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Abstract

We study uniformly random lozenge tilings of general sim-
ply connected polygons. Under a technical assumption that
is presumably generic with respect to polygon shapes, we
show that the local statistics around a cusp point of the
arctic curve converge to the Pearcey process. This verifies
the widely predicted universality of edge statistics in the
cusp case. Together with the smooth and tangent cases
proved by Aggarwal-Huang and Aggarwal-Gorin, these are
believed to be the three types of edge statistics that can arise
in a generic polygon. Our proof is via a local coupling of
the random tiling with nonintersecting Bernoulli random
walks (NBRW). To leverage this coupling, we establish an
optimal concentration estimate for the tiling height func-
tion around the cusp. As another step and also a result
of potential independent interest, we show that the local
statistics of NBRW around a cusp converge to the Pearcey
process when the initial configuration consists of two parts
with proper density growth, via careful asymptotic analysis
of the determinantal formulas.
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1 | INTRODUCTION

The random lozenge tiling model is an exactly solvable two-dimensional statistical mechanical
system that has attracted a significant amount of studies over the past few decades. For this model,
many physical quantities of interest such as the partition function and correlation functions can
be expressed in terms of determinants of an inverse Kasteleyn matrix. For random tilings of large
domains, asymptotic analysis of these determinants leads to predictions of various universality
phenomena in the large-scale limit; see, for instance, the book [44] for a comprehensive review.
One such fundamental result is the limit shape phenomenon claiming that the height function of
a uniformly random tiling of a large domain would concentrate (after proper scaling) around a
deterministic function. This behavior was first established for domino tilings of essentially arbi-
trary domains [26, 32], where the limit shape is expressed through a variational principle as the
maximizer of a certain surface tension functional of the height function. This result was later
extended to the case of random lozenge tilings in [51], where the limit shape was written as the
solution to a complex Burgers equation which, in many cases, can be solved easily through the
classical method of characteristics.

An interesting and important feature of the limit shape phenomenon is that the boundary con-
dition induces a phase transition of the local statistics. Depending on the shape of the domain,
it admits both frozen regions, where the associated height function is flat and deterministic, and
liquid regions, where the height function is more rough and random. The curve separating these
two regions is then called the arctic boundary. The reader can refer to [33, 49] for some early stud-
ies of this phenomenon in the context of random tilings, but we remark that a similar notion was
discovered even earlier for Wulff Crystals in the Ising model; see, for example, [27, 31, 37].

It is then natural to ask whether the local statistics are universal inside the liquid region and on
the arctic boundaries, and how the universal limits behave if they exist. It is conjectured in [32]
that around a point inside the liquid region, the local statistics should be given by the ergodic Gibbs
translation-invariant (EGTI) measure with slope matching the gradient of the limiting shape. It is
known that the EGTI measure is unique and can be expressed as determinantal point processes
with certain explicit extended discrete sine kernels [53, 59]. This conjecture was completely proved
for random lozenge tilings of essentially arbitrary simply connected domains in [5], based on and
improving many previous proofs under stronger assumptions on the shapes of domains, such as
[20, 43, 45, 50, 54, 58], to name a few.

1.1 | Edge statistics and universal conjectures

Compared with the bulk statistics inside the liquid region, the edge statistics near the arctic bound-
ary exhibit much richer behaviors due to various possible singularities that the arctic boundary
may develop. In studying edge statistics, the domain is usually taken to be polygonal (see Defini-
tion 2.3 below). Besides being a reasonably general class of domains, such a restriction of being
polygonal seems to be essential in establishing universality of edge statistics. In fact, unlike the
bulk statistics which are only determined by the macroscopic shape of the domain, the edge statis-
tics are also sensitive to microscopic perturbations and can be altered by even a single defect at
the boundary of the domain (as discussed in [6] after the statement of the main result there).

A detailed study of the arctic boundaries on general polygonal domains (which may not be
simply connected) was conducted in [2, 51], which showed that they are actually algebraic curves
determined by the shapes of the polygons. We note that [51] requires the sides to be cyclically
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FIGURE 1 The left panel a uniformly sampled lozenge tiling, from the website of Leonid Petrov
https://Ipetrov.cc/2016/08/Tilings-examples/ (using here under CC BY-SA 4.0). There is a cusp point in the blue
box, where the paths formed by green and yellow tiles should converge to the Pearcey process, depicted in the
right panel.

oriented and the domain to be simply connected, and these assumptions were removed in [2]. In
[2], a complete classification of the regularity of these arctic curves is proved, with a total of six
cases identified (this result holds for more general dimer models with periodic weight structure):
(1) a smooth point of the arctic curve; (2) a point where the arctic curve is tangent to a side of the
polygon; (3) a generic cusp point; (4) a cuspidal turning point; (5) and (6) two types of tacnodes.
The first three cases should appear for generic polygonal domains, whereas the last three cases
are often referred to as nongeneric singularities, in the sense that they are believed to be sensitive
to perturbations of the side lengths (although this is not rigorously proved, and even its precise
meaning is subtle; see [6, Remark 2.8] and the discussion below Assumption 2.5). The universal
edge fluctuation conjecture (see, e.g., Section 9 of [2] or Lecture 19.2 of [44]) states that the local
statistics of uniform lozenge tilings for polygonal domains have a universal scaling limit for each
case. This conjecture has been verified for the first two cases. For case (1), the Airy line ensem-
ble is conjectured to appear as the scaling limit. This was first proved for some special classes of
domains, and recently solved in [6] for general simply connected polygonal domains. For case
(2), it is conjectured that the GUE-corners process is the universal scaling limit at such tangency
points. This was proved in [4] for almost general domains, which improved previous results for
some special classes of domains.

The goal of this paper is then to prove the universal edge fluctuation conjecture for case (3)
(i.e., the cusp universality). We will show that at any generic cusp on the arctic boundary, the local
statistics of uniformly random lozenge tilings converge to the Pearcey process.

The Pearcey process is a determinantal process described by the extended Pearcey kernel (given
in (2.12)) and should be realized as a family of continuous random processes (see the right panel
of Figure 1). The name “Pearcey” is from the connection between the kernel and Pearcey inte-
grals. Its first appearance traces back to [21, 22] on certain matrices with Gaussian randomness.
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The limiting eigenvalue distribution around certain cusp points was shown to be a determinantal
point process, whose kernel is then termed the “Pearcey kernel,” corresponding to a single time
slice of the Pearcey process. Later, the extended Pearcey kernel was obtained at cusps of the arctic
boundaries of random skew 3D partitions (which can be viewed as weighted random tilings of an
infinite domain) [57] and cusps of nonintersecting Brownian bridges starting from the origin and
conditioned to end at two points [60]. The Pearcey universality at cusps of more general nonin-
tersecting Brownian bridges was established in [3, 12]. In random matrix theory, besides [21, 22],
Pearcey limits have been proved for some other Gaussian matrix models, such as [1, 13, 34, 46],
and for general Wigner-type matrices (with non-Gaussian entries) at cusps of the global density
of states [25, 42].

As for random tilings, around any cusp, the local statistics can be encoded by a family of
Bernoulli paths (as will be explained in Section 2.1.2 below). Since [57], Pearcey limits of such
paths have been established for special classes of domains; see, for example, [16, 18, 23, 36, 58]. It
is natural to predict that the Pearcey universality at cusps holds for general polygonal domains,
as stated in case (3) of the universal edge fluctuation conjecture. Such a prediction actually traces
back to [57] and has been stated in many works such as [2, 6, 10, 14, 35, 38, 44, 48]. Our main
result in this paper verifies this prediction for simply connected polygonal domains, under certain
technical conditions of the arctic curve.

Theorem 1.1. Let B be a simply connected rational polygonal set forbidding certain presumably
nongeneric behaviors, as specified in Definition 2.3 and Assumption 2.5 below. For a uniformly ran-
dom lozenge tiling of nB, around any cusp point of the arctic boundary, the corresponding paths
(under appropriate scaling) converge to the Pearcey process as n — oo.

A more formal and precise statement of this result is stated as Theorem 2.7 below. We remark
that, as in all previous works showing Pearcey limits, our convergence to the Pearcey process is in
the sense of convergence of point processes at finitely many times, due to the lack of a continuous
theory of the Pearcey process. See Section 2.6.2 for more discussions.

1.2 | Proofideas

We now outline our proof of the cusp universality. First, we prove an optimal concentration (or
rigidity) estimate for the corresponding Bernoulli paths near the cusp we are considering. For
a simply connected polygon of diameter order n, near a smooth point of the arctic curve, the
extreme path is concentrated within n'/3*9 of the limit shape for any constant § > 0 as shown
in [6]. We extend the argument there to the vicinity of a cusp and show that the extreme path is
within n'/4+¢ of the cusp of the limit shape (the Pearcey fluctuation of the paths near a cusp is
expected to be of order n'/#). The concentration estimate is better as we get further away from
the cusp and becomes o(n'/*) if the distance from the cusp is at least n'/2*¢ for a constant ¢ > 0.
For a smooth point of the arctic curve, such an optimal rigidity estimate almost suffices to deduce
the Airy universality, because, as done in [6], one can sandwich the associated Bernoulli paths
between two Airy line ensembles with different curvatures to approximate the paths with o(n'/?)
error, which is negligible under the Airy scaling. However, such a straightforward comparison
cannot be carried out at a cusp, since it is mostly surrounded by the liquid region and is connected
to the frozen region only in the tangent direction, and, furthermore, the Pearcey process is not
versatile enough.

25UI SUOWI0)) aANEa1) 31qeatidde Ay Aq PaUIAS AIE S[ONIE V() (SN JO SA[NI 10 ATRIQIT SUIUQ AS[IAY O (SUONIPUOD-PUE-SWLIAYW0d* ATIM ATeIqIoUIu0,/:sdY) SUOMIPUOY) PUE SULISL o 93§ [p707/90/€ 1] U0 ATe1qr Suiuo Kofim ‘ANSIoAtun piouers £q 2077z edo/Z001°01/10p/woo" KayimATeiquaut[uoy/:sdy woxy papeofumod 0 “T1€0L601



PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS | 5

Instead, we will carve out a small domain around the cusp with height and width of order
at least n'/2*¢, We then rewrite the tiling configuration in this domain using the well-known
representation of a family of nonintersecting Bernoulli paths. We consider the model of nonin-
tersecting Bernoulli random walks (NBRW) introduced in [52]. It can be viewed as a family of
independent simple random walks conditioned on never colliding, or a Markov chain in a dis-
crete Weyl chamber. It also has the local Gibbs resampling property as tilings. We can construct
an NBRW on the domain such that the limiting particle configuration matches the limit shape of
the tiling function well. Then, the monotonicity property of the NBRW together with the con-
centration estimates of order o(n'/*) on the boundaries of the domain shows that the NBRW
is a good approximation of the tiling Bernoulli paths with a negligible o(n'/*) error under the
Pearcey scaling.

Now, the problem is reduced to showing the Pearcey universality of the corresponding NBRW,
which is another challenging step of our proof and can be of independent interest (see Theo-
rem 2.9 below). It is known that the trajectories of NBRW is a determinantal point process, and
a contour integral formula for the kernel is given in [45]. We do an asymptotic analysis of the
formula and show that when the initial configuration is appropriate (i.e., has two separate parts
with proper density growth), the kernel near the cusp is close to the extended Pearcey kernel.
We use the steepest descent method, which is well-known and can be traced back to Riemann
in the 19th century. Its application in the study of determinantal point processes was pioneered
by Okounkov (see, e.g., [56]). Since then it has become standard and widely used in such tasks
of asymptotic analysis in integrable probability (see, e.g., [19, Section 5], or [44, Lectures 15-18]
in the context of tilings). There are several technical challenges in applying this method to our
setting (see Section 5.2 for more details). First, to show universality, we need to work with gen-
eral initial conditions, which require extra care. Second, the Pearcey process is associated with a
saddle point of the action to be analyzed with the steepest descent method. This saddle point is
indeed a “triple critical point” as seen in [57], referring to the fact that the first three derivatives of
the action vanish (see Lemma 5.4 below), which adds to the difficulty of the asymptotic analysis.
Besides, the fact that the distance between the cusp point and the boundary of the domain is of
order much smaller than n makes it hard to tame the behavior of the analyzed function away from
the saddle point. Much technical effort and some innovations (such as a multistep approximation
of the analyzed functions and a discretization of the contours) are presented to overcome these
issues.

Finally, we mention some possible future directions regarding tiling (or dimer) models that are
closely related to this paper. First, the framework developed in this paper for the proof of cusp
universality and Pearcey statistics can be applied to models beyond the realm of tilings. For exam-
ple, it may be used to establish the Pearcey statistics for the Brownian motions on large unitary
groups in certain regimes of interest [11]. Second, the scaling limits of random tilings around the
three types of nongeneric singularities have been proved for some special domains; see, e.g., [35]
for the cusp-Airy process around cuspidal turning points, [8, 14] for the Tacnode process, and
[9, 10, 14] for the discrete Tacnode process. It would be interesting to prove the universality of
these processes in tiling models. The third direction is to establish local statistics universality for
other tiling models. For uniformly random domino tilings, we expect that the existing methods
can be adapted to show universalities at smooth and cusp points, analogous to [6] and this paper.
It would also be interesting to consider random tilings with nonuniform measures, such as the
various weighted ones [15, 17, 24, 30, 36, 55].
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1.3 | Organization of the remaining text

In Section 2, we formally define our model and present the main results regarding the Pearcey
universality of uniform lozenge tilings (Theorem 2.7) and NBRW (Theorem 2.9). In Section 3,
we introduce the monotonicity and Gibbs properties of uniform random tilings that will be used
repeatedly. We will prove Theorem 2.7 in Section 4 by combining three main ingredients: NBRW
universality (from Theorem 2.9), optimal rigidity around cusps, and limiting height function esti-
mates. We will prove Theorem 2.9 in Section 5, and complete the remaining two steps in Sections 6
and 7, respectively.

2 | SETUP AND MAIN RESULTS

To facilitate the presentation, we introduce some necessary notations that will be used throughout
the paper. In this paper, we are interested in the asymptotic regime with n — co. When we refer
to a constant, it will not depend on the parameter n. Unless otherwise noted, we will use C to
denote a large positive constant, whose value may change from line to line. Similarly, we will
use ¢, d, ¢, ¢, b, and so forth to denote small positive constants. For an event E,, whose definition
depends on n, we say that it holds with overwhelming probability (w.o.p.), if for any constant D > 0,
there is P(8,) > 1 — n~" for all large enough n. For any two (possibly complex) sequences a,,
and b,, depending on n, a,, = O(b,,) means that |a,| < C|b,| for some constant C > 0, whereas
a, =o(b,) or |a,| < |b,| means that |a,|/|b,| = 0asn — co. We say that a,, < b, (or b,, = a,)
ifa, = O(b,,), and a,, < b,, if a,, = O(b,)) and b,, = O(a,,).

For any x,y € RU{—o0, 00}, x <y, we denote [x,y] =[x,y]nZ, xVvy=max{x,y}, and
X Ay = min{x, y}. For an event A, we let 1, or T1[A] denote its indicator function. For any set
S, we use |S| to denote its cardinality. For any D C R? we use D to denote its closure. We use
H={ze€C :Imz>0}and H™ ={z € C : Imz < 0} to denote the upper- and lower-half com-
plex planes, respectively. We also employ the Pochhammer symbols (z), = z(z +1)...(z +k — 1)

and the binomial coefficients (’; )= (—1)“%, forany z € Cand k,a € Z,.

2.1 | Lozenge tilings

We denote by T the triangular lattice, namely, the graph whose vertex set is Z? and whose edge
set consists of edges connecting (x,t), (X', t') € Z?if (X' — x,t’ —t) € {(1,0), (0, 1), (1, 1)}. The axes
of T are the lines {x = 0}, {t = 0}, and {x = t}, and the faces of T are triangles with vertices of
the form {(x,t),(x + 1,t),(x+ 1,t + 1)} or {(x,t),(x,t +1),(x+ 1,t +1)}. A domain R C R? is a
finite union of triangular faces that is simply connected. As a slight abuse of this notation, we also
denote by R the set of all vertices incident to these triangular faces or the subgraph of T induced
by these vertices.

When viewing R as a vertex set, the boundary R C R is the set of vertices v € R adjacent
to a vertex in T \ R; when viewing R as a union of triangular faces, dR is the union of its
boundary edges.

A dimer covering of a domain R C T is defined to be a perfect matching on the dual graph of R
(which has a vertex for each triangular face of R, and an edge for each pair of adjacent triangular
faces). A pair of adjacent triangular faces in any such matching forms a parallelogram, which we
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FIGURE 2 Depicted to the right are the three types of lozenges. Depicted in the middle is a lozenge tiling of
a hexagon. One may view this tiling as a packing of boxes (of the type depicted on the left) into a large corner,
which gives rise to a height function (shown in the middle).

will also refer to as a lozenge or tile. Lozenges can be oriented in one of three ways; see the right
side of Figure 2 for all three orientations. The vertices are in the form of

. {(x, ), xt+1),x+1,t+2),x+1,t+ 1)}, the left lozenge in the right side of Figure 2, or
. {(x, ), x+1,t),x+2,t+1),x+1,t+ 1)}, the middle lozenge in the right side of Figure 2, or
. {(x, ), x+1,t),x+1,t+1),(xt+ 1)}, the right lozenge in the right side of Figure 2.

These lozenges are referred to as type 1, type 2, and type 3 lozenges, respectively. A dimer cover-
ing of R can equivalently be interpreted as a tiling of R by lozenges of types 1, 2, and 3. Therefore,
we will also refer to a dimer covering of R as a (lozenge) tiling. We call R tileable if it admits
a tiling.

The main object we investigate in this paper is uniformly random tilings, where we consider the
probability measure on the (finite) space of all tilings of a tileable domain where each tiling has
the same probability.

2.1.1 | Height function and its restriction at the boundary

For a chosen vertex v of R and an integer h, € Z, one can associate with any tiling of R a height
functionH : R —» R asfollows. First, set H(v) = h, and then define H at the remaining vertices of R
in such a way that the height functions along the four vertices of any lozenge in the tiling are of the
form depicted on the right side of Figure 2. In particular, we require that H(x + 1,t) = H(x, t) if and
only if (x,t) and (x + 1, t) are vertices of the same type 11lozenge, and that H(x, t) — H(x,t + 1) = 1if
and only if (x, t) and (x, t + 1) are vertices of the same type 2 lozenge. Since R is simply connected,
the height function H on the vertex set R is uniquely determined by these conditions (up to adding
a global constant which is necessarily an integer). This height function H can be extended by
linearity to the faces of R, so that it may also be viewed as a piecewise linear function on R C R?.

For any height function H, we refer to the restriction h = H|zr as the boundary height function,
which is a piecewise linear function on the boundary edges. We note that for any tileable domain
R, the boundary height function, up to a global shift, is independent of the choice of the tiling
(thereby uniquely determined by R). Indeed, along any boundary edge with slope 1 or oo, any
boundary height function h must be constant. Along any boundary edge with slope 0, h must
grow linearly with rate 1, that is, for any (x,t), (x + 1,t) € RN T, there is H(x + 1,t) = H(x,t) + 1.
Since R is simply connected, JR is a closed curve, and the above rules determine h once its value
at one point in JR is given.
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FIGURE 3 Depicted to the left is an ensemble consisting of six nonintersecting Bernoulli paths. Depicted to
the right is an associated lozenge tiling. Here the vertical axis is the time axis. In the right graph, to make the
Bernoulli paths clearer, we have shifted them to the right by half unit—these paths should have been along the
edges of the tiles by the formal definition (2.1).

We refer to the middle of Figure 2 for an example; as depicted there, we can also view a (lozenge)
tiling of R (which is a hexagon) as a packing of R by boxes of the type shown on the left side of
Figure 2. In this case, the value H(u) of the height function associated with this tiling at some
vertex u € R denotes the height of the stack of boxes at u.

A tiling can also be interpreted as a family of nonintersecting Bernoulli paths.

2.1.2 | Nonintersecting Bernoulli paths

A Bernoulli path is a function b : [r,s] » Z for some r,s € Z, such that b(t + 1) — b(t) € {0, 1}
for each t € [[r,s — 1]|. It denotes the space-time trajectory of a walk, which takes either a “non-
jump” (b(t + 1) = b(t)) or a “right-jump” (b(t + 1) = b(t) + 1) at each step. We call the interval
[[r, s]l the time span of the Bernoulli path b. As an extension of the notion of Bernoulli paths, for
any I C [[r,s]], we also call b restricted to I a Bernoulli path (whose time span I is possibly a union
of several discrete intervals).

Take any M,N € Z, M <N, and I; C Z for each i € [M,N]. A family of (consecutive)
Bernoulli paths {b;};ca,n7, With each b; having time span I}, is called nonintersecting, if for any
M <i<j<Nandanyt € I;nIj, there is always b;(t) — i < b;(t) — j. Another notation that we
will also use to denote such nonintersecting Bernoulli paths is in the form of a function B, from
Z to the set

{(Xi)iECI)EZ(D . @CZ, Xi—iSXj—j,Vi<j€q)},

with B(t) = (b;(t))ie[m,n7,1,5¢ for each t € Z, and @ C Z is any index set.

For any domain R and any tiling ./ of R, we may interpret /( as a family of nonintersecting
Bernoulli paths by (roughly speaking) first omitting all type 1 lozenges from J, and then view-
ing any type 2 or type 3 tile as a right-jump or nonjump of a Bernoulli path, respectively; see
Figure 3 for a depiction. More formally, the nonintersecting Bernoulli paths are defined by tak-
ing any height function H : R — Z associated with the tiling ., and letting b;(t) be the number
satisfying

H(b;(t),t) =i, Hb;®)+1,t)=i+1, 21

if such a number exists (note that the number is also unique since H(-, t) is nondecreasing). We
remark that the nonintersecting Bernoulli paths are uniquely determined by the tiling ./, modulo

25UI SUOWI0)) aANEa1) 31qeatidde Ay Aq PaUIAS AIE S[ONIE V() (SN JO SA[NI 10 ATRIQIT SUIUQ AS[IAY O (SUONIPUOD-PUE-SWLIAYW0d* ATIM ATeIqIoUIu0,/:sdY) SUOMIPUOY) PUE SULISL o 93§ [p707/90/€ 1] U0 ATe1qr Suiuo Kofim ‘ANSIoAtun piouers £q 2077z edo/Z001°01/10p/woo" KayimATeiquaut[uoy/:sdy woxy papeofumod 0 “T1€0L601



PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS | 9

a global shift of the indices of individual paths. Then, we can define the nonintersecting Bernoulli
paths B(t) as above and the function M from Z to the collection of finite subsets of Z as

M(t) :={b;(t) : i € [M,N],I; > t}, (2.2)

that is, M is obtained from B by ignoring the indices (or order) of paths.

2.2 | Limit shapes

To analyze the limits of height functions of random tilings, it will be useful to introduce continuum
analogs of several notions considered in Section 2.1. We set

T ={(s1)€0,1)X(-1,0) : s+t>0} CR?, (2.3)

and its closure 7 = {(s, t) €[0,1]x[-1,0] : s+t > 0}. We interpret?as the set of possible gra-
dients, also called slopes, for a continuum height function; 7 is then the set of “non-frozen” or
“liquid” slopes, whose associated tilings contain tiles of all types. For any simply connected open
set R C R?, we say thata function H : R — R is admissible if H is 1-Lipschitz and VH(v) € T for
almost all v € R. By the Lipschitz continuity, H can be extended continuously to the boundary
J0R. For any function & : 0R — R, we then define Adm(®R; h) to be the set of admissible func-
tions H : R — R with boundary value H |3 = h; and we say that h : 0R admits an admissible
extension to R if Adm(R; h) is not empty.

We say a sequence of domains Ry,R,,... C T converges to a simplyconnected set R C R? if
n~'R,, C R foreach n > 1 and lim,,_, ,, dist(n~'0R,,, dR) = 0. We further say a sequence hy, h,, ...
of boundary height functions on Ry, R, ... converges to a boundary height function i : dR — R if
lim,,_, o, n~'h, (nv,) = h(v) for any sequence of points v, — v withv, € n"'6R, andv € pR.

To state results on the limiting height function of random tilings, for any x € Rypand (s,t) € T
we denote the Lobachevsky function L : Rsq — R and the surface tension o : 7T >R by

X
L(x) = —/ log |2sin z|dz; o(s,t) = %(L(n’(l —5)) + L(—xt) + L(w(s + t))). 2.4)
0
For any admissible H : R — R, we further define the entropy functional
EH) = / o(VH(v))dv. (2.5)
R

The following variational principle of [32] states that the height function associated with a uni-
formly random tiling of a sequence of domains converging to R converges to the maximizer of £
with high probability.

Lemma 2.1 [32, Theorem 1.1]. Let Ry,R,,... C T denote a sequence of tileable domains, with
associated boundary height functions hy, h,, ..., respectively. Assume that they converge to a simply
connected set R C R? with piecewise smooth boundary, and a boundary height function h : R —
R, respectively. Denoting the height function associated with a uniformly random tiling of R,, with
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10 HUANG ET AL.

FIGURE 4 Shown above the complex slope f* = f*(x, t).

boundary height function h,, by H,,, we have for any constant € > 0,

lim P(max |n~H,(v) — H*(n"'v)| > 5) =0,

n—co VER
where H* is the unique maximzer of £ on R with boundary data h,
H* = Argmax a4 m:n) E(H). (2.6)

The fact that there is a unique maximizer described as in (2.6) follows from Proposition 4.5 of
[41]. The region where VH* € T is called the liquid region & = (R) C R,

e={veR:VH'QW) eT}, 2.7)

where we expect to see all three types of lozenges.

2.3 | Complex slope

An important quantity that characterizes the limiting height function H* as in (2.6) is the
complex slope f* : & - H™. For any (x,t) € 8, f*(x,t) € H™ is the unique complex number
satisfying

arg” f*(x,t) = —md, H*(x, t), arg” (f*(x,t) + 1) = md,H*(x,t); (2.8)

see Figure 4 for a depiction. Hereafter, foranyz € RUH™ \ {0}, we set arg*z = 6 € [—m, 0] to be
the unique number in [, 0] satisfying e~z € R. . Note that we interpret 1 — 3, H*(x, t) and
—0,;H*(x, t) as the approximate proportions of types 1 tiles and type 2 tiles around (nx, nt) € R,,,
respectively (which follows from the definition of the limiting height function in Section 2.1.1).
Below we also denote f;(x) = f*(x,t) for any (x,t) € .

The following result from [51] indicates that the complex slope f* satisfies the complex Burgers
equation in the liquid region.

Proposition 2.2 [51, Theorem 1]. For any (x,t) € &, we have that

fix)

Fo+1- (29)

Sy () + 0 f7 ()
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2.4 | Polygonal domains
This paper concerns tilings of polygonal domains, which we describe now.

Definition 2.3. An open set B C R? is polygonal if its boundary 0P consists of a finite union
of line segments, each of which is parallel to an axis of T. For the rest of this paper, when-
ever we take a polygonal set, it is always assumed to be simply connected. The set is rational
polygonal if, in addition, every endpoint of each segment in J%p is a rational point. We note
that being rational is equivalent to that there exists some n, € N with ny’ being a tileable
domain.

From this definition, for any n € nyN, P = P, = n* is a tileable domain, and is, therefore, asso-
ciated with a (unique up to a global shift) boundary height function h = h,,. We set h : 9% - R
by h(v) = n~'h(nv) for each v € 3 N n~'T, and linearly interpolating between points on n='T.
It is straightforward to check that this function & is determined by P (i.e., independent of n), up
to a global shift.

Let H* be the limiting height function of a uniformly random lozenge tiling of %8, as defined in
(2.6). We recall T from (2.3) and the liquid region £ = £(*B) C P from (2.7). We denote the arctic
boundary A = ACP) C P by

L={veP:VH*W)ET}, and A=03%. (2.10)

The liquid region and arctic boundary are determined by the set %8, and have the following
properties.

Lemma 2.4 [2, 51]. Assume that *B is a rational polygonal set, then the followings hold.

(1) Forthe maximizer H* = argmax, Adm@:n) € (H), which is determined by S8 up to a global shift,
VH?* is piecewise constant on p \ L(B), taking values in {(0,0), (1,0),(1,—1)}.

(2) Thearctic boundary A(*P) is an algebraic curve, and its singularities are all either ordinary cusps
or tacnodes.

These results are proved in [2, 51] and quoted in this form as [6, Lemma 2.3]. The first statement
is by [2, Theorem 1.9], and the second statement is by [2, Theorem 1.2, Theorem 1.10] (see also [51,
Theorem 2, Proposition 5]).

For polygonal set, it was proved in [2, Theorem 1.2, Theorem 1.5] that the complex slope (x, t) +—
f1(x) extends to the arctic boundary. More precisely, the complex slope extends to a continuous

function from L(*B) to the one point compactification C U {co}. For any (x,t) € 2, f;(x) e RU
{oo} and the slope of the arctic boundary at (x, t) is given by

fio+1

IRE) (2.11)

For a nonsingular point in 2, we call it a tangency location of 2, if the tangent line to 2 has
slope in {0, 1, oo}. We need to impose the following assumptions of a rational polygonal set 3, on
its arctic boundary.
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Assumption 2.5. For a rational polygonal set P C R?, assume the following four properties
hold.

(1) The arctic boundary 2 = 2(*3) has no tacnode singularities.

(2) No cusp singularity of 2 is also a tangency location of 2.

(3) There exists an axis ¢ of T such that any line connecting two distinct cusp singularities of 2
is not parallel to ¢.

(4) Any intersection point between 2 and B must be a tangency location of 2. Moreover,
VH*(x, t) is continuous at any point on 2 that is not a tangency location.

As discussed in [6, Remark 2.8], these assumptions are believed to hold for a generic rational
polygonal set with a given number of sides, as violating each assumption is equivalent to that
the side lengths satisfy a certain algebraic equation; but here we do not provide a rigorous proof
of this.

2.5 | Pearcey process

As another preparation for our main results, we formally define the Pearcey process P as a time-
dependent random collection of infinitely many particles on R, with the multitime gap probability
given by the Fredholm determinant

P[P(t)NE; =@,V1 <i<m]=det(I- ;(JcPeafceY)Lz({[ L IXR)
1seees m

for any t; < --- <'t,, and finite unions of intervals Ej, ..., E,,. Here, y is the projection opera-
tor, acting as y f(t;, x) = 1[x € E;|f(t;,x) for f : {t1,..., t,u} X R — R, and KP4 is the integral
operator, acting as

]CPearceyf(t x) = Z/KPearcey(tl’ X; J’y)f(tj, )dy,

with the extended Pearcey kernel

1[s < 1] exp (_(x —y)2>
\V27(t —s) 2t =)

dzdw -zt +wt 1tz — sw?
(2711)2 // < 7 + > —yz+ xw>, (2.12)

for any s, x, t,y € R; see, for example, [12]. The z contour is taken to be the straight vertical line
Re(z) = 0 traversed upwards (from —ooi to ooi), and the w contour contains the straight lines
from coe™/4 and —ooe™/4 to 0, and from 0 to coe™™/4 and —ocoe~71/4,

KFPearcey(s, x;t,y) = —

2.6 | Main results

To state our result on the Pearcey process in tilings, we need to define the scaling parameters.
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(=) + 29 (t.— 0+ 0((t, - 1?)
3

« T 3\/—

FIGURE 5 Shown above is an upward oriented cusp at (x,, t.). Here E_ and E, are two pieces of 2, defined
at the beginning of Section 4.

Definition 2.6. For a rational polygonal set 3, fix a cusp point (x.,t.) € A = A(P) thatisnot a
tangency location. We say that (x., t.) is upward-oriented, if the slope of the tangent line through
(x.,t.)isin (1, 00), and there exist (x, q) = (v(x., t; A), q(x,, t.; A)) € R? so that

(t - tc) 2CI
Xo= — k2 ——(t, = )*? + O((t. — 1)), (2.13)
\/—

r 3v/3

for all (x,t) € A in a sufficiently small neighborhood of (x,, t.). See Figure 5 for an illustration.
We note that these conditions can always be achieved by rotating 8. We call (r, q) the curvature
fi G+

, according to (2.11).
feGo gto (211

parameters (t, q) associated with (x., t.). Note that r =

Our main cusp universality result is as follows.

Theorem 2.7. Take a rational polygonal set B C R? satisfying Assumption 2.5, and let H* be a
limiting height function of it. Fix some point (x., t.) that is a cusp location of A(*B). Assume (without
loss of generality) that this cusp is upward-oriented as stated in Definition 2.6. Denote the associated
curvature parameters by (x, q), with r € (1, ) and q > 0.

Take n € N such that P = n*B is a tileable domain. Let M denote a uniformly random tiling of P. It
is associated with a (random) family of nonintersecting Bernoulli paths (as defined in Section 2.1.2),
which we denote by a function M in (2.2). Then as n — oo, the process

M( |nt, — Vr — 1n1/2t/(rq)J) — nx. + Vr —1n'/2t/(x?q)
= 2.14
(x = 1)¥/4nl/4/\/qrd o

converges to the Pearcey process P, in the sense of convergence as point processes, in any set of the
form{t,,...,t,,} X Ewith t; < --- < t,, and E being a compact interval.

Remark 2.8. Here, we have used the Pearcey process whose boundary is like x = 2(t/3)*/? (see,
e.g., [1]). In our setting, the arctic boundary around the cusp (x,,.) is parametrized by (2.13).
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Hence, we need to rescale it to x = 2(¢/3)?/2. Each path in the Pearcey process locally behaves like
a Brownian motion. Locally around the cusp, the nonintersecting Bernoulli paths have drift 1/x,
so each step has variance (1/1)(1 — 1/t). To make them behave like Brownian motions without
drift, we need to do the following Brownian scaling:

a(M —nx.)—(t—nt.)/x t=ant, —t), a= , (2.15)

Va/oa-1/r) -1

where a is determined by M/n = 2(t/3n)*/2. To get the Pearcey process, we further rescale the
space by n='/# and time by n~'/2 so that the gaps between two paths are of order one:

M=

M=n"1*M, T=nVY%H (2.16)

which leads to (2.14).

2.6.1 | Universality of nonintersecting Bernoulli random walks (NBRW)

As already indicated, in proving Theorem 2.7, a key step is to understand the universality of the
Pearcey process in the related model of NBRW, which we now define formally.

NBRW as a Markov chain. The NBRW A : [0, co]] - ZI=M-N1 that we will consider can be
defined as a Markov chain on time [0, o], with state space being the Weyl chamber

{{xhieg-mny € ZIEMND -y < < XN}

for some M, N € N. The transition probability is given as follows. Take 5 € (0, 1), which is the
drift parameter. For any t € [[0, o], let P [A(t + 1) = {y;}iep-m.ng | A = {Xi}icp_m.np] €qual

Yi—X; Ly
(1_6)M+N+1 H <%> H (i y])

9
—M<i<N —MXi<j<N i =x;)

when each y; — x; € {0, 1}; and 0 otherwise. Alternatively, A can be defined as a collection of M +
N + 1 independent Bernoulli (8) random walks on [[0, oo ]|, conditioned on never intersect. It can
also be viewed as a discrete analog of the Dyson Brownian motion with parameter 2.

With the relation between tilings and nonintersecting Bernoulli paths given in Section 2.1.2, we
can view NBRW on [[0, oo]] as a random tiling of the upper-half plane, where the boundary height
function on the horizontal axis is in correspondence with the initial configuration A(0).

We next describe a universal convergence of NBRW to the Pearcey process. Roughly speaking,
it says that if the initial configuration of NBRW contains two separated groups of particles, with
the gap between them and their density growth being of “proper” orders, then the Pearcey process
appears when these two groups of particles merge together.

We start with the setup. Fix any ¢ € (0,1/2). Lete; > 0 be a small enough constant (depending
on ¢), and then ¢, > 0 be a small enough constant (depending on ¢ and ¢;). To state the
asymptotic result, we consider a sequence of NBRWs: for each integer n > 0, we consider
NBRW A on [[0, oo]] with drift parameter 8 € (¢,1 — ¢) and (possibly random) initial condition
A(0) = {d;}iej—m,ny for some M, N = n. We assume that {d;};cj_p N (With scaling n~1) can be
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approximated by the quantiles of a density function p, : R — [0,1] up to order n='*%, and p,
satisfies certain cusp growth at scale n and up to distance t, with n=1/2*¢1 <t < 1, in the sense
to be specified in Assumption 5.1 below. Let x,, t., A, B be real numbers determined by p, and
B, via Lemma 5.2 and (5.12) below (in particular, we have ¢, < ). We remark that all of B, M, N,
{di}ic-mN]> Po» L Xe, te, A, B can depend on n.

Theorem 2.9. Asn — oo, the process

A(|nt, — 2AY2B(1 — B)n'/%t]) — nx,
'_)

PBernoulli st
\/2A1/4B(1 — B)nl/4

+124/4Bn1/4t,

converges to the Pearcey process, in the sense of convergence as point processes, in any set of the form
{t1, sty X EWwith t; < --- < t,,, and E being a compact interval.

We note that this is a “normal and smaller distance” result, in the sense that while the Pearcey
process has temporal and spatial scalings of order n'/2 x n'/4, the time when it appears is of order
nt. < nt, which is > n'/2*¢1 and < n. We cannot expect a Pearcey process of order n'/2 x n'/4 at
any time much beyond this window: on one hand, the time to the boundary must be much larger
than the temporal scaling n'/?; on the other hand, at any time much larger than n, the spatial fluc-
tuation of the paths should be much larger than n'/# around a cusp. Therefore, Theorem 2.9 covers
almost the whole possible time window where a Pearcey process of order n'/? x n'/# could appear.

Theorem 2.9 is an immediate consequence of Proposition 5.3 below, which gives a stronger

prelimit estimate of the NBRW determinantal kernel at the cusp.

2.6.2 | On the continuous theory of the Pearcey process and convergence

Intuitively, for the nonintersecting Bernoulli paths from a tiling or NBRW around a cusp, they
should converge to a family of continuous processes, under, for example, the topology of uniform
convergence in any compact interval. This limiting family should be a continuous path version of
the Pearcey process P, which has been expected to exist (see, e.g., [60], at the end of the introduc-
tion), and should have Brownian Gibbs property, as that of the Airy line ensemble given in [28]
(see, e.g., [7, Problem 2.34]). Such an object could be called the “Pearcey line ensemble” (PLE),
following the naming convention of the Airy and Bessel line ensembles, constructed in [28] and
[61]. However, as far as we know, such a construction has not yet been accomplished in the lit-
erature, despite that the Pearcey limit has been established for various probabilistic models, such
as random matrices, nonintersecting Brownian motions, and tilings, as stated in the introduc-
tion. Compared to the Airy and Bessel cases, one additional difficulty is that paths in the PLE
are indexed by Z rather than N. This causes a labeling issue: in Airy or Bessel, the point process
distribution at a fixed time gives the distribution of the continuous paths at this time, since the ith
highest point must be in the ith path. However, for Pearcey, given the point process at one time,
additional information is needed to determine which points correspond to the paths that would
—> 00 0r —coast — oo.

In terms of the convergence to the Pearcey process, all the proven results are (more or less equiv-
alently) in the sense of convergence as point processes at finitely many times, as our Theorems 2.7
and 2.9; and this is what one can hope for without having the PLE defined. We expect that once
the PLE is built, there should be a general theorem upgrading all such point process convergence
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to uniform in compact convergence, as long as the prelimiting model has some local Gibbs prop-
erties (such as Lemma 3.4 below for tilings). For the Airy line ensemble such a theorem exists; see
[40, Theorem 4.2].

3 | MONOTONICITY AND GIBBS PROPERTIES

In the study of uniformly random tilings and related models of random nonintersecting paths, an
important and widely used monotonicity property roughly says that: for two random configura-
tions, if they are “close to each other” at the boundary of a region, they should also be “close to
each other” inside the region. It has various versions in the literature (see, e.g., [26, Lemma 18],
[28, Lemmas 2.6 and 2.7], [29, Lemmas 2.6 and 2.7], and [39, Lemma 5.6]). Here, we record some
that will be used later.

The first one is for random nonintersecting Bernoulli paths. To proceed, we need some more
notations. Take a family of nonintersecting Bernoulli paths B = {b;};c[1 ], consisting of m paths,
with each b; having the same time span [0, r]]. Given functions f,g : [0,r]] > R, we say that B
has f and g as boundary conditions if f(t) < b;(t) < g(t) foreach t € [[0,r]] and i € [[1, m]]. We refer
to f and g as the left boundary and the right boundary, respectively, and allow f and g to be —oco or
oo. We say that B has entrance condition d = (d;, d,, ..., d,,;) and exit condition e = (e, €5, ..., €,,)
if B(0) = d and B(r) = e. There are a finite number of nonintersecting Bernoulli paths with given
entrance, exit, and (possibly infinite) boundary conditions.

In what follows, for any functions f,f’ : [[0,r] —» R, we write f <f" if f(t) <f'(t) for
each t € [[0,r]] and denote |f —f'| = maxc[o, |f(t) — f'(t)|. Similarly, for any m-tuples d =
(di,dy,...,d,) € R™ and d’ = (d},d),...,d;,) € R™, we write d < d" if d; < d/ for each i € [1,m]]
and denote |d — d'| = max;e[y ,j |d; — d]].

Lemma 3.1. Fix integers r,m > 1, functions f,f’,g,g’ : [0,r]] > R, and m-tuples d,d’,e, e’
with coordinates indexed by [1, m]]. Let Q = {q;}ic[1,m] denote uniformly random nonintersecting
Bernoulli paths with boundary, entrance, and exit conditions given byf, g, d, e; define Q' = {q; Yieq1,m]
similarly, but using t/, g/, d’, ¢’ instead. If |f — f'| <K, |g—g'| <K,|d—d'| <K,and |e — ¢/| <K,
for some K > 0, then there exists a coupling between Q and Q' such that |q; — qlf | < K almost surely
foreachi € [1,m].

This lemma is in the spirit of [28, Lemmas 2.6 and 2.7] and can be proved using the same idea
of constructing the coupling using the Glauber dynamics of the paths. We give a sketch here
for completeness.

Proof of Lemma 3.1. We introduce a continuous-time Markovian dynamic on the nonintersecting
Bernoulli paths (which is the Glauber dynamics). We write the nonintersecting Bernoulli paths
at time 7 as Y. = ({y; cfief1,m])- and Y. = ({yl{’f}ie[n,m]] )z, with the time O configurations Y, and
Y{) being the lowest possible nonintersecting Bernoulli paths with boundary, entrance, and exit
conditions being f, g, d, e, and f/, g’, d’, €/, respectively. It is clear that such lowest configurations
exist, are unique, and satisfy |ylf’0 —V¥iol <K foralli € [1, m]. For simplicity of notations, denote
Yor =F Ymi1: =& yg’f =f, y:n t1r = g’, for any 7 > 0. The dynamics are as follows: for each
te[[1,r—1],i € [1,m]], and e € {1, —1}, there is an independent exponential clock which rings
at rate 1. If the clock labeled (t, i, e) rings at time 7, one attempts to set y; -(t) = y; ._(t) + e (where
Yir—(t)is the limit of y; -/ (t) as 7 — 7 from the left). This setting is only successful if y; . remains a
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PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 17

FIGURE 6 Shown to the left is the dynamic: if the clock labeled (t, i, e) rings at time 7, one attempts to set
Yi-(t) = y;,_(t) + e. Shown to the right are the two cases under the assumption thaty;. .(t*) =y;. . (t*) + 1 and

Yi (&) =y ().

Bernoulli path, and the condition of nonintersection with y;_; - and y;, ; is not broken. One also
attempts to set ylf’T(t) = yg’T_(t) + e, and the same conditions apply.

The first key fact is that the maximum difference max;e(om+1] 1Yir = y! . | is nonincreasing in
7. As a consequence, forall7 > 0, |y; ; — | <K foreachi € [[1,m]. The second key fact is that
the distributions of these nonintersecting Bernoulh paths converge to the invariant measures for
this Markovian dynamics, which are given by the nonintersecting Bernoulli paths randomly sam-
pled under the uniform measure on the set of paths with prescribed entrance, exit, and boundary
conditions. This fact is true since these dynamics have finite state spaces which are irreducible
with the obvious invariant measures. Then, Lemma 3.1 follows immediately from these two facts.

For the rest of this proof, we prove the first key fact above, that is, the maximum difference is
nonincreasing in time. Suppose that a clock labeled (t*,i*, e) rings at some time 7 > 0. We denote
by {yi - tiefo.m+11s {yzﬂ-_}ie[[o,m+1]] the paths before the ringing, and {y; - }icjo,m+1]» {Yg,f}ie[[o,mﬂn
the paths after the ringing. If (t*,i*) is not an argmax of |y; ._(t) — yg’f_(t)l for t € [[0,r]] and
i € [0, m + 1], then the maximum difference is obviously nonincreasing at the instant 7. Hence,
below we assume that |y; ;_(t) — ylf,T_(t)| achieves maximum at (t*, i*).

Without loss of generality, we assume that y;. ._(t*) — y; (t")>0ande=1.1t suffices to
prove that the following scenario is impossible: y;« -(t*) = y;- ._(t*) + 1 and yﬁ t") = l* ().
Assume the contrary, there are two cases (see Figure 6):

@) y:*T T+ =y, () ory, L= = yl’tf (t*) — 1. Then, we have y;. . (t*+1)—
Y T_(t + 1) > YL*T (t ) )’l*f (t*) Or' Yix 7 (t - 1) yl*T (t* 1) > VYis r— (t*) yl*, (t*)
because we must have Yir o (& +1) = ype ._(t*) + 1and y;» _(t*) = y;+ (" — 1) in order for
the update y; (t*) = y;« ._(t*) + 1 to be permissible. This contradicts the assumption that
(t*,i*) is an argmax of the difference.

(i) y. "+ =y, (9 + 1 and y:* _(t*=1) =yl __(t). In this case, since we have
assumed that y (t*) = l* - (t*), that is, the attempt to set y [t) =y, (t7) + e fails,
we must have yl s 4loe (t") = l* ._(t") + 1. Moreover, since we have assumed that y;« -(t*) =
Yir r—(t*) + 1, we must have

Yirg 1= () = Yirg1 () 2y L) + 1 = yje (1) + 2.

This leads t0 yj iy~ (t*) =yl . (") > yu_(t") =yl _(t"), which again contradicts the
assumption that (t*,i*) is an argmax of the difference.

Putting these cases together yields the first key fact, thereby, the conclusion follows. O
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We will also use the following version of monotonicity, in terms of the height function of a
tiling. For this purpose, we define uniformly random tilings on general subsets of R?, but with
given boundary functions, in the sense of a uniformly chosen height function.

Definition 3.2. Take any compact set R C R? with piecewise smooth boundary, and a function
h : 0R — R. If there exists a tileable domain R, containing R, and a tiling of R, whose height
function on JR equals h, we call h a plausible boundary height function of R. In this case, there
must be finitely many such height functions of R, , and for a uniformly chosen one, we call its
restriction to R the uniformly random height function of R with boundary h. By the Gibbs property
in Lemma 3.4 below, it is straightforward to check that this uniformly chosen height function is
independent of the choice of R,

Lemma 3.3 [26, Lemma 18]. Consider a compact set R; C R? with piecewise smooth boundary,
and its translation R, = R; + v, for some v, € R?. Take plausible boundary height functions h; :
OR; —» Randh, : 0R, — R. Let H, and H, be uniformly random height functions of R, and R, with
boundaries hy and h,, respectively. If h; < h,(- + vy), then there exists a coupling between H; and H,,

such that H; < H, (- + vy) almost surely.

We note that [26, Lemma 18] is proved in the setting of random domino tilings, but the
arguments carry over to lozenge tilings verbatim.

Finally, we record the Gibbs property for uniformly random tilings here, for the convenience
of later reference. It is directly implied by the definition of uniformly random tilings.

Lemma 3.4. Take compactsetsR,R’ C R2 with piecewise smooth boundaries, such thatR C R'. Take
plausible boundary height functionsh : 0R - Randh’ : R’ - R, and let H and H' be uniformly
random height functions of R and R” with boundaries h and W', respectively. Consider the event where
the restriction of H' on 0R equals h. Suppose that this event happens with positive probability. Then,
conditioning on this event, the restriction of H' on R has the same distribution as H.

4 | TILING CUSP UNIVERSALITY: PROOF OF THEOREM 2.7

In this section, we present the main steps for the proof of Theorem 2.7 as several lemmas and
deduce Theorem 2.7 from them. The proofs of these lemmas will be given in subsequent sections.

4.1 | Basic setup

Take any rational polygonal set B satisfying Assumption 2.5, and recall that its liquid region
and arctic curve are denoted by & and 2, respectively. Take a cusp point (x.,t.) € 2. Let n
be any large enough integer such that n'J is a tileable domain. As in Theorem 2.7, by rotating
B if necessary, we assume that (x.,t.) is upward oriented in the sense of Definition 2.6, with
curvature parameters r, q. In this section, all the constants (including those implicitly used in
<, 2, <, O) can depend on ‘.

As indicated in the introduction, we will compare paths from tilings and NBRW in a region
around (x.,t.). More precisely, we denote At = n~® for some constant w € (0,1/2). Then we
take t, < t. < t;, such that ty,t; € n71Z, t. — ty,t; — t. < At. Take a small constant ¢ > 0. We
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are mainly interested in the region [x. — ¢, x. + ¢] X [ty,¢;], where 2 contains two analytic
pieces {(E_(t),t) : to <t <t and {(E,(¢),t) : txp <t <t.},withE_(t) <x.+(t —t.)/x < E.(t)
and x, 4+ (t —t.)/r — E_(t), E,(t) — x, — (t —t.)/x < (t. — t)*/* for each t € [t,,,]. Moreover, as
pointed out in Definition 2.6, we have r = (f ;"C x)+1)/f ;‘C (x.). Then, we have f ;*C (x.) € (0, ),
implying that VH*(x,, t.) = (0,0) by (2.8). Therefore, we can assume that H*(x, t) = 0 for all (x, t)
in the frozen region with ty <t <t.and E_(t) < x < E, ().

4.2 | Tiling path estimates
We next present estimates of the paths associated with tilings. Let H : n®B — R be the height
function of the uniformly random tiling, satisfying H(nv) = nH*(v) for each v € 0’3. We then
consider a (random) family of nonintersecting Bernoulli paths as in Section 2.1.2: for each i, t €
Z, we define q;(t) to be the number satisfying H(q;(t),t) = i and H(q;(t) + 1,t) =i + 1, if such a
number exists.

The typical locations of the paths are deterministic numbers given by the quantiles of H*, as

follows. Let ¢ > 0 be a small enough constant depending on ‘B and (x,, t.). Take M, N € N such
that

[—M,N] = {i €7 H*(x, — ¢, ty) < H*(xo, 1) +i/n < H*(x, + ¢, to)}.
Foreacht € [ty,t;] and i € [—M, N1, we let
yi(t) =supi{x : (x,t) € PB,H*(x,t) — H*(x.,t.) = i/n}. 4.1
In particular, notice that y,(t) = E, (t) when t < t.. We have the following estimates on y;.
Lemma 4.1. Foranyi € N, if1 <i S At%n, we have
¥ito) — E4(to) < AtYo(i/n)*/3,  E_(ty) —y_i(to) < AtY/O(i/n)?/3. (4.2)
Ifi > CAt*n for a large enough constant C > 0, we have that for any t € [t,,t;],

Vilt) = Gee + (t = 1) /x) < (/)% P <N (X + (t = 1) /1) —y—i (1) < (i/n)*/*, i< M.
(4.3)

We next give the estimate on the fluctuations of the tiling paths around these quantiles.

Lemma 4.2. For an arbitrarily small constant d > 0, with overwhelming probability, we have

qo(nty)/n — E,(ty), q_1(nty)/n — E_(ty) S n=2/3 P Arl/®, (4.4)

I{i € [-M,N] : qi(nty) < xn}| — I{i € [-M, N : yi(to) < x}| S n°, (4.5)

uniformly for all x € R. Take a constant 5 € (0,w/2), and let L = [n'*°At?]. When b is small
enough (depending on w and &), the following estimates hold with overwhelming probability:
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qu(nt)/n—yr(0), q_p(nt)/n—y_(t) Sn =342, Vi e [t,4,]nn~'Z, (4.6)

qi(nt)/n —yi(ty) Sn=3/4? vie[-L,L]. (4.7)

The proofs of the above two lemmas rely on careful analysis of the limiting height function
H* through the complex slope. The proof Lemma 4.2 also uses the optimal rigidity estimate of the
height function H around cusps, to be presented in Section 6. The detailed proofs will be presented
in Section 7.

4.3 | Construction and estimates of NBRW

To prove that the random paths associated with tilings around (x., t.) converge to the Pearcey
process, our strategy is to compare them with a certain NBRW starting from time nt,,.

We consider the NBRW Q ={G;}¥' , : [[nt, 0] » ZI=MNI with initial data Q(nt,) =
{ﬁi(nto)}ﬁi M= {qi(nto)}?; _y- Next, we explain the procedure to choose the drift parameter .
For any time ¢ € [ty, t; ], we denote the density o (x) = 0, H*(x, t), which is defined almost every-
where and is in [0,1] since H* is admissible. We can interpret p; (x) as approximately the density
of paths (or equivalently, type 2 and type 3 lozenges) around (nx, nt). We denote

pr,()d
B = PV _a(io) ()], iy (2) = / Pry ()0 43

zZ—X
which are the restriction of p;"O on [y_p(to), ¥n(to)] and its Stieltjes transform. Denote
Ze = X — (L. — b))/, (4.9)

which is the intersection of the tangent line at the cusp with the line t = ;. We take (8 to satisfy

Ir (xe)

It turns out that by choosing such a 3, the limit shape of NBRW will have a cusp at (X,,.) that
is close to (x,, t.). Here, X, and . are determined by 5, and §, through Lemma 5.2 below. More

precisely, let fto(z) = emto(z)ﬁ/(l — B), we then take X, € R, . > ty, and Z, € (E_(t,), E,(ty)) as
the solutions to the following system of equations:

of @F
Fo@)+1

_ Tu@) _ TL@E) -
%=L fem——, 14T =0, J/@)-

e ; e 0. 4.1
Ji(Z) +1 (f1,(Z) + 1) @1

By Lemma 5.2, these numbers exist and are unique, and there isT, —ty < At.

Lemma 4.3. We have X, — x., . — t,,Z, — z. S At?, and j[OEZC) -1t S AL
ftg (Zc)+1

We next state a fluctuation estimate of Q that is necessary for the proof.
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Lemma 4.4. For w € (0,1/2) chosen in the basic setup above, assume that w > 3/8 and take a
constant0 < & < (w/2) A (2w — 3/4). Let L = [n'*9At?]. Fix a constant d > 0 that is small enough
(depending on w and 8), then the following estimates hold with overwhelming probability:

q(nt)/n—y (), G(nt)/n—y_ () Sn=3/42, Vi e [t, 4] nn7'Z,

Gi(nt)/n—y(t) Sn34?, vie[-L,L].

The proofs of the above two lemmas are deferred to Section 7.

4.4 | Pearcey limit and the comparison between tilings and NBRW

Given the construction of the NBRW Q, using the estimates of the fluctuations of Q (Lemma 4.4)
and the paths from tilings (Lemma 4.2), we can now prove Theorem 2.7 through comparison, by
using the following convergence of Q to the Pearcey process.

Lemma 4.5. Fixthe constantw € (3/8,1/2). Recall the curvature parameters t, q in Definition 2.6.
For each t € [[nt,, co]), we regard Q(t) as a finite subset of Z. Then, as n — oo, the process

. Q(|nt. — Vr —1n2tJ(xq)]) — nx. + Vr — 1n'/2t/(x2q)
(x = 1)3/4n1/4/\/qu? ’

converges to the Pearcey process in the same sense as in Theorem 2.7.

t

This lemma is deduced from Theorem 2.9, the Pearcey universality for NBRW. There, the scaling
of the Pearcey process is described by the following two parameters:
Efo(x) (Fc - t0)4 (Fc - t0)4 X, —Z,

— X = - v e ’ E == ’
4z, — x)* 12(. —tg +Z, — X.)>  12(X. —Z.)° te =1y

g=@—t0)4/

as defined in (5.12) below. We need the following relation between A,Bandr, q. We defer its proof
to Section 7.

Lemma 4.6. Asn — oo, wehave B — t~!and A — t*(xt —1)"'q~%/4.

Proof of Lemma 4.5. Take b > 0 to be arbitrarily small depending on w. By Lemmas 4.1 and 4.2,
the quantiles of g, (which are precisely y;(t,)) satisfy the growth specified in Assumption 5.1,
with f = At = n~%; and with overwhelming probability, the initial data Q(nt,) = {ai(”to)}f\i M=
{qi(nto)}ﬁi _ isapproximated by g, in the sense stated in Assumption 5.1, with €4 = d. In addition,
we know that 3 is bounded away from 0 and 1, uniformly in n. Indeed, by (4.10), it suffices to show
that /i, (z.) S 1. From the definition of z,, we obtain E, (t)) — z, z, — E_(ty) < At>/%. Then, by
decomposing the integral / P1,(x)/(z. — x)dx according to the quantiles y;(t,), we can readily
deduce m, (z.) S 1 with the help of Lemma 4.1.
With the above preparations, we can now apply Theorem 2.9 to conclude the convergence of

. Q(|nt, — 24Y2B(1 — B)n'/%t|) — nx,
[axd

— + V2AY*Bnt/*t
V241481 — B)nt/4
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to the Pearcey process. Then, by Lemmas 4.3 and 4.6, and noticing that At = o(n=>/%) (so nX, —
nx,, nt, — nt. = o(n'/*)), the conclusion follows. O

We now finish the comparison arguments.

Proof of Theorem 2.7. We take constants w € (3/8,1/2) and 0 < § < (w/2) A 2w — 3/4), and
let At = n~® and L = [n'*9A¢2]. For the random paths {9i(O}ie[—1.L],tellnto,nt, | @ssociated with
tilings around (nx,, nt.) and the NBRW paths {q;(t)}ic[ L] .t nto.nt, - DY Lemma 4.2, Lemma 4.4,
and the monotonicity property in Lemma 3.1, we can couple them so that with overwhelming
probability,

max{|q;(t) = G(V)| : i € [-L, L], t € [nto, nty I} = o(n'/*). (4.12)
By Lemmas 4.1 and 4.2, with overwhelming probability, we have

max{q_; (t) — (t — nt,)/t : t € [nty, nt; |} < —n'/*+?,

mln{qL(t) - (t - ntc)/r te [[nt(), ntlﬂ} > n1/4+b’

for a small enough d > 0 depending on &. These ensure that the paths {q;}icj_r, 1) and {qi}ief—r.1
contain all paths around (nx,,nt,) in Q and Q, respectively. Then, the conclusion follows from
Lemma 4.5. |

5 | CUSP UNIVERSALITY FOR NONINTERSECTING BERNOULLI
RANDOM WALKS

In this section, we study NBRW
A ={ailici-mny ¢ [0, co] = ZI-M.NT

with drift parameter 8 € (0,1) and initial configuration A(0) = {d;}icj_m.ny € ZIMN for
M, N = n, as defined in Section 2.6.1. We will assume that {d;};cj_y N7 contains two separated
parts {d;}icj—n,—17 and {d;}icfo n7» SO that cusp forms when the two parts meet, and we prove that
the Pearcey process appears around the cusp location. Our proof uses the fact that both NBRW
and the Pearcey process are determinantal point processes, and we bound the difference between
their kernels (see Proposition 5.3 below).

We now set up the parameters we will use. First, we take ¢ € (0,1/2), and we assume that the
drift parameter 8 € (¢, 1 — ¢). Then, we take small positive constants €1, €5, €3, €4, in the following
way:

(1) €; > 0is any number small enough depending on ¢;

(2) €, > 0is any number small enough depending on ¢, €;;

(3) €3 > 0is any number small enough depending on ¢, €1, €5;
(4) €4 > 0is any number small enough depending on ¢, €1, €, €3.

The precise requirements for the choice of these parameters will be clear in the proofs below. All
other constants (¢, C > 0 and those implicitly used in <, 2, <, @) can depend on these parameters.
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We next describe the assumptions on the initial configuration {d;};cj_p n7. We approximate it
with a density function p, : R — [0,1], when rescaled by n. Take t > 0 satisfying that n=1/2+¢1 <
t < 1. The density function p, can depend on n, and needs to satisfy certain assumptions to form
a cusp at the distance of order nt.

. _3/2
Assumption 5.1. We assume that py =0 on [E_,E, ], for some E_ < E, withE, —E_ <t .
Let {y;}iej—m,ny be the scale n~! quantiles starting from E_ and E, . Namely, we let y, = E, ; for
i€ [1,N]orie [1,M],lety; or y_; satisfy that,

Vi E_
/ po(x)dx =i/n, or / po(x)dx =i/n.
E

+ Vi
We assume that py = 0 on (—o0,y_p) U (¥n, ). In addition, we assume that for i € N, when
)
istn,
_1/6 . _1/6 .
vi—Ey =t (/n)?3, E_—y_ =t (i/n)/>
)
and wheni >t n,i <NorM,
vi—Ey < @/n)¥*,  E_—y_; < (i/n)¥/*
For {d;}ic[—m,n7, We assume that it is approximated by oy, in the following sense:
_1/6 _1/6
s |dy — Exn| S nl/3+et /® and |d_, — E_n| < n'/3*et / ;

* for any x € R, we have

{i e [-M,N] : d; <xn}|—|{i € [-M,N] :y; < x}| S n. (5.1)

51 | Cusp location

We now determine the cusp location of NBRW under Assumption 5.1, in a way indicated by
Lemma 7.6. For this purpose, we consider the Stieltjes transform mg(z) = / 23 4x. Below
Z—X

are some basic properties of m, for z in various regimes with Rez € (E_,E,), which are
straightforward to check.

_ Po(x)
M mi(z)=—-/ (Zo_—x)zdx <Oforanyz e (E_,E,), and

v [ P 1% 1 -4 -
Im(2)| = / mdx == iZM EETaTie i (z=E_)A(E, —2)7V2 (5.2)

_1/6 _1/6
when z € (E_ + n2/3t / JE, —n~2/% / ).
_1/6 _1/6
(2) Whenz € (E_ + n~2/3t / JE, —n2/%t / ), we have

N
Po(x) 1 1
my(z)| £ | —=dx =< = <1, 5.3
imo@ s [ 2 " 2T 53)
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(3) With m”(z) fzp‘)(x)dx we can deduce that m/[(E_ +n_2/3t )>O my (B, —

n_2/3t ) <0, and
ml(@) =<7 (@B )AE, —2) >, (5.4)

_3/2
foranyz € (E_,E,)with(z—E_)A(E,L —2z)<ct / for a small enough constant ¢ > 0.

4) my'(z)=~[

SPO(X) dx < Oforanyz € (E_,E,),so m " is decreasing in (E_, E, ). Moreover,

" 6p (X) 1 J \_,__4
m)'(z) = — (Z_Ox)4 =~ Z yl)“ <7, (5.5)

-3/2
whenever (z — E_)A(E, —2) <1 .

=3/2
(5) Foranyz € CwithRez € (E_,E;)and (Rez—E_)A(E; —Rez) =<t / , we have
2400(x) _—11/2

dx <t . (5.6)

= [ F25

We further denote (see Proposition 7.7 below) f,(z) = emo(z)%. We then find the cusp location,

using formulas inspired by the complex slope (see Lemma 7.6 below).

Lemma 5.2. Thereexistx. € R, t. > 0, and z. € (E_, E,), such that

fO( c)
X, =Z.+t,—F— fo(Zc) 1 (5.7)

£z
R TAER P A G®

o 2z
0 (Zc) - fo(zc) + 1 (59)
In addition, we have
_3/2

te<t, (Ep—z)A(@Z.—E_)=<t , —t.<2z.—X.<0, Xo—2Zete+2.—x.<t,. (510)

The cusp should be present around the location (nx,, nt.). The strategy to prove this lemma is
to first determine z, using (5.9), then ¢, using (5.8), and finally x. using (5.7).

Proof of Lemma 5.2. Note that (5.9) is equivalent to g(z.) = 0, where for z € (E_,E,), g(z) is
defined as

g(2) 1= [(m(2))* + m (2)IBB + (1 — Ble™™®)) — 2(my(2))*B>.

-1/6
Using the above basic properties (5.2), (5.3), and (5.4), we get that g(E_ + n=2/3t / ) >0 and
_2/371/6 . _2/371/6 _2/371/6
g(EL —n~*/°t " )<0. Thus, we can find z. € (E_+n" %>t ,E, —n*/>t ) such that
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g(z.) = 0. For such z, (5.2) and g(z.) = 0 imply that

—~1/2
my(z.) S (mi(z.))* St " ((ze —E_) A(Ey —2z))7
_3/2 —
Then by (5.4), we must have that (z. —E_)A(E, —z.) <t / . So by (5.2), we have mg(zc) =t 1,
and by (5.3), we have m(z,.) < 1. The number ¢, is then determined by (5.8), which yields that

_ (e +1-p)
© O m(z)BA — B)emolz)

= 1.

Finally, x, is solved from (5.7). In particular, (5.7) and the fact that my(z.) <1 imply that
—t, <z,—x.<0and x, — z., t. + z. — x, X t.. O

5.2 | Kernel approximation

As discussed before, for the NBRW A, the set {(a;(t), )}ic|-m N tez,, 18 @ determinantal point
process on Z2. The kernel is given in [45, Theorem 2.1] as

: tp—t
Bernoulli . _ 1Y%+l t1 2
K (b1, X131, X0) = Ty oy, Ty g, (11702 <x1 _ X2>

1 .
Xo—tr+ > +100

61
T =Dl @iy / dz f

Xa—to+ 1 _ico allwpoles
2

w (Z—x+1y,1 1 si.n(n'w) < 1- ﬁ)w_z ﬁ z—d; ’ (5.10)
W—=X1)y41 W—2Zsin(nz) B =y W—di

for any x;,x, € Z and t;,t, € Z,. Here, we recall the Pochhammer symbols and the binomial
coefficients defined at the beginning of Section 2. The integration contours for z and w are as
follows: the z contour is the straight vertical line Re(z) = x, — t, + % traversed upwards, and the
w contour is a positively (counter-clockwise) oriented circle or a union of two circles encircling
all thew poles {x; —t;,x; —t; + 1,...,x; — 1,x;} N {d;}icf—m n7 Of the integrand, except the pole at
W= Z.

With proper scaling, this kernel KBemoulli should be approximated by the Pearcey kernel
KPeareey oiven by (2.12). This is the main task of this section. For this purpose, we denote

po(x) £ t; _

A=t} dx — - , B=(x.—z)t; . (5.12)
e e oy el e TR

By (5.10), we have B > 0 and B < 1. We also have A > 0 and A =< 1, which will be proved later as

Lemma 5.6. Then, Theorem 2.9 is an immediate consequence of the next proposition.

Proposition 5.3. Suppose Assumption 5.1 holds. Take x. € R and t. > 0 from Lemma 5.2,
and define A,B as in Equation (5.12). Take any t1,75,¥1,¥2 €R, X1,%, € Z, and t,t, € Z,
such that |tl, |01yl 172l 1, and t =nt. +n'?1 + OQ1), t, = nt. +n'/?1, + OQ1),
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(x1 —t1)/n d_i/n do/n x1/n
7tc E_ Ze E+ 0

FIGURE 7 Anillustration of the initial configuration {d;};cj_s .~y (blue), and the locations of E_, E,, z,,
—t., 0,and (%, — t;)/n, x; /n.

X, = nx, + B2ty + n'/*y; + OQ1), x, = nx. + Bn'/2t, + n'/*y, + OQ1). Then, we have

|(_1)xl—szx1—x2(1 _ B)tl—t2+x2—x1KBernoulli(t1, Xq;t, X2) _ 1
\/2n'/4A1/4B(1 - B)
x KPearcey 0 n . r2 Bl
2AY2B(1-B) 1/241/4B(1 — B) 2AY?B(1-B) /2A41/*B(1 — B)

ile =1 and ty =t or |T1 - Tzl >n=S,

The rest of this section is devoted to proving this proposition. Without loss of generality, below
we assume that x. = 0, by shifting p, and {d;}icj_p,n]- Then by (5.10) and Lemma 5.6 below,

_3/2
wehave —t. < E_<z.<E, <0OandE,,E_+t.<t,andE, —z.,z. —E_ <t / . Therefore, we
have (see Figure 7)

(Xl -4+ 1)/}’1, (Xz -t + 1)/n < d_l/n <z.< do/n < (Xl - 1)/”, (Xz - 1)/n (513)

Our main task is now to analyze the contour integral in (5.11). By separating the terms contain-
ing z or w, we need to study the integral of f(z, w) = ﬁ exp(nD,(z/n) — nD,(w/n)), with the same
contours. Here, D; and D, are two key functions to be defined in Section 5.3. These functions have
three critical points near z.. From that, we will show that D,(z) — D;(z.) and D,(z) — D,(z..) are
approximately —t;*A(z — z,.)* around z.. In light of this, we then use the steepest descent method
as follows: we deform the contours of z and w, so that z/n passes through z, vertically, and w/n
passes through z, in the e™1/4, ¢371/4 ¢57i/4 ¢771/4 directions, and these contours roughly follow
the steepest descent curves of Re(D,) and Re(D;) away from z.. Then, for the integral of f(z, w),
the main contribution comes from the part of the contours where |z/n — z.| and |w/n — z.| are
of order O(t,n~/#). We will later call this part the “inner part,” and the remaining part the “outer
part.” We will do a careful asymptotic analysis of the inner part to obtain the Pearcey kernel (2.12),
and show that (under appropriate scaling) the outer part decays to zero as n — oo.

As already mentioned in the introduction, the steepest descent method has been extensively
used to do asymptotic analysis for determinantal point processes. In particular, it has been used in
[57] around a triple critical point to obtain the extended Pearcey kernel for weighted random tilings
of special domains; in [45], it was used to prove convergence to the extended discrete Sine kernel in
the bulk of NBRW. Our task here is more intricate than these previous works, due to the following
reasons. (1) Compared to [57], we work with general initial configurations rather than special ones.
(2) Compared to [45] where the key saddle points are a pair of complex conjugate critical points
away from the real line, here we need to handle three critical points near z. € R, which can lead
to more complicated behaviors for D; and D,. (3) The fact that we seek for a “small distance” result
(i.e., having a cusp at time nt., which is allowed to be much smaller than n) adds to the technical
difficulty. Therefore, delicate computations are needed to achieve the desired approximation of
D; and D, in the inner part of the contours. For the outer part of the contours, which are taken to
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be the steepest descent curves of Re D; and Re D, outside a ball of radius t,n~'/* around z,, it is

hard to precisely describe them, as controlling the behavior of D;, D, is challenging in this region.

-3/2
For example, at distance < t / from z,, there already exist singular points (i.e., d_; /n and d, /n).
In the next two subsections, we will introduce and analyze the key functions Dy, D,, and study
their steepest descent curves. Using them, we finish the proof of Proposition 5.3 in Sections 5.5
and 5.6.

5.3 | Key functions

We now define two functions D, and Dy, through the following expressions:

N —Xp+tr—1 .
D,(z) = % Z log <z — %) + % Z log <z + %) — %log(sin(nnz)) + zlog(B/(1 - B)),

i=—M i=—xy+1
N di —x1+t .
D,(z) = % Z log <z - z) + % Z log (z + %) — %log(sin(n'nz)) + zlog(B/(1 — B)).
i=—M i

We note that these expressions define D, and D; as holomorphic functions in the upper-half
complex plane H, up to adding a pure imaginary constant. They are also analytically extended
to R\ E(D,) and R \ E(D;), respectively, where

E(D,) = nH({di}_,, N [x2 =t + Lxo = 1) U ([—00, %, — o] U [[xa, 0o \ {di} )],
E(D) =n{d3_,, nlx —t;,x DU ([—o0,x; —t; = 1] U [[x; + L, 0] \ {d}}Y._, )]

are the sets of poles of D’2 and D’l, respectively. We note that Im D, (respectively, Im D) is constant
in each interval of R \ E(D,) (respectively, R \ E(D;)); in particular, Im D, and Im D; are both
constant in (d_; /n, dy/n). We then choose the pure imaginary constants for D, and D, such that
forz e R,

N —Xy+tp—1

1 d; 1 i 1 .
D,(2) = - z log |z — w + " Z log |z + ) s log(sin(znz)) + zlog(B/(1 — B)),
i=—M i:—X2+1
N —X1+t;

d; 1
Z—E‘-l'ﬁ Z log

i=—X1

z+ %‘ - % log(sin(zrnz)) + zlog(B/(1 — B)).

In particular, under this choice, we have ImD, = ImD; =0 in (d_;/n,dy/n). Finally, we
analytically extend D, and D, to the lower-half plane H™ from H U (d_; /n, dy/n).
Now, by a change of variables of z = z/n and w = w/n, we can rewrite (5.11) as

. tp—t
Bernoull . = I
KBernoullicy 'y -t %x,) = 1x12X21t1>t2(_1)X1 Xy + (Xl 3 x2>
(xz—t2+%>/n+i°°
t;! t—t;—1 d
e WL L g / dz }Z{ 2 exp(nD,(z) — nD; (), (5.14)

(ty, — 1) (27i)? w—2z
(Xz—tz-{-%)/ﬂ—ioo

allwpoles

25UI SUOWI0)) aANEa1) 31qeatidde Ay Aq PaUIAS AIE S[ONIE V() (SN JO SA[NI 10 ATRIQIT SUIUQ AS[IAY O (SUONIPUOD-PUE-SWLIAYW0d* ATIM ATeIqIoUIu0,/:sdY) SUOMIPUOY) PUE SULISL o 93§ [p707/90/€ 1] U0 ATe1qr Suiuo Kofim ‘ANSIoAtun piouers £q 2077z edo/Z001°01/10p/woo" KayimATeiquaut[uoy/:sdy woxy papeofumod 0 “T1€0L601



28 | HUANG ET AL.

where the z contour is the straight vertical line Rez = (x2 -t + %) /n traversed upwards, and

the w contour encircles all the w poles, except the pole at w = z.
For the rest of this subsection, we derive some estimates of D; and D, near z., by approximating
them with some easier-to-analyze functions in several steps.

5.3.1 | The function G

It would be more convenient to work with a “continuous version” of the functions D, and D,,
defined as

o0

E_
G(z) = / log(z — x)po(x)dx + / log(x — Z)pp(x)dx (5.15)
—00 E+ )

+(z+t.)log(z + t.) — zlog(—z) + zlog(B /(1 — B)).

We first define this function G for z € (E_, E, ), and then analytically extend it to C \ ((—o0, E_] U
[E,,)). A key advantage of G is that, while each of D; and D, should have three critical points
very close to z.., G has a triple critical point precisely at z.., due to our choice of (x,, t.) in Lemma 5.2.

Lemma 5.4. We have G'(z,) = G”(z.) = G""'(z.) = 0, and G"""(z.) = —24t;*A.

Proof. The fact that G'(z,) = G"(z.) = G"’(z,) = 0 is follows straightforwardly from (5.7), (5.8),
and (5.9). Also, we have

2 2 6p0(x) 2 2
"Mz =m"(z) 4 —— — 2 = _ T3
@=m @O iy T RO
50 G'""(z,) = —24t-*A by (5.12). =

Lemma 5.4 indicates that, when |z — z,| is small, we can approximate G(z) by G(z,) — t,*A(z —
z.)t

/2

. . 3
Lemma 5.5. There exists a constant ¢ > 0, such that for any z € C with |z — z.| < ct.’”, we have

G'(z)+4t*A(z—z.)* tc_u/zlz -z |4,

G(z) — G(z.) + t;*A(z — z.)* S tc_n/2|z —z.|°.

Proof. Itsuffices to bound the fifth derivative of G. Forany z € C \ ((—o0, E_] U [E,, 0)), we have

6 6

G"(z) = m""(z) — + 2
(2) = my"(2) (t.+2)*  z*

Take any z € C with |z —2z.| < cts/z. For a sufficiently small ¢, we have (Re(z) —E_) A
(E; —Re(2)) = tg/ 2 by (5.10). Then, with (5.6) and (5.10), we get that m/"’(z) $t. /2 and

G f m + % S t-*. These two estimates imply that G”"""'(z) St 1/ ? which give the bound
+z z
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G"(z)-G""(z,) S t;ll/zlz —z.| for any z € C with |z —z.| < ctg/z. Then, the conclusion

follows from the Taylor expansion of G(z) and Lemma 5.4. O
We next use Lemma 5.4 to deduce some results that were mentioned earlier.

Lemma5.6. We have A > 0 and A < 1. In addition, we have E, < 0,E_ > —t.,andE ,E_+t. 2
t.

4
Proof. By (5.5) and (5.10), we have m"(z.) < 0and m/"(z.) <t .If the following estimate holds,

3
' (z) > 3

2 2
—= =], (5.16)
(tc + Zc)3 ch]

——4
then G""”(z,) < 0 and G""(z,) <t , which gives that A > 0and A =< 1.
Otherwise, if (5.16) fails, then we must have ¢ < t, < 1. Define

“ pp(x) “ po(x)
U_ = — = dx, V_= —dx,
xR o —xp
Po(x) po(x)
u,= | 2 dx, v,= [
* -z 7 (x— 20

Z; Zc

For simplicity of notations, we denote P = (t. + z,)~! and Q = —z_'!, which are positive by (5.10).
Then, equations G’'(z,) = 0 and G""’(z,) = 0 can be written as

U_.+U,=P+Q, 2V_-2V,=P>-Q> (5.17)

Also, denote G_ =2V_ —U? and G, =2V, — U2 (which are positive by Lemma 5.7 below).
Then,

G.—-G,=P>-Q*-U2+U. (5.18)
By Lemma 5.7 below, using V2 > U /4 + U2G_/2 and V3 > U} /4 + U3G, /2, we get that

—G"(z,) > (U2 + U3)/2+ 6(V2/U_+V3/U,) - 2P* — 2Q°
(5.19)
>2(U2 +U3)+3(U_G_+U,G,) —2P3 —2Q°.

Without loss of generality, we assume that P < Q. If U_ < P or U_ > Q, we have —G""'(z,) >
3U_G_ + 3U,G,. Otherwise, we have U_, U, € (P, Q). Then, we can write the last line of (5.19)
as
2U+U; —P2—Q3)+3U, (G, —G_)+3(U_+U,)G_=2(U_-P)
(U2+U_P+P>-U?-U,Q-Q*+3U,(U_+U)+3(U_+U,)G_>3U_+U,)G_,

where we used (5.18) and the first identity in (5.17) in the first step, and the second step simply uses
P >0andQ < U_ + U,. From Assumption 5.1 and (5.10), it is straightforward to check that simi-

—1
larly to (5.2), wehave U_, U, <t .Using Lemma 5.7 below and the fact that p,, is supported in an
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—1 —1
order 1interval, we obtain that G_ > U_ >t and G, 2 U, >t .Thus, we have -G""(z,) > 0

-2 -
and —G""'(z,) 2t . Since we have assumed that ¢ < t, < 1, we still get that A > 0 and A < 1.
We now deduce that E, < 0 with E, > t. Otherwise, using that py(x) € [0, 1] and the growth
dx—QandV+<fO —L _dx=

(x—2.)? (x—2.)3

Q?/2. Therefore, by (5.17), we have U_ > P while 2V_ < P2, contradicting Lemma 5.7 below.
Similarly, we can deduce that E_ > —t, with E_ +t, > t. O

of py in Assumption 5.1, we can deduce that U, < fo

The following elementary lemma is used in the proof of Lemma 5.6.

Lemma 5.7. Take anyr > 0 and functionn : (0,r) — [0,1], denote U = fr n(x)dx LV = f’ n(x)dx

and W = [ . Then, we have 2V — U? > 2Ur ' and W > U3/12 + V2/U

>

r r;(x)dx

Proof. Note thatn — /Or %dx, fori € {2, 3,4}, are linear functionals. It would then be straight-
forward to deduce that, given U < oo, V is minimized when 7 is the indicator function of an
interval (a,r), for some 0 < a < r. In this case, we have U = a™' —rland V = a=2/2 —r2/2,
s02V —U? =2(ar)™! —2r2 = 2Ur L.

Similarly, given U,V < oo, W is minimized when 7 is the characteristic function of an inter-
val (a,b), for some 0 < a <b < oo. Then, we have U =a"' —b~!, V=(a?-b"2)/2, W =
(a=® = b73%)/3. These imply thata™! = U/2+V/U and b=' = -U/2+V/U,so W = U3/12 +
V2/U. =

5.3.2 | Discrete approximation

We next use the above-obtained information on G to extract properties of D, and D;. As a first
step, we discretize G. For the rest of this section, we denote t. = |t.n|. Define

N
G(z) = 1 2 log <z - —> Z log <z + ) _1 log(sin(znz)) + zlog(B/(1 — B)).
n &~ n
(5.20)
As in the case of D, and Dy, this expression defines a holomorphic function on H, up to adding a
pure imaginary constant, and it can be analytically extended to R \ E(G) from H, where

E(G) = n7![(id}Y _,, N[t +1,0) U ((—o0, —t. ] U[1,00) \ {d;}Y _, )]

We then choose the pure imaginary constant to ensure ImG = 0 in the interval (d_; /n, dy/n).
Finally, we analytically extend G to H™ from HU (d_,/n,dy/n). For the next two lemmas, we
show that G is a good approximation of G, by bounding the difference between their derivatives.

Lemma 5.8. Forany z € H, we have

— n-ltes
G'(2)-G(2) 5 - :
Inf xe(—c0,5_v(d_y /)ULE, Ay /n),00) 1X = 21
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—/
Proof. By (5.15) and (5.20), we can write G'(z) — G (z) forz € H as

N te—1

/ 5 O(x)d +log(z + t.) — log(—z) — _Z - ; nz 1+ + 7 cot(znz), G20

nz—di

which is defined first for (d_; /n,dy/n) N (E_, E, ), and then analytically extended to H. We note
that

. 1
mwcot(rnz) = lim -, (5.22)
m—oo nz+1
ie-m,m]|
for any z € H, so we have
t.—1
log(z + t,) — log(—z) — +7rcot7mz|
[tog(z + 1) —log(=2) = 3, =25+ cotenz)
m -1 m
= lim | - dx — dx + + |
m— oo / nz+x /m nz+x Z nz+i l_ztnz+l
¢ —tc
-1 i+1 1 i+nt.—t.+1 1
< 2 | / dx — | / dx — - |
) . nz+x nz+1 nz+x nz+i
i=—o0 i +nt.—t,
-1 [«3]
<) - - S+ ) - > S — : :
i infiepiiy Inz + x2S inf i) Inz + x]2 7 ninfie o, /nujoe) 1% = 2

We next bound the remaining terms in (5.21). Recall the quantiles y;, i € [—-M, N, defined in
Assumption 5.1. We have

() N-1 Vi+1
|/p0x nz—d ’_‘ 2 / po(x)<zix_z—}ji/n>dx‘+|ﬁ"

(5.23)

Foreachi € [-M,N — 1] and x € [y;,¥i41], we have

) 1 B 1 ‘</xv(di/”) dy
Z—X Z—di/n - xA(d;/n) |Z—y|2'

Thus, (5.23) can be bounded by

N-1 /ylfﬂv(d,-/n) dy

1
+ 5.24
SR re A e G2

= nz —dy
where we denote y;, = E_ (in contrast to y, = E, ) and y; = y; fori € [-M,N]| \ {0}.

For each i € [-M,N] and y € [y; /\(di/n),)/lf+1 Vv (d;/n)], we have either y; <y <d;/n or
di/n<y< ylfﬂ. We note that by (5.1), for any y € (—o0, E_ V (d_; /n)] U [E; A (dy/n), ), we
have

Hie [-M,N-1] 1y, <y<d/n}|+li€ [-M,N-1] : di/n <y <y } $n%
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and fory € (E_ v (d_;/n), E, A (dy/n)) we have
i€ [-M,N—=1] :y; <y <di/n}|+|{i€ [-M,N—1] : d;/n<y <y }=0.

Thus, we can further bound (5.24) by

/‘ n—1+€4dy | 1 ’
(—o0E_V(d_1 /WIU[Es A(do/m).c0) 12— X1 1Nz —dy

so the conclusion follows. O

Combining Lemmas 5.5 and 5.8, we can deduce the following result.

/2

Lemma 5.9. Foranyz € Cwith |z —z.| < ct? , we have that

G(2) — Gzo) + 14 Az — 2)* S 1. 21z = 2eS 4 m 451 P z — 2.
—/ —

Proof. By Lemma 5.8, for any z € C with |z — z,| < ctf/z, we have |G (z) — G'(z)| S n~ e, 32,
Then, by integrating over z, we get |G(z) — G(z) — G(z..) + G(z.)| < n~1+e tc_3/2|z — z.|. Together
with Lemma 5.5, this concludes the proof. O
5.3.3 | Estimates of D, and D,
We next show that G is close to D; and D,.
Lemma 5.10. Forany z € C with |z — z.| < ct., we have

— —
G (z) - D|(2), G (2) —Dy(z) S n= /47t + n™V/21 2|z — 2.

Proof. For z € C with |z — z.| < ct., we can write that

te—1 —Xy+t—1

— , 1 1
G(Z)_DZ(Z)ZZnZ+i_ 2 nz+i’

i=0 i=—xy+1

Since x,,t, —t. < n'/? and |z — z,| < ct. (s0 2, z + t, < t, according to (5.10)), we estimate it as
0V(—xp+1)
nz—x,+1 nz —x, +t d
10g(—2>—log<#>+(9 / —y2
nz nz +t. OA(=xp+1)  1Z+ Y]

teV(=xz+t3)
d - 1 t
Lo </ y ) _log ((nz Xy + 1)(nz + c)) + (9(n_3/2tc_2).

LA(—xo+ty)  IMZ T+ VI nz(nz —x, +t,)

We note that

log (nz — %y + 1)(nz + t,) “1og(1+ nz(t, —t, + 1) + (—=x, + it, ‘
nz(nz — x, + t,) nz(nz — x, + t,)
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Again, using that x,,t, —t, S n'/? and z,z + t, < t., we get that

nz.(t, —t, + 1) + (—x, + )t,

n2t?

+ O 22z — z,|) = O3/ + 022 |z — z,)),
where we used that x, + %(tz —t.) =X, — B(t, —t,) < n'/*. Thus, we have

—
G (z) = Di(2) S n=3/22 + n=3/4 7 + n7V21 %z — 2.

- —
Since n=1/2*¢1 <t < t., we have n=3/2t72 < n=3/4¢71, which gives the desired bound for G (z) —
—/
D/(2). The bound for G (z) — D/(z) is proved similarly. O

Putting together Lemmas 5.5, 5.8, and 5.10, we get the following estimate for D; and D’2 near z..

/2

Lemma 5.11. Forany z € Cwith |z — z.| < ct? , we have

D|(2) + 4t *A(z — 2.), Dy(2) + 4. *A(z — 2.)* Sn=3/* 7 + n~ V2 z — 2. + tc_n/2|z -z |*%

/

ey =32 3k s _ - .
Note that here we use that n=1*%¢t, /= < n=3/4¢7! (since n~1/2*¢1 <t < t,, and ¢, is chosen

small enough depending on €;).
534 | Away from z,

So far, we have obtained estimates on D’1 and D; near z., using the approximations G and G. We
will also need some estimates on D’1 and D’2 away from z., which are stated as follows.

Lemma 5.12. For any z € H, suppose that x, is the element in E(D,) with the smallest |z — x..|.
Then, we have that

D(2) — < logn,

-5
n(z — x,)
for some s € {1, —1}, depending on the residue of D; at x,. A similar estimate holds for D’l.

Proof. We only prove the bound for D’Z(z), and the bound for D’l(z) follows from a similar
argument. With the definition of D, and (5.22), we can write that

N 1 —Xp+t—1 1
!/ —_ —_ —
D(z) = i_ZM ot i_gﬂ — — 7 eot(mnz) +log(6/(1 - §))
- -T2

N X2 m
= Z nz 1_ 4 A <i;m nzl+ i+ Y nzl+ l_) +1og(B/(1—B)).  (5.25)

25UI SUOWI0)) aANEa1) 31qeatidde Ay Aq PaUIAS AIE S[ONIE V() (SN JO SA[NI 10 ATRIQIT SUIUQ AS[IAY O (SUONIPUOD-PUE-SWLIAYW0d* ATIM ATeIqIoUIu0,/:sdY) SUOMIPUOY) PUE SULISL o 93§ [p707/90/€ 1] U0 ATe1qr Suiuo Kofim ‘ANSIoAtun piouers £q 2077z edo/Z001°01/10p/woo" KayimATeiquaut[uoy/:sdy woxy papeofumod 0 “T1€0L601



34 | HUANG ET AL.

Thus, we have

’ 1
Py~ s | = PR

XEE(D2)N(—Cp,Co),X#x

+ lim

m-—oo

— |+ 1106/ = B,

ie[[-m,ml]),|i|>Con,i#x.n

where C, > 0 is a large enough constant so that —Cyn < 2d_); < 2dy < Cyn. The first term is
bounded by

[2Cyn]

1
—— < S logn.
lz—x| ~ gl‘ i—-1/27 8

XE€E(D2)N(—=Cp,Co),x#x,

1
nz —i /nz+y </|nz+y|2>

where I is the union of [i — 1,i] for all i € [-m, m], |i| > Cyn,i < x,n, and [i,i + 1] for all i €
[—m,m], |i| = Cyn,i > x,n. It is straightforward to check that

d d
lim /_y = O(logn), /—y =0(),
m—co [ NZ +y 1 Inz+y|?

and the conclusion follows. O

‘We also have that

ie[-m,ml]),|i|>Con,i#x.n

When |z| is large, we can directly approximate D;(z) and D,(z) using the linear function z
z[i + log(B/(1 — 8))], as follows.

Lemma 5.13. For any z € Hwith |z| > n, we have

D1(z) — z[7i + log(8/(1 — B))], D2(2) — z[i + log(B/(1 — B))]

<S[-n"t 1og(r_nizn |nz —i])] v 0+ log|z|.
e

Proof. We only prove the bound for D,, while the proof for D, is similar. Since M,N = n,
ld_pl, ldn| = 1, [%;], |t2] S 1, and |z| > n, we have

1 —Xp+t—1 i
t -2 t )<
Z log <z ) . Z log <z + n) Slog|z|, (5.26)

l*—M i:—X2+1
where the left-hand side is defined to be holomorphic in H and real near (2n)~!. Next,
we consider —%log(sin(nnZ)), which is defined first for z € (0,n™!), and then analytically
extended to C\ ((—o0,0] U [n}, )). We note that %log(sin(n’nz)) + zrmi is periodic: for any
z € H, we have % log(sin(nnz)) + zzi = % log(sin(zn(z + 2n~1))) + (z + 2n~Y)xi. This gives
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Im [i log(sin(nz)) + zni] < n~!forany z € H. For Re [% log(sin(wnz)) + zn’i], itis equal to

l . enzis _ l e27rinz -1
nlog(lsm(nnz)e h= nlog '—Zi ’ ,

which is of order O(n~!) whenIm z > n~!/5, and of order O(n~'(1 — log(min,c7 |nz — i|))) when
0 < Im(z) < n~!/5. Thus, we conclude that for any z € H,

% log(sin(nz)) + zmi < [-n~! log(r_niél [nz —iD]vo+nl
e

Finally, to get D, from the left-hand side of (5.26) (which is taken to be real near (2n)~!') and
—% log(sin(rnz)) (which is taken to be real in (0, n~1)), one only needs to add a pure imaginary
number, which is ©(1) since M, N < n. Therefore, the conclusion follows. O

5.4 | Contour deformation

To obtain the estimates of kernels and prove Proposition 5.3, we will use the steepest descent
method. For this purpose, we need to deform the contours for K2eroulli in (5.14). In this subsection,
we construct these deformed contours.

From the above computations on D; and D,, we expect to deform the contours so that both
pass through z., and the integrand in (5.14) decays fast for z and w away from z... Specifically, we
consider the contours inside and outside {z € C : |z — z,.| < n~'/**2¢ } separately. (Recall that ¢,
is one of the parameters defined at the beginning of this section.) We now record a useful lemma.

Lemma 5.14. Forany z € C with |z — z,| < n='/**<2t, we have

D) (2) + 4t *A(z — z.)%, D)(2) + 41, *A(z — z.)* S n=3/*F e,

Dl(z) - Dl(zc) + tc_4A(Z - ZC)45 DZ(Z) - DZ(ZC) + tc_4A(Z - Zc)4 S n_1+2€2-

The first estimate is directly implied by Lemma 5.11 and the facts that n='/2*¢1 < < t.. The
second estimate is obtained by integrating over z.

For the rest of this section, we use [z; — -+ — z; ] to denote the contour obtained by connecting
z1, ..., 2 € Csequentially using straight line segments. In such notations, we may also take z; or
2, to be coe”® for some 6 € R, in which case the first or last segment is an infinite straight line
in the corresponding direction. Our first step is the following deformation.

Lemma 5.15. For (5.14), the contours can be replaced by the followings: the w contour is the union

of

[z, = z. 4 ™/ 4p~ V4 &t —1 - z, + 7/ 4p~ 4+ 5 7], (5.27)

[z, = z. + 7/ 4p~ V4t 51 o gz 4™/ 4An~ /4 o 7, (5.28)

and the z contour is the straight vertical line passing through z.., traversed upwards.
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Proof. We first assume that the contour of w in (5.14) is taken to be small circles around the w poles.
Then we fix w and deform the contour of z, from the vertical line through (x, — t, + 1/2)/n to the
vertical line through z,.. It is straightforward to check that, by Lemma 5.13, the integral over z along
[(x, —t; +1/2)/n +iX - z. +iX] for some X € R would — 0 as |X| - . Thus, it remains to
consider the poles of z.

We note that there is no pole of z in [(x, — t; + 1/2)/n, z.], except for w (when w is in a small
circle around a point in this interval). For the residue at z = w, it can be written as a coefficient
multiplying

(nMw —x3 + 1),

(nw = X1t 41

allwpoles in[(x,—ty+1/2)/n,z.]

which vanishes since the integrand has no w pole in [(x, — t, + 1/2)/n, z.]. Thus, we are done
with deforming the contour of z.

For w, the contours (5.27) and (5.28) enclose all the w poles ({x; — t;,X; —t; + 1,...,X; — 1, x;} N
{d_yp» ..., dy})/n, since —nt, — n < x; —t; < x; < n. Hence, w can be integrated along the union
of (5.27) and (5.28). O

5.41 | Steepest descent curves

For the part of the contours (5.27), (5.28) and {z € C : Re(z) = z.} outside {z € C : |z — z.| <
n~1/4*e¢ 1 we will further deform them to follow the steepest descent curves of Re(D;) and
Re(D,). For this purpose, we need to analyze the critical points of D; and D,. Define

I} = (—00,2, — n~ Y4t JU [z, + n~ /%%, 00), T, ={z : Im(2) > 0, |z — z.| = n~ /42t },

andletI' =T, UT,.Let U = {z : Im(z) > 0, |z — z.| > n~1/4*<2¢}. Note ' is the boundary of U.
Lemma 5.16. The functions D, and D, have no critical point in the interior of U.

Proof. Recall that D’Z(z) can be written as (5.25) for z € H. By Hurwitz’s theorem, it suffices to
show that for all large enough m,

N —X m

Z nz—d, Z nz+i 2 nz+i+10gm (5.29)

i=—M Li=—m i=—xy+t,

has no zero in the interior of U. For this purpose, we multiply (5.29) by ], CED,)N[—m/nm /n](z —
X), and obtain a polynomial with degree at most |E(D,) N [—m/n,m/n]|. So (5.29) has at most
|E(D,) N [—m/n, m/n]| many zeros.

Consider the poles of (5.29), that is, E(D,) N [—-m/n,m/n], which divide R into |E(D,) N
[-m/n,m/n]| + 1 many intervals. By (5.13), except for at most four of these intervals (the left-
most and right-most open intervals, and two intervals in the middle where the residues of the poles
change signs), there is at least one zero in each interval. By Rouché’s theorem and Lemma 5.14,
we see that there are precisely three zeros inside {z € C : |z — z.| < n=1/%+%2¢_}. Now, we have
found at least |E(D,) N [-m/n, m/n]| many zeros of (5.29)inR U {z € C : |z — z,| < n~/*+2¢ }.
Hence, D’2 has no zero in the interior of U.

The statement for D, follows a similar argument. O
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Py

2= (x2 — t2)/n d_i/n % do/n X2/M e+

\

FIGURE 8 Anillustration of the set {z € C \ E(D,) : Im(D,(z)) =0}nU.

Since Re(D,) and Im(D,) are harmonic conjugates, the steepest descent curves of Re(D,)
starting from around z, are given by the set Im D, = 0, which can be described as follows.

Lemma 5.17. The set A ={z € C\ E(D,) : Im(D,(z)) = 0} N U contains the following parts
(cf. Figure 8):

@) I''n(d_y/n,dy/n);
(2) Two open intervals P, _ C (—c0, (X, —t)/n) and P, , C (X,/n, o0), defined as

Py i=fxeWAx<-t)/n: {-M<i<-1:d>xn}{=[{ieZ:xn<i<x—t}}

Py i =fxeWx>x/n: {0<i<N:di<xn}|=[{ieZ: x<i<xn}}

By (5.13), P, _ and P, . are nonempty finite intervals.

3) Three disjoint, smooth, and self-avoiding curves ¢, ;, € 22 and €, 3, such that €, is from z, +
elip~l/4er e T, tosomez_ € P,_, €43 is from z. + €%n~1 /4 <21, € T, to some z, € P, .,
and ¢, is from z, + e%2n~1/**<21 € T, to co. Here, 6,,0,,0; € R and satisfy

65 — 7 /41,16, — 7/2|, 16, — 37 /4| S n%2, (5.30)
Except for the endpoints, these curves (€, 1, 5, and € 3) are contained in the interior of U.

Starting from I, Re D, is strictly decreasing along ¢ , ,, and strictly increasing along each of ¢, ; and
;3. Moreover, we have

D,(z, + eieln_1/4+€2tc) —Dy(z.) — An~lH4e < plv2e
D,(z. + e®2n~ /42t ) — Dy(z,) + An~1H4e2 < p1t2e, (5.31)
DZ(ZC + ei93 n—1/4+€2tc) _ DZ(ZC) — An~1+4e < n-1t2e

Similar statements hold for Dy and the set{z € C \ E(D;) : Im(D;(z)) = 0}n U.

Proof. 1t is straightforward to check (from the definition of D,) that for z € I', n (d_; /n,dy/n) or
z € P,_UP,,,wehave Im(D,(z)) = 0, and Im(D,(z)) # 0 for all other z € I'; \ E(D,).
We next consider the half-circle I'.. Define the function f : [0,7] — R as

f : 6 Im(Dy(z, + en—1/4+e2t ),
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Note that f(0) = f(«) = 0. By Lemma 5.14, we have
f1(6) + 4cos(40)n~1+424 < p=lt2e,

With this estimate, we can conclude that f has five zeros 0 < 65 < 8, < 8; < 7, and they satisfy
(5.30) and (5.31). Using Lemma 5.14 again, we get that

D/2(ZC + ei93 n—1/4+€2tc) — _4Ae3iﬂ/4n—3/4+3€2 [C—l(l + (9(1’1_252)),
D)z, +€2n71/421,) = —4AeMT /23431 (1 4 O(n %)), (5.32)
Dlz(zc + ei® n_1/4+€2t5) = _4Aei7r/4n—3/4+3€2tc—1(1 +O(n~22)).

It is straightforward to check that D;’ >0onP,_ and P, ., so D, has a unique critical point
inside each of P, _ and P, ,, and we denote them by z_ and z., respectively.

As D, is holomorphic and contains no critical point in the interior of U by Lemma 5.16, for each
z, in the interior of U, if Im(D,(z,.)) = 0, one can then take the steepest descent curve of Re D,
from z... Along this curve Im D, = 0, and Re D, is strictly monotone due to the absence of critical
points. This curve inside U is smooth and self-avoiding; in each direction, it either ends at one of
z. +eoip V4 7z 4 elpTl/4ey 7 4 el®p~1/4+at | or ends at a critical point of D, in P, _
or P, (i.e.,oneof z_ and z, ), or goes to co. All such curves do not intersect each other.

Consider the ReD, steepest descent curves starting from z, 4 el®1n=1/4+e¢
z, +e2p~/4*ey g 4 el%p1/4er and z_, z,, towards the interior of U. Due to the
above estimates (5.32) on D), and the fact DY > 0 on P,_ and P, ., we observe that ReD, is
decreasing along the curves from z, + ei®2n=1/4*2¢_ and z_, z,, while Re D, is increasing along
the curves from z, + e®1n=1/4+%2¢_ and z, 4 €% n~1/4+e2¢

By Lemma 5.13, we have that any Im D, = 0 curve in the ascending direction of Re D, cannot
g0 to oo in U, and thus must terminate at one of z, + el%2n=1/4*%2¢_ z_, z. . These imply that the
Re D, steepest descent curves from z, + ei®2n=1/4*¢2¢, z_, 7z, are all such Im D, = 0 curves, and
we denote them by ¢, ,, €51, and ¢ 5.

For the Re(D,) steepest descent curves from z, + e®1n=1/4*¢2¢, and z, + el%n~1/4*+2¢,, they
cannot end at z. + eif2py=1/4+¢; t.. This is because, by (5.31), we have that

DZ(ZC + ei61 n_1/4+€2tc) _ DZ(ZC + eiszn—1/4+€2tc) _ 2An—1+4€2 5 n—1+2€2,

s0 Dy(z. + €91n V421 > Dy(z, + €1%n1/4* 42t ); similarly, we have Dy(z, + el%n=1/4+e ) >
D,(z, + ei%n~1/4+<2¢ ). Thus, we conclude that ¢ 2,2 must go to oo in U. Since ¢, ; does not inter-
sect ¢, or ¢, 5 in the interior of U, we must have that ¢, connects z_ and elf1p~1/4+e2t and
¢, 3 connects z, and el%n~1/4*ep O

For the convenience of later applications, for the similar statement on D;, we denote the
corresponding intervals as P; _ and P, and the corresponding curves as ¢;; from z, +
elin~l/4ep e T, tosome w_ € P, _, ¢, 5 from z, + ¢¥3n~1/4*<¢, € T, to some w, € P, ,,and
¢, fromz, + et®2p~1/4*2t e T, to 0. Here, 9;, 9,, 95 are real numbers satisfying that

|95 — /4|, |9, — /2|, |9, — 37 /4| S n2,

‘We next provide a technical lemma that will be used later.
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Lemma 5.18. The curve ¢, (respectively, €1,, €13, €51, €22, €53) is disjoint from the n-3
neighborhood of R \ Py _ (respectively, R, R\ P ., R\ P, _, R, R\ P, ).

Proof. We first show that ¢, ; is disjoint from the n~2 neighborhood of E(D,). For any x, € E(D,),
take z € H such that |z — x| < 2i By Lemma 5.12, we have that
n

’ _ S
Dz(z) - n

—(z ) + O(logn),

where s € {1, -1}, depending on the residue of D/, at x,.. Without loss of generality, assume that
Rez > x,. Then, by integrating over z, we get that

Im(D,(2)) — Im(D,(x, + (2n)™1)) = n-'sarg(z — x,) + O(logn - Im z),

where arg takes value in (0,7/2] as z — x,, € H and Re(z — x,,) > 0. Note that Imz < arg(z —
x,)|z — x.|. Hence, when |z — x,.| < n~2, we have that

Im(D,(z)) — Im(D,(x,. + 2n)™1)) = n~sarg(z — x,)(1 + O(log(n)/n)) € (—rn~, 7n=1) \ {0}

Since x, +(2n)"! € R, we have Im(D,(x,+ (2n)™')) € zn~'Z. Thus, we conclude that
Im(D,(z)) ¢ 7n~'Z whenever |z — x,| < n~2. This implies that ¢, is at least n=2 away from
E(D,).

For any z € H and y € R, by Lemma 5.12, integrating D;(z) along a curve connecting y and z
yields that

|z =yl
inf g,y n(lz — x| Aly —xI)

Dy(2) - D(») S +log(n)|z — yl. (5.33)

If z is in the n=> neighborhood of R \ (P, _ UP, U(d_;/n,dy/n)) but not the n~2 neighbor-
hood of E(D,), then we must have that inf .cpp,) | Rez — x| 2 n?andReze R\ (P,_UP,, U
(d_;/n,do/n)), which give that | Im(D,(Re z))| > 7n~'. Then, (5.33) for y = Rez implies that
|D,(z) — D,(Re z)| S n~2, so Im(D,(z)) # 0, meaning that z ¢ €1

So far, we have shown that ¢, ; is disjoint from the n~3 neighborhood of R \ (Pp—UP, U
(d_;/n,dy/n)), and the n=2 neighborhood of E(D,). Similarly, these statements also hold for ¢ 22
and ¢, ;.

We next consider z € H in the n~ neighborhood of (d_, /n, dy/n), while |z — z.| > n='/4*+e2¢,
and |z —d_,/n|,|z — dy/n| > n2. Take y to be some point in (d_; /n,z, — n='/**2t, ) U (z, +
n~l/4%er dy/n) with z—y <n~>. By Lemma 514, we have that D) >0 in (d_;/n,z, —
n~l/4er) and D) <0 in (z, + n7/**%1,,dy/n), and that D,(y) — Dy(z,) < —cn~'** for a
constant ¢ > 0. So by (5.33), we have

Re(D,(2)) < Re(D,(»)) + O(n™2) < Re(Dy(z,)) — cn*2~! + O(n=2).

On the other hand, by Lemma 5.17 (more precisely, (5.31) and the fact that Re(D,) is increasing
along ¢,; and ¢, ; from T',), we conclude that z & ¢, ; U ¢, ;. In other words, ¢,; and ¢, ; are
disjoint from the n=> neighborhood of (d_,/n,d,/n). By similar arguments, we can show that
¢, is disjoint from the n~2 neighborhood of P, _ U P, .
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Since €54, €5, 53 are disjoint, by planarity, we must have that ¢, , is disjoint from the n-3
neighborhood of (d_, /n,dy/n), ¢, is disjoint from the n=> neighborhood of P, ., and ¢, is
disjoint from the n~2 neighborhood of P, _.

The results for ¢4 ;, €1 5, €13 can be proved analogously. Putting all these together concludes
the proof. O

With all the above preparations (on the properties of D;, D, around z. and their steepest descent
curves) in the above two subsections, we are now ready to prove the approximation of the NBRW
kernel by the Pearcey kernel, that is, Proposition 5.3.

5.5 | Convergence to Pearcey

Using (5.14) and Lemma 5.15, Proposition 5.3 can be deduced from the following lemma, plus an

estimate of the binomial term (tl_t2) in Lemma 5.21 below.
X1—Xp

Lemma 5.19. Under the setting of Proposition 5.3, consider the integral

| pt—t-l
BYX(] — B)i—tbra—x 0 ti'l)' (;ml)z // dwdz exp(nDz(z) — nD;(w)). (5.34)

We divide the contours into two parts: inside or outside {z € C : |z — z.| < n~1/*+e2¢ .
Inner part: When the w contour is taken to be [z.+e™/*n~V/*t 5z >z +
e37ri/4n—1/4+62tc] and [Zc + eSn’i/4n—1/4+62tc -z, > Z. + e77‘ri/4n—1/4+62tc], and

the z contour is taken to be [z, + e¥/2n=1/4*e2t, — 7, 4 e™/2p1/4*e2t ], the
integral (5.34) is equal to

1 1 // dwdz
\/§n1/4A1/4B(1 —B) (2mi)? w—z
ot _ 2_ 1 g2
exp ZiAw! Wz | OW oD
4 \/§A1/4B(1 —B) 4A1/2B(1 — B)

+ OV, (5.35)

where the w and z contours are, respectively,

2 VE RN W 00637'&/4] U [ooeSrri/4 50> ooe77'[i/4]’ [ooe37'ri/2 50> ooe”i/z].

(5.36)

Outer part: When either (i) the w contour is taken to be [z, + e>™/*n=1/4*e2, — —t. —1 - z, +

eSM/Ap=1/4%et | and [z, + e/ 4n~ V42t 5 1 - z, 4 ™/ 4n~1/4 2t | and the z

contour is taken to be [c0e’™/2 — z, — co0e™/2], or (ii) the w contour is taken to

be [Zc + e7ri/4n—1/4+62tC -2z, >z, + e37ri/4n—1/4+e2tc] and [Zc + e57ri/4n—1/4+<-:2tc N

Z, = 2z, + e’/ p~1/4%t | and the z contour is taken to be [c0e’™/2 - z. +

e2p=1/4et | and [z, + e™/2n /42t - c0e™/?], the integral (5.34) is S
exp(—cn*?2).

[oce

We next prove the inner part of Lemma 5.19, and the outer part will be proved in Section 5.6.
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5.51 | Inner contour integral
We first analyze the factor in front of the integral in (5.34) at z = z,.

Lemma 5.20. We have

tp!
10g <BX1_X2(1 - B)tl—t2+X2—X1 ﬁ) + l’lDz(ZC) - l’lDl(ZC)
2 - .

=(t; —t, + 1)logn —log(t.B(1 — B)) + O(n~'/2t;1).  (5.37)

Proof. The left-hand side of (5.37) is equal to
(X1 —xy)log B + (t; — t5 + X, — x1) log(1 — B) + log(t;!/(t; — 1)!)
—Xp+tp—1

. X1+t
+ Z log zc+%|—.z log

i=—xy+1 i=—Xxp

i
Zo + E|‘ (5.38)

Using X, %,,t; — nt., t, — nt, < n'/? and z, t, + z, < t,, we obtain that

—Xy+t,—1 l, —X1+1t; l,
2 logzc+E|—'Z logzc+ﬁ|
i=—Xy+1 1==X1
—Xp+ty —x1 -+
=n/ " log|z. + x|dx — n/ " log|z. + x|dx — log(—z.) — log(t. + z.) + O(n~"/271).
_x _X

n n

The first two terms in the last line are equal to
(—nz. +x;)log (—zc + %) —(—nz. + %) + (nz. —x, + t,) log (ZC + _XZTW>
—(nz, — x5 +t) — (—nz, + x7)log (—ZC + %) + (—nz, +x;)
—(nz, —x; +t)log <ZC + _XIT-HI> + (nz, — x; +t1),

which further simplifies to (recall that B = —z.t;!)

X X
(—nz. +x,)log (1 + —”22c> — (—nz. +x;)log <1 + _anC>
—X; +t, — nt,

+(nz, — +t)lo 1+
(nz, —x, +1,) g< n(z, + )

- t, —nt,
>—(nzc—x1 +t;)log <1+M>

n(z, +t.)
+(x; — x1)1og(B) + (—x2 + X1 + t, — t1)log(1 — B) + (t, — t1) log(t.) + t; — t.

1/2

Using Stirling’s approximation and that t; — nt.,t, — nt, < n'/#, we also get that
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log(t;!/(t; — DY) = t; log(t;) — t, log(ty) — t; +t, + log(nt,) + O(n~1/2t;1)

t, —nt, t, — nt,
= (t; —t, + 1) log(nt.) + t; log <1+ 1m” C> —t,log <1+ 2mn C) -t +t2+(9(n—1/2tc_1).

c c

By summing up the above expressions, we have that (5.38) is equal to

X X
(—nz, + x,)log <1 + —nzz > —(—nz, +x)log (1 + —nlz >

c c

—X3 + t2 - ntc
n(z. +t.)

ty — nt, ty — nt,
+t;log [ 1+ —t,log( 1+
1108 < nt. > 2108 ( nt.

+(t; —ty + 1)logn —log(t.B(1 — B)) + O(n~'/2t;1).

—X1 + tl - ntc

) — (nz, —x; +t;)log (1 Tz ) ) (5.39)

+(nz, — %, + t,) log (1 +

The last line matches the right-hand side of (5.37). It remains to show that the first three lines are
of order O(n~'/%t1). We first consider

- t, —nt t, — nt
(—”Zc+xz)10g(1+_);zz >+(nzc—xZ+t2)log(1+—X2+ 2 nC) —t210g<1+ 2ntnc>.

c n(z, +t.) c

(5.40)
For this expression, its derivative with respect to x, is

—X, +t, —nt t (X, = %2)
log <1+ —):IZZ > —log <1+ M) = log <1+ _ 727 §l’l_3/4tc_1,

c n(Zc + tc) Zc(nzc — X+ t2)

where x; = _t—zc(tz — nt,.) and we used that x; — X%, < n'/*. In addition, we have that that value of
c

(5.40) vanishes when we replace x, by x;, that is,

/

/
(—nz, +x))log| 1+ % +(nz, —x, +t))log| 1+ Xt nk
2 —nz, 2 n(z. +t.)

t, — nt,
—t;1 1 = 0.
ty og( + nt, > 0

By integrating over x,, we obtain that (5.40) is of order @(n='/2¢;’!). Similarly, we have

X1 —X; + tl —nt,
—nz.+x)log | 1+ +(nz, —xy +t)log| 1+ ——
(=nz. +x,) g( _Zc> (nze —x; +t1) g< n(z, +1,) >
tl - ntc _ _
—t; I 1+ —< ) <sn V27t
1108 ( + }’ltc ) Sn c
Plugging these two estimates into (5.39), the conclusion follows. [l

We now finish the estimate on the contour integral inside {z € C : |z — z.| < n~1/4*e2¢ ]
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Proof of Lemma 5.19 Inner part. By Lemma 5.20, using n=/2¢;! < n=% (due to that n=1/2+1 <
t= t.), it suffices to prove the same estimate for

1 1
t.B(1 — B) (27i)2

// iw_d; exp (nD,(z) — nD;(w) — nD,(z.) + nDy(z.)), (5.41)

where the contours for w and z are as stated in Lemma 5.19 (inner part).

— —
We want to approximate D; and D, by G. For this purpose, we estimate D’2 — G . Compared to
Lemma 5.10, here we consider z much closer to z., thereby getting more refined estimates. Take

/2

anyz € Cwith |z —z.| S t? , we have that

—Xz+ty—1 te—1

D(2)- G (2)

Il
M
S
N
+
|
I
S
N —
+

log(nz/(nz — x,)) + log((nz — %, + t,)/(nz +t.)) + O(n~'t;1)

nz(t; —t.) + xot.
(nz —xy)(nz +t.)

=log <1+ > + O 7.
Using %(tz —nt) + %, =n"y, +0Q) Sn'/4, |1z-2z| S t§/2, and z.,z, + . < t,, we obtain
that

nz(t, —t.) + xot,

— (I(n—3/4—1
(nz — x,)(nz +t.) O™te).

With this estimate, we can derive that

n'/2(z — z,)t, + n'/*t,y,
(nz —x)(z +t,)

nz(t, —t.) + Xt,

—1,—1y _
(nz —xy)(nz +t,.) +O(nT) =

+0O(n~tesh,

(5.42)
where we also used t, —t, = n'/27, + ©(1) for the second equality. Then, using |z — z.| < tf/ 2,

X, Sn'/2 and z,,z, + t, < t,, we get that

D(2)-G (2) =

n'/%(z — z.)t, + n'/*t.y, _ nV2(z - z)r, + =3y,
(}’lZ - XZ)(Z + tc) Zc(zc + tc)

[140(lz=zlt;t + n72e 1.

If we further assume that |z — z.| < n~'/4*<¢, this expression reduces to

n'/2(z — z.)t, + n/*t.y, _ n 2z - z)r, n=3/*y,

(nz-x)z+t)  £2B1-B) tB(1-B)

+0 (n—3/4+62tc—1(n—1/4+62 + n_l/ztc‘l)).
Plugging this estimate into (5.42) and taking an integration over z, we obtain that

R S W B D

DZ(Z) - D2(Zc) - G(2) + G(Zc) + 2[33(1 —B) ICB(l —B) ~

when |z — z,| < n=Y/4*e2¢,. By Lemma 5.9, when |z — z.| < n~/**<2¢_, we have that

G(z) — Glz,) + -4 A(z — z.)* S n=5/4+5a /2,

n=5/4+3¢ 4 n—3/2+2e2t51’
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Then, using n~/2+€1 <t < t, and the fact that ¢, is small enough depending on ¢;, we conclude
that

n 2z -z t, n3z-2z)y, < p-l-es

_ ~d A, _ o
D2(2) = D(ze) + 1Az = 2" + 22B(1 — B) t.B1—B) ~

where €3 > 0 is a small enough constant depending on €; and ¢,. Similarly, we have

n W -z w—zy

D;(w) — D(z.) + t;*A(w — z.)* + < pia,
' v ‘ 22B(1 — B) t.B(1— B)
when |w — z,| < n=V/4*e, Plugging the above two estimates into (5.41), we obtain

1 1 dwdz .

exp (—nt7*A(z — z,)* + nt7*A(w — z,)*
tcB(l—B)(Zni)Z//w—z p (—ntc *A( ) ¢ AC )
_nl/2 nz-z) -—nuw-z) /4 Y2(z —z.) —yi(w —z.) N (‘)(n—€3)>,

2t?B(1 - B) 1.B(1 - B)

Introducing the rescaled variables w = v/2(w — z)n'/4t;1AY4 and z = \/2(z — z,)n/41; 1 AV/4,
we get (5.35), with the w contour being

[\/Eeni/4n62A1/4 50 \/Ee37ri/4ne2A1/4] U [\/EeSEi/4nezA1/4 50— \/§e7ﬂi/4n52A1/4]’
and the z contour being
[\/EeSHi/ZnezAl/4 R \/Een'i/znezAIM]‘
We note that by replacing the w and z contours with (5.36), the integral in (5.35) changes by
O(exp(—n*2A/2)), because the integrand along these contours is at most S exp((—z* + w*)/8).
This concludes the proof. O

5.5.2 | Binomial and Gaussian

By classical CLT, it is expected that the binomial term in the NBRW kernel would lead to the
Gaussian term in the Pearcey kernel. We provide a detailed derivation here.

Lemma 5.21. Ift; — 7, > n™, then we have that

BX17%(1 — B)h—hte—x ( h-b )
Xp =X

—1/4 _ 2
— n / exp |- (7/1 72) +0 (1’1_1/2+3€3).
\2n(t; —7,)B(1 — B) 2B(1 = B)(t; — 72)

Proof. Denote t' =t; —t, and X' =x; —x,. If 7, — 7, > n~%, then we have t' —x' =t; —
ty =X, + %, > (1 —B)n'/?>% —Cn'/* and X' = x; —x, > Bn!'/>=% — Cn'/*. Then, by Stirling’s
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approximation, we have

t—t t/ t'! et | e L et
<x1 —x22> = <x’> = = [1+On=1/2%)] —271 w )(t W) (= x)T

Usingt’ = (1, — 1,)n'/2 + O(1) and X’ = B(r; — 1,)n'/2 + (y; — y,)n'/* + O(1), we get that

t/ /41 + O(n/4*e))

= , 5.43
27X (" =x')  y/27(z; — 1,)B(1 — B) 549

and
/
log (B(1 = B () () (¢ =x) "+ ) =X log = - ’)log—( B)t

= [B(ri =)0 + (1 =~ y2)n'/*] log <1 +pt 22 —1/4>
71— T2

~ [ =B = wn!/2 = (1 — y)n'/*] log (1 ~(-B)" %n—l/“) +O(n71/H),
17— t2
(5.44)

where for the second estimate, we used that the derivatives of the left-hand side with respect to x’
and t’ are

< n—1/4+€3

/
log 7 ]_SB —log o i = S n~l/4+ log(1 — B) — log

Taking the Taylor expansion of the logarithms in (5.44), we get

_ (1 —7)’ —1/4+3¢;
(5.44) = 280 - Bye — 1)) + O(n~1/4+3),

Multiplying the exponential of this estimate with the right-hand side of (5.43) concludes the
proof. O
5.6 | Smallness of outer contour integral

It remains to prove the outer part of Lemma 5.19. By Lemma 5.20, it suffices to show that the
following integral

// iw_di exp (nD,(z) — nD;(w) — nD,y(z.) + nD;(z.)) (5.45)

over the contours stated in the outer part of Lemma 5.19 is bounded by O(exp(—cn*%2)).

We recall from Section 5.4.1 the curves ¢, 1, €55, 5 3 on which Im(D,) = 0, and the curves ¢ ;,
€15, €13 on which Im(D,) = 0. We will deform the w contours [z, + ¥ /4n=1/4+e2p, — —f —
1z, 4 /4 p~V/4et | and [z, + e/ *n~ /4ot 5 1 - z, + e™/4n~1/4 ¢ ] to curves that
closely follow ¢ 1, ¢; 5 and their complex conjugates (denoted by ?1,1 and ?1’3). We will deform
the z contours [c0e™/2 — z, + e3™1/2p=1/4+e2¢ | and [z, + e™/2n~ /4 2t, — c0e™/2] to curves
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that closely follow ¢, , and its complex conjugate (denoted by 22’2). Along these curves, n(D,(z) —
D,(z.)) and —n(D;(w) — D;(z.)) are (almost) real and negative, and of order at least > n* by
Lemma 5.17.

Asindicated earlier, some issues may appear as we lose precise control of the behaviors of these
curves. First, it is unclear whether ¢ ; and ¢ ; are disjoint from ¢, ,, so we need to consider the
residues resulting from their possible intersections. Second, it could be technical to control the
length of these curves. We will circumvent this issue by discretizing these curves.

5.6.1 | Intersections

For possible intersections between the curves ¢, ;, 13, and ¢,,, we consider the zero set of
Im(D; — D,) (which must contain all these intersections). We denote

E(Dl - D2) = n_l([[Xl - tl’xl]] A [[X2 - t2 + 1, X2 - 1]]),

which is the set of poles of D’1 - D’2 (/\ denotes the symmetric difference). Similar to Lemma 5.12,
we have that for any z ¢ E(D; — D,),

1
Minyeg(p,-p,) 1z — X|

Di(2) -D)(2) 5 + logn. (5.46)

The zero set of Im(D; — D,) can be described as follows.

Lemma 5.22. The set {z € HUR \ E(D; — D,) : Im(D;(z) — D,(z)) = 0} contains the following
parts:

(1) The connected component of R \ E(D; — D,) containing z.;

(2) Ifeither (i) Xy —t; <Xy —ty+landx; > % — 1, 0r(ii)) Xy —t; > X —tp + L and x; <x, — 1,
the set {z€ HUR \ E(D; — D,) : Im(D;(z) — D,(2)) = 0} also contains a smooth and self-
avoiding curve ¢ 4 from the connected component of R \ E(D; — D,) containing z. to co. Except
for the starting point, € 4 is contained in H. Moreover, Re(D; — D,) is strictly monotone along € 4,
and ¢ 4 is disjoint from the n=3 neighborhood of E(D; — D,).

For convenience, if neither (i) nor (ii) in (2) holds, we denote £, = @. This lemma can be
proved by analyzing the critical points of D; — D, and using arguments similar to the proofs of
Lemmas 5.17 and 5.18. We omit the details here.

5.6.2 | Curve discretization

Choose ¢ = n71%, we denote
AN=287+2i7, N =A+(1+1)E.

For any discrete interval I (i.e., I is a set of consecutive integers) and {z;};c;, we call {z;};c; a
A-path (respectively, A’-path) if the followings hold: all these z; are different points in A (respec-
tively, A’), and every pair z; and z;,; are nearest neighbors on the lattice A (respectively, A").
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The curve obtained by connecting every pair of points z; and z;,, using a line segment is called
the corresponding A-curve (respectively, A’-curve). We first discretize (i.e., approximate) ¢, , by a
N -curve.

Lemma 5.23. There exists a A'-curve 5, from a point in the intersection of N and the 2¢-
neighborhood of z. + e%2n=1/4+€2¢_ to oo, such that (1) forany z € A’ n 5, wehave(z + [-§,§] +
i[-§,§D) N ¢y, # 0, and (2) €7, is disjoint from the n=3/2-neighborhood of R.

Proof. Let z, be avertexin A’ N (z, + e®2n=1/4+e2t, 4 [=&, E] +i[—¢, £]). Denote
A, i={zeUnA : (z+[=§E1+i[-§EDn ¢y, # 0}

If we cannot find a A’-curve satisfying (1), then the set of points that are connected to z, through
a A’-curve contained in A’2 , must be finite. Then, we can find a sequence of numbers z;, ..., z; €

A\ A, such that z; = zy, |z, — z:| < 2V/2¢ for each i, and z, + el®n=1/4+<¢_ is enclosed

2,2’
by [z; = -+ = z]. In this case, ¢, , must intersect [z; — --- — z], contradicting the fact that
Z1y s Z & A; ,- The statement (2) follows immediately from (1) and Lemma 5.18. O

For ¢, from Lemma 5.22, we have a similar discretization. Its proof is similar to that of
Lemma 5.23, so we omit the details.

Lemma 5.24. For any two points z,, z, € € 4, there exists a A’'-curve connecting two A’ points lying
in the 2&-neighborhoods of z; and z,, respectively, such that this A'-curve is in the 2£-neighborhood
of the part of € ; between z, and z,, and is disjoint from the n=3 /2-neighborhood of E(D; — D,).

We next state the discretizations for ¢;; and ¢; 3, which use the lattice A instead of A, so
that their possible intersections with ¢7 , are points in the lattice A + {€,1£}. We also require
these points to be close to ¢4, in order to handle the residues resulting from these intersections.
Therefore, the discretizations for ¢, ; and ¢ 5 are slightly more delicate than that for ¢, .

Lemma 5.25. There exists a A-curve € 1"’1 (vespectively, € ;3 ) from a point in the intersection of A
and the 5&-neighborhood of z, + ei1n=1/4*<2¢ (respectively, z, + ei¥sn1/4*+e2¢.) 1o P, _ (respec-
tively, Py ), such that (1) it is contained in the 5§ neighborhood of ¢ ; (respectively, €1 3), (2) it is
disjoint from the n=3 /2-neighborhood of R \ P _ (respectively, R \ P ), and (3) the set ¢ Nty
(respectively, €1 ; Nt} ) is contained in the 3&-neighborhood of € 4.

Proof. We note that the set (HUR) \ (€1, U [z, = z. + el®1p~1/4+e2¢ 1) contains two connected
components, and we denote the bounded one by U; _, and the unbounded one plus the boundary
611Uz, = z. + e®1n~ /4t | by U, . Let A~ denote the set of z € HN A/, such that either

(z+[=E 81 +i[-E.ED c Uy, or

E+[=&E+i[-EEDNWL_Nntyp) #0, (z+[=EE1+i[-EEDN UL NEL,) =0
(5.47)

Then, A’ is a finite set. In particular, we have

(z+[-EE1+i[-EEDNU,_#0,Vze N ; (z+[-§E1+i[-EEDNU,
#0,Vze(MHNA)\ AL (5.48)
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FIGURE 9 Anillustration of discretizing ¢, ; into £7 .

Denote by W_ the union of the set {z € HUR : |z —z.| < n~ /42t }n U, _ and the n~>
neighborhood of [w_,z. —n~'/4*¢2¢ ]\ P, _ in U. Denote by W, the n> neighborhood of
(—oo0,w_]\ P;— in U. See Figure 9 for an illustration of these sets. By Lemma 5.18, we have
W_cU,_and U;_nW, =¢. Thus, we have

fzeN :z+[-EE+i[-EElcWlcAL, {zeAN :z+[-EE]+i[-&ElcW, inA =4

Now, consider the set U, (z + [—&, ] +i[—&, &]), and denote its connected component that
intersects W_ as W,.. The boundary of W, is a A-curve, which contains a vertex in A (denoted by
z,..) within distance 5¢ to z, + e®1n~1/4*<2¢ It also contains [w_, z. — 5¢] \ P; _ and is disjoint
from (—oo, w_] \ P; _. We denote its left-most intersection with P, _ as z, ;. We let ¢ T,l be the part
of the boundary of W, going from z, . to z,,; counter-clockwisely. See Figure 9 for an illustration
of ¢ | and these related objects.

Next, we check that ¢ T’l constructed this way satisfies the requirements (1), (2), and (3).

(1) By (5.48), A" is contained in the \/5%' neighborhood of U; _, and (HN A’) \ AL is contained
in the \/55 neighborhood of U, . Hence, any point in ¢7 | is within distance 2\/55 to both

U,_ and U, ,, thereby within distance 21/2¢ to 1 U [z, — z. + e¥1n~1/**¢21 ], As ¢}, is
from z, . to z, ;, we have that it must be contained in the 5§ neighborhood of ¢ ;.

(2) This follows from (1) and Lemma 5.18.

(3) Takeanyz, € ] Nt} ,, wecanfindz,_,z, € An 5, suchthat |zy . —zy_| =28,z =
(zo.+ + 20-)/2, and z, _, z, ;. are in different sides of ¢ ’1*1 Then, only one of them is in W,
and hence only one of them is in A’ . Without loss of generality, we assume that z, _ € A_
and zo . € (HNA") \ AL.

Aszy, €0}, wecanfind zj, , € €5, N (zo4 +[—§,§] +i[—§, £]). We can always choose
zZp 4 so that z, . € Uy 4, since otherwise z, ; € AL by (5.47). On the other hand, we can also
find z, _ € €5, N (29— +[—&,&] +i[-€,&]). Since 2 € AL, if (zo_ + [, &] +i[-&, €D C
U, _, we can always choose z, _ such thatz, _ € U; _. Now, we have found z, - € U; _N?;,
and zp, . € Uy 4 N €5, With |z, _ — 241, 12, 4 — 29| < 3§. Then, we have z;, _, z;, ; € U (since
t,, CU),and

Im(D,(2p,-)) = Im(D,(z;, 1)) = 0. (5.49)

25UI SUOWI0)) aANEa1) 31qeatidde Ay Aq PaUIAS AIE S[ONIE V() (SN JO SA[NI 10 ATRIQIT SUIUQ AS[IAY O (SUONIPUOD-PUE-SWLIAYW0d* ATIM ATeIqIoUIu0,/:sdY) SUOMIPUOY) PUE SULISL o 93§ [p707/90/€ 1] U0 ATe1qr Suiuo Kofim ‘ANSIoAtun piouers £q 2077z edo/Z001°01/10p/woo" KayimATeiquaut[uoy/:sdy woxy papeofumod 0 “T1€0L601



PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 49

Also, notice that
Im(D;(zp-)) > 0, (5.50)

sinceImD; >0onU;_\Rand?¢,, nR =§.
We next claim that

Im(D;(zp4)) < 0. (5.51)

Otherwise, z, _ and z, must be in different components of U \ ¢;,, so [z, — 2z} 4]
(which is in U and has length < &) intersects both ¢;; and ¢, ,. Take any z,, € [z, —
zZp+1N€1 ;1 and z,, € [z, - — zp ] N €1 ,. By property (2) above, we have that z,; and
zp, are not in the n=3/3 neighborhood of R \ P; _, so Lemma 5.12 implies that D;(z ;) —
D (zp,) S n*E. On the other hand, since z,, € ¢1; and z,, € ¢1,, we have Dy(z;) —
Di(2.), D1(2p) — Di1(2c) € R, and Dy (2p) — D1(2c) > Dy (e¥1n /4421 ) — Dy (z) < n~1H4%2,
—Dy(2p2) + Dy(z.) = =Dy (e¥2n~ /4 <21 ) + Dy (z.) < n~'**2 by (the D, version of) (5.31).
Hence, we have Dy(z,,) — Dy(z,) 2 n~'"#2, which leads to a contradiction. Thus, we
conclude (5.51).

Now, combining (5.49), (5.50), and (5.51), we obtain that Im(D;(z} ) — D,(z,_)) > 0 >
Im(D;(zp +) — D2(2p +)). Thus, there exists some z, , € [z, - — 2 4] such that Im(D;(zp,.) —
D,(2zp)) =0, that is, z,, € ¢4. Note that we must have |z, —z| < 3§ since |z, _ —
Zol, |zp4+ — 20| < 3§, 50 z; is contained in the 3¢-neighborhood of ¢ ;.

Finally, the construction of £ ;‘,3 and corresponding properties follow similar arguments.  []

We are now ready to finish the proof of Lemma 5.19 by deforming the contours to £ , and ¢7 ,,
r .. ’ ’
1,3

Proof of Lemma 5.19 Outer part. As stated above, we just need to control (5.45) over the contours
stated in Lemma 5.19 (Outer part). For the convenience of notation, we introduce the follow-
ing definitions. Let L, be the contour of [z, 4+ e3/*n~1/4* 2, — (¢ 1 )] followed by ¢7 |, where
«(¢7 ) is the starting point of €7 |, with [«(¢7] ) — (z. + eip~1/4+et )| < 5¢. Let L, be the contour
of [z, + e™/2n~1/ 42t — (¢ 5] followed by 3 ), where (¢} ,) is the starting point of €7 ,, with
|«(¢3,) — (zc + elfap~1/4et )| < 2¢.

We first claim that there exists a constant ¢ > 0 such that
Re(D;(w) — Dy(z,)) > en~1*%2,  Re(D,(z) — D,(z.)) < —cn—1+4e2, (5.52)

foranyw € L, and z € L,.

We now prove this claim. For any w € ¢ ;‘1 by Lemma 5.25, we can find w’ € ¢;; such that
lw—w'| < 5¢; and w is disjoint from the n~3/2-neighborhood of R\ P; _. By Lemma 5.17,
we have Re(D;(w’) — D;(z.)) > cn~'**2, Then, by Lemma 5.12, the first inequality in (5.52)
holds for any w € ¢ . For any w € [z, + ¢! n-l/4er (¢} )], we must have that [w — (z, +
ePin~1/4+e2t )| < n~1/4%2t, by Lemmas 5.17 and 5.25. Then, using Lemma 5.14, we obtain the
first inequality in (5.52). The second inequality in (5.52) can be proved in a similar way by using
Lemmas 5.12, 5.14, 5.17, and 5.23.
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‘We next analyze the contours in the outer part of Lemma 5.19, which can be further deformed
and decomposed into several parts. By symmetry, it suffices to consider the following few cases.

(a) The contour of z is L, := [z, + ¥™/2n=V/4e2 1, — 7, 4 ¢™/2p~1/4+¢ ], and the contour of
w is L. We note that L, is deformed from [z, + 3™/4n=1/4+2¢, — —t. — 1], and this defor-
mation is allowed because the integrand in (5.45) has no w pole in H or [—t, — 1,w_] U Py _.
Note that the contours L; and L, do not intersect, and the distance between them is of order
> n~1/4*2¢, by Lemma 5.25 and the fact that the distance between ¢ 11 and L; is of order
> }’1_1/4+€2tc.

Forany z € L, we have Re(D,(z) — D,(z,)) < Cn~'*%% fora constant C > 0 by Lemma 5.14
(note it can be negative). Then, by (5.52), for any z € L; and w € L;, we have Re(D,(z) —
D;(w) — Dy(2.) + D1(2.)) < —cn™'*%2. By Lemma 5.13, ¢ ; is contained in a ball of radius
< n. Thus, L, is also contained in a ball of radius < n, from which we see that its length
satisfies < n?£~1. Now, the integral (5.45) along these contours is at most of order

n2E=l . nl/4=e2r1 . exp(—cn®2) S exp(—cn*2/2).

(b) The contour of wis L] := [z, + e™/4n=V4 <1, — 7z, — z, + 3™/4p=1/4+<2¢ ], and the con-
tour of z is L,. We note that L, is deformed from [z, + e™/2n~1/4*¢2¢, - co0e™/2]. This
deformation is allowed because the integrand of (5.45) has no z pole in H, and | exp(nD,(2))|
decays exponentially along any direction between i and the asymptotic direction of £ 32 due

to Lemma 5.13. Not that the contours L; and L, do not intersect, and the distance between

them is of order > n~/4*<2¢, by Lemma 5.23 and the fact that the distance between ¢ 2 and

L! is of order 2 n= /4,

For any w € L}, we have Re(—D;(w) + D;(z.)) < Cn~'**2 by Lemma 5.14. Then, by (5.52),
for any z € L, and w € L], we have Re(D,(z) — D;(w) — D,(z,) + D1(2.)) < —cn™ %2 In
addition, if |z| > n, by Lemma 5.13, there is

Re(D,(z) — Dy(z.)) < —c|z|. (5.53)
Therefore, the integral (5.45) along these contours is at most of order

n2E~1 . nl/Aerl L exp(—cn®e) + Z WE . nl/A=ar7l L exp(—cnW) S exp(—cn® /2),
wezZW>n

where the first term accounts for the part of L, where |z| < n (and hence has length < n?¢~1),
and the summand for each W accounts for the part of L, where ||z| — W| < 1 (and hence has
length S W&,

(c) The contour of w is Ly, and the contour of z is the complex conjugate of L,. The distance
between them is > n~3 by Lemmas 5.23 and 5.25. By bounding the lengths of the contours
as in (a) and (b), and using (5.52) and (5.53), we conclude that the integral (5.45) along these
contours is also < exp(—cn*2).

(d) The contour of w is L, and the contour of z is L,. These contours L; and L, may inter-
sect, since ¢ 11 and ¢ ;’2 may intersect. (As we have seen in (a) and (b), the distance between
[z, + ¥/ 4p=V4et (¢ 1Dl and €3 is of order 2 n~1/4+¢ and the distance between
[z, + 3™/ 4p~1/4+e2p «(¢3,)]and €7 isalso of order 2 n~1/4+<2 ) Denote S = Nt =
Ly NL,.Since¢ ;1 isa A-curveand ¢ ;2 isa A’-curve, S is contained in the lattice A + {&,i£} =
A +{&,i&}. Using the fact that L is contained in a ball of radius < n as shown above, we
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get the trivial bound |S| < (n€~1)%. Forany w € L, and z € L,, unless w, z € z,, + (=&, &) +
i(—£, &) for some z, € S, we must have |w — z| > &. For each z,, € S, the parts of L; and L,
inside z,, + (¢, &) + i(—¢, &) are two orthogonal line segments, each having length 2£. There-
fore, by (5.52), the integral (5.45) over these segments is S £~! exp(—cn*2). Summing over all
z, € S and bounding the integral (5.45) over the rest parts of the w and z contours as in (a)
and (b), we again get the bound < exp(—cn*2).

In case (d), the w and z contours are deformed from [z, + e>/4n~1/4*+¢2¢, » —t, — 1] and [z, +
e™/2p=1/4% e x0e™/2], respectively. When S # @, this procedure potentially leads to residues
at w = z, which are given by

/ dz exp(nD,(z) — nD;(z) — nD,(z.) + nDy(z.)), (5.54)

where the integral is along some curves [z,.; = Z.], ..., [Z42k—1 = Z.2k], such that {z*’i}izfl =S.
We assume that S # §J and bound the integral (5.54) along [z, 2, 1= z* ol foreachi=1,..,k.

By Lemmas 5.24 and 5.25, the curve ¢4 #  and we can find z* 2i1 2y 21 € ¢4 and a A'-curve
L, ; with endpomts Z*,21—1’ *21, such that |z, 5 z*’zl._1|, |Zs 01 — *,21| < 5¢, and |z*’2i_1 —

2} 5i_1» 12, 5 — 2, ;1 < 2. In addition, the A’-curve L*,, is contained in the 2¢ neighborhood of
€4 between z! e2ic1 and Z* 20 and is disjoint from the n=3 /2-neighborhood of E(D; — D,).
We deform the contour [z, 5;_; — z, ;] into the contour consisting of [z, 5;_; — Z* 2ie s Ly

and [z, ,; = Zxi]- For each z on this contour, by (5.46) and the fact that Re(D, — D,) is monotone
along ¢ 4, we have that

Re(Dy(z) — D1(2)) < Re(D,(z") — Dy(2")) + O(én?)
< Re(Dz(Z” ) =Dz 2DV Re(D,y(z! o)~ D, (z” 20T O(én?) (5.55)
<Re(Dy(Z4 2i-1) — D1(Z4 2i-1)) V Re(D1(2, 2i) — D1(2,.21)) + O(¢n?),

where z”’ is a point in ¢ ; between z”/ V5, and 2!, with |2/ — z| < 5¢. Using Lemma 5.12 and the

factsthatz, 5;_; € S C €], and ¢ isdisjoint from the n=3 neighborhood of E(D; ) by Lemma 5.18,
we obtain that

Re(Dy (2. 5i-1)) > Re(Dy (2], _ ) + O(¢n?), (5.56)
for some Z;,,’zi—1 € ¢, with |z”’2l | — Zsoi—1] S €. By Lemma 5.17, we have Re(Dl(z;’,’zi_l) -

D (z.)) > cn~'*4¢2 which, together with (5.56), implies that Re(D;(z. 5;_;) — D1(z.)) > cn~ 14,
Similarly, we have

Re(Dy(z. i) — Di(z.) > cn~itae, Re(Dy(z,5i-1) — D2(2.)), Re(Dy(z,. 5;) — Da(2.)) < —cn~ e,

Combining the above estimates with (5.55), we conclude that
Re(D,(z) — D;(z) — Dy(z.) 4+ Dy (2.)) < —cn~1+4e2, (5.57)

<n

~

We next bound the length of L, ;. Since z, 51,2, €S C ¢} 11> We have that z, 5; 1,2, 5

by Lemma 5.25, because ¢ ; is contained in a ball of radius < n as discussed above. We claim

that L, ; is also contained in a ball of radius < n. First, we have z* i 1,2; ! ,; S n. Next, consider
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the semi-circle {z € H : |z| =r} for r = |z;”2i_1| + |z;”21.| + n. Since ¢4 # @, by Lemma 5.22, we
have either (i) x; —t; <X, —ty+land x; > x, —1,or (i) x; —t; > X, —t, + 1 and x; < x, — 1.
In either case, the function Im(D; — D,) is strictly monotone along the semi-circle. Therefore, the
semi-circle {z € H : |z| = r} intersects ¢; (which is contained in H and goes to oo) exactly once,
so the intersection cannot lie on the part of £ ; between z/! ”21._1 and Z::,Zi' As a result, the part of £ 4
between z” ’ . ! ’ ,; is contained in a ball of radius < n, and the claim holds. Thus, the length
of L, ; is at most < n?¢ 1.

Using the estimate (5.57), the bound on the length of L, ;, and |z, 5;_; — z/ il 122 = z) 2l S
&, we conclude that the integral (5.54) along [z, 51 — z; 2ie1
S exp(—cn*2). Since |S| S (n€~1)? (by Lemma 5.13), summing over i yields the desired bound

S exp(—cne). O

1 and z

L, and [Z;,Zi — Z,,;] is at most

6 | OPTIMAL RIGIDITY AROUND CUSPS

In this section, we prove the optimal height function concentration estimate for random lozenge
tilings around cusps, which will imply the first part of Lemma 4.2.

6.1 | Concentration of height function

Fix a rational polygonal set B satisfying Assumption 2.5, and denote its liquid region and arctic
curve by = () and U = A(*P), respectively. Let H* denote the limiting height function of
B. Let n be a large integer such that P = n'P is a tileable domain, and let H denote the height
function associated with the uniformly random tiling of P, that has boundary value nH* on JP.
Asin Section 4, all the constants in this section (including those hidden in 5, =, <, ©) can depend
on ‘PB.

We recall the following height function concentration statement from [47].

Theorem 6.1. Take any constant & > 0. Let 2,(B) ={u € P : dist(u, &) < n°2/3} be the
augmented liquid region. Then, the following two statements hold with overwhelming probability.

1) |H(nv) —nH*(v)| < n® forany v € p.
(2) Foranyv € % \ £, (PB), we have H(nv) = nH*(v).

Theorem 6.1 does not give optimal rigidity estimates close to cusp locations. In this section, we
prove an optimal version, as stated in the following theorem.

Theorem 6.2. Fix a cusp point (x.,t.) € 2. By possibly rotating *B by 180°, the arctic curve 2 in a
neighborhood of (x., t.) consists of two analytic pieces {(E_(¢t),t) : t. — 8 <t <t Jand {(E, (t),t) :
t. — 8 <t <Lt.}, for some small constant 3 > 0. Then, for any constant § > 0, the following holds
with overwhelming probability: for any v = (x,t) such thatt, — 3 <t <t.and x € [E_(t) + (t, —
H)/0n0=2/3 E (t) — (t. — t)/°n®2/3], there is

H(nv) = nH*(v), (6.1)
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FIGURE 10 Shown above are the four possibilities for D.

Remark 6.3. When t, —t < 1, the statement (6.1) reduces to item (2) in Theorem 6.1. However,
when ¢, — t < 1, (6.1) is stronger than Theorem 6.1. Such optimal height function concentration
is crucial for the tiling path estimate (Lemma 4.2), where we consider a mesoscopic box around
the cusp location (x,, t,.).

This optimal rigidity estimate will be proved based on an estimate from [47] on random lozenge
tilings in a trapezoid with random boundary, stated as Proposition 6.4 below, and a comparison
argument invoking Lemma 3.3. For this, we start by carving out a trapezoid domain from 8 around
a cusp.

6.2 | Trapezoid domain

As P satisfies Assumption 2.5, for definiteness, for the rest of this section, we assume (without
loss of generality) that the axis ¢ in Assumption 2.5 is the horizontal axis {t = 0}. We take a cusp
point (x., t.) € 2A. Then, (x,, t.) is not a tangency location. By possibly rotating 8 by 180°, we can
assume that the cusp “points upwards,” that is, in a small neighborhood of (x, t.) the arctic curve
2 is contained on or below the line t = .. Note this notion is weaker than “upward oriented” from
Definition 2.6, because the axis ¢ is now fixed as the horizontal axis. Next, we carve out a trapezoid
around (x,, t.).
A trapezoid is a subset of R? of the following form:

D = {(x,1) € RX[ty, t;] : a(t) < x < b(D)}, (6.2)

where t, < t;, and a, b are linear functions on [t,, ;] with a’(¢), 6’(¢) € {0, 1} and a(t) < b(t) for
each t € [ty,t;]. We denote its four boundaries by

(D) = {6, ) €D 1 t =) o@D = {(x,) €Dt =t };

(6.3)
Oye(®) ={(x,) €D x=a(t)}; 0.(D) = {(x,1) € D : x =b(1)}.

We refer to Figure 10 for a depiction.

We now construct the trapezoid D associated with (x.,t.). Let x; € R and x, € R be the
maximal and minimal numbers such that x; < xy < x5, u; = (x3,t.) € A, and u, = (x,,t.) € A.
By Assumption 2.5, neither u; nor u, is a cusp of 2. If u; € 9*B, then it is a (nonhorizon-
tal) tangency location of 2, so it lies along a side of P with slope 1 or co. We then let this
side contain the west boundary of ®. If instead u; & 0B, then there exist ¢ = (B, u) > 0 and
r = r(*B,u) € (0, ¢) such that the radius r disk B,(x; — ¢, t.) does not intersect 8. Then, depend-
ing on whether VH*(xy,t.) = (1, —1) or VH*(xy, 1) € {(0,0),(1,0)} (one of them must hold by
the first statement of Lemma 2.4), the west boundary of D is contained in the segment obtained
as the intersection between B,(x; — ¢, t.) and the line passing through (x; — ¢, t.) with slope 1 or
o0, respectively.
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(e, te) o) (B, (t2), t2) /,/ £(D) /l
(t) E_(Y \E+()E, (4 o — A :

FIGURE 11 Left: the tangency locations (E' (), t,), (E', (t,), t,), and the cusp (x,, t.). Right: the enlarged
liquid region, with its time slices I;" as in (6.5) and (6.6).

to

So far, we have specified a segment containing the west boundary of D, and one containing its
east boundary can be specified similarly. Then, we choose the interval [t,,t;] as t, = t, — 8 and
t; = t. + 8, where $ is chosen sufficiently small so that the east and west boundary of ® are con-
tained in the segments specified above. These information determine the trapezoid D associated
with (x, t..).

In summary, for a polygonal set B satisfying Assumption 2.5, and a cusp point (x., t.) € 2, (by
possibly rotating 8 by 180°) we can carve out a trapezoid D contained in * and the time strip
[to = t. — 8,t; = t. + 3] for a small enough 8 > 0, such that the followings hold.

(1) The limiting height function H* is constant along both 9,,(®) and J,.(D).

(2) Denote by A(D) = D N A, the arctic curve in D, (D) = D N L the liquid region restricted
to D, and by I/, the closure of {x : (x,t) € (D)} for each t; <t <t;. Then, A(D) =
{(E_(), ), (E (), 1) : tyg <t <t JU{EL(Q), t),(E’+(t), t) : ty <t <t} (see Figure 11). For
to <t <ty, the slice I/ is a single interval I}’ = [EL(¢), E\.(t)] ; for t; <t <., the slice I}
consists of two intervals I’ = [EL(t), E_(¢)| U [E, (1), E/,(¢)]. The complement {x : (x,t) €
D}\ I consists of several intervals. On each interval, we have either d,H*(x,t) =0 or
0, H*(x,t) = 1.

(3) Any tangency location along (D) is of the form min I or max I} for some t € (1, ;). At
most one tangency location is of the form minI’, and at most one is of the form max I;‘ .
Moreover, these tangent locations are contained in either 9,.(D) or 9c,(D).

6.3 | Lozenge tilings in a trapezoid with random boundary

For the trapezoid D given above, we next state an optimal rigidity estimate for uniformly ran-
dom lozenge tilings on it, with a random north boundary height function. To state it, we need an
enlarged version of the time slice I;. Fix an arbitrarily small constant d > 0. For any (Eﬁ_r(t), t) on
the arctic curve (D), we define the distance function

T(EL(0),t) = |t — t.|*/3n®=2/3 v p=1+100, (6.4)

Moreover, for any (Ei(t),t) on the arctic curve (D) with ¢ < t., we define the distance
function 7 (EL(t),t) := (t, — £)"/°n®*~2/3, We then define the enlarged intervals: for t, <t < t;,

IF = [EL(t) — ©(E.(t), 1), B, (t) + T(E.(0), 1)], (6.5)
andforty <t < t,

I} = [EL(t) = t(EL(t), ), E_(£) + T(E_(1), D)] U [EL(6) = T(E(0), 1), EL.(t) + 7(E,. (1), 1)]. (6.6)
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By Proposition 7.1 below, E,.(t) — E_(t) < (t, — t)*/2. Hence, for t > t, — n=1/>**_(6.6) reduces
to a single interval

I} = [EL(t) — T(EL(t),t),EL.(t) + T(E, (1), 1)]. 6.7)

See Figure 11 for an illustration.

Due to some rounding issues, the set n® may not be a tileable domain for lozenge tilings. There-
fore, we use the notions of plausible boundary height functions and uniformly random height
functions from Definition 3.2.

Proposition 6.4. Denote D = n®. Let h : 0D — R be a plausible boundary height functions of D,
such that (1) h is constant on 9dy,.D and on 0,,D, respectively, and (2) on d4,D,

|[h(nv) — nH*(v)| < n?/3, for v = (x, 1), dist(x, I} ) < nd/3-2/3,
(6.8)
h(nv) = nH*(v), for v=(xto), dist(x,I})>n®/*72/".

Then, there exists a random plausible boundary height function h of D, which is equal to h on 8,,.D U
0.aD U 94, D, such that the following holds with overwhelming probability. Denote by H the uniformly
random height function of D with boundary h. For any t, < t < t;, we have

|F|(nv) —nH*(v)| < n®  for v=(x,t), xe€ If,
(6.9
H(nv) = nH*(v), for v=(x,1), x¢&I' .

This proposition is the same as [47, Proposition 4.4], via the equivalence between lozenge tilings
and nonintersecting Bernoulli paths stated in Section 2.1.2.

With the above preparations, we complete the proof of Theorem 6.2 using the height func-
tion comparison (i.e., Lemma 3.3) between the uniformly random tiling of n} and the uniformly
random tiling of n® (carved out around a cusp point) with random boundary.

Proof of Theorem 6.2. We carve out a trapezoid D around the cusp point (x, t.), as given above,
and denote D = n®. By Lemma 2.4, VH* =(0,0), (1,0), or (1,—1) in {(x,t) : ta <t <t.,x €
[E_(t), E,(t)]}. For the rest of the proof, we assume the first case, while the proofs in the other
two cases are very similar and thus omitted. This assumption implies that H* is constant in this
region. We assume that H* = 0 without loss of generality, as we can always add a global constant
to H*.

Take an arbitrarily small constant d > 0. We denote by Q the set of plausible boundary height
functions h : D — R, such that (1) h is constant on d,.D and on J,,D, respectively, and (2) (6.8)
holds on d¢,D, and (3) with overwhelming probability, the uniformly random height function A
of D with boundary h satisfies

|A(nv) — nH*()] < n®, vEPND. (6.10)

Then, using Theorem 6.1 and the fact that the west and east boundaries of D either coincide with
the boundary of *PB or are in the frozen region and bounded away from the liquid region, we see
that: with overwhelming probability, the restriction of H on dD is in Q.

In the rest of the proof, we fix a h € Q, and denote by H the uniformly random height function
D with boundary h. By Proposition 6.4, there is a random plausible boundary height function h of
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D, such that (1) h = h on 3D U 8.,D U 4D, and (2) if H is a uniformly random height function
of D with boundary h, then with overwhelming probability, (6.9) holds for any t, < t < t;.

We consider a small box around the cusp location: B =[x, —¢,x, + ¢] X [ty =t, — 3,1, =
t. + 8] with ¢ > 0 being a small constant. By taking ¢ small and then 8 small, we can ensure that
B C D and the west, north, and east boundaries of B are all in the liquid region. In particular, we
havex, — ¢ < E_(t)and x. + ¢ > E (t)foreacht, <t < t.. We next show that with overwhelming
probability, for any (x,t) € 0B,

H(nx — n* nt) < A(nx, nt), (t,x) € 8. (6.11)

For the south boundary, since H(nx, nty) = A(nx, nty) = h(nx, to) for x € [x, — ¢, x, + ¢], (6.11)
follows trivially from the monotonicity of H. For (x,t) € 88 \ 9,9, it is in the liquid region, so
0, H* is bounded away from 0 and 1 in a neighborhood of (x, t). Therefore,

H*(x,t) — H*(x — n®71,t) > en™® !, H*(x +n*™1,t) — H*(x,t) > cn®1, (6.12)
for some constant ¢ > 0. Combining (6.9) with (6.12), we then obtain that
H(nx, nt) > nH*(x,t) — n® > nH*(x — n*®1,t) + cn*® — n® > H(nx — n*®, nt).

Now, given (6.11), using Lemma 3.3, we can couple H on n®8 — (n*®, 0) with A on n%B such that

H(nx — n*?, nt) < A(nx, nt) (6.13)

for any (x,t) € B. Thus, under the above assumption that H* =0 in {(x,t) : to <t <t.,,x €
[E_(t), EL(®)]}, (6.9) and (6.13) imply that with overwhelming probability, A(nx, nt) > 0 for any
to <t <t and

x € [E_(t) + (t. — )/0n®=2/3 4 n= 148 B (1) — (1, — £)!/0n®P=2/3 — p=1442], (6.14)

With a similar inequality H(nx + n*®, nt) > A(nx, nt), we can show that with overwhelming
probability, ﬂ(nx, nt) < 0 for all such ¢ and x, thereby concluding ﬁ(nx, nt) = 0. Recall that the
interval in (6.14) is nonempty only when t < t, — n=1/2**_in which case the term n='**? is neg-
ligible. Hence, we have obtained that H(nx, nt) = 0 for any to <t <t.and x € [E_(t) + (t. —
0)/0n8=2/3 E (1) — (t. — t)"/°n%2/3] as long as we take § > 6b. Since h is arbitrarily taken from
Q, by Lemma 3.4 and the above fact that the restriction of H on dD is in Q with overwhelming
probability, the conclusion follows. O

7 | COMPLEX SLOPE AND PROOFS OF SOME DETERMINISTIC
ESTIMATES

In this section, we analyze the limiting height function using the complex Burgers equa-
tion (Proposition 2.2). Combining the obtained estimates with the optimal height function
concentration results from Section 6, we will finish the proofs of the remaining statements in
Section 4.

We work under the same setup as in Section 4. More precisely, we fix a rational polygonal
set *B satisfying Assumption 2.5 and a cusp point (x,, t.) € 2, which is upward oriented as in
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Definition 2.6 with curvature parameters r, q. Let n be a large integer such that n*p is a tileable
domain. All the constants in this section may depend on ‘.

We denote At = n~® for some constant w € (0,1/2), and take t, < t. < t;, such that ¢,,t; €
n~'Z andt, — ty,t; — t. < At. Around (x,, t.) and between time ¢, and t,, the arctic curve U con-
tains two analytic pieces {(E_(¢),t) : to <t < t.jand {(E, (¢),t) : ty <t <t.}. Letc > Obe asmall
enough constant depending on B and (x,, t.). Then, M, N € N are defined such that

[-M,N] = {i €7 : H'(x. — ¢, tg) < H* (oo t) +i/n < H*(x. + ¢, to)},

where H* is the limiting height function. We denote the density p;(x) = d,H*(x,t), which is
defined almost everywhere and takes values in [0,1] since H* is admissible.

Besides the setup in Section 4, we further assume that H*(x,t) = 0forty <t <t.,and E_(t) <
x < E,(t). Then, the p; quantiles y;(t) are defined through the relation H*(y;(¢),t) = i/n (and
¥o(t) is chosen to equal E_(t)). We also denote c(t) = x. + (t — t.)/t.

7.1 | Density estimate: Proofs of Lemmas 4.1 and 4.2

We start with the following estimate of the density p; in a neighborhood of the cusp location
(Xes Le)-

Proposition 7.1. The followings hold for a sufficiently small constant c, > 0 and arbitrarily large
C>0:

(1) Forty <t <t,wehaveE,(t)— E_(t) < (t, — t)*/%. For0 < x — E(t) < C(t. — t)*/? we have

C.(x —E.(1)

pr(x) = L

+0O ((tc — V4 x — EL ()2 + @) (7.1)

where C, > 0 is a constant. For C(t, — t)*/? < x — E,(t) < ¢y, we have p(x) < |x — c(t)|'/>.
Analogous statements hold for 0 < E_(t) — x < ¢y
(2) Fort. <t < t;, wehave p/(x) = (t — t.)'/? v |x — c(t)|'/* when |x — c(t)] < c.

Part (1) of this lemma has been proved in [47, Proposition 3.3]. The proof of part (2) will be given
in Section 7.4.

The following lemma gives an estimate on y(t), which will be proved in Section 7.6.

Lemma 7.2. There exists a constant € > 0 such that for any t. <t <t, |yo(t) —c(t)] < C(t —
te)*>.

Combining Proposition 7.1 and Lemma 7.2, we readily conclude the proof of Lemma 4.1.

Proof of Lemma 4.1. Recall that t, —t, < At = n=® with @ € (0,1/2). For 1 <i S At?n, we can
integrate (7.1) to get

p; (x)dx < , (7.2)

i /”’(“’) \ (i(to) = B (t))*)?
E, (to) 0 Atl/4
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which yields y;(to) — E.(to) =< At'/%(i/n)?/3. This gives the first relation in (4.2). The second one
follows similarly.

Next, we prove the first relation in (4.3), and the second relation can be proven in the same
way. We recall that c(t) = x. + (t — t.)/r € [E_(t), E,(t)]. For t < t., similar to (7.2), using Item 1
of Proposition 7.1, we have that for i > At’n,

; vi(0)
= [ et = i - o) (73)
Ei ()

which concludes that y;(t) — c(t) < (i/n)*/*.
Fort > t., by Lemma 7.2 and Item 2 of Proposition 7.1, for any x > c(t) + 2€(t — t,)*/2, we have

X X X
/ pi(»dy < / p; )y < / (t —t)V2 Vv ]y —cO'3dy S (x — c(t)*/3,
70() c(t)—CAL3/2 c(t)-CAL3/2
X X X
/ p; (y)dy > / p; (Y)dy 2 / (t =)V |y —c®)Y3dy 2 (x — c(t)*/>.
7o) c()+CAL3/2 c(t)+CAt3/2

Namely, we have fyz( N p;(dy < (x —c(t)*/? for x > c(t) +26(t — t.)*/2. This implies that

¥:(t) = c(t) < (i/n)*/* when i > CAt?n for some sufficiently large constant C. This finishes the
proof of (4.3). O

For Lemma 4.2, we also need to use the optimal rigidity proved in Section 6.

Proof of Lemma 4.2. By Theorem 6.1, with overwhelming probability, for any x and ¢t € [ty, ;] N
n'z,

[{i >0 : q;(nt) < nx}| = nH*(x,t) + O(n). (7.4)
It then follows that there is a sufficiently large constant S > 0, such that for any j > 0,
Qomt)/nVy;_sp(0) < qj(nt)/n <Y iy s (0. (7.5)
By Theorem 6.2, with overwhelming probability, we have H(nv) = nH*(v) for v = (x,t) with t €
[to,t.] and x € [E_(t) + (t. — )/°n®2/3 B (t) — (t. — t)'/°n®=2/3]. We then have E_ (t) — (t, —
£)1/6n®=2/3 < qq(nt), which, together with (7.5) and Lemma 4.1, gives
E(tg) = n=2342(1, — 1)1/ < qq(nty)/n < Yisnv|(to) < E;(to) + n=2/3OAL/0,
Thus, we conclude that qo(nty)/n — E,(t;) S n~?/3>*°At'/%. A similar argument leads to the
bound for q_;(nt,) and concludes (4.4). The statement (4.5) is a consequence of (7.4), by noticing

that

l{i € [-M,N] : qi(nty) < xn}| = H(x, ty) + M + O(1),

l{i € [-M,N] : yi(ty) < x}| = nH(x,ty) + M + OQ1).
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We next prove the first estimate of (4.6). Recall L = [n'+*9At?] > At?n. Using (7.5), (4.3), and
Item 1 of Proposition 7.1, we get

] b

n < n
ne; (yr(t) = n3/4L1/4

qr(nt)/n—yr(t) < iy sm (@) =y S

] b

n < n
np; (V- sno (1)) ~ n3/4|L — |Snd]|1/4

ye() —ar(nt)/n <yr(6) =y sp (0 S

Then, using that L > n® and choosing b sufficiently small depending on &, we conclude that
qr(nt)/n —y () Sn=3/* forany t € [t,,t;] N n~'Z. The proofs of the second estimate of (4.6)
and (4.7) are similar. O

7.2 | Complex slope revisit

Recall (from Section 2.3) the complex slope f;(x) for (x,t) € £ Consider a box around the
cusp location (x.,t.)as B = [x. — ¢/, x. + ¢/] x [t. — ¢/, t. + ¢/] for a small enough constant ¢/ > 0.
We denote fy =t. — ¢ and f; =t.+ ¢/. We can take ¢ small enough such that the complex
slope on the liquid region 2(B) = N B can be reparametrized as an analytic function. Such
a reparametrization has been done in [47], as summarized in the following proposition.

Proposition 7.3. There exists a small enough constant ¢’ > 0 such that the followings hold:

(1) Foranyt € [fy,i;], let B' = {(x,s) € &(B) : t < s < {;}. The following map

fi(x)
fix)+1

is a bijection to its image. In addition, (x, s) — fi(x) can be continuously extended to the bound-
ary of B!, therefore (7.6) can also be continuously extended to the boundary of B'. It maps
the north, west, and east boundaries of B!, 0,,,B" U dyeB' U 3.,B!, to a curve in the upper
half-plane, and the remaining boundary of B' to an interval in R. Therefore, (7.6) and its com-
plex conjugate together give a bijection from two copies of B!, glued along the arctic curve, to a
symmetric domain U, C C.

(2) The complex slope induces a family of analytic functions f; : U, NH — H™ for t € [£y, {1],
satisfying the following relation:

o (x,8)€B > x+(t—5) €EHUR (7.6)

filpi(x,9) = fi(x), (x,5) € B (7.7)
In particular, for s =t we have f,(x) = f;(x). On U, N H, f, satisfies the complex Burgers
equation
fi(2)
0,fi(2)+d,f(z2)——— =0. 7.8
SD+ DT )

(3) Recall the density p; (x) = 9, H*(x, t) defined in Section 4, and denote its Stieltjes transform as

m(z) = / S (7.9)

zZ—X
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Then f, can be extended to the whole domain U,, and we have the decomposition
fi(2) = em@re@), (7.10)

where g, is a real analytic function on U,.!
(4) When ¢’ sufficiently small, there is a one-variable real analytic function Q, such that for any (x, t)
in the closure of (B),

QU ;) = x(f{ () +1) = tf;(x). (7.11)

Also, for any (x,t) € B, (x,t) € A(B) = AN B if and only if f,(x) is a double root of f
Q(f) — x(f + 1) + tf, except for that f; (x.) = f;’:(xc) is a triple root (but not a quadruple root)
of f = QU) = xc(f + D+ L. f.

The first and third items follow from [47, Proposition 3.4]. The second item follows from [47,
Proposition 3.1]. The last item follows from [47, Proposition A.2], and the classification of singular
points (see the discussion at the end of [51, Section 1.6]).

The complex Burgers equation (7.8) can be solved readily using the characteristic flow. Fix any
time t € [fy,f;] and u € U,, we have that for s € [t, f;],

fS(ZS(u)) — f[(u)
fszw)+1  fiw)+1’

The characteristic flow maps the subregion {u € U; NH : Imu > —(s — ) Im[ f,(w)/(f,(u) + D]}
bijectively to U, N H. It then follows that f; satisfies

Jiw)
fiw) +1

For simplicity of notations, we introduce w;(z) := f;(z)/(f;(z) + 1). Then (7.13) can be rewritten
as

05 fs(zs(w)) =0, &,z,(u) =

z,(u) = u. (7.12)

fs<u+(s—t) ) =fi(w), [H<t<s<i, ueU,. (7.13)

wy(z + (s — Hw,(2)) = wi(2). (7.14)

Performing Taylor expansion of Q around f t‘c (x.) and using (7.14), we can show that w,(z) satisfies
the following equation (7.15).

Lemma 7.4. Foranyt € [{,,f;] and z € U, we have
a
z =X+ (t. — Dwi(2) = g(w[(Z) —w, (%)) + Ew,(2) — w,, (x,), (7.15)
1:5

2(r—1)3
function in a neighborhood around 0 satisfying £(w) = O(Jw|*).

where w, (x.)) =t~' €(0,1), a = Q"(f ..(x)) is a positive constant, and € is an analytic

Proof. Recall that the slope r of the tangent line through (x., t.) is in (1, 00). Together with (2.11),
it implies that w, (x.) = t™! € (0,1) and fiG)=(r— 1)~! € (0, ). Hence, as long as ¢’ is cho-

! A function g defined on a subset of C is called real analytic if it is analytic and satisfies g(z) = g(2).
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sen sufficiently small, we have f; (z) (respectively, w,(z)) for z € U, is away from {-1,0, co}
(respectively, {0, 1, co}) by a distance of order 1.
By Item 4 of Proposition 7.3, (7.11) holds for any (x, t) € (8), and

QU ) = xe (£ () + 1) = b (o),
QUGN =X~ te QLN =0, Q"(f] () #0.

(7.16)

Next, with (7.7) and (7.11), we can derive that for z € U, , the following equation holds:
Q(f () = z(f1 (2) + 1) — t.f; (2).
Then, with (7.16), performing the Taylor expansion of Q at f Z (x.) gives that
1 * * *
(z=-x)[1+ f ()] = gQ’”(f LGNS, (2) = [ (x)) + Ef 1 (2) = £ (x), (7.17)

where &, (w) = O(Jw|*) is an analytic function in a neighborhood around 0. We further write (7.17)
as

z—x = L (fu@-1100) +a(f-1100), (718)

where & (w) = O(Jw|*) is the analytic function obtained in this expansion and

. 1 Q,N(f;kc(xc)) _ r—1 e
S o HEA R
Recall that f,(z) satisfies (7.13), which implies that
_ fi(2)
fi(2) = fi, <Z +(tc — t)m>. (7.19)

By plugging z in (7.18) as z + (t. — t)f;(z)/(f:(2) + 1), we get that

ft(z) _ %(ft(z) _ fz*c(xc))3 + 81(f[(z) — ftxc(xc)) (7.20)

Z_xC+(tC_t)f,(z)+1 =

Then, plugging f; = w;/(1 — w;) into (7.20), we can deduce (7.15).
It remains to show that a is positive. In fact, as the cusp is upward oriented, for ¢ € [¢, t.),
w;(x) is real for x € [E_(t), E,(¢)]. By Item 4 of Proposition 7.3, f;(E,(t)) are double roots of

Q) —EL(O(f+1)+tf,s0
Q (fiEL1)) = EL(H) —t.

Then, performing the Taylor expansion of Q" around f tc (x.) and using (7.16), we obtain that

Xe =t 3Q" (LGN FEL0) = 1.0 + O Eo(0) = f7. () = Bu(0) — 1.
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Plugging into f, = w;/(1 — w;) and using (7.15) with z = E, (t), we can rewrite this equation as

QW — 0, (RO + 0w —w, GO = (=D —w) (21

forw = w,(E,(¢)). Writing the right-hand sideas 1 —w =1-1"! — (w — wy, (x.)), we can reduce
(7.21) to

T

a(w — w;, (x0))* + =7 (te = HW — w;, () = (fe = 1) = Olw — w;, (xc)P)- (7.22)
Note that as an equation for w, (7.22) has two real roots around w; (x,), thatis, w,(E.(¢)); but that
only happens when a > 0. This concludes the proof. [l
7.3 | Matching the curvature parameters: Proof of Lemma 4.6

First, we notice that the two analytic pieces E..(t), t € [to, t.], near the cusp are determined by a
as follows.

Lemma 7.5. Foranyt € [t,,t,], we have

t.—t 2(t, — )32 t.—t
E()=x ————— +O(lt. — t?), w(E_(1) = w;, (x) + 1/ —— + O(|t. —t]),
T 3\/5 a
t.—t 2(t,—t)*/? t.—t
E,(t)=x,— Cr + C3 +O(lte — t1?), wi(Ep (1) = wy (x) — CT+(9(|tc—t|)-

a

(7.23)

Proof. In the proof of Lemma 7.4 above, we have seen that w = w,(E_(t)) satisfies (7.22). Solving
it, we get the estimates on w,(E(t)). Plugging them further into (7.15), we obtain the estimates
on E,(t). O

Comparing (7.23) with (2.13), we observe that

R

(r—1)

_2=

1
3q a—z

Q" (f7 (xo))- (7.24)

The following lemma computes the derivatives of the complexslope f; atz. = x. — (t. — to)/x,
as defined in (4.9). For the convenience of notations and easier comparison with Lemma 5.2, for
the rest of this section, we shift the domain 8 (by an amount depending on n) to assume that
to = 0. Note that ¢, would then be n dependent with ¢, < At.

Lemma 7.6. We have

_ , 12 . o,
fO(ZC):(r_l) 1’ f()(zc)z_tcl(r_l)zi O(ZC)ZZtCZ(r_1)3’
" _ 4 t/ " _ @43 vt
0 (Zc) - tc (r _ 1)7 Q (ftc(xc)) 6tc (r — 1)4' (7-25)
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Proof. First, by (7.13), we have f(z.) = f; (x.) = (r — 1), Then, (7.16) gives that

Q' (foze)) = xc —te,  Q"(fo(2)) =0, Q"' (fo(z.) #0 (7.26)
Next, by the relation (7.7),

Jr(x)

folpoe,0) = f16, - @, 0y =x — 2.

Denoting z = ¢y(x, t), and plugging the above line into (7.11), we get that

Q(fo(2) _ fix)

m =X- m =z = Q(fo(2)) =z(fo(2) + D). (7.27)

Taking the derivative of (7.27) with respect to z gives
Q' (fo@Nf5(2) = fo(2) + 1+ zf((2). (7.28)

Plugging z = z, into (7.28), using (7.26) and z, = x, — t.wy(z.), we get

fo(z)

Golzd+17 72

1+1,

from which we can solve f é(zc). Taking one more derivative of (7.28) with respect to z, we get
Q"(foN(f§(2)* + Q' (fo(@)f( (2) = 2f((2) + zf( (2). (7.30)
Plugging z = z, into (7.30) and using (7.26) and (7.29), we get

’ 2
2hET (731

S S i

from which we can solve f 6’ (z.). Finally, taking another derivative of (7.30) with respect to z, we
get

Q"' (fo@N(f§(2)* +3Q" (fo(@Nfo(2)f (2) + Q' (fo(2) ' (2) = 3f( (2) + zf'(2).  (7.32)
Plugging z = z, into (7.32) and using (7.26), we get
(ze = xc +t)f (" (z) = Q"' (fo(z(f§(2))° = 3f( (20),
from which we can solve f{"(z,). O
Now, we are ready to complete the proof of Lemma 4.6 with the above lemma and Lemma 4.3.

Proof of Lemma 4.6. By Lemma 4.3, we have B = (X, — Z,)/f, = 0,(Z.) = t~', and that

T+Z—X =t +z.—x. +OA?>) = (1 =t Dt, + OAL?) < At, X, —Z, = v~ ', + O(AL?) < At.
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These two estimates show that the second and third terms in the definition of A are of order O(At).
Next, by (7.23), we have that

z, € (E_(0),E,(0)), with z.—E_(0),E, (0)—z, =< At?/2, (7.33)

and a similar estimate holds for Z. = z. + O(At?). Then, combining (7.33) with (5.6), we get that

/ PoX) / PO 4 < Ar2AL = Ar T,
(Zc (Zc

_ x)4 —x)

which is negligible under the scaling At*. Furthermore, using the fact that z, is away from the
support of p; — Py, which is contained in R \ [y_»/(0),y5(0)], by a distance of order 1, we easily
get that

7 / oo () = Bo(x)]

4z — 2 dx = O(At*).

Combining the above facts and using that7./t, = (t, + O(At?))/t. — 1, we observe that to show
the limit of A4, it suffices to prove

* 4
t?/ _4(:0(_)(1—)4 dx = 22 N/(ZC) - rz(r -1)" lq—2/4 (7.34)

Using the decomposition (7.10) and that g,(z) is real analytic, we can calculate that

1y (z Zo) 3f5 (z)fo(2c) N 2fy(z.)’
fO( c) fO(Zc)2 fO(Zc)3

m"(z.) = [log fo(zo)]"" + O(1) = +0O(D). (7.35)

Plugging (7.25) into (7.35), we obtain that

t4 " 7 "
=33 (20) = S Q). (736)
Finally, plugging (7.24) into (7.36) concludes (7.34). O

7.4 | Density estimate: Proof of Item 2 of Proposition 7.1

By Item 3 of Proposition 7.3, we can recover the density p; as

. wi(x)

pi(x) = —%arg*ft(x) = et

For w;(x) in a sufficiently small neighborhood of w; (x.) € (0, 1), we have

w;(x) _ =Im w;(x)

—w  T=wp (7.3

>1 and —1Im

’ wy(x)

1 —w(x)

which gives that p,(x) < —Im w,(x). Hence, to prove Item 2 in Proposition 7.1, we only need
to estimate the order of Imw;(x). For simplicity of notations, given x,t with t. <t < t; and
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|x — c(t)| < ¢y, we denote

- _ife o 3x—c)
T = w () —w, (), 1=, yi= D

_ 3E(w)

e(w) : g

where £ is from Lemma 7.4 and £(w) = O(|w|*). Then we can rewrite the equation (7.15) as
w3 + 31w + 2e(w) = 2y. (7.38)

Using the general cubic formula, we obtain that

1/3 1/3
@ =a|0-c@)+ VO—c@)P 7| +a o -e@)- VO —c@P+T| (739

where « is a primitive cube root of unity chosen such that Im @ < 0. Here (and also for the rest
of this paper) we use the convention that z'/?> € R for z € R.

We first consider the case |y| < Cyr*/2 for a large enough constant C, > 0. From Equation
(7.38), we obtain that @ = O(t/2). Then, we can expand (7.39) as

1/3

1/3
w = oc[y +Vy2+13+ (9(72)] +a! [y —Vy2+13+ (9(12)]
Then, we have

= r1/2,

—Imw =

>[5

]1/3

1/3 3
[y +Vy2+13+ (9(7:2)] - \/7— [y —Vy2+ 13+ 0(1?)
Therefore, we conclude that when 3|x — c(t)|/2a = |y| < Cor3/? < (t — t.)*/?, we have
0/(x) = —Imw,(x) = —Imw@ < /2 < (t —t,)"/2. (7.40)

Next, consider the case Cy73/2 < |y| < c,. From Equation (7.38), we obtain that @ = ©O(|y|'/?),
with which we can expand (7.39) as

13 1/3 T3 1/3
w:a[y+lyl+(9<lyl4/3+m>] +a1[y-'y'+0<'y'4/3+m>] '

Then, we have

1/3 1/3
V3 3 V3 3
—-Imw@ = —- (2] |+(9<| |4/3+—>] ——[0<| |4/3+—>] = |y|'/3.
2 [ A AT 0 N Y

Therefore, we conclude that when ¢, > 3|x — c(t)|/2a = |y| > Cor3/% < (t — t.)*/?, we have
0/(x) = —Imw,(x) = —Imw@ = |y|'/3 =< |x — x,|/3 (7.41)

Item 2 of Proposition 7.1 follows from combining (7.40) and (7.41).
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7.5 | NBRW estimates: Proofs of Lemmas 4.3 and 4.4

We first show that the complex slope corresponding to the limit shape of an NBRW also solves a
complex Burgers equation.

Proposition 7.7. Take any § € (0,1) and a density py : R — [0, 1]. There exists a process {0;};>o
with Stieltjes transform

. [eXdx = o B s
@) i= [ B @) = hpen, (142)
which solves the complex Burgers equation
6,fi(2) +9,f.(2) _Jl@ f(2) =0, zeHl. (7.43)
fi(@)+1

Proof. We recall the free convolution with the semicircle law from random matrix theory. The
semicircle distribution is described by the density gsc(x) V4 —x2/Q2r) - Vyg|—z7- Foranyt > 0,
we denote the rescaled semicircle dens1ty as o' (x) = t71/20.(t7'/2x). Given a positive mea-
sure v, the free convolution v, := v 9 ) of v with QSC is characterized by its Stieltjes transform

x:i(2) = f dv’ ©) which satisfies the equation

Xi(z + tx0(2)) = xo(2). (7.44)

The complex Burgers equation (7.43) can be solved using characteristic flow as

fo(2) =
120 ) _ F(2). (7.45)
I <Z Fo@+1 ) otz
Now, we define
fo(Z)
= 7.46
X0(2) [REYS (7.46)
Then, for z € H, we have Im[m1,(z)] € (—7,0), and
f mo(2)| . iIm[rmy(2)]
Im(x,(2)] = Imfo@2) _ B _[|em®] Ime! (7.47)

fo@+12 1-8  |Fo@) +1]2

Moreover, by our construction, lim,_, ., y,(z) = 0. Hence, by the Nevanlinna representation, there
exists a positive measure v such that y,(z) is the Stieltjes transform of v. Then, we can construct
x:(z)asin (7.44), which is the Stieltjes transform of v, = v HH 95?. Once we have constructed y,(z),
we let

_Jz+py Fly= P o) o _XEZ=BO+E

-B, fil2)= 1

Fiz+B0)+1 —g° Ty e G

Xi(z) =

With (7.44), we can readily check that f; satisfies the complex Burgers equation (7.45). For z €
H, we have y,(z) € H™, thus the above construction gives ¢”(?) € H~ and Im[,(z)] € (-, 0).
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Moreover, we have lim,_, ., 71,(z) = 0. Using the Nevanlinna representation again, there exists
a density g, : R — [0,1] such that m,(z) = [ POOdX i gives the construction of the process
Z—X

{0:(x)}>0- [l

For the convenience of notations, in the rest of this section, we also shift the domain 8 by an
amount depending on n such that x, = (t. — ty)/xr = t./r. Then, x. would be n dependent and
z. = 0 from (4.9).

Below we take p, = p;, from (4.8), and let g;, m;, fiforo<t<t be given by Proposition 7.7.
Denote ,(z) := f,(z) / (f,(z) + 1). Take §8 from (4.10). Then, we have

Fol0) = £ (x) = fo(xe — tew; (x0)) = fo(0), (7.49)

where we used (7.19) in the second equality and w; (x.) = t~! in the third equality.

We denote Aw(z) = Wy(2) — wy(z) for z € U,. We claim that
Awy(z) = O(|z]). (7.50)

For the proof of this claim, notice that g,(z) in the decomposition (7.10) is a real analytic function,
S0 g0(2) — g9(0) < |z|. Furthermore,

1
xX—z

|[7(2) — m3 ()] — (@) — m30)]| < / -1

X&[y_m(0),yn(0)]

pi(0)dx S |zl
where we used that x,x —z > 1 for x & [y_p(0),yx5(0)] and z € U, as long as ¢’ is chosen
sufficiently small depending on ¢. Thus, from (7.49) and (7.10), we derive that

f o(z) = fo(o)eﬁo(Z)—rﬁo(O) = fO(Z)eﬁo(Z)—n?o(O)—(m(*)(Z)—m:;(0))—(go(2)—go(0)) = fo(2) 1 + fo(2)), (7.51)
where fy(z) is an analytic function around 0 defined as

fo(z) = /M0(2)=1p(0)—(mg (2)—mg (0))—(g0(2)-g0(0)) _ 1 — O(|z)).

With the above two equations, we conclude that

() = 0D @ @ fol@) @ = we@Di@ _ g

Fo@+1 fo@+1  (fu@+ Do +1)  w@f@ +1

(7.52)

where for the last step, we used that wy(z) is bounded.

7.51 | Proofof Lemma 4.3

We first prove the estimate for 7. — t,. Recall from Lemma 5.2 that there is an a priori esti-
mate 7, = 7. — £, < At. We denote the two edges of g, for 0 < ¢ <7 as E,(¢), so that 5,(x) = 0
for x € [E_(¢), E.(¢)]. It is known from classical Stieltjes transform theory that E(¢) are char-
acterized as the points x € R where n"i{(x) diverges, which, by the definitions of ft and w;
in (7.42), implies that 1/ LU;(E'J_F(I)) = 0. Similar to (7.14), from Equation (7.43), we obtain that
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W;(z) = Wy(z — tw,(z)) for t € [0,¢t;] and z € U,. Then, the implicit differentiation with respect
to z yields that [@](2)] ™" = [@)(z — tW,(2))]~" + ¢, so E,.(t) satisfy the equation

1
DB () — (B E)

t=0. (7.53)

Furthermore, with the definition of Aw, in (7.52), we can calculate that
W (2) = wy(z) + Aw((z) = w)(2) + O(w(2)fo(2)] + If;(2)]) = wy(2)A + O(|z])) + O1).

Plugging it into (7.53), we get that

1
w(’)(]:fi(t) - tw{(ﬁi(t)))

+1+ 0 (2 + t|EL(t) — 1 (EL(1)]) = 0. (7.54)

For simplicity of notations, we rewrite Equation (7.15) with t = 0 and x. = t./r as
z = Fo(we(z) —w; (x.)), for Fy:w = —tw+ %w3 + EW). (7.55)

Then, the implicit differentiation of (7.55) with respect to w, and taking z = Ei(t) — tw“t(ﬁi(t))
gives

1
w)(EL () — tw,(EL (1)

Fg(wo(EL(6) — tw;(EL(1))) — wy (X))

In addition, taking z = E(t) — tw,(E,(¢)) in (7.55), we get that
E, (1) — tw,(EL (1) = Fo(wo(EL (1) — tw,(EL(1))) — w, (x,)). (7.56)

Hence, (7.54) can be rewritten as the following equation of w = wo(ﬁi(t) - tﬁ[(ﬁi(t))) -
wtc(xc):

aw? =t. —t + O (£ + t|Fp(w)| + |w]?) =1, —t + O (2 + |w]?). (7.57)

At the cusp (X,,7.), we have E. (f.) = E_(Z,). Hence, the above Equation (7.57) of w has a double
root around 0 when ¢ = 7., from which we readily get that 7, — t, = O(At?).

For the estimate on X, — x,., from (7.57), we can solve that wy (X, — Tcu")';L (Xe)) — wy, (x.) = O(A?).

Applying it to (7.56) and (7.52), we get that z, — z. = X, — ?CLB;C (X,) = O(Ar?) (recall that z, = 0)
and

Wo(Ze) — v = WX, — W, (x)) — wy, (x) = O(AL + | X, — T Wr, (X)) = O(AL).
With these two estimates and the estimate on 7., we finally get that

X, =107 (X.) + O(AL?) = (t. + O(A))(x 7 + O(AD) + O(AL) = X, + O(AL).
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7.5.2 | Proofof Lemma 4.4

We can define the NBRW height function as
X
At =-m/n+ [ BNy (758)

Then, for ¢t € [0,t,] and i € [—M, N]|, we define 7;(¢) as in (4.1) with H* replaced by H. Similar
to (2.8), the complex slope f; is related to the height function H(x, t) through

arg" fi(x) = —m0,H(x,0),  arg® (f(x) +1) = 79, H(x,1). (7.59)

Proof of (7.59). The first equation follows directly from the definition of H and (7.42). The second
equation can be derived by

X X X
76,f1(x,1) = —Im / 8, (¥)dy = —Im / 5,log F,(y)dy = Im / 5, log(F(y) + Ddy

=Im log(ft(x) +1)=mx arg*(ft(x) +1),

where we used the complex Burgers equation (7.43), rewritten as d,log f,(z) + 3, log

(i@ +1) =0. O
We need the following optimal rigidity estimate, for the NBRW Q = {g;} , : [0, 0] —
ZI-MNI constructed in Section 4.3. It follows from Lemma 4.2 and [47, Proposition 4.4] (which
has been stated as Proposition 6.4 in the tiling setting).
Lemma 7.8. Under the setting of Lemma 4.4, with overwhelming probability:
qr(nt)/n—7,(), G (nt)/n—7_1(t) Sn3/42, Ve e[0,]nn"'Z,

Gi(nt)/n—7,(t;) Sn=3/4?, Vie[-L,L].

Now, to conclude Lemma 4.4, it remains to show that the quantiles ¥; are sufficiently close to
vi, which is the content of the following lemma. It will be proved in the next subsection.

Lemma 7.9. Under the setting of Lemma 4.4, we have

7.0 = 7. (O + 17 =y (O] <n°A%, Ve e[o,1], (7.60)
7:(t1) — v:(t)| < n°Ar?, Vi e [-L,L]. (7.61)
7.6 | Evolution of quantiles: Proofs of Lemmas 7.2 and 7.9

We first define functions

h(2) 1=z + twy(2), h(2) 1=z + tW,(2) = z + Hwy(2) + Awy(2)).
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Then, (7.14) and a similar equation for @, from (7.43) give that, for t € [0,t,] and & € U,

w,(§) = wo(h(§)),  W,(&) = Wo(h; ().

Using (7.50), we get that

w; (&) = W,(§) = wo(h; ' (£)) — wo(h; ' (£)) — Awg(h; ' (£))

= wo(u;) — wo(i;) — Awo (%) = w,(§) — @,(§) + O (5)]),

where we abbreviated that

u = u(§) = hy'(§), @ = (&) = (), @, = @, (§) = wo(u,(§) — 7,

@ = @,(§) = wo(i,(§) — 7.
These variables satisfy the following equations:

u +tw, =& —17 i =1, + 1@, + Awy(iLy)),

a
u, = Fo(wy) = —t.w; + gwf + E(w@y),

a

3 @, + E(@)),

U = Fo(@,;) = —t.@; +

where (7.64) and (7.65) are by (7.55).
From dH*(y;(¢), t)/dt = 0, using (2.8), we can derive that

arg’[f,(ri() + 1]

R e T XA0)]

(7.62)

(7.63)

(7.64)

(7.65)

(7.66)

A similar differential equation for 7;(t) with f, replaced by f, can also be derived using (7.59).

Since f; (x.) = (v — 1)~! is a positive constant, for z = f 1. (xc) + o(1), we have that

Imz
" arctan
arg”(z+1) fre(x)+1+Re(z—f1. (xc))
arg*(z) arctan [m2 '

Jre(xe)+Re(z—f1. (xc))

Hence, with the Taylor expansion of arctan, we deduce that
Yi@®) =7+ O(lw, (i (1) — wy, (X)), 7() = 71 + O D (7)) — wy, (x D),

Y0 =7/ 3 fi0i®) = FiFi0) S wi () = @ Fi0))-

We next complete the proofs of Lemmas 7.2 and 7.9 using (7.63)—(7.68).

(7.67)

(7.68)
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7.6.1 | Proofof Lemma 7.2

At t = t., we have yy(t.) = x.. Then, from (7.63) and (7.64), we obtain that

t
(t = L)) + SO + E@ o) = o) =0 = [ (it =’
te

t
< / (@, (o)1,
le

where we used the fact that ¢ /xr = c(t) (since x. = t./x) and applied (7.67) for the last inequality.
We can rewrite the above equation as (7.38), with @ = w(t) = @,(y,(1)), |e(w)| < Cy|w|*, T =
(t—t.)/a,and

t t
3
y@) =3 [ v - @< [ wen
te te

for some constants C;, C, > 0. Then, we have w = q,(w), where the function g,(w) is defined in
terms of 7, e(w), and y(w) as the right-hand side of (7.39). Thus,

1/3

Pl =13 sup |w ()3

t'eltet]

lq:(@)] < 4ly(@)|'/3 + 4]e(w)|'/? + 271/2 < 4C

1/3

t—t,
. :

+4C

lw ()| + 2

With this bound, we can check that there exists a constant .4 > 0 depending on a, C;, C, such that
if |(t")| < A|t —t,|}/?forallt’ € [t,,t], then we have |@(t)| < A|t —t.|'/?/2.

Combining the above fact with the continuity of @(t), we can conclude that |@w(t)| < A|t —
t.|'/?/2for all t € [t,,t,]. More precisely, we first notice that w(t) is Holder-1/3 continuous in ¢
(since the right-hand side of (7.39) is Holder-1/3 continuous in both ¢ and x and y,(t) is Lipschitz
continuous in t). Suppose |@(t")| < A|t’ —t.|'/?/2 < A|t —t.|'/?/2forallt’ € [t.,t]. Then, fora
sufficiently small ¢, |@(t')| < A|t' —t.|"/2 forall t’ € [t.,t + €], from which we get that |@(t')| =
|y (@)| < Alt' —t.|'/?/2forall ¢’ € [t,,t + €]. In this way, we can extend the estimate |@(t)| <
Alt —t.|'/?/2att = t, all the way to t,.

Finally, plugging the estimate |w(t)| < A|t — t.|'/?/2 into (7.64), we conclude the proof.

7.6.2 | Proof of (7.60)

To bound |y, (t) — ¥1.(¢)|, we now bound the right-hand side of (7.68) fori = L.
By Lemma 4.1 and (7.23) (recall that x. = ¢/t and ¥;(0) = y;(0) for i € [—M, N])), we have

¥2.(0) = 7.(0) < n¥/*Ar3/2, (7.69)

For t € [0, t;], we get from (7.63)-(7.65) (and using (7.50)) that

y() =t/ = Fo(w,(y.(1))) + tw (v (D) = (t — )@, (y (1) + %m(h(t)f + E(@ (yL (D)),
(7.70)
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yr(t) =t/ = Fo(@,(y1.(1)) + 1(@, (YL.(1)) + Awo (i, (Y1.(1)))) (7.71)
=t —t)@, (7.(0)) + %@(ﬁ(ﬂf + E(@, (7.(0)) + 0w, (yL(1)]AL).
We first assume the following a priori bound:
ly(t) —t/x] < ndAL2, |7.(t) —t/x] < nPAL/2, VYt e[0,t]. (7.72)
Under (7.72), using (7.70) and (7.71), we can check that for any ¢ € [0, 1, ],
@, (yL(0) = O PAL), u(yL (1) = Fo(w(y (1)) = O Ar*/?),

@ (7L(1) = O° AL ), w(FL(1) = Fo(@,(7L(1)) = O(n° AL/?),

which imply that
|w (yL(D) = wy, (x| = |@, ()] = O PArt/?), T
@, (7L(1) — wy (x| = 1T, FLO)] + OUTFLO)]) = O P Art/?), .
Plugging these estimates into (7.67) for i = L yields that for ¢ € [0, t;],
Y () =L+ Om®BAr?), 7 (1) = v + OO 3A/?). (7.74)

By integrating them, we obtain that
o) = y.(0) = t/r = On®PAL?),  Fi(6) = y.(0) — t/x = O(n®/PAL/?), (7.75)

under (7.72). Note that (7.69) and (7.75) together imply (7.72). Thus, to show (7.75) without assum-
ing (7.72), we only need to consider an n~1°¢;-net of [0, ¢, ] and use a simple induction argument.
More precisely, we define a sequence of times t;, := kn='t;,k = 0,1, ..., n'%. First, the estimates
(7.72) and (7.75) hold at t = t, by (7.69). Second, suppose (7.75) holds at some t,. With (7.63)-
(7.65), we can check that y;(t) and ¥ (¢t) are Holder-1/3 continuous in ¢. Thus, from (7.69) and
(7.75) at t = t;, we obtain that (7.72) holds uniformly for all ¢ € [t;, t;,1]. The arguments above
then imply that (7.75) holds at ¢t = t; ;. With mathematical induction in k, we conclude (7.75) for
allt € [0,¢;].
Now, with (7.69) and (7.75), we get that

ye(®) —t/r = (1 +o()FL(E) — t/r) = (1 + o(1)yL(0) = n**/*Ar*/2, (7.76)
Applying it to Equations (7.70) and (7.71), we obtain that
@ (y,(1) = (1 + o())T, (7, (1)) = n¥/*AL'/2,
w(yr (D) = (1 + o()E(F1.(1) = A + 0o(1))yr(0) < n*/4Ar3/2,

Subtracting Equation (7.70) from (7.71) and applying (7.77) yield that

(7.77)

|o(L() = T L) - |=, (L) S %Iw[(h(t))3 =& GO < Iy = 7.0
+ |t = te||lw (y.(0) — T (FLO)] + 1E(@ (y(0) — E@ (T (O] + Olu, (Yr(£)]AL)

Sy =701 + (At + @, (L)@, (L. (6)) = T (FLE)] + nP/ A2, (7.78)

25UI SUOWI0)) aANEa1) 31qeatidde Ay Aq PaUIAS AIE S[ONIE V() (SN JO SA[NI 10 ATRIQIT SUIUQ AS[IAY O (SUONIPUOD-PUE-SWLIAYW0d* ATIM ATeIqIoUIu0,/:sdY) SUOMIPUOY) PUE SULISL o 93§ [p707/90/€ 1] U0 ATe1qr Suiuo Kofim ‘ANSIoAtun piouers £q 2077z edo/Z001°01/10p/woo" KayimATeiquaut[uoy/:sdy woxy papeofumod 0 “T1€0L601



PEARCEY UNIVERSALITY AT CUSPS OF POLYGONAL LOZENGE TILINGS 73

Thus, we obtain that

n AL 4+ |y () = 70
|@ (v (D) — OAL + |@,(y.(D)]?)

S n®AAB2 + n =82 A  yp(6) = 7L (), (7.79)

@ (y.(0) — T (YL(O)] 5

which, together with (7.68) for i = L, implies that
710 =7, (Ol S n®AAL2 4+ n=2 Ay () = 7101,
Finally, an application of the Gronwall’s inequality gives that

D) =7, ()] < né/2A13/2,
021’51'”() 71Ol <n

The proof for the bound on |y_;(t) — 7_;(¢)| is similar.

7.6.3 | Proof of (7.61)

To be concise, we abuse the notations and abbreviate u(§) := u; (§), w(§) := w; (§)and u(§) :=
u;, (§), w(§) 1= @, (§). By (7.63)~(7.65) and (7.50), for any fixed & € [y_p(t;) AV_(t1), ¥ (t1) V
y1.(t)], w (&) and @ () satisfy the equations

(t, —t)w + %w3 +E(@) = E—1y/r, (7.80)
(t, —t.)& + %53 +E(®) = £ —t, /1 + OALE(@))). (7.81)

By Equation (7.76), the chosen ¢ satisfies | — t,/t| < n3%/*At3/2. Then, from (7.80), (7.81) and
(7.64), (7.65), we obtain that

lw(E)]| + |@E)| S n/*Aae' 2, Ju(@)] + [u()] S n®/*Ar3/2. (7.82)

First, consider the case where |¢ — t; /t| > CAt3/? for a large enough constant C > 0, so that
the %w3 and %Er3 terms dominate in (7.80) and (7.81). In particular, we can choose C such that

w =& = |E—t, /1|3, %|w3 — & > 2t; —t)|w — F. (7.83)

Subtracting Equations (7.80) and (7.81) and using a similar argument as in (7.78) and (7.79), we
get
_ At|Fo(@ At|@|? + A | @
oz < _AF@I B+ ACIF|

5/4AL3/2, 7.84
~ el - o(wP) ~ B . (7.84)

where we used (7.82) and (7.83) in the last step.
We next consider the case where |£ — t; /x| < CAt*/2. From (7.80) and (7.81), we get

|w| S A2, @] S A2 (7.85)

25UI SUOWI0)) aANEa1) 31qeatidde Ay Aq PaUIAS AIE S[ONIE V() (SN JO SA[NI 10 ATRIQIT SUIUQ AS[IAY O (SUONIPUOD-PUE-SWLIAYW0d* ATIM ATeIqIoUIu0,/:sdY) SUOMIPUOY) PUE SULISL o 93§ [p707/90/€ 1] U0 ATe1qr Suiuo Kofim ‘ANSIoAtun piouers £q 2077z edo/Z001°01/10p/woo" KayimATeiquaut[uoy/:sdy woxy papeofumod 0 “T1€0L601



74 | HUANG ET AL.

Moreover, we can write (7.80) and (7.81) as
W 43tw -2y +6)=0, @ +3tT -2y +¢,) =0,

where 7 :=(t; —t)/a, y :=3(§ —t;/1)/(2a), & = O(|w|*), and €, = O(T|* + At|Fo(@))).
Using the general cubic formula, we obtain that

/ /
w=alw+e)+ Vo rar+o] e [0 +en-vVo+ear+ 73]1 }

1/3

/
fz‘r=oc[(y+sz)+\/(erEZW]1 3+0£_1[(y+52)—\/(Y+52)2+T3] ,

where «a is a primitive cube root of unity chosen such that Imw < 0 and Im @ < 0. With the
estimates T > At, |y| < At¥/2, and €1, &, = O(At?) by (7.85), it is easy to check that

1/3
[(}""El)i V(Y+51)2+T3] —[(J’+Ez)i V( +e)?+13

(7.86)

1/3 € €
|| < laltlal <o
T

thereby giving that | — @| < At. Combining this and (7.84), we obtain that for & € [y_(t;) A
Y- (), () vyl

1f1,(©) = F1,(O] S lw,, (&) =@, ()] S |lw —&| + O(Z]) S A, (7.87)

where we also used n*%/#Ar'/2 « 1since 0 < § < w/2. Since f;, and f,, are bounded away from
0, we have

190 (&) = 5, (O = = |arg’ £, () —arg’ T, (O] S 1/, - T @I sA. (7:89)

On the other hand, by Item 2 of Proposition 7.1 (whose proof also applies to g;, ), we have

_ At'/2, |€ —t, /x| < CAL3/?
P, (&) < By, (§) = s iy N (7.89)
€ =ty /x| />, CAt/* <€ —t /x| < Cn°/*At
Now, we compare the quantiles y;(¢;) and 7;(¢;) through the following equation:
(1) L—i 7ety)
[ o=t [ A iel-Ln (7.90)
GV 7i(t)

With (7.88), we can write

7.(t1) 7L(t1)
/~ 5 (E)E = / P (EXIE + OALTL (1) — Tt
V4

i(t1) 7i(t1)

yo(t1)
= / pr, (E)AE + O (n¥/4AL/2 + o4 AL 217 (1) — v (81)])
7i(t1)

yL(t1)
= / pr, (O)AE + O(*/4Ar/2),
7i(t1)
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where in the second step we used (7.89) and the estimates |& — t; /| < n%/*At3/2, |y.(t)) —
7i(t))] S n?/*At3/2 by (7.76), and in the third step, we used (7.60). Plugging it into (7.90) then
gives

7i(t)Vvyi(t)
[ e stk
AGYNAGY)

Combining this equation with (7.89), we get that At'/2|7,(t;) — yi(t;)| S n%/*At3/2, which
concludes (7.61).
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