)|1∕3d𝑦 ≳ (𝑥 − 𝑐(𝑡))4∕3.

Namely, we have ∫ 𝑥

𝛾0(𝑡)
𝜌∗𝑡 (𝑦)d𝑦 ≍ (𝑥 − 𝑐(𝑡))4∕3 for 𝑥 ≥ 𝑐(𝑡) + 2ℭ(𝑡 − 𝑡𝑐)

3∕2. This implies that
𝛾𝑖(𝑡) − 𝑐(𝑡) ≍ (𝑖∕𝑛)3∕4 when 𝑖 ≥ 𝐶Δ𝑡2𝑛 for some sufficiently large constant 𝐶. This finishes the
proof of (4.3). □

For Lemma 4.2, we also need to use the optimal rigidity proved in Section 6.

Proof of Lemma 4.2. By Theorem 6.1, with overwhelming probability, for any 𝑥 and 𝑡 ∈ [𝑡0, 𝑡1] ∩
𝑛−1ℤ,

|{𝑖 ≥ 0 ∶ 𝗊𝑖(𝑛𝑡) ≤ 𝑛𝑥}| = 𝑛𝐻∗(𝑥, 𝑡) + (𝑛𝔡). (7.4)

It then follows that there is a sufficiently large constant 𝑆 > 0, such that for any 𝑗 ≥ 0,

𝗊0(𝑛𝑡)∕𝑛 ∨ 𝛾𝑗−⌊𝑆𝑛𝔡⌋(𝑡) ≤ 𝗊𝑗(𝑛𝑡)∕𝑛 ≤ 𝛾𝑗+⌊𝑆𝑛𝔡⌋(𝑡). (7.5)

By Theorem 6.2, with overwhelming probability, we have 𝖧(𝑛𝑣) = 𝑛𝐻∗(𝑣) for 𝑣 = (𝑥, 𝑡) with 𝑡 ∈
[𝑡0, 𝑡𝑐] and 𝑥 ∈ [𝐸−(𝑡) + (𝑡𝑐 − 𝑡)

1∕6𝑛𝔡−2∕3, 𝐸+(𝑡) − (𝑡𝑐 − 𝑡)
1∕6𝑛𝔡−2∕3]. We then have 𝐸+(𝑡) − (𝑡𝑐 −

𝑡)1∕6𝑛𝔡−2∕3 ≤ 𝗊0(𝑛𝑡), which, together with (7.5) and Lemma 4.1, gives

𝐸+(𝑡0) − 𝑛
−2∕3+𝔡(𝑡𝑐 − 𝑡0)

1∕6 ≤ 𝗊0(𝑛𝑡0)∕𝑛 ≤ 𝛾⌊𝑆𝑛𝔡⌋(𝑡0) ≤ 𝐸+(𝑡0) + 𝑛
−2∕3+𝔡Δ𝑡1∕6.

Thus, we conclude that 𝗊0(𝑛𝑡0)∕𝑛 − 𝐸+(𝑡0) ≲ 𝑛−2∕3+𝔡Δ𝑡1∕6. A similar argument leads to the
bound for 𝗊−1(𝑛𝑡0) and concludes (4.4). The statement (4.5) is a consequence of (7.4), by noticing
that

|{𝑖 ∈ ⟦−𝑀,𝑁⟧ ∶ 𝗊𝑖(𝑛𝑡0) < 𝑥𝑛}| = 𝖧(𝑥, 𝑡0) + 𝑀 + (1),
|{𝑖 ∈ ⟦−𝑀,𝑁⟧ ∶ 𝛾𝑖(𝑡0) < 𝑥}| = 𝑛𝐻(𝑥, 𝑡0) + 𝑀 + (1).
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 59

We next prove the first estimate of (4.6). Recall 𝐿 = ⌈𝑛1+𝛿Δ𝑡2⌉≫ Δ𝑡2𝑛. Using (7.5), (4.3), and
Item 1 of Proposition 7.1, we get

𝗊𝐿(𝑛𝑡)∕𝑛 − 𝛾𝐿(𝑡) ≤ 𝛾𝐿+⌊𝑆𝑛𝔡⌋(𝑡) − 𝛾𝐿(𝑡) ≲ 𝑛𝔡

𝑛𝜌∗𝑡 (𝛾𝐿(𝑡))
≲

𝑛𝔡

𝑛3∕4𝐿1∕4
,

𝛾𝐿(𝑡) − 𝗊𝐿(𝑛𝑡)∕𝑛 ≤ 𝛾𝐿(𝑡) − 𝛾𝐿−⌊𝑆𝑛𝔡⌋(𝑡) ≲ 𝑛𝔡

𝑛𝜌∗𝑡 (𝛾𝐿−⌊𝑆𝑛𝔡⌋(𝑡)) ≲
𝑛𝔡

𝑛3∕4|𝐿 − ⌊𝑆𝑛𝔡⌋|1∕4 .
Then, using that 𝐿 ≫ 𝑛𝛿 and choosing 𝔡 sufficiently small depending on 𝛿, we conclude that
𝗊𝐿(𝑛𝑡)∕𝑛 − 𝛾𝐿(𝑡) ≲ 𝑛−3∕4−𝔡 for any 𝑡 ∈ [𝑡0, 𝑡1] ∩ 𝑛

−1ℤ. The proofs of the second estimate of (4.6)
and (4.7) are similar. □

7.2 Complex slope revisit

Recall (from Section 2.3) the complex slope 𝑓∗𝑡 (𝑥) for (𝑥, 𝑡) ∈ 𝔏. Consider a box around the
cusp location (𝑥𝑐, 𝑡𝑐) as𝔅 = [𝑥𝑐 − 𝔠

′, 𝑥𝑐 + 𝔠
′] × [𝑡𝑐 − 𝔠

′, 𝑡𝑐 + 𝔠
′] for a small enough constant 𝔠′ > 0.

We denote 𝑡0 = 𝑡𝑐 − 𝔠
′ and 𝑡1 = 𝑡𝑐 + 𝔠

′. We can take 𝔠′ small enough such that the complex
slope on the liquid region 𝔏(𝔅) = 𝔏 ∩𝔅 can be reparametrized as an analytic function. Such
a reparametrization has been done in [47], as summarized in the following proposition.

Proposition 7.3. There exists a small enough constant 𝔠′ > 0 such that the followings hold:

(1) For any 𝑡 ∈ [𝑡0, 𝑡1], let𝔅𝑡 = {(𝑥, 𝑠) ∈ 𝔏(𝔅) ∶ 𝑡 ≤ 𝑠 ≤ 𝑡1}. The following map

𝜑𝑡 ∶ (𝑥, 𝑠) ∈ 𝔅𝑡 ↦ 𝑥 + (𝑡 − 𝑠)
𝑓∗𝑠 (𝑥)

𝑓∗𝑠 (𝑥) + 1
∈ ℍ ∪ ℝ (7.6)

is a bijection to its image. In addition, (𝑥, 𝑠) ↦ 𝑓∗𝑠 (𝑥) can be continuously extended to the bound-
ary of 𝔅𝑡 , therefore (7.6) can also be continuously extended to the boundary of 𝔅𝑡 . It maps
the north, west, and east boundaries of 𝔅𝑡 , 𝜕no𝔅𝑡 ∪ 𝜕we𝔅

𝑡 ∪ 𝜕ea𝔅
𝑡 , to a curve in the upper

half-plane, and the remaining boundary of𝔅𝑡 to an interval inℝ. Therefore, (7.6) and its com-
plex conjugate together give a bijection from two copies of 𝔅𝑡 , glued along the arctic curve, to a
symmetric domain𝒰𝑡 ⊆ ℂ.

(2) The complex slope induces a family of analytic functions 𝑓𝑡 ∶ 𝒰𝑡 ∩ ℍ → ℍ− for 𝑡 ∈ [𝑡0, 𝑡1],
satisfying the following relation:

𝑓𝑡(𝜑𝑡(𝑥, 𝑠)) = 𝑓∗𝑠 (𝑥), (𝑥, 𝑠) ∈ 𝔅𝑡. (7.7)

In particular, for 𝑠 = 𝑡 we have 𝑓𝑡(𝑥) = 𝑓∗𝑡 (𝑥). On 𝒰𝑡 ∩ ℍ, 𝑓𝑡 satisfies the complex Burgers
equation

𝜕𝑡𝑓𝑡(𝑧) + 𝜕𝑧𝑓𝑡(𝑧)
𝑓𝑡(𝑧)

𝑓𝑡(𝑧) + 1
= 0. (7.8)

(3) Recall the density 𝜌∗𝑡 (𝑥) = 𝜕𝑥𝐻
∗(𝑥, 𝑡) defined in Section 4, and denote its Stieltjes transform as

𝑚∗
𝑡 (𝑧) = ∫

𝜌∗𝑡 (𝑥)d𝑥

𝑧 − 𝑥
. (7.9)
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60 HUANG et al.

Then 𝑓𝑡 can be extended to the whole domain𝒰𝑡 , and we have the decomposition

𝑓𝑡(𝑧) = 𝑒𝑚
∗
𝑡 (𝑧)+𝑔𝑡(𝑧), (7.10)

where 𝑔𝑡 is a real analytic function on𝒰𝑡 .1
(4) When 𝔠′ sufficiently small, there is a one-variable real analytic function𝑄, such that for any (𝑥, 𝑡)

in the closure of 𝔏(𝔅),

𝑄(𝑓∗𝑡 (𝑥)) = 𝑥
(
𝑓∗𝑡 (𝑥) + 1

)
− 𝑡𝑓∗𝑡 (𝑥). (7.11)

Also, for any (𝑥, 𝑡) ∈ 𝔅, (𝑥, 𝑡) ∈ 𝔄(𝔅) = 𝔄 ∩𝔅 if and only if 𝑓𝑡(𝑥) is a double root of 𝑓 ↦
𝑄(𝑓) − 𝑥(𝑓 + 1) + 𝑡𝑓, except for that 𝑓𝑡𝑐 (𝑥𝑐) = 𝑓∗𝑡𝑐 (𝑥𝑐) is a triple root (but not a quadruple root)
of 𝑓 ↦ 𝑄(𝑓) − 𝑥𝑐(𝑓 + 1) + 𝑡𝑐𝑓.

The first and third items follow from [47, Proposition 3.4]. The second item follows from [47,
Proposition 3.1]. The last item follows from [47, Proposition A.2], and the classification of singular
points (see the discussion at the end of [51, Section 1.6]).
The complex Burgers equation (7.8) can be solved readily using the characteristic flow. Fix any

time 𝑡 ∈ [𝑡0, 𝑡1] and 𝑢 ∈ 𝒰𝑡, we have that for 𝑠 ∈ [𝑡, 𝑡1],

𝜕𝑠𝑓𝑠(𝑧𝑠(𝑢)) = 0, 𝜕𝑠𝑧𝑠(𝑢) =
𝑓𝑠(𝑧𝑠(𝑢))

𝑓𝑠(𝑧𝑠(𝑢)) + 1
=

𝑓𝑡(𝑢)

𝑓𝑡(𝑢) + 1
, 𝑧𝑡(𝑢) = 𝑢. (7.12)

The characteristic flowmaps the subregion {𝑢 ∈ 𝒰𝑡 ∩ ℍ ∶ Im𝑢 ≥ −(𝑠 − 𝑡) Im[𝑓𝑡(𝑢)∕(𝑓𝑡(𝑢) + 1)]}
bijectively to𝒰𝑠 ∩ ℍ. It then follows that 𝑓𝑠 satisfies

𝑓𝑠

(
𝑢 + (𝑠 − 𝑡)

𝑓𝑡(𝑢)

𝑓𝑡(𝑢) + 1

)
= 𝑓𝑡(𝑢), 𝑡0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑡1, 𝑢 ∈ 𝒰𝑡. (7.13)

For simplicity of notations, we introduce𝑤𝑡(𝑧) ∶= 𝑓𝑡(𝑧)∕(𝑓𝑡(𝑧) + 1). Then (7.13) can be rewritten
as

𝑤𝑠(𝑧 + (𝑠 − 𝑡)𝑤𝑡(𝑧)) = 𝑤𝑡(𝑧). (7.14)

Performing Taylor expansion of𝑄 around 𝑓∗𝑡𝑐 (𝑥𝑐) and using (7.14), we can show that𝑤𝑡(𝑧) satisfies
the following equation (7.15).

Lemma 7.4. For any 𝑡 ∈ [𝑡0, 𝑡1] and 𝑧 ∈ 𝒰𝑡 , we have

𝑧 − 𝑥𝑐 + (𝑡𝑐 − 𝑡)𝑤𝑡(𝑧) =
𝑎
3
(𝑤𝑡(𝑧) − 𝑤𝑡𝑐 (𝑥𝑐))

3 + (𝑤𝑡(𝑧) − 𝑤𝑡𝑐 (𝑥𝑐)), (7.15)

where 𝑤𝑡𝑐 (𝑥𝑐) = 𝔯−1 ∈ (0, 1), 𝑎 = 𝔯5

2(𝔯−1)5
𝑄′′′(𝑓∗𝑡𝑐 (𝑥𝑐)) is a positive constant, and  is an analytic

function in a neighborhood around 0 satisfying (𝑤) = (|𝑤|4).
Proof. Recall that the slope 𝔯 of the tangent line through (𝑥𝑐, 𝑡𝑐) is in (1,∞). Together with (2.11),
it implies that𝑤𝑡𝑐 (𝑥𝑐) = 𝔯−1 ∈ (0, 1) and 𝑓∗𝑡𝑐 (𝑥𝑐) = (𝔯 − 1)−1 ∈ (0,∞). Hence, as long as 𝔠′ is cho-

1 A function 𝑔 defined on a subset of ℂ is called real analytic if it is analytic and satisfies 𝑔(𝑧) = 𝑔(𝑧).

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22202 by Stanford U

niversity, W
iley O

nline Library on [13/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 61

sen sufficiently small, we have 𝑓𝑡𝑐 (𝑧) (respectively, 𝑤𝑡(𝑧)) for 𝑧 ∈ 𝒰𝑡𝑐 is away from {−1, 0,∞}
(respectively, {0, 1,∞}) by a distance of order 1.
By Item 4 of Proposition 7.3, (7.11) holds for any (𝑥, 𝑡) ∈ 𝔏(𝔅), and

𝑄(𝑓∗𝑡𝑐 (𝑥𝑐)) = 𝑥𝑐
(
𝑓∗𝑡𝑐 (𝑥𝑐) + 1

)
− 𝑡𝑐𝑓

∗
𝑡𝑐
(𝑥𝑐),

𝑄′(𝑓∗𝑡𝑐 (𝑥𝑐)) = 𝑥𝑐 − 𝑡𝑐, 𝑄′′(𝑓∗𝑡𝑐 (𝑥𝑐)) = 0, 𝑄′′′(𝑓∗𝑡𝑐 (𝑥𝑐)) ≠ 0.
(7.16)

Next, with (7.7) and (7.11), we can derive that for 𝑧 ∈ 𝒰𝑡𝑐 , the following equation holds:

𝑄(𝑓𝑡𝑐 (𝑧)) = 𝑧(𝑓𝑡𝑐 (𝑧) + 1) − 𝑡𝑐𝑓𝑡𝑐 (𝑧).

Then, with (7.16), performing the Taylor expansion of 𝑄 at 𝑓∗𝑡𝑐 (𝑥𝑐) gives that

(𝑧 − 𝑥𝑐)
[
1 + 𝑓𝑡𝑐 (𝑧)

]
=
1
6
𝑄′′′(𝑓∗𝑡𝑐 (𝑥𝑐))(𝑓𝑡𝑐 (𝑧) − 𝑓

∗
𝑡𝑐
(𝑥𝑐))

3 + 2(𝑓𝑡𝑐 (𝑧) − 𝑓∗𝑡𝑐 (𝑥𝑐)), (7.17)

where 2(𝑤) = (|𝑤|4) is an analytic function in a neighborhood around 0.We furtherwrite (7.17)
as

𝑧 − 𝑥𝑐 =
𝑎1
3

(
𝑓𝑡𝑐 (𝑧) − 𝑓

∗
𝑡𝑐
(𝑥𝑐)
)3
+ 1
(
𝑓𝑡𝑐 (𝑧) − 𝑓

∗
𝑡𝑐
(𝑥𝑐)
)
, (7.18)

where 1(𝑤) = (|𝑤|4) is the analytic function obtained in this expansion and
𝑎1 ∶=

1
2

𝑄′′′(𝑓∗𝑡𝑐 (𝑥𝑐))

1 + 𝑓∗𝑡𝑐 (𝑥𝑐)
=
𝔯 − 1
2𝔯

𝑄′′′(𝑓∗𝑡𝑐 (𝑥𝑐)).

Recall that 𝑓𝑡(𝑧) satisfies (7.13), which implies that

𝑓𝑡(𝑧) = 𝑓𝑡𝑐

(
𝑧 + (𝑡𝑐 − 𝑡)

𝑓𝑡(𝑧)

𝑓𝑡(𝑧) + 1

)
. (7.19)

By plugging 𝑧 in (7.18) as 𝑧 + (𝑡𝑐 − 𝑡)𝑓𝑡(𝑧)∕(𝑓𝑡(𝑧) + 1), we get that

𝑧 − 𝑥𝑐 + (𝑡𝑐 − 𝑡)
𝑓𝑡(𝑧)

𝑓𝑡(𝑧) + 1
=
𝑎1
3
(𝑓𝑡(𝑧) − 𝑓

∗
𝑡𝑐
(𝑥𝑐))

3 + 1(𝑓𝑡(𝑧) − 𝑓∗𝑡𝑐 (𝑥𝑐)). (7.20)

Then, plugging 𝑓𝑡 = 𝑤𝑡∕(1 − 𝑤𝑡) into (7.20), we can deduce (7.15).
It remains to show that 𝑎 is positive. In fact, as the cusp is upward oriented, for 𝑡 ∈ [𝑡0, 𝑡𝑐),

𝑤𝑡(𝑥) is real for 𝑥 ∈ [𝐸−(𝑡), 𝐸+(𝑡)]. By Item 4 of Proposition 7.3, 𝑓𝑡(𝐸±(𝑡)) are double roots of
𝑓 ↦ 𝑄(𝑓) − 𝐸±(𝑡)(𝑓 + 1) + 𝑡𝑓, so

𝑄′
(
𝑓𝑡(𝐸±(𝑡))

)
= 𝐸±(𝑡) − 𝑡.

Then, performing the Taylor expansion of 𝑄′ around 𝑓∗𝑡𝑐 (𝑥𝑐) and using (7.16), we obtain that

𝑥𝑐 − 𝑡𝑐 +
1
2
𝑄′′′(𝑓∗𝑡𝑐 (𝑥𝑐))(𝑓𝑡(𝐸±(𝑡)) − 𝑓

∗
𝑡𝑐
(𝑥𝑐))

2 + (|𝑓𝑡(𝐸±(𝑡)) − 𝑓∗𝑡𝑐 (𝑥𝑐)|3) = 𝐸±(𝑡) − 𝑡.
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62 HUANG et al.

Plugging into 𝑓𝑡 = 𝑤𝑡∕(1 − 𝑤𝑡) and using (7.15) with 𝑧 = 𝐸±(𝑡), we can rewrite this equation as

𝔯4

2(𝔯 − 1)4
𝑄′′′(𝑓∗𝑡𝑐 (𝑥𝑐))(𝑤 − 𝑤𝑡𝑐 (𝑥𝑐))

2 + (|𝑤 − 𝑤𝑡𝑐 (𝑥𝑐)|3) = (𝑡𝑐 − 𝑡)(1 − 𝑤) (7.21)

for𝑤 = 𝑤𝑡(𝐸±(𝑡)). Writing the right-hand side as 1 − 𝑤 = 1 − 𝔯−1 − (𝑤 − 𝑤𝑡𝑐 (𝑥𝑐)), we can reduce
(7.21) to

𝑎(𝑤 − 𝑤𝑡𝑐 (𝑥𝑐))
2 +

𝔯
𝔯 − 1

(𝑡𝑐 − 𝑡)(𝑤 − 𝑤𝑡𝑐 (𝑥𝑐)) − (𝑡𝑐 − 𝑡) = (|𝑤 − 𝑤𝑡𝑐 (𝑥𝑐)|3). (7.22)

Note that as an equation for𝑤, (7.22) has two real roots around𝑤𝑡𝑐 (𝑥𝑐), that is,𝑤𝑡(𝐸±(𝑡)); but that
only happens when 𝑎 > 0. This concludes the proof. □

7.3 Matching the curvature parameters: Proof of Lemma 4.6

First, we notice that the two analytic pieces 𝐸±(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑐], near the cusp are determined by 𝑎
as follows.

Lemma 7.5. For any 𝑡 ∈ [𝑡0, 𝑡𝑐], we have

𝐸−(𝑡) = 𝑥𝑐 −
𝑡𝑐 − 𝑡

𝔯
−
2(𝑡𝑐 − 𝑡)

3∕2

3
√
𝑎

+ (|𝑡𝑐 − 𝑡|2), 𝑤𝑡(𝐸−(𝑡)) = 𝑤𝑡𝑐 (𝑥𝑐) +

√
𝑡𝑐 − 𝑡

𝑎
+ (|𝑡𝑐 − 𝑡|),

𝐸+(𝑡) = 𝑥𝑐 −
𝑡𝑐 − 𝑡

𝔯
+
2(𝑡𝑐 − 𝑡)

3∕2

3
√
𝑎

+ (|𝑡𝑐 − 𝑡|2), 𝑤𝑡(𝐸+(𝑡)) = 𝑤𝑡𝑐 (𝑥𝑐) −

√
𝑡𝑐 − 𝑡

𝑎
+ (|𝑡𝑐 − 𝑡|).

(7.23)

Proof. In the proof of Lemma 7.4 above, we have seen that 𝑤 = 𝑤𝑡(𝐸±(𝑡)) satisfies (7.22). Solving
it, we get the estimates on 𝑤𝑡(𝐸±(𝑡)). Plugging them further into (7.15), we obtain the estimates
on 𝐸±(𝑡). □

Comparing (7.23) with (2.13), we observe that

3𝔮−2 = 𝑎 =
1
2

𝔯5

(𝔯 − 1)5
𝑄′′′(𝑓∗𝑡𝑐 (𝑥𝑐)). (7.24)

The following lemma computes the derivatives of the complex slope𝑓𝑡0 at 𝑧𝑐 = 𝑥𝑐 − (𝑡𝑐 − 𝑡0)∕𝔯,
as defined in (4.9). For the convenience of notations and easier comparison with Lemma 5.2, for
the rest of this section, we shift the domain 𝔓 (by an amount depending on 𝑛) to assume that
𝑡0 = 0. Note that 𝑡𝑐 would then be 𝑛 dependent with 𝑡𝑐 ≍ Δ𝑡.

Lemma 7.6. We have

𝑓0(𝑧𝑐) = (𝔯 − 1)−1, 𝑓′0(𝑧𝑐) = −𝑡−1𝑐
𝔯2

(𝔯 − 1)2
, 𝑓′′0 (𝑧𝑐) = 2𝑡−2𝑐

𝔯3

(𝔯 − 1)3
,

𝑓′′′0 (𝑧𝑐) = −𝑡−4𝑐
𝔯7

(𝔯 − 1)7
𝑄′′′(𝑓𝑡𝑐 (𝑥𝑐)) − 6𝑡

−3
𝑐

𝔯4

(𝔯 − 1)4
. (7.25)
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 63

Proof. First, by (7.13), we have 𝑓0(𝑧𝑐) = 𝑓𝑡𝑐 (𝑥𝑐) = (𝔯 − 1)−1. Then, (7.16) gives that

𝑄′(𝑓0(𝑧𝑐)) = 𝑥𝑐 − 𝑡𝑐, 𝑄′′(𝑓0(𝑧𝑐)) = 0, 𝑄′′′(𝑓0(𝑧𝑐)) ≠ 0 (7.26)

Next, by the relation (7.7),

𝑓0(𝜑0(𝑥, 𝑡)) = 𝑓∗𝑡 (𝑥), 𝜑0(𝑥, 𝑡) = 𝑥 − 𝑡
𝑓∗𝑡 (𝑥)

𝑓∗𝑡 (𝑥) + 1
.

Denoting 𝑧 = 𝜑0(𝑥, 𝑡), and plugging the above line into (7.11), we get that

𝑄(𝑓0(𝑧))

𝑓0(𝑧) + 1
= 𝑥 − 𝑡

𝑓∗𝑡 (𝑥)

𝑓∗𝑡 (𝑥) + 1
= 𝑧 ⇒ 𝑄(𝑓0(𝑧)) = 𝑧(𝑓0(𝑧) + 1). (7.27)

Taking the derivative of (7.27) with respect to 𝑧 gives

𝑄′(𝑓0(𝑧))𝑓
′
0(𝑧) = 𝑓0(𝑧) + 1 + 𝑧𝑓

′
0(𝑧). (7.28)

Plugging 𝑧 = 𝑧𝑐 into (7.28), using (7.26) and 𝑧𝑐 = 𝑥𝑐 − 𝑡𝑐𝑤0(𝑧𝑐), we get

1 + 𝑡𝑐
𝑓′0(𝑧𝑐)

(𝑓0(𝑧𝑐) + 1)2
= 0, (7.29)

from which we can solve 𝑓′0(𝑧𝑐). Taking one more derivative of (7.28) with respect to 𝑧, we get

𝑄′′(𝑓0(𝑧))(𝑓
′
0(𝑧))

2 + 𝑄′(𝑓0(𝑧))𝑓
′′
0 (𝑧) = 2𝑓′0(𝑧) + 𝑧𝑓

′′
0 (𝑧). (7.30)

Plugging 𝑧 = 𝑧𝑐 into (7.30) and using (7.26) and (7.29), we get

𝑓′′0 (𝑧𝑐) −
2𝑓′0(𝑧𝑐)

2

𝑓0(𝑧𝑐) + 1
= 0, (7.31)

from which we can solve 𝑓′′0 (𝑧𝑐). Finally, taking another derivative of (7.30) with respect to 𝑧, we
get

𝑄′′′(𝑓0(𝑧))(𝑓
′
0(𝑧))

3 + 3𝑄′′(𝑓0(𝑧))𝑓
′
0(𝑧)𝑓

′′
0 (𝑧) + 𝑄

′(𝑓0(𝑧))𝑓
′′′
0 (𝑧) = 3𝑓′′0 (𝑧) + 𝑧𝑓

′′′
0 (𝑧). (7.32)

Plugging 𝑧 = 𝑧𝑐 into (7.32) and using (7.26), we get

(𝑧𝑐 − 𝑥𝑐 + 𝑡𝑐)𝑓
′′′
0 (𝑧𝑐) = 𝑄′′′(𝑓0(𝑧𝑐))(𝑓

′
0(𝑧𝑐))

3 − 3𝑓′′0 (𝑧𝑐),

from which we can solve 𝑓′′′0 (𝑧𝑐). □

Now, we are ready to complete the proof of Lemma 4.6 with the above lemma and Lemma 4.3.

Proof of Lemma 4.6. By Lemma 4.3, we have 𝐵 = (𝑥𝑐 − 𝑧𝑐)∕𝑡̃𝑐 = 𝑤0(𝑧𝑐) → 𝔯−1, and that

𝑡̃𝑐 + 𝑧𝑐−𝑥𝑐 = 𝑡𝑐 + 𝑧𝑐 − 𝑥𝑐 + (Δ𝑡2) = (1 − 𝔯−1)𝑡𝑐 + (Δ𝑡2) ≍ Δ𝑡, 𝑥𝑐 − 𝑧𝑐 = 𝔯−1𝑡𝑐 + (Δ𝑡2) ≍ Δ𝑡.
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64 HUANG et al.

These two estimates show that the second and third terms in the definition of𝐴 are of order(Δ𝑡).
Next, by (7.23), we have that

𝑧𝑐 ∈ (𝐸−(0), 𝐸+(0)), with 𝑧𝑐 − 𝐸−(0), 𝐸+(0) − 𝑧𝑐 ≍ Δ𝑡3∕2, (7.33)

and a similar estimate holds for 𝑧𝑐 = 𝑧𝑐 + (Δ𝑡2). Then, combining (7.33) with (5.6), we get that

∫
𝜌0(𝑥)

(𝑧𝑐 − 𝑥)4
d𝑥 − ∫

𝜌0(𝑥)

(𝑧𝑐 − 𝑥)4
d𝑥 ≲ Δ𝑡−11∕2Δ𝑡2 = Δ𝑡−7∕2,

which is negligible under the scaling Δ𝑡4. Furthermore, using the fact that 𝑧𝑐 is away from the
support of 𝜌∗0 − 𝜌0, which is contained in ℝ ⧵ [𝛾−𝑀(0), 𝛾𝑁(0)], by a distance of order 1, we easily
get that

𝑡̃4𝑐 ∫
|𝜌∗0(𝑥) − 𝜌0(𝑥)|
4(𝑧𝑐 − 𝑥)4

d𝑥 = (Δ𝑡4).

Combining the above facts and using that 𝑡̃𝑐∕𝑡𝑐 = (𝑡𝑐 + (Δ𝑡2))∕𝑡𝑐 → 1, we observe that to show
the limit of 𝐴, it suffices to prove

𝑡4𝑐 ∫
𝜌∗0(𝑥)

4(𝑧𝑐 − 𝑥)4
d𝑥 =

−𝑡4𝑐
24

𝑚′′′
0 (𝑧𝑐) → 𝔯2(𝔯 − 1)−1𝔮−2∕4. (7.34)

Using the decomposition (7.10) and that 𝑔0(𝑧) is real analytic, we can calculate that

𝑚′′′
0 (𝑧𝑐) = [log 𝑓0(𝑧𝑐)]

′′′ + (1) = 𝑓′′′0 (𝑧𝑐)

𝑓0(𝑧𝑐)
−
3𝑓′′0 (𝑧𝑐)𝑓

′
0(𝑧𝑐)

𝑓0(𝑧𝑐)2
+
2𝑓′0(𝑧𝑐)

3

𝑓0(𝑧𝑐)3
+ (1). (7.35)

Plugging (7.25) into (7.35), we obtain that

−
𝑡4𝑐
24
𝑚′′′
0 (𝑧𝑐) →

𝔯7

24(𝔯 − 1)6
𝑄′′′(𝑓𝑡𝑐 (𝑥𝑐)). (7.36)

Finally, plugging (7.24) into (7.36) concludes (7.34). □

7.4 Density estimate: Proof of Item 2 of Proposition 7.1

By Item 3 of Proposition 7.3, we can recover the density 𝜌∗𝑡 as

𝜌∗𝑡 (𝑥) = −
1
𝜋
arg∗ 𝑓𝑡(𝑥) = −

1
𝜋
arg∗

𝑤𝑡(𝑥)

1 − 𝑤𝑡(𝑥)
.

For 𝑤𝑡(𝑥) in a sufficiently small neighborhood of 𝑤𝑡𝑐 (𝑥𝑐) ∈ (0, 1), we have

|||| 𝑤𝑡(𝑥)

1 − 𝑤𝑡(𝑥)

|||| ≳ 1 and − Im
𝑤𝑡(𝑥)

1 − 𝑤𝑡(𝑥)
=

−Im𝑤𝑡(𝑥)|1 − 𝑤𝑡(𝑥)|2 , (7.37)

which gives that 𝜌𝑡(𝑥) ≍ −Im𝑤𝑡(𝑥). Hence, to prove Item 2 in Proposition 7.1, we only need
to estimate the order of Im𝑤𝑡(𝑥). For simplicity of notations, given 𝑥, 𝑡 with 𝑡𝑐 < 𝑡 ≤ 𝑡1 and
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 65

|𝑥 − 𝑐(𝑡)| ≤ 𝑐0, we denote

𝜛 ∶= 𝑤𝑡(𝑥) − 𝑤𝑡𝑐 (𝑥𝑐), 𝜏 ∶=
𝑡 − 𝑡𝑐
𝑎

, 𝑦 ∶=
3(𝑥 − 𝑐(𝑡))

2𝑎
, 𝜀(𝜛) ∶=

3(𝜛)
2𝑎

,

where  is from Lemma 7.4 and (𝜛) = (|𝜛|4). Then we can rewrite the equation (7.15) as
𝜛3 + 3𝜏𝜛 + 2𝜀(𝜛) = 2𝑦. (7.38)

Using the general cubic formula, we obtain that

𝜛 = 𝛼
[
(𝑦 − 𝜀(𝜛)) +

√
(𝑦 − 𝜀(𝜛))2 + 𝜏3

]1∕3
+ 𝛼−1

[
(𝑦 − 𝜀(𝜛)) −

√
(𝑦 − 𝜀(𝜛))2 + 𝜏3

]1∕3
, (7.39)

where 𝛼 is a primitive cube root of unity chosen such that Im𝜛 < 0. Here (and also for the rest
of this paper) we use the convention that 𝑧1∕3 ∈ ℝ for 𝑧 ∈ ℝ.
We first consider the case |𝑦| ≤ 𝐶0𝜏

3∕2 for a large enough constant 𝐶0 > 0. From Equation
(7.38), we obtain that𝜛 = (𝜏1∕2). Then, we can expand (7.39) as

𝜛 = 𝛼
[
𝑦 +
√
𝑦2 + 𝜏3 + (𝜏2)]1∕3 + 𝛼−1[𝑦 −√𝑦2 + 𝜏3 + (𝜏2)]1∕3.

Then, we have

−Im𝜛 =

√
3

2

[
𝑦 +
√
𝑦2 + 𝜏3 + (𝜏2)]1∕3 − √3

2

[
𝑦 −
√
𝑦2 + 𝜏3 + (𝜏2)]1∕3 ≍ 𝜏1∕2.

Therefore, we conclude that when 3|𝑥 − 𝑐(𝑡)|∕2𝑎 = |𝑦| ≤ 𝐶0𝜏
3∕2 ≍ (𝑡 − 𝑡𝑐)

3∕2, we have

𝜌𝑡(𝑥) ≍ − Im𝑤𝑡(𝑥) = − Im𝜛 ≍ 𝜏1∕2 ≍ (𝑡 − 𝑡𝑐)
1∕2. (7.40)

Next, consider the case 𝐶0𝜏3∕2 ≤ |𝑦| ≤ 𝑐0. From Equation (7.38), we obtain that𝜛 = (|𝑦|1∕3),
with which we can expand (7.39) as

𝜛 = 𝛼

[
𝑦 + |𝑦| + 

(|𝑦|4∕3 + 𝜏3|𝑦|
)]1∕3

+ 𝛼−1
[
𝑦 − |𝑦| + 

(|𝑦|4∕3 + 𝜏3|𝑦|
)]1∕3

.

Then, we have

−Im𝜛 =

√
3

2

[
2|𝑦| + 

(|𝑦|4∕3 + 𝜏3|𝑦|
)]1∕3

−

√
3

2

[

(|𝑦|4∕3 + 𝜏3|𝑦|

)]1∕3
≍ |𝑦|1∕3.

Therefore, we conclude that when 𝑐0 ≥ 3|𝑥 − 𝑐(𝑡)|∕2𝑎 = |𝑦| ≥ 𝐶0𝜏
3∕2 ≍ (𝑡 − 𝑡𝑐)

3∕2, we have

𝜌𝑡(𝑥) ≍ − Im𝑤𝑡(𝑥) = − Im𝜛 ≍ |𝑦|1∕3 ≍ |𝑥 − 𝑥𝑐|1∕3 (7.41)

Item 2 of Proposition 7.1 follows from combining (7.40) and (7.41).

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22202 by Stanford U

niversity, W
iley O

nline Library on [13/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



66 HUANG et al.

7.5 NBRW estimates: Proofs of Lemmas 4.3 and 4.4

We first show that the complex slope corresponding to the limit shape of an NBRW also solves a
complex Burgers equation.

Proposition 7.7. Take any 𝛽 ∈ (0, 1) and a density 𝜌0 ∶ ℝ → [0, 1]. There exists a process {𝜌𝑡}𝑡≥0
with Stieltjes transform

𝑚̃𝑡(𝑧) ∶= ∫
𝜌𝑡(𝑥)d𝑥

𝑧 − 𝑥
, 𝑓𝑡(𝑧) ∶=

𝛽

1 − 𝛽
𝑒𝑚̃𝑡(𝑧), (7.42)

which solves the complex Burgers equation

𝜕𝑡𝑓𝑡(𝑧) + 𝜕𝑧𝑓𝑡(𝑧)
𝑓𝑡(𝑧)

𝑓𝑡(𝑧) + 1
= 0, 𝑧 ∈ ℍ. (7.43)

Proof. We recall the free convolution with the semicircle law from random matrix theory. The
semicircle distribution is described by the density 𝜚sc(𝑥) =

√
4 − 𝑥2∕(2𝜋) ⋅ 𝟙𝑥∈[−2,2]. For any 𝑡 > 0,

we denote the rescaled semicircle density as 𝜚(𝑡)sc (𝑥) ∶= 𝑡−1∕2𝜚sc(𝑡
−1∕2𝑥). Given a positive mea-

sure 𝜈, the free convolution 𝜈𝑡 ∶= 𝜈 ⊞ 𝜚(𝑡)sc of 𝜈 with 𝜚
(𝑡)
sc is characterized by its Stieltjes transform

𝜒𝑡(𝑧) = ∫ d𝜈𝑡(𝑥)

𝑧−𝑥
, which satisfies the equation

𝜒𝑡(𝑧 + 𝑡𝜒0(𝑧)) = 𝜒0(𝑧). (7.44)

The complex Burgers equation (7.43) can be solved using characteristic flow as

𝑓𝑡

(
𝑧 + 𝑡

𝑓0(𝑧)

𝑓0(𝑧) + 1

)
= 𝑓0(𝑧). (7.45)

Now, we define

𝜒0(𝑧) ∶=
𝑓0(𝑧)

𝑓0(𝑧) + 1
− 𝛽. (7.46)

Then, for 𝑧 ∈ ℍ, we have Im[𝑚̃0(𝑧)] ∈ (−𝜋, 0), and

Im[𝜒0(𝑧)] =
Im𝑓0(𝑧)|𝑓0(𝑧) + 1|2 = 𝛽

1 − 𝛽

|𝑒𝑚̃0(𝑧)| ⋅ Im 𝑒i Im[𝑚̃0(𝑧)]|𝑓0(𝑧) + 1|2 < 0. (7.47)

Moreover, by our construction, lim𝑧→∞ 𝜒0(𝑧) = 0. Hence, by theNevanlinna representation, there
exists a positive measure 𝜈 such that 𝜒0(𝑧) is the Stieltjes transform of 𝜈. Then, we can construct
𝜒𝑡(𝑧) as in (7.44), which is the Stieltjes transformof 𝜈𝑡 = 𝜈 ⊞ 𝜚(𝑡)sc . Oncewe have constructed𝜒𝑡(𝑧),
we let

𝜒𝑡(𝑧) =
𝑓𝑡(𝑧 + 𝛽𝑡)

𝑓𝑡(𝑧 + 𝛽𝑡) + 1
− 𝛽, 𝑓𝑡(𝑧) =

𝛽

1 − 𝛽
𝑒𝑚̃𝑡(𝑧) =

𝜒𝑡(𝑧 − 𝛽𝑡) + 𝛽

1 − 𝛽 − 𝜒𝑡(𝑧 − 𝛽𝑡)
. (7.48)

With (7.44), we can readily check that 𝑓𝑡 satisfies the complex Burgers equation (7.45). For 𝑧 ∈
ℍ, we have 𝜒𝑡(𝑧) ∈ ℍ−, thus the above construction gives 𝑒𝑚̃𝑡(𝑧) ∈ ℍ− and Im[𝑚̃𝑡(𝑧)] ∈ (−𝜋, 0).
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 67

Moreover, we have lim𝑧→∞ 𝑚̃𝑡(𝑧) = 0. Using the Nevanlinna representation again, there exists
a density 𝜌𝑡 ∶ ℝ → [0, 1] such that 𝑚̃𝑡(𝑧) = ∫ 𝜌𝑡(𝑥)d𝑥

𝑧−𝑥
. This gives the construction of the process

{𝜌𝑡(𝑥)}𝑡≥0. □

For the convenience of notations, in the rest of this section, we also shift the domain 𝔓 by an
amount depending on 𝑛 such that 𝑥𝑐 = (𝑡𝑐 − 𝑡0)∕𝔯 = 𝑡𝑐∕𝔯. Then, 𝑥𝑐 would be 𝑛 dependent and
𝑧𝑐 = 0 from (4.9).
Below we take 𝜌0 = 𝜌𝑡0 from (4.8), and let 𝜌𝑡, 𝑚̃𝑡, 𝑓𝑡 for 0 ≤ 𝑡 ≤ 𝑡1 be given by Proposition 7.7.

Denote 𝑤𝑡(𝑧) ∶= 𝑓𝑡(𝑧)∕(𝑓𝑡(𝑧) + 1). Take 𝛽 from (4.10). Then, we have

𝑓0(0) = 𝑓𝑡𝑐 (𝑥𝑐) = 𝑓0
(
𝑥𝑐 − 𝑡𝑐𝑤𝑡𝑐 (𝑥𝑐)

)
= 𝑓0(0), (7.49)

where we used (7.19) in the second equality and 𝑤𝑡𝑐 (𝑥𝑐) = 𝔯−1 in the third equality.
We denote Δ𝑤0(𝑧) = 𝑤0(𝑧) − 𝑤0(𝑧) for 𝑧 ∈ 𝒰0. We claim that

Δ𝑤0(𝑧) = (|𝑧|). (7.50)

For the proof of this claim, notice that 𝑔0(𝑧) in the decomposition (7.10) is a real analytic function,
so 𝑔0(𝑧) − 𝑔0(0) ≲ |𝑧|. Furthermore,

|||[𝑚̃0(𝑧) − 𝑚
∗
0(𝑧)
]
−
[
𝑚̃0(0) − 𝑚

∗
0(0)
]||| ≤ ∫𝑥∉[𝛾−𝑀(0),𝛾𝑁(0)]

|||| 1
𝑥 − 𝑧

−
1
𝑥

||||𝜌∗0(𝑥)d𝑥 ≲ |𝑧|,
where we used that 𝑥, 𝑥 − 𝑧 ≳ 1 for 𝑥 ∉ [𝛾−𝑀(0), 𝛾𝑁(0)] and 𝑧 ∈ 𝒰0 as long as 𝔠′ is chosen
sufficiently small depending on 𝔠. Thus, from (7.49) and (7.10), we derive that

𝑓0(𝑧) = 𝑓0(0)𝑒
𝑚̃0(𝑧)−𝑚̃0(0) = 𝑓0(𝑧)𝑒

𝑚̃0(𝑧)−𝑚̃0(0)−(𝑚
∗
0(𝑧)−𝑚

∗
0(0))−(𝑔0(𝑧)−𝑔0(0)) = 𝑓0(𝑧)(1 + 𝔣0(𝑧)), (7.51)

where 𝔣0(𝑧) is an analytic function around 0 defined as

𝔣0(𝑧) = 𝑒𝑚̃0(𝑧)−𝑚̃0(0)−(𝑚
∗
0(𝑧)−𝑚

∗
0(0))−(𝑔0(𝑧)−𝑔0(0)) − 1 = (|𝑧|).

With the above two equations, we conclude that

Δ𝑤0(𝑧) =
𝑓0(𝑧)

𝑓0(𝑧) + 1
−

𝑓0(𝑧)

𝑓0(𝑧) + 1
=

𝑓0(𝑧) − 𝑓0(𝑧)

(𝑓0(𝑧) + 1)(𝑓0(𝑧) + 1)
=
𝑤0(𝑧)(1 − 𝑤0(𝑧))𝔣0(𝑧)

𝑤0(𝑧)𝔣0(𝑧) + 1
= (|𝑧|),

(7.52)

where for the last step, we used that 𝑤0(𝑧) is bounded.

7.5.1 Proof of Lemma 4.3

We first prove the estimate for 𝑡̃𝑐 − 𝑡𝑐. Recall from Lemma 5.2 that there is an a priori esti-
mate 𝑡̃𝑐 = 𝑡̃𝑐 − 𝑡0 ≍ Δ𝑡. We denote the two edges of 𝜌𝑡 for 0 ≤ 𝑡 ≤ 𝑡̃𝑐 as 𝐸±(𝑡), so that 𝜌𝑡(𝑥) = 0
for 𝑥 ∈ [𝐸−(𝑡), 𝐸+(𝑡)]. It is known from classical Stieltjes transform theory that 𝐸±(𝑡) are char-
acterized as the points 𝑥 ∈ ℝ where 𝑚̃′

𝑡(𝑥) diverges, which, by the definitions of 𝑓𝑡 and 𝑤𝑡
in (7.42), implies that 1∕𝑤′

𝑡(𝐸±(𝑡)) = 0. Similar to (7.14), from Equation (7.43), we obtain that

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22202 by Stanford U

niversity, W
iley O

nline Library on [13/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



68 HUANG et al.

𝑤𝑡(𝑧) = 𝑤0(𝑧 − 𝑡𝑤𝑡(𝑧)) for 𝑡 ∈ [0, 𝑡1] and 𝑧 ∈ 𝒰𝑡. Then, the implicit differentiation with respect
to 𝑧 yields that [𝑤′

𝑡(𝑧)]
−1 = [𝑤′

0(𝑧 − 𝑡𝑤𝑡(𝑧))]
−1 + 𝑡, so 𝐸±(𝑡) satisfy the equation

1

𝑤′
0(𝐸±(𝑡) − 𝑡𝑤𝑡(𝐸±(𝑡)))

+ 𝑡 = 0. (7.53)

Furthermore, with the definition of Δ𝑤0 in (7.52), we can calculate that

𝑤′
0(𝑧) = 𝑤′

0(𝑧) + Δ𝑤
′
0(𝑧) = 𝑤′

0(𝑧) + (|𝑤′
0(𝑧)𝔣0(𝑧)| + |𝔣′0(𝑧)|) = 𝑤′

0(𝑧)(1 + (|𝑧|)) + (1).
Plugging it into (7.53), we get that

1

𝑤′
0(𝐸±(𝑡) − 𝑡𝑤𝑡(𝐸±(𝑡)))

+ 𝑡 +  (𝑡2 + 𝑡|𝐸±(𝑡) − 𝑡𝑤𝑡(𝐸±(𝑡))|) = 0. (7.54)

For simplicity of notations, we rewrite Equation (7.15) with 𝑡 = 0 and 𝑥𝑐 = 𝑡𝑐∕𝔯 as

𝑧 = 𝐹0(𝑤0(𝑧) − 𝑤𝑡𝑐 (𝑥𝑐)), for 𝐹0 ∶ 𝑤 ↦ −𝑡𝑐𝑤 +
𝑎
3
𝑤3 + (𝑤). (7.55)

Then, the implicit differentiation of (7.55) with respect to 𝑤0 and taking 𝑧 = 𝐸±(𝑡) − 𝑡𝑤𝑡(𝐸±(𝑡))
gives

1

𝑤′
0(𝐸±(𝑡) − 𝑡𝑤𝑡(𝐸±(𝑡)))

= 𝐹′0
(
𝑤0(𝐸±(𝑡) − 𝑡𝑤𝑡(𝐸±(𝑡))) − 𝑤𝑡𝑐 (𝑥𝑐)

)
.

In addition, taking 𝑧 = 𝐸±(𝑡) − 𝑡𝑤𝑡(𝐸±(𝑡)) in (7.55), we get that

𝐸±(𝑡) − 𝑡𝑤𝑡(𝐸±(𝑡)) = 𝐹0(𝑤0(𝐸±(𝑡) − 𝑡𝑤𝑡(𝐸±(𝑡))) − 𝑤𝑡𝑐 (𝑥𝑐)). (7.56)

Hence, (7.54) can be rewritten as the following equation of 𝑤 = 𝑤0(𝐸±(𝑡) − 𝑡𝑤𝑡(𝐸±(𝑡))) −
𝑤𝑡𝑐 (𝑥𝑐):

𝑎𝑤2 = 𝑡𝑐 − 𝑡 +  (𝑡2 + 𝑡|𝐹0(𝑤)| + |𝑤|3) = 𝑡𝑐 − 𝑡 +  (𝑡2 + |𝑤|3). (7.57)

At the cusp (𝑥𝑐, 𝑡̃𝑐), we have 𝐸+(̃𝑡𝑐) = 𝐸−(̃𝑡𝑐). Hence, the above Equation (7.57) of 𝑤 has a double
root around 0 when 𝑡 = 𝑡̃𝑐, from which we readily get that 𝑡̃𝑐 − 𝑡𝑐 = (Δ𝑡2).
For the estimate on𝑥𝑐 − 𝑥𝑐, from (7.57), we can solve that𝑤0(𝑥𝑐 − 𝑡̃𝑐𝑤𝑡̃𝑐 (𝑥𝑐)) − 𝑤𝑡𝑐 (𝑥𝑐) = (Δ𝑡).

Applying it to (7.56) and (7.52), we get that 𝑧𝑐 − 𝑧𝑐 = 𝑥𝑐 − 𝑡̃𝑐𝑤𝑡̃𝑐 (𝑥𝑐) = (Δ𝑡2) (recall that 𝑧𝑐 = 0)
and

𝑤0(𝑧𝑐) − 𝔯
−1 = 𝑤0(𝑥𝑐 − 𝑡̃𝑐𝑤𝑡̃𝑐 (𝑥𝑐)) − 𝑤𝑡𝑐 (𝑥𝑐) = (Δ𝑡 + |𝑥𝑐 − 𝑡̃𝑐𝑤𝑡̃𝑐 (𝑥𝑐)|) = (Δ𝑡).

With these two estimates and the estimate on 𝑡̃𝑐, we finally get that

𝑥𝑐 = 𝑡̃𝑐𝑤𝑡̃𝑐 (𝑥𝑐) + (Δ𝑡2) = (𝑡𝑐 + (Δ𝑡2))(𝔯−1 + (Δ𝑡)) + (Δ𝑡2) = 𝑥𝑐 + (Δ𝑡2).
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 69

7.5.2 Proof of Lemma 4.4

We can define the NBRW height function as

𝐻̃(𝑥, 𝑡) = −𝑀∕𝑛 + ∫
𝑥

−∞
𝜌𝑡(𝑦)d𝑦. (7.58)

Then, for 𝑡 ∈ [0, 𝑡1] and 𝑖 ∈ [[−𝑀,𝑁]], we define 𝛾𝑖(𝑡) as in (4.1) with 𝐻∗ replaced by 𝐻̃. Similar
to (2.8), the complex slope 𝑓𝑡 is related to the height function 𝐻̃(𝑥, 𝑡) through

arg∗ 𝑓𝑡(𝑥) = −𝜋𝜕𝑥𝐻̃(𝑥, 𝑡), arg∗
(
𝑓𝑡(𝑥) + 1

)
= 𝜋𝜕𝑡𝐻̃(𝑥, 𝑡). (7.59)

Proof of (7.59). The first equation follows directly from the definition of 𝐻̃ and (7.42). The second
equation can be derived by

𝜋𝜕𝑡𝐻̃(𝑥, 𝑡) = −Im ∫
𝑥

−∞
𝜕𝑡𝑚̃𝑡(𝑦)d𝑦 = −Im ∫

𝑥

−∞
𝜕𝑡 log 𝑓𝑡(𝑦)d𝑦 = Im ∫

𝑥

−∞
𝜕𝑦 log(𝑓𝑡(𝑦) + 1)d𝑦

= Im log(𝑓𝑡(𝑥) + 1) = 𝜋 arg∗(𝑓𝑡(𝑥) + 1),

where we used the complex Burgers equation (7.43), rewritten as 𝜕𝑡 log 𝑓𝑡(𝑧) + 𝜕𝑧 log
(𝑓𝑡(𝑧) + 1) = 0. □

We need the following optimal rigidity estimate, for the NBRW 𝖰̃ = {𝗊̃𝑖}
𝑁
𝑖=−𝑀 ∶ [[0,∞]] →

ℤ[[−𝑀,𝑁]] constructed in Section 4.3. It follows from Lemma 4.2 and [47, Proposition 4.4] (which
has been stated as Proposition 6.4 in the tiling setting).

Lemma 7.8. Under the setting of Lemma 4.4, with overwhelming probability:

𝗊̃𝐿(𝑛𝑡)∕𝑛 − 𝛾𝐿(𝑡), 𝗊̃−𝐿(𝑛𝑡)∕𝑛 − 𝛾−𝐿(𝑡) ≲ 𝑛−3∕4−𝔡, ∀𝑡 ∈ [0, 𝑡1] ∩ 𝑛
−1ℤ,

𝗊̃𝑖(𝑛𝑡1)∕𝑛 − 𝛾𝑖(𝑡1) ≲ 𝑛−3∕4−𝔡, ∀𝑖 ∈ [[−𝐿, 𝐿]].

Now, to conclude Lemma 4.4, it remains to show that the quantiles 𝛾𝑖 are sufficiently close to
𝛾𝑖 , which is the content of the following lemma. It will be proved in the next subsection.

Lemma 7.9. Under the setting of Lemma 4.4, we have

|𝛾𝐿(𝑡) − 𝛾𝐿(𝑡)| + |𝛾−𝐿(𝑡) − 𝛾−𝐿(𝑡)| ≤ 𝑛𝛿Δ𝑡5∕2, ∀𝑡 ∈ [0, 𝑡1], (7.60)

|𝛾𝑖(𝑡1) − 𝛾𝑖(𝑡1)| ≤ 𝑛𝛿Δ𝑡2, ∀𝑖 ∈ [[−𝐿, 𝐿]]. (7.61)

7.6 Evolution of quantiles: Proofs of Lemmas 7.2 and 7.9

We first define functions

ℎ𝑡(𝑧) ∶= 𝑧 + 𝑡𝑤0(𝑧), ℎ̃𝑡(𝑧) ∶= 𝑧 + 𝑡𝑤0(𝑧) = 𝑧 + 𝑡(𝑤0(𝑧) + Δ𝑤0(𝑧)).
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70 HUANG et al.

Then, (7.14) and a similar equation for 𝑤𝑡 from (7.43) give that, for 𝑡 ∈ [0, 𝑡1] and 𝜉 ∈ 𝒰𝑡,

𝑤𝑡(𝜉) = 𝑤0(ℎ
−1
𝑡 (𝜉)), 𝑤𝑡(𝜉) = 𝑤0(ℎ̃

−1
𝑡 (𝜉)). (7.62)

Using (7.50), we get that

𝑤𝑡(𝜉) − 𝑤𝑡(𝜉) = 𝑤0(ℎ
−1
𝑡 (𝜉)) − 𝑤0(ℎ̃

−1
𝑡 (𝜉)) − Δ𝑤0(ℎ̃

−1
𝑡 (𝜉))

= 𝑤0(𝑢𝑡) − 𝑤0(𝑢𝑡) − Δ𝑤0(𝑢𝑡) = 𝜛𝑡(𝜉) − 𝜛̃𝑡(𝜉) + (|𝑢𝑡(𝜉)|),
where we abbreviated that

𝑢𝑡 = 𝑢𝑡(𝜉) = ℎ−1𝑡 (𝜉), 𝑢𝑡 = 𝑢𝑡(𝜉) = ℎ̃−1𝑡 (𝜉), 𝜛𝑡 = 𝜛𝑡(𝜉) = 𝑤0(𝑢𝑡(𝜉)) − 𝔯
−1,

𝜛̃𝑡 = 𝜛̃𝑡(𝜉) = 𝑤0(𝑢𝑡(𝜉)) − 𝔯
−1.

These variables satisfy the following equations:

𝑢𝑡 + 𝑡𝜛𝑡 = 𝜉 − 𝔯−1𝑡 = 𝑢𝑡 + 𝑡(𝜛̃𝑡 + Δ𝑤0(𝑢𝑡)), (7.63)

𝑢𝑡 = 𝐹0(𝜛𝑡) = −𝑡𝑐𝜛𝑡 +
𝑎
3
𝜛3
𝑡 + (𝜛𝑡), (7.64)

𝑢𝑡 = 𝐹0(𝜛̃𝑡) = −𝑡𝑐𝜛̃𝑡 +
𝑎
3
𝜛̃3
𝑡 + (𝜛̃𝑡), (7.65)

where (7.64) and (7.65) are by (7.55).
From d𝐻∗(𝛾𝑖(𝑡), 𝑡)∕d𝑡 = 0, using (2.8), we can derive that

𝛾′𝑖 (𝑡) =
arg∗[𝑓𝑡(𝛾𝑖(𝑡)) + 1]

arg∗[𝑓𝑡(𝛾𝑖(𝑡))]
. (7.66)

A similar differential equation for 𝛾𝑖(𝑡) with 𝑓𝑡 replaced by 𝑓𝑡 can also be derived using (7.59).
Since 𝑓𝑡𝑐 (𝑥𝑐) = (𝔯 − 1)−1 is a positive constant, for 𝑧 = 𝑓𝑡𝑐 (𝑥𝑐) + o(1), we have that

arg∗(𝑧 + 1)

arg∗(𝑧)
=

arctan
Im𝑧

𝑓𝑡𝑐 (𝑥𝑐)+1+Re(𝑧−𝑓𝑡𝑐 (𝑥𝑐))

arctan
Im𝑧

𝑓𝑡𝑐 (𝑥𝑐)+Re(𝑧−𝑓𝑡𝑐 (𝑥𝑐))

.

Hence, with the Taylor expansion of arctan, we deduce that

𝛾′𝑖 (𝑡) = 𝔯−1 + (|𝑤𝑡(𝛾𝑖(𝑡)) − 𝑤𝑡𝑐 (𝑥𝑐)|), 𝛾′𝑖 (𝑡) = 𝔯−1 + (|𝑤𝑡(𝛾𝑖(𝑡)) − 𝑤𝑡𝑐 (𝑥𝑐)|), (7.67)

𝛾′𝑖 (𝑡) − 𝛾
′
𝑖 (𝑡) ≲ 𝑓𝑡(𝛾𝑖(𝑡)) − 𝑓𝑡(𝛾𝑖(𝑡)) ≲ 𝑤𝑡(𝛾𝑖(𝑡)) − 𝑤𝑡(𝛾𝑖(𝑡)). (7.68)

We next complete the proofs of Lemmas 7.2 and 7.9 using (7.63)–(7.68).

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22202 by Stanford U

niversity, W
iley O

nline Library on [13/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 71

7.6.1 Proof of Lemma 7.2

At 𝑡 = 𝑡𝑐, we have 𝛾0(𝑡𝑐) = 𝑥𝑐. Then, from (7.63) and (7.64), we obtain that

(𝑡 − 𝑡𝑐)𝜛𝑡(𝛾0(𝑡)) +
𝑎
3
𝜛𝑡(𝛾0(𝑡))

3 + (𝜛𝑡(𝛾0(𝑡))) = 𝛾0(𝑡) − 𝑐(𝑡) = ∫
𝑡

𝑡𝑐

(𝛾′0(𝑡
′) − 𝔯−1)d𝑡′

≲ ∫
𝑡

𝑡𝑐

|𝜛𝑡(𝛾0(𝑡
′))|d𝑡′,

where we used the fact that 𝑡∕𝔯 = 𝑐(𝑡) (since 𝑥𝑐 = 𝑡𝑐∕𝔯) and applied (7.67) for the last inequality.
We can rewrite the above equation as (7.38), with 𝜛 = 𝜛(𝑡) = 𝜛𝑡(𝛾0(𝑡)), |𝜀(𝜛)| ≤ 𝐶1|𝜛|4, 𝜏 =
(𝑡 − 𝑡𝑐)∕𝑎, and

𝑦(𝜛) ∶=
3
2𝑎 ∫

𝑡

𝑡𝑐

𝛾′0(𝑡
′) − 𝔯−1d𝑡′, |𝑦(𝜛)| ≤ 𝐶2 ∫

𝑡

𝑡𝑐

|𝜛(𝑡′)|d𝑡′,
for some constants 𝐶1, 𝐶2 > 0. Then, we have𝜛 = 𝑞𝑡(𝜛), where the function 𝑞𝑡(𝜛) is defined in
terms of 𝜏, 𝜀(𝜛), and 𝑦(𝜛) as the right-hand side of (7.39). Thus,

|𝑞𝑡(𝜛)| ≤ 4|𝑦(𝜛)|1∕3 + 4|𝜀(𝜛)|1∕3 + 2𝜏1∕2 ≤ 4𝐶
1∕3
2 |𝑡 − 𝑡𝑐|1∕3 sup

𝑡′∈[𝑡𝑐,𝑡]
|𝜛(𝑡′)|1∕3

+ 4𝐶
1∕3
1 |𝜛(𝑡)|4∕3 + 2

√
𝑡 − 𝑡𝑐
𝑎

.

With this bound, we can check that there exists a constant > 0 depending on 𝑎, 𝐶1, 𝐶2 such that
if |𝜛(𝑡′)| ≤ |𝑡 − 𝑡𝑐|1∕2 for all 𝑡′ ∈ [𝑡𝑐, 𝑡], then we have |𝜛(𝑡)| ≤ |𝑡 − 𝑡𝑐|1∕2∕2.
Combining the above fact with the continuity of 𝜛(𝑡), we can conclude that |𝜛(𝑡)| ≤ |𝑡 −

𝑡𝑐|1∕2∕2 for all 𝑡 ∈ [𝑡𝑐, 𝑡1]. More precisely, we first notice that𝜛(𝑡) is Hölder-1∕3 continuous in 𝑡
(since the right-hand side of (7.39) is Hölder-1∕3 continuous in both 𝑡 and 𝑥 and 𝛾0(𝑡) is Lipschitz
continuous in 𝑡). Suppose |𝜛(𝑡′)| ≤ |𝑡′ − 𝑡𝑐|1∕2∕2 ≤ |𝑡 − 𝑡𝑐|1∕2∕2 for all 𝑡′ ∈ [𝑡𝑐, 𝑡]. Then, for a
sufficiently small 𝜀, |𝜛(𝑡′)| ≤ |𝑡′ − 𝑡𝑐|1∕2 for all 𝑡′ ∈ [𝑡𝑐, 𝑡 + 𝜀], fromwhich we get that |𝜛(𝑡′)| =|𝑞𝑡′ (𝜛)| ≤ |𝑡′ − 𝑡𝑐|1∕2∕2 for all 𝑡′ ∈ [𝑡𝑐, 𝑡 + 𝜀]. In this way, we can extend the estimate |𝜛(𝑡)| ≤|𝑡 − 𝑡𝑐|1∕2∕2 at 𝑡 = 𝑡𝑐 all the way to 𝑡1.
Finally, plugging the estimate |𝜛(𝑡)| ≤ |𝑡 − 𝑡𝑐|1∕2∕2 into (7.64), we conclude the proof.

7.6.2 Proof of (7.60)

To bound |𝛾𝐿(𝑡) − 𝛾𝐿(𝑡)|, we now bound the right-hand side of (7.68) for 𝑖 = 𝐿.
By Lemma 4.1 and (7.23) (recall that 𝑥𝑐 = 𝑡𝑐∕𝔯 and 𝛾𝑖(0) = 𝛾𝑖(0) for 𝑖 ∈ ⟦−𝑀,𝑁⟧), we have

𝛾𝐿(0) = 𝛾𝐿(0) ≍ 𝑛3𝛿∕4Δ𝑡3∕2. (7.69)

For 𝑡 ∈ [0, 𝑡1], we get from (7.63)–(7.65) (and using (7.50)) that

𝛾𝐿(𝑡) − 𝑡∕𝔯 = 𝐹0(𝜛𝑡(𝛾𝐿(𝑡))) + 𝑡𝜛𝑡(𝛾𝐿(𝑡)) = (𝑡 − 𝑡𝑐)𝜛𝑡(𝛾𝐿(𝑡)) +
𝑎
3
𝜛𝑡(𝛾𝐿(𝑡))

3 + (𝜛𝑡(𝛾𝐿(𝑡))),

(7.70)
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72 HUANG et al.

𝛾𝐿(𝑡) − 𝑡∕𝔯 = 𝐹0(𝜛̃𝑡(𝛾𝐿(𝑡))) + 𝑡(𝜛̃𝑡(𝛾𝐿(𝑡)) + Δ𝑤0(𝑢𝑡(𝛾𝐿(𝑡)))) (7.71)

= (𝑡 − 𝑡𝑐)𝜛̃𝑡(𝛾𝐿(𝑡)) +
𝑎
3
𝜛̃𝑡(𝛾𝐿(𝑡))

3 + (𝜛̃𝑡(𝛾𝐿(𝑡))) + (|𝑢𝑡(𝛾𝐿(𝑡))|Δ𝑡).
We first assume the following a priori bound:

|𝛾𝐿(𝑡) − 𝑡∕𝔯| ≤ 𝑛𝛿Δ𝑡3∕2, |𝛾𝐿(𝑡) − 𝑡∕𝔯| ≤ 𝑛𝛿Δ𝑡3∕2, ∀𝑡 ∈ [0, 𝑡1]. (7.72)

Under (7.72), using (7.70) and (7.71), we can check that for any 𝑡 ∈ [0, 𝑡1],

𝜛𝑡(𝛾𝐿(𝑡)) = (𝑛𝛿∕3Δ𝑡1∕2), 𝑢𝑡(𝛾𝐿(𝑡)) = 𝐹0(𝑤(𝛾𝐿(𝑡))) = (𝑛𝛿Δ𝑡3∕2),
𝜛̃𝑡(𝛾𝐿(𝑡)) = (𝑛𝛿∕3Δ𝑡1∕2), 𝑢𝑡(𝛾𝐿(𝑡)) = 𝐹0(𝜛̃𝑡(𝛾𝐿(𝑡))) = (𝑛𝛿Δ𝑡3∕2),

which imply that

|𝑤𝑡(𝛾𝐿(𝑡)) − 𝑤𝑡𝑐 (𝑥𝑐)| = |𝜛𝑡(𝛾𝐿(𝑡))| = (𝑛𝛿∕3Δ𝑡1∕2),
|𝑤𝑡(𝛾𝐿(𝑡)) − 𝑤𝑡𝑐 (𝑥𝑐)| = |𝜛̃𝑡(𝛾𝐿(𝑡))| + (|𝑢𝑡(𝛾𝐿(𝑡))|) = (𝑛𝛿∕3Δ𝑡1∕2). (7.73)

Plugging these estimates into (7.67) for 𝑖 = 𝐿 yields that for 𝑡 ∈ [0, 𝑡1],

𝛾′𝐿(𝑡) = 𝔯−1 + (𝑛𝛿∕3Δ𝑡1∕2), 𝛾′𝐿(𝑡) = 𝔯−1 + (𝑛𝛿∕3Δ𝑡1∕2). (7.74)

By integrating them, we obtain that

𝛾𝐿(𝑡) − 𝛾𝐿(0) − 𝑡∕𝔯 = (𝑛𝛿∕3Δ𝑡3∕2), 𝛾𝐿(𝑡) − 𝛾𝐿(0) − 𝑡∕𝔯 = (𝑛𝛿∕3Δ𝑡3∕2), (7.75)

under (7.72). Note that (7.69) and (7.75) together imply (7.72). Thus, to show (7.75) without assum-
ing (7.72), we only need to consider an 𝑛−10𝑡1-net of [0, 𝑡1] and use a simple induction argument.
More precisely, we define a sequence of times 𝔱𝑘 ∶= 𝑘𝑛−10𝑡1, 𝑘 = 0, 1, … , 𝑛10. First, the estimates
(7.72) and (7.75) hold at 𝑡 = 𝔱0 by (7.69). Second, suppose (7.75) holds at some 𝔱𝑘. With (7.63)–
(7.65), we can check that 𝛾𝐿(𝑡) and 𝛾𝐿(𝑡) are Hölder-1∕3 continuous in 𝑡. Thus, from (7.69) and
(7.75) at 𝑡 = 𝔱𝑘, we obtain that (7.72) holds uniformly for all 𝑡 ∈ [𝔱𝑘, 𝔱𝑘+1]. The arguments above
then imply that (7.75) holds at 𝑡 = 𝔱𝑘+1. With mathematical induction in 𝑘, we conclude (7.75) for
all 𝑡 ∈ [0, 𝑡1].
Now, with (7.69) and (7.75), we get that

𝛾𝐿(𝑡) − 𝑡∕𝔯 = (1 + o(1))(𝛾𝐿(𝑡) − 𝑡∕𝔯) = (1 + o(1))𝛾𝐿(0) ≍ 𝑛3𝛿∕4Δ𝑡3∕2. (7.76)

Applying it to Equations (7.70) and (7.71), we obtain that

𝜛𝑡(𝛾𝐿(𝑡)) = (1 + o(1))𝜛̃𝑡(𝛾𝐿(𝑡)) ≍ 𝑛𝛿∕4Δ𝑡1∕2,

𝑢𝑡(𝛾𝐿(𝑡)) = (1 + o(1))𝑢𝑡(𝛾𝐿(𝑡)) = (1 + o(1))𝛾𝐿(0) ≍ 𝑛3𝛿∕4Δ𝑡3∕2.
(7.77)

Subtracting Equation (7.70) from (7.71) and applying (7.77) yield that

|𝜛𝑡(𝛾𝐿(𝑡)) − 𝜛̃𝑡(𝛾𝐿(𝑡))| ⋅ |𝜛𝑡(𝛾𝐿(𝑡))|2 ≲ 𝑎
3
|𝜛𝑡(𝛾𝐿(𝑡))

3 − 𝜛̃𝑡(𝛾𝐿(𝑡))
3| ≤ |𝛾𝐿(𝑡) − 𝛾𝐿(𝑡)|

+ |𝑡 − 𝑡𝑐||𝜛𝑡(𝛾𝐿(𝑡)) − 𝜛̃𝑡(𝛾𝐿(𝑡))| + |(𝜛𝑡(𝛾𝐿(𝑡))) − (𝜛̃𝑡(𝛾𝐿(𝑡)))| + (|𝑢𝑡(𝛾𝐿(𝑡))|Δ𝑡)
≲ |𝛾𝐿(𝑡) − 𝛾𝐿(𝑡)| + (Δ𝑡 + |𝜛𝑡(𝛾𝐿(𝑡))|3)|𝜛𝑡(𝛾𝐿(𝑡)) − 𝜛̃𝑡(𝛾𝐿(𝑡))| + 𝑛3𝛿∕4Δ𝑡5∕2. (7.78)
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Thus, we obtain that

|𝜛𝑡(𝛾𝐿(𝑡)) − 𝜛̃𝑡(𝛾𝐿(𝑡))| ≲ 𝑛3𝛿∕4Δ𝑡5∕2 + |𝛾𝐿(𝑡) − 𝛾𝐿(𝑡)||𝜛𝑡(𝛾𝐿(𝑡))|2 − (Δ𝑡 + |𝜛𝑡(𝛾𝐿(𝑡))|3)
≲ 𝑛𝛿∕4Δ𝑡3∕2 + 𝑛−𝛿∕2Δ𝑡−1|𝛾𝐿(𝑡) − 𝛾𝐿(𝑡)|, (7.79)

which, together with (7.68) for 𝑖 = 𝐿, implies that

|𝛾′𝐿(𝑡) − 𝛾′𝐿(𝑡)| ≲ 𝑛𝛿∕4Δ𝑡3∕2 + 𝑛−𝛿∕2Δ𝑡−1|𝛾𝐿(𝑡) − 𝛾𝐿(𝑡)|.
Finally, an application of the Grönwall’s inequality gives that

max
0≤𝑡≤𝑡1 |𝛾𝐿(𝑡) − 𝛾𝐿(𝑡)| ≤ 𝑛𝛿∕2Δ𝑡5∕2.

The proof for the bound on |𝛾−𝐿(𝑡) − 𝛾−𝐿(𝑡)| is similar.
7.6.3 Proof of (7.61)

To be concise, we abuse the notations and abbreviate 𝑢(𝜉) ∶= 𝑢𝑡1(𝜉),𝜛(𝜉) ∶= 𝜛𝑡1(𝜉) and 𝑢(𝜉) ∶=
𝑢𝑡1(𝜉), 𝜛̃(𝜉) ∶= 𝜛̃𝑡1(𝜉). By (7.63)–(7.65) and (7.50), for any fixed 𝜉 ∈ [𝛾−𝐿(𝑡1) ∧ 𝛾−𝐿(𝑡1), 𝛾𝐿(𝑡1) ∨
𝛾𝐿(𝑡1)],𝜛(𝜉) and 𝜛̃(𝜉) satisfy the equations

(𝑡1 − 𝑡𝑐)𝜛 +
𝑎
3
𝜛3 + (𝜛) = 𝜉 − 𝑡1∕𝔯, (7.80)

(𝑡1 − 𝑡𝑐)𝜛̃ +
𝑎
3
𝜛̃3 + (𝜛̃) = 𝜉 − 𝑡1∕𝔯 + (Δ𝑡|𝐹0(𝜛̃)|). (7.81)

By Equation (7.76), the chosen 𝜉 satisfies |𝜉 − 𝑡1∕𝔯| ≲ 𝑛3𝛿∕4Δ𝑡3∕2. Then, from (7.80), (7.81) and
(7.64), (7.65), we obtain that

|𝜛(𝜉)| + |𝜛̃(𝜉)| ≲ 𝑛𝛿∕4Δ𝑡1∕2, |𝑢(𝜉)| + |𝑢(𝜉)| ≲ 𝑛3𝛿∕4Δ𝑡3∕2. (7.82)

First, consider the case where |𝜉 − 𝑡1∕𝔯| > 𝐶Δ𝑡3∕2 for a large enough constant 𝐶 > 0, so that
the 𝑎

3
𝜛3 and 𝑎

3
𝜛̃3 terms dominate in (7.80) and (7.81). In particular, we can choose 𝐶 such that

𝜛 ≍ 𝜛̃ ≍ |𝜉 − 𝑡1∕𝔯|1∕3, 𝑎
3
|𝜛3 − 𝜛̃3| > 2(𝑡1 − 𝑡𝑐)|𝜛 − 𝜛̃|. (7.83)

Subtracting Equations (7.80) and (7.81) and using a similar argument as in (7.78) and (7.79), we
get

|𝜛 − 𝜛̃| ≲ Δ𝑡|𝐹0(𝜛̃)||𝜛|2 − (|𝜛|3) ≲ Δ𝑡|𝜛̃|3 + Δ𝑡2|𝜛̃||𝜛|2 ≲ 𝑛𝛿∕4Δ𝑡3∕2, (7.84)

where we used (7.82) and (7.83) in the last step.
We next consider the case where |𝜉 − 𝑡1∕𝔯| ≤ 𝐶Δ𝑡3∕2. From (7.80) and (7.81), we get

|𝜛| ≲ Δ𝑡1∕2, |𝜛̃| ≲ Δ𝑡1∕2. (7.85)
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74 HUANG et al.

Moreover, we can write (7.80) and (7.81) as

𝜛3 + 3𝜏𝜛 − 2(𝑦 + 𝜀1) = 0, 𝜛̃3 + 3𝜏𝜛̃ − 2(𝑦 + 𝜀2) = 0,

where 𝜏 ∶= (𝑡1 − 𝑡𝑐)∕𝑎, 𝑦 ∶= 3(𝜉 − 𝑡1∕𝔯)∕(2𝑎), 𝜀1 = (|𝜛|4), and 𝜀2 = (|𝜛̃|4 + Δ𝑡|𝐹0(𝜛̃)|).
Using the general cubic formula, we obtain that

𝜛 = 𝛼
[
(𝑦 + 𝜀1) +

√
(𝑦 + 𝜀1)2 + 𝜏3

]1∕3
+ 𝛼−1

[
(𝑦 + 𝜀1) −

√
(𝑦 + 𝜀1)2 + 𝜏3

]1∕3
,

𝜛̃ = 𝛼
[
(𝑦 + 𝜀2) +

√
(𝑦 + 𝜀2)2 + 𝜏3

]1∕3
+ 𝛼−1

[
(𝑦 + 𝜀2) −

√
(𝑦 + 𝜀2)2 + 𝜏3

]1∕3
,

(7.86)

where 𝛼 is a primitive cube root of unity chosen such that Im𝜛 < 0 and Im 𝜛̃ < 0. With the
estimates 𝜏 ≳ Δ𝑡, |𝑦| ≲ Δ𝑡3∕2, and 𝜀1, 𝜀2 = (Δ𝑡2) by (7.85), it is easy to check that

|||||
[
(𝑦 + 𝜀1) ±

√
(𝑦 + 𝜀1)2 + 𝜏3

]1∕3
−
[
(𝑦 + 𝜀2) ±

√
(𝑦 + 𝜀2)2 + 𝜏3

]1∕3||||| ≲ |𝜀1| + |𝜀2|𝜏
≲ Δ𝑡,

thereby giving that |𝜛 − 𝜛̃| ≲ Δ𝑡. Combining this and (7.84), we obtain that for 𝜉 ∈ [𝛾−𝐿(𝑡1) ∧
𝛾−𝐿(𝑡1), 𝛾𝐿(𝑡1) ∨ 𝛾𝐿(𝑡1)],

|𝑓𝑡1(𝜉) − 𝑓𝑡1(𝜉)| ≲ |𝑤𝑡1(𝜉) − 𝑤𝑡1(𝜉)| ≲ |𝜛 − 𝜛̃| + (|𝑧|) ≲ Δ𝑡, (7.87)

where we also used 𝑛3𝛿∕4Δ𝑡1∕2 ≪ 1 since 0 < 𝛿 < 𝜔∕2. Since 𝑓𝑡1 and 𝑓𝑡1 are bounded away from
0, we have

|𝜌𝑡1(𝜉) − 𝜌𝑡1(𝜉)| = 1
𝜋
|||arg∗ 𝑓𝑡1(𝜉) − arg∗ 𝑓𝑡1(𝜉)||| ≲ |𝑓𝑡1(𝜉) − 𝑓𝑡1(𝜉)| ≲ Δ𝑡. (7.88)

On the other hand, by Item 2 of Proposition 7.1 (whose proof also applies to 𝜌𝑡1), we have

𝜌𝑡1(𝜉) ≍ 𝜌𝑡1(𝜉) ≍

{
Δ𝑡1∕2, |𝜉 − 𝑡1∕𝔯| ≤ 𝐶Δ𝑡3∕2|𝜉 − 𝑡1∕𝔯|1∕3, 𝐶Δ𝑡3∕2 ≤ |𝜉 − 𝑡1∕𝔯| ≤ 𝐶𝑛3𝛿∕4Δ𝑡3∕2

. (7.89)

Now, we compare the quantiles 𝛾𝑖(𝑡1) and 𝛾𝑖(𝑡1) through the following equation:

∫
𝛾𝐿(𝑡1)

𝛾𝑖(𝑡1)
𝜌𝑡1(𝜉)d𝜉 =

𝐿 − 𝑖
𝑛

= ∫
𝛾𝐿(𝑡1)

𝛾𝑖(𝑡1)
𝜌𝑡1(𝜉)d𝜉, 𝑖 ∈ [[−𝐿, 𝐿]]. (7.90)

With (7.88), we can write

∫
𝛾𝐿(𝑡1)

𝛾𝑖(𝑡1)
𝜌𝑡1(𝜉)d𝜉 = ∫

𝛾𝐿(𝑡1)

𝛾𝑖(𝑡1)
𝜌𝑡1(𝜉)d𝜉 +  (Δ𝑡|𝛾𝐿(𝑡1) − 𝛾𝑖(𝑡1)|)

= ∫
𝛾𝐿(𝑡1)

𝛾𝑖(𝑡1)
𝜌𝑡1(𝜉)d𝜉 +  (𝑛3𝛿∕4Δ𝑡5∕2 + 𝑛𝛿∕4Δ𝑡1∕2|𝛾𝐿(𝑡1) − 𝛾𝐿(𝑡1)|)

= ∫
𝛾𝐿(𝑡1)

𝛾𝑖(𝑡1)
𝜌𝑡1(𝜉)d𝜉 + (𝑛3𝛿∕4Δ𝑡5∕2),
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 75

where in the second step we used (7.89) and the estimates |𝜉 − 𝑡1∕𝔯| ≲ 𝑛3𝛿∕4Δ𝑡3∕2, |𝛾𝐿(𝑡1) −
𝛾𝑖(𝑡1)| ≲ 𝑛3𝛿∕4Δ𝑡3∕2 by (7.76), and in the third step, we used (7.60). Plugging it into (7.90) then
gives

∫
𝛾𝑖(𝑡1)∨𝛾𝑖(𝑡1)

𝛾𝑖(𝑡1)∧𝛾𝑖(𝑡1)
𝜌𝑡1(𝜉)d𝜉 ≲ 𝑛3𝛿∕4Δ𝑡5∕2.

Combining this equation with (7.89), we get that Δ𝑡1∕2|𝛾𝑖(𝑡1) − 𝛾𝑖(𝑡1)| ≲ 𝑛3𝛿∕4Δ𝑡5∕2, which
concludes (7.61).
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