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ON THE 4-DIMENSIONAL MINIMAL MODEL PROGRAM
FOR KÄHLER VARIETIES

OMPROKASH DAS, CHRISTOPHER HACON, AND MIHAI PĂUN

Abstract. In this article we establish the following results: Let (X,B)
be a dlt pair, where X is a Q-factorial Kähler 4-fold – (i) if X is compact
and KX +B ∼Q D ≥ 0 for some effective Q-divisor, then (X,B) has a log
minimal model, (ii) if (X/T,B) is a semi-stable klt pair, W ⊂ T a compact
subset and KX + B is effective over W (resp. not effective over W ), then
we can run a (KX +B)-MMP over T (in a neighborhood of W ) which ends
with a minimal model over T (resp. a Mori fiber space over T ). We also
give a proof of the existence of flips for analytic varieties in all dimensions
and the relative MMP for projective morphisms between analytic varieties.
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1. Introduction

In recent years there has been substantial progress towards the minimal
model program for complex projective varieties of arbitrary dimension [BCHM10].
Unluckily, much less is known about the minimal model program for Kähler
varieties. In dimension 3, the situation is now well understood, including the
cone theorem, the base point free theorem, the existence of flips and diviso-
rial contractions and the termination of flips (see [HP16], [CHP16], [DO24],
[DH20] and references therein). In higher dimension, however the situation is
less clear. Recently, however, Fujino proved the minimal model program for
projective morphisms between complex analytic spaces (of arbitrary dimen-
sion) [Fuj22b].

In this paper we take the first steps towards proving that the minimal model
program holds for Kähler 4-folds. In particular we show that it holds for
effective dlt pairs, and for (strongly) semistable families of 3-folds over curves.

Theorem 1.1. Let (X,B) be a Q-factorial compact Kähler 4-fold dlt pair such
that KX +B ∼Q M ≥ 0. Then (X,B) has a log minimal model.

Theorem 1.2. Let f : (X,B) → T be a Q-factorial semi-stable klt pair of
dimension 4 and W ⊂ T a compact subset (see Definition 8.1). If KX +B is
effective (resp. not effective) over W (see Lemma 8.11), then we can run the
(KX + B)-MMP over a neighborhood of W in T which ends with a minimal
model over W (resp. with a Mori fiber space over W ).

The main idea for the proof of Theorem 1.1 is as follows. If KX + B ∼Q

M ≥ 0, then running the minimal model program for KX + B is equivalent
to running the minimal model program for KX + B + λM for any λ > 0.
Suppose for simplicity that (X, Supp(B + M)) has simple normal crossings
and (X,B + λM) is dlt for some λ > 0 such that the support of ⌊B + λM⌋
is equal to the support of M . It then follows that KX + B is nef if and only
if KX + B + λM is nef. If this is not the case, then we show that there is
a KX + B negative extremal ray R spanned by a rational curve C such that
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M ·C < 0 and hence S ·C < 0 for a component S of M and hence of ⌊B+λM⌋.
By adjunction KS + BS := (KX + B + λM)|S is a divisorially log terminal
3-fold. We can now apply the 3-dimensional minimal model program to the
pair (S,BS) and in particular we have a contraction S → T corresponding to
the KS + BS negative extremal face F spanned by the curves of the ray R
contained in S. Since S · C < 0, we are able to extend this to a contraction
X → Y of the ray R. If this is a divisorial contraction, we replace X by Y
and repeat the procedure. Otherwise we have a flipping contraction, which
is in particular a projective morphism and hence its flip X !!" X+ exists by
[Fuj22b] (see also Theorem 1.4 below). We then replace X by X+ and repeat
the procedure. In order to conclude it is necessary to show the termination of
the corresponding sequences of flips. This follows along the usual approach by
using special termination, the acc for log canonical thresholds, and termina-
tion of flips in dimension 3. Some of the ideas in this approach are inspired by
the approach for projective varieties [BCHM10], [Bir07], and [Bir10], but not
surprisingly many new technical issues arise in the context of Kähler varieties.
Regarding Theorem 1.2, we simply remark that according to our definition of
a semi-stable klt pair f : (X,B)→ T , for any t ∈ W , (X,Xt+B) is a plt pair,
thus KXt +Bt = (KX +Xt +B)|Xt is a klt 3-fold and so we can reduce ques-
tions on the existence of the relative (X,B) minimal model program to known
results about the 3-fold minimal model program for (Xt, Bt). Termination of
flips when KX +B is not effective over W is the most challenging part of this
proof as the usual approach does not immediately apply here.

We will also use the results of [Nak87] and recent advances in the minimal
model program to prove the following results conjectured in [Nak87].

Theorem 1.3 (Finite generation conjecture). Let f : X → Y be a proper sur-
jective morphism of analytic varieties where X is in Fujiki’s class C. Suppose
that (X,B) is a klt pair. Then the relative canonical OY -algebra

R(X/Y,KX +B) := ⊕m≥0f∗OX(m(KX +B))

is locally finitely generated.

Theorem 1.4. Let π : X → U be a projective morphism of normal varieties
and B ≥ 0 a Q-divisor such that (X,B) is klt. Let W ⊂ U be a compact subset
such that π : X → U satisfies property P or Q (see Definition 2.42) and X is
Q-factorial near W (cf. 2.7), then after shrinking U in a neighborhood of W ,

(1) we can run the KX +B MMP over U ,
(2) if KX + B is pseudo-effective, and either B or KX + B is big over

U , then any MMP with scaling of a relatively ample divisor terminates
with a minimal model, and
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(3) if KX +B is not pseudo-effective over U , then any MMP with scaling
of a relatively ample divisor terminates with a Mori fiber space.

Remark 1.5. After completing the proofs of Theorems 1.3 and 1.4, we were
informed that Fujino has also proved these results see [Fuj22b]. We note that
Fujino’s approach is based on [BCHM10] whereas our approach is inspired by
[CL10]. Another possible approach can be found in [Pau12], which is particu-
larly suited to the analytic context.

This article is organized in the following manner: In Part 1, we collect and
prove various preliminary results. In Subsection 2.4 we prove two important
results, namely Theorem 2.29 and 2.36. These two results work as our main
tools for testing whether a (1, 1) class α is nef or not, see Remark 2.2 for
more details. Part 2 of the article is devoted to proving finite generation as in
[CL10]. We prove Theorem 1.3 and 1.4 in Section 4 of this part. In Part 3, we
prove Theorem 1.1 (in Section 7) and Theorem 1.2 (in Section 8).

Acknowledgment. O. Das would like to thank Cristian Martinez for many
useful discussions. We would also like to sincerely thank the referees for their
careful reading of our paper and many detailed suggestions for improvements.

Part 1. Preliminaries

2. Preliminaries

A complex analytic variety or simply an analytic variety is a reduced and
irreducible complex space. All complex spaces in this article are assumed to
be second countable spaces. A holomorphic map f : X → Y between complex
spaces is called a morphism. An open subset U ⊂ X is called a Zariski open
set if the complement Z = X \ U is a closed analytic subset of X , i.e. there
is a sheaf of ideals IZ ⊂ OX such that Z = Supp(OX/IZ). Let P be a
property. We say that general points of X satisfy P if there is a dense Zariski
open subset U ⊂ X such that P is satisfied for all x ∈ U . We say that very
general points of X satisfy P if there is a countable collection of dense Zariski
open subsets {Ui}i∈I of X such that x ∈ X satisfies P for all x ∈ ∩i∈IUi.
Similarly, if f : X → Y is a morphism between complex spaces, we say that
general fibers of f satisfy P if there is a dense Zariski open subset U ⊂ Y such
that Xy := f−1(y) satisfies P for all y ∈ Y ; very general fibers are defined
analogously.

Let S ⊂ X , then we say that S is uncountably Zariski dense in X if S is not
contained in any countable union of closed analytic subsets of X . Note that,
if S ⊂ X is uncountably Zariski dense, then for any non-empty Zariski open
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subset U ⊂ X , S ∩ U ̸= ∅.

Definition 2.1. Let X be an analytic variety. Then X is called a Kähler
variety if the there is a Kähler form on X , i.e. a positive closed real (1, 1) form
ω ∈ A1,1

R (X) such that the following holds: for every x ∈ X , there is an open
neighborhood x ∈ U ⊂ X and a closed embedding ι : U → V into an open
subset of CN , and a strictly plurisubharmonic C∞ function f : V → R such
that ω|U∩Xsm = (i∂∂̄f)|U∩Xsm .

(1) For a compact analytic variety X , N1(X) is defined to be the Bott-
Chern cohomology group H1,1

BC(X) (which is also an R-vector space),
see [HP16, Definition 3.1]. N1(X) is defined in [HP16, Definition 3.8].
When X is a normal compact analytic variety with rational singular-
ities and belongs to Fujiki’s class C, the duality of N1(X) and N1(X)
is established in [HP16, Proposition 3.9].

(2) Let X be a compact analytic variety. Let u ∈ H1,1
BC(X) be a class

represented by a form α with local potentials. Then u is called nef if
for some positive (1, 1) smooth form α and for every ϵ > 0, there exists
a smooth function fϵ ∈ A0(X) such that

α + i∂∂̄fϵ ≥ −ϵω.

If X is in Fujiki’s class C, then we denote by Nef(X) ⊂ N1(X) the
cone of nef cohomology classes.

(3) For the definitions of big and pseudo-effective classes and the corre-
sponding cones, see [HP16], [DH20, Definition 2.2] and also Subsection
2.4.

(4) Let D =
∑

aiDi and D′ =
∑

a′iDi be two R-divisors on a normal
analytic variety X . Then we define D ∧D′ as

D ∧D′ :=
∑

i

min{ai, a
′
i}Di.

Remark 2.2. Let X be a normal compact Kähler variety, and B ≥ 0 be an
effective divisor such thatKX+B isQ-Cartier. Under mild singularity assump-
tions on the pair (X,B), the Minimal Model Program asks whether KX + B
is nef or not. When X is a projective variety, nefness of a Q-Cartier divisor D
can simply be tested by checking whether D ·C is non-negative (or not) for all
curves C ⊂ X . However, in general for compact Kähler varieties this criteria
is not equivalent to Definition 2.1(2), for a counterexample see [HP18, Page 5].
When dimX = 3, using Boucksom’s divisorial Zariski decomposition [Bou04]
it is shown in [HP16, CHP16] (also see [DH20, Lemma 2.7]) that KX+B is nef
if and only if (KX +B) · C ≥ 0 for all curves C ⊂ X . This result is expected
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to be true in dimX ≥ 4, but a proof is not yet known, the proof in dimension
3 does not automatically extend in higher dimensions; for a partial result in
higher dimensions see [CH20].

In absence of such a nefness criteria we use our Theorem 2.36 to test whether
a class α ∈ H1,1

BC(X) is nef or not; it says that α is nef if and only if α|V is a
pseudo-effective class for all analytic varieties V ⊂ X .

The following results about nefness will be used throughout the article.

Lemma 2.3. [HP16, Remark 3.12] Let X be a normal compact Kähler variety,
Nef(X) is the cone of nef classes in H1,1

BC(X) and K(X) is the (open) cone of
Kähler classes. Then K(X) = Nef(X).

Proposition 2.4. Let X be a normal compact Kähler variety with rational
singularities. Then Nef(X) and NA(X) are dual to each other via the natural
isomorphism N1(X)→ N1(X)∗ induced by their usual perfect pairing.

Proof. A similar proof as in [HP16, Proposition 3.15] holds here. Note that
the main ingredient of the proof of [HP16, Proposition 3.15] is Lemma 3.13 in
[HP16], for which we use Lemma 2.38. #

Definition 2.5. Let X be a complex space and R a graded sheaf of OX-
algebras. We say that R is locally finitely generated, if for every x ∈ X there
is an open neighborhood x ∈ U such that R(U) is a finitely generated OX(U)-
algebra. We say R is finitely generated, if there exists an integer m ≥ 0 such
that for every x ∈ X , there is an open neighborhood x ∈ U such that R(U)
generated by elements of degree ≤ m.

Remark 2.6. Note that finite generation is a necessary condition for the ex-
istence of Projan R → X . If W ⊂ X is a compact subset, then for any
locally finitely generated graded algebra R, there is an open neighborhood
U ⊃ W of W such that R|U is a finitely generated OU -algebra. Indeed, since
W is compact, it can be covered by finitely many open sets {Ui}1≤i≤k such
that R(Ui) is a finitely generated OX(Ui)-algebra. Now let mi ≥ 0 be an
integer such that each R(Ui) is generated by degree ≤ mi monomials. Then
m := {mi : i = 1, 2, . . . , k} does the job.

Definition 2.7. Let X be a normal analytic variety. The canonical sheaf
ωX is defined as ωX := (∧dimXΩ1

X)
∗∗. Note that unlike the case of algebraic

varieties, ωX here does not necessarily correspond to a Weil divisor KX such
that ωX

∼= OX(KX). However, by abuse of notation we will say that KX is a
canonical divisor when we actually mean the canonical sheaf ωX . This doesn’t
create any problem in general as running the minimal model program involves
intersecting subvarieties with ωX .
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(1) A Q-divisor D on X is called Q-Cartier if mD is Cartier for some
m ∈ N. We say X is Q-factorial, if every prime Weil divisor D on X
is Q-Cartier and there is a positive integer m > 0 such that (ω⊗m

X )∗∗

is a line bundle. Note that if X is Q-factorial and U ⊂ X is an open
subset, then U is not necessarily Q-factorial.

(2) A Q-divisor D is called Q-Cartier at a point x ∈ X , if there is an open
neighborhood x ∈ U ⊂ X such that D|U is Q-Cartier.

(3) Let π : X → T be a projective morphism of complex varieties, X is
normal and W ⊂ T a compact subset. We say that X is Q-factorial
over W , if every divisor D defined on a neighborhood of π−1(W ) is Q-
Cartier at every point x ∈ π−1(W ) and ωX is also Q-Cartier at every
point x ∈ π−1(W ).

(4) A pair (X,∆) consists of a normal variety X and a Q-divisor ∆ such
that KX + ∆ is Q-Cartier. The singularities of (X,∆) are defined
exactly the same way as in [KM98, Chapter 2]. Note that in this
article when we say that a pair (X,∆) is klt, we assume that ∆ is
an effective divisor. If ∆ is not necessarily effective, then we will call
(X,∆) a sub-klt pair. Similar conventions are made for other classes
of singularities. If E is a divisor over X , the discrepancy of E with
respect to (X,∆) will be denoted by a(E,X,∆).

(5) We will often abuse notation and simply say thatKX+∆ is klt (instead
of the pair (X,∆) is klt).

Definition 2.8. Let (X,B) be a log canonical pair and φ : X !!" Y a bimero-
morphic map. Let BY be the push-forward of B under φ and EY =

∑
Ej the

sum of all prime Weil divisors on Y which are contracted by φ−1 : Y !!" X .

(1) We say that (Y,BY +EY ) is a nef model if (Y,BY +EY ) is a Q-factorial
dlt pair and KY +BY + EY is nef.

(2) We say that (Y,BY + EY ) is a log minimal model if it is a nef model
and for any prime Weil divisor E ⊂ X which is contracted by φ,
a(E,X,B) < a(E, Y,BY + EY ) holds.

(3) We say (Y,BY ) is a log terminal model of (X,B) if the following hold:
(i) (X,B) is a Q-factorial dlt pair,
(ii) KY +BY is nef,
(iii) φ does not extract any divisor, i.e. φ−1 : Y !!" X does not

contract any divisor, and
(iv) for any prime Weil divisor E ⊂ X which is contracted by φ,

a(E,X,B) < a(E, Y,BY ) holds.
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Clearly, every log terminal model is a log minimal model, and every log
minimal model is a nef model.

The following result shows that if (X,B) is a plt pair, then every log minimal
model of (X,B) is a log terminal model.

Lemma 2.9. Let (X,B) be a log canonical pair and (Y,BY + EY ) be a log
minimal model of (X,B) as in Definition 2.8 above. Let φ : X !!" Y be the
induced bimeromorphic map. Then the following holds:

(1) For any prime Weil divisor E over X, a(E,X,B) ≤ a(E, Y,BY +EY ).
(2) If (X,B) is a plt pair, then EY = 0, i.e. φ−1 does not contract any

divisor; in particular, (Y,BY ) is a log terminal model of (X,B).

Proof. (1) Let W be the normalization of the graph of φ, and p : W → X
and q : W → Y be the induced bimeromorphic morphisms. Then we can
write KW = p∗(KX + B) + G and KW = q∗(KY + BY + EY ) +H . Note that
p∗G = −B and q∗H = −(BY + EY ). Thus we have

p∗(KX +B) = q∗(KY +BY + EY ) +H −G.

Therefore −(H−G) ≡p q∗(KY +BY +EY ) is p-nef, and p∗(H−G) = p∗H+B.
Let D be a component of H . If q∗D is a component of BY , then p∗D ̸= 0, and
the coefficient of p∗D in p∗H +B is 0. If q∗D = 0 and p∗D ̸= 0, then from the
definition of log minimal model it follows that a(D, Y,BY +EY ) > a(D,X,B).
In particular, the coefficient of p∗D in p∗H + B is positive. Thus p∗(H − G)
is an effective divisor, and hence from the negativity lemma it follows that
H − G is an effective divisor. Thus for any prime Weil divisor E over X we
have a(E,X,B) ≤ a(E, Y,BY + EY ).

(2) Let Ei be a component of EY . Then Ei is an exceptional divisor over X , in
particular, a(Ei, X,B) > −1, since (X,B) is plt. But from part (1) it follows
that −1 < a(Ei, X,B) ≤ a(Ei, Y, BY + EY ) = −1. This is a contradiction,
and hence Ei = 0 for all i, i.e. EY = 0, i.e. φ−1 does not contract any divisor.

#

Convention 2.10. We say that a complex space X is relatively compact if
there is another complex space Y such that X is an open subspace of Y and
the closure X ⊂ Y is compact. We will say that f : X → U is a morphism
from a complex space X to a relatively compact space U , if there exists a
morphism f ′ : X ′ → U ′ of complex spaces such that U ⊂ U ′ is a relatively
compact open subset of U ′, X = X ′ ×U ′ U and f is the induced morphism to
U .
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2.1. Projective morphisms. [Nak04, Chapter II, Page 24] Let f : X → Y
be a proper morphism of complex spaces. A line bundle L on X is called
f -free or f -generated if the natural morphism f ∗f∗L → L is surjective. We
say L is f -very ample or very ample over Y if L is f -free and X → PY (f∗L )
is a closed embedding. We say that L is f -ample or ample over Y if for every
y ∈ Y , there is an open neighborhood y ∈ V and a positive integer m > 0
such that L m|f−1V is very ample over V . A proper morphism f : X → Y of
complex spaces is called projective, if there exists a f -ample line bundle L on
X . The morphism f : X → Y is called locally projective if Y has a open cover
{Ui} such that f |XUi

: XUi
→ Ui is projective for all i, where XUi

:= f−1Ui.

Remark 2.11. Note that the composition of two projective morphisms are not
necessarily projective, see [Nak87, Page 557] for a counterexample. However,
the composition of two locally projective morphisms is locally projective. On
the other hand, if f : X → Y and g : Y → Z are two projective morphisms of
complex spaces and K ⊂ Z is a compact subset, then over a neighborhood of
K, g ◦ f is projective.

We have the following properties of f -ample line bundles.

Theorem 2.12. Let f : X → Y be a projective morphism of complex spaces, L
an f -ample line bundle, F a coherent sheaf and for any integer m let F (m) =
F ⊗ Lm. Then, for any compact subset K ⊂ Y there exists an integer m0 =
m0(K,F ) such that

(1) f ∗f∗(F (m))→ F (m) is surjective for any point x ∈ XK := f−1K and
any m ≥ m0,

(2) Rif∗(F (m)) = 0 on a neighborhood of K for any i ≥ 1 and m ≥ m0,
(3) if U ⊂ Y is a relatively compact Stein open subset, then F (m)|f−1(U)

is globally generated and H i(f−1(U), F (m)) = 0 for any i ≥ 1 and
m ≥ m0,

(4) if F is invertible, then F (m) is ample (resp. very ample) over a neigh-
borhood of K for all m ≥ m0,

(5) if U ⊂ Y is a relatively compact Stein open subset, S is a normal
subvariety of X and D is Cartier on X, then |(D + mL)|SU

| = |D +
mL|SU

for all m ≥ m0, where SU = S ∩ f−1(U).

Proof. (1-2) are standard results due to Grauert and Remmert, for example,
see [BS76, IV Theorem 2.1].

For (3) recall that if G is a coherent sheaf on a Stein space U , then by Car-
tan’s theorem, G is globally generated and Hp(U,G) = 0 for every p > 0. Since
U is relatively compact, then by (2) we have Rif∗(F (m))|U = 0 for any i ≥ 1
and m ≥ m0 and so by a spectral sequence argument H i(f−1(U), F (m)) =
H i(U, f∗(F (m))) = 0 for i > 0, since f∗F (m) is coherent on U . By (1)
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we have f ∗f∗(F (m)) → F (m) is surjective over U , and since U is Stein,
f∗F (m)|U is globally generated and hence so is f ∗f∗(F (m))|f−1(U). In par-
ticular, F (m)|f−1(U) is globally generated.

(4) If F is invertible, then by (1) we may assume that F (m) is f -generated
and hence f -nef over a neighborhood of K for m ≥ m0. But then F (m+1) is
f -ample (as it is the tensor product of an f -nef and an f -ample line bundle).
The very ampleness statement follows similarly.

(5) The inclusion |(D +mL)|SU
| ⊃ |D +mL|SU

is immediate from the defi-
nitions. Consider the short exact sequence

0→ OXU
(D − S)→ OXU

(D)→ OSU
(D|SU

)→ 0.

Twisting this sequence by OXU
(mL) and then pushing forward by f we obtain

the following surjectivity from (1):

H0(XU ,OXU
(D +mL)) !! !! H0(SU ,OSU

((D +mL)|SU
)).

Thus the reverse inclusion holds.
#

2.1.1. Resolutions of singularities. If X is a complex manifold and D ⊂ X is a
divisor, then D has simple normal crossing support if for any point x ∈ X we
may choose local parameters z1, . . . , zn such that Supp(D) is locally defined
by the vanishing of z1 · . . . ·zr. In this case we say that (X,D) is log smooth. If
(X,D) is a pair, then we let SNC(X,D) be the open subset of points x ∈ X
such that (X,D) is log smooth on a neighborhood of x ∈ X .

Theorem 2.13 (Log Resolution). [BM97, Thm. 13.2, 1.10 and 1.6][DH20,
Thm. 2.16] Let X ⊂ W be a relatively compact open subset of an analytic
variety W and D a Q-Cartier divisor on X. Then there exists a projective
bimeromorphic morphism f : Y → X from a smooth variety Y satisfying the
following properties:

(1) f is a successive blow up of smooth centers contained in X\SNC(X,D),
(2) f−1(SNC(X,D)) ∼= SNC(X,D), and
(3) Ex(f) is a pure codimension 1 subset of Y such that Ex(f) ∪ (f−1

∗ D)
has SNC support.

Remark 2.14. Note that if J ⊂ OX is a sheaf of ideals, then there exists a
projective bimeromorphic morphism f : Y → X from a smooth variety Y
such that J · OY = OY (−G) where (Y,G + Ex(f)) is log smooth. To see
this, simply blow up J to get f1 : X1 → X such that J · OX1

= OX1
(−D)
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(note that by [BM97, Theorem 1.10] we can also achieve this step by a finite
sequence of blow ups along smooth centers). Then apply Theorem 2.13 to
obtain g : Y → X1 so that (Y, f−1

∗ D + Ex(f)) is log smooth.

Lemma 2.15. Let π : X → U be a projective morphism from a smooth complex
variety to a relatively compact Stein variety. Let V ⊂ |L| be a non-empty linear
series, then there exists a projective birational morphism f : X ′ → X such that
Fixf ∗V is a divisor with simple normal crossings and Mob(f ∗V ) is π ◦ f -free.

Proof. Let V ⊂ H0(X,L) be the vector space corresponding to the linear series
V . Let b be the base ideal of V so that V · OX → L ⊗ b is surjective. Let
f : Y → X be a resolution of b so that b·OX′ = OX′(−F ), where F is a divisor
with simple normal crossings. Then f ∗V⊗OX′ → f ∗L⊗OX′(−F ) is surjective,
and thus f ∗L⊗OX′(−F ) is globally generated. In particular, Fixf ∗V = F is
a divisor with simple normal crossings and Mob(f ∗V) is π ◦ f -free. #

2.2. Bertini’s theorem. In this subsection we will prove a analytic version
of Bertini’s theorem which will be useful in what follows. First we need the
following definitions.

Definition 2.16. Let X be a complex space. A subset W ⊂ X is called ana-
lytically meager, if there exist countably many locally analytic subsets {Zi}i∈N
of X of codimension ≥ 1 such that W ⊂ ∪∞i=1Zi. Clearly, a countable union
of analytically meager sets is analytically meager.

Definition 2.17. Let X be a complete metric space. A subset M ⊂ X is
called fat, if there are countably many dense open subsets {Ui} of X such that
∩iUi ⊂ M . Clearly, countable intersections of fat sets are fat. Let P be a
property. We say that sufficiently general points of X satisfy P, if there exists
a fat subset M ⊂ X such that x ∈ X satisfies P for all x ∈ M . Note that,
since X is a complete metric space, by Baire’s theorem any fat set is dense
in X . From [Man82, Remark II.3, Page 276] we know also that if M is a fat
subset of X , then X \M is analytically meager.

Remark 2.18. Let X be a complex space and L a line bundle on X . Let V ⊂
H0(X,L ) be a finite dimensional C-subspace. By abuse of terminology we
will say that a sufficiently general member D of the linear system |V | satisfies
property P, if for a sufficiently general member s ∈ V , D = Zero(s) ⊂ X
satisfies property P.

Remark 2.19. Note that, if W ⊂ X is an analytically meager set, then W is
nowhere dense in X , i.e. the interior of the closure W is an empty set. Conse-
quently, X \W is dense in X . Moreover, if f : X → Y is a surjective morphism
between complex spaces and W ⊂ Y is an analytically meager set, then f−1W
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is an analytically meager subset of X . Let g : X → Y be a surjective con-
tinuous map between complete metric spaces and M ⊂ Y is a fat subset. By
definition, M contains a countable intersection of dense open subsets, say ∩Ui

of Y . Then Y \ ∩Ui is an analytically meager set, and thus g−1(Y \ ∩Ui) is
also analytically meager in X . In particular, X \ g−1(Y \∩Ui) is a dense sub-
set of X , and hence ∩g−1Ui is dense in X . Therefore g−1M is a fat subset ofX .

Theorem 2.20. Let π : X → U be a projective morphism from a smooth
complex variety to a relatively compact Stein space. Let D be a simple normal
crossings divisor on X and L a π-generated line bundle on X. Then the
following hold:

(1) If dimX = n, then there exist sections s0, . . . , sn ∈ H0(X,L) generat-
ing L.

(2) Let V ⊂ H0(X,L) be a finite dimensional C-subspace such that V
generates L, i.e. V ⊗C OX → L is surjective. Then (X,D + G) is log
smooth for all sufficiently general members G ∈ |V |.

Proof. The proof of (1) is well known and hence we will just prove (2). Let
Z ⊂ X be a positive dimensional strata of D. Then V |Z := {s|Z | s ∈ V } ⊂
H0(Z, L|Z) generates L|Z globally and there is a surjection ϕ : V $ V |Z
of vector spaces. Since V (and hence also V |Z) is a finite dimensional C-
vector space, fixing some norms on V and V |Z we may assume that ϕ is a
surjective continuous linear transformation between two Banach spaces. Then
by [Man82, Theorem II.5], there exists a fat set M ⊂ V |Z such that the zero
set Zero(s|Z) ⊂ Z is smooth for all s|Z ∈ M . Then from Remark 2.19 it follows
that ϕ−1M is a fat subset of V . Let K := ker(ϕ); since V \ K → V |Z \ {0}
is surjective, it follows that Zero(s)|Z is smooth for all s ∈ ϕ−1M \K. Note
that V \K is a dense open subset of V , since K a proper closed subspace of
V ; in particular, ϕ−1M \ K is fat subset of V . Since there are only finitely
many strata of D, by induction on the number of positive dimensional strata
of D, it follows that there is a fat subset N ⊂ V such that (X,D + G) is log
smooth for all s ∈ N with Zero(s) = G.

#

Lemma 2.21. Let f : X → Y be a projective morphism of complex spaces
such that Y is a relatively compact Stein space, and L is a f -generated line
bundle. Let V ⊂ H0(X,L) be a finite dimensional C-subspace such that L is
globally generated by the sections of V . If (X,B) is klt, then for sufficiently
general member D ∈ |V |, (X,B + tD) is klt for any t < 1.

Proof. Passing to a log resolution, we may assume that X is smooth and B
has simple normal crossings support. Then by Theorem 2.20, for sufficiently
general D ∈ |V |, (X,B + tD) is log smooth, and the lemma follows. #
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2.3. Linear series. Let π : X → U be a projective surjective morphism of
normal analytic varieties such that X is smooth and D a R-divisor on X .
Note that by definition OX(D) = OX(⌊D⌋). If π∗OX(D) ̸= 0, then let B
be a prime Weil divisor on X and mB(D) the largest integer m such that
π∗OX(D−mB)→ π∗OX(D) is an isomorphism (this can be computed on any
open subset V ⊂ U such that V ∩ f(B) ̸= ∅ cf. [Nak04, pg 97]). We define

|D/U | = {D′ ∼U D|D′ ≥ 0} and |D| = {D′ ∼ D|D′ ≥ 0}.

Here D′ ∼U D if D − D′ is a Z-linear combination of principal divisors and
Cartier divisors pulled back from U . Similarly, we say that D′ ∼R,U D if
D − D′ is an R-linear combination of principal divisors and Cartier divisors
pulled back from U . We let |D/U |R := {D′ ≥ 0|D′ ∼R,U D}.

Assume now that U is Stein.

Lemma 2.22. Let π : X → U be a projective morphism from a normal variety
X to a Stein variety U , and D an R-divisor on X. If π∗OX(D) ̸= 0, then
|D| ≠ ∅ and |D/U | ̸= ∅. Moreover, for a prime Weil divisor B on X define
mB|D| := max{t ≥ 0 | D′ ≥ tB for all D′ ∈ |D|} and mB|D/U | := max{t ≥
0 | D′ ≥ tB for all D′ ∈ |D/U |}. Then

mB(D) = mB|D| = mB|D/U |.

Proof. Since U is Stein, H0(X,OX(D)) ∼= H0(U, π∗OX(D)) ̸= 0 and so |D| ≠ ∅
and |D/U | ≠ ∅.

Let mB = mB(D). Since π∗OX(D−mBB) ↪→ π∗OX(D) is an isomorphism,
H0(X,OX(D)) = H0(X,OX(D − mBB)) and hence mB|D| ≥ mB. Since
π∗OX(D − (mB + 1)B) ↪→ π∗OX(D) is not surjective, and U is Stein, this
map is also not surjective on global sections, i.e. H0(OX(D− (mB +1)B))→
H0(OX(D)) is not surjective so thatmB|D| < mB+1, and hencemB|D| = mB.

Clearly mB|D| ≥ mB|D/U |. If this inequality is strict, then there is a
divisor G ∼U D such that multB(G) < m := mB|D|. We can then pick an
open subset V ⊂ U such that V ∩ π(B) ̸= ∅ and G|XV

∼ D|XV
. But then G is

not in the image of φ : π∗OX(D−mB)|V ↪→ π∗OX(D)|V . On the other hand,
we have already seen that m = mB|D| = mB and hence φ is an isomorphism.
This is impossible and so mB|D| = mB|D/U |. #

We let

Fix|D/U | =
∑

mB|D/U | · B, Mob|D/U | = D − Fix|D/U |.

Note that by what we have seen above, we have

Fix|D/U | = Fix|D|, where Fix|D| =
∑

mB|D| · B.
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Lemma 2.23. Let π : X → U be a projective morphism to a Stein variety, X
smooth and D a divisor on X such that π∗OX(D) ̸= 0. If F = Fix|D/U | and
M = Mob|D/U |, then Fix|M/U | = 0 and

|D/U | = F + |M/U |, |D| = F + |M |.

Proof. Immediate consequence of Lemma 2.22. #

It is easy to see that Fix|kmD/U | ≤ kFix|mD/U | for any integers k,m > 0.
If D ∼Q,U D′ ≥ 0, then we let

Fix(D/U) := liminf
1

k
Fix|kD/U |

for all k > 0 sufficiently divisible. Clearly

Fix(D) := liminf
1

k
Fix|kD| = Fix(D/U).

If S ⊂ X is a smooth divisor, then we let |D/U |S ⊂ |D|S/U | be the sub-
linear series consisting of all divisors D′|S, where D′ ∈ |D/U | and SuppD′

does not contain S. If |D/U |S ̸= ∅, we let FixS|D/U | := Fix(|D/U |S) and if
|kD/U |S ̸= ∅ for some integer k > 0, then we let

FixS(D/U) := liminf
1

k
Fix|kD/U |S

for all k > 0 sufficiently divisible. Similarly to what we have seen above, one
can show that |D/U |S ̸= ∅ if and only if the homomorphism π∗OX(D) →
π∗OS(D|S) is non-zero. Since U is Stein, this is in turn equivalent to the fact
that |D|S ̸= ∅. It then follows that FixS|D/U | = FixS|D|, and

FixS(D) := liminf
1

k
Fix|kD|S = FixS(D/U).

If f : X ′ → X is a proper birational morphisms of smooth varieties, D an R-
Cartier divisor onX and E ≥ 0 an f -exceptional divisor, then |f ∗D/X|R+E =
|f ∗D + E/X|R, and |f ∗D|R + E = |f ∗D + E|R.

If |D/X|R ̸= ∅, then define B(D/X) = ∩D′∈|D/X|RSupp(D
′).

Lemma 2.24. Let π : X → U be a projective morphism to a Stein variety,
X smooth and D a divisor on X. If D is a Q-divisor such that |D/U |R ̸= ∅,
then |D/U |Q ̸= ∅, |D|Q ̸= ∅ and

B(D/U) = ∩D′∈|D/U |QSupp(D
′) = ∩D′∈|D|QSupp(D

′).

Proof. It is easy to see thatB(D/U) ⊂ ∩D′∈|D/U |QSupp(D
′) ⊂ ∩D′∈|D|QSupp(D

′).
By [CL10, Lemma 2.3], it follows that B(D/U) = ∩D′∈|D/U |QSupp(D

′). Fi-
nally, let x ∈ X and ν : X ′ → X be the blow up of x and E the corresponding
exceptional divisor. Then x ∈ ∩D′∈|D|QSupp(D

′) if and only if mE |ν∗mD| > 0
for any m > 0. Assume that x ∈ ∩D′∈|D|QSupp(D

′). Then by Lemma 2.22,
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mE |ν∗mD/U | > 0 for any m > 0, and hence x ∈ ∩D′∈|D/U |QSupp(D
′). This

shows that ∩D′∈|D/U |QSupp(D
′) ⊃ ∩D′∈|D|QSupp(D

′) and the claim follows. #

Lemma 2.25. Let π : X → U be a projective morphism from a smooth con-
nected complex variety to a Stein space, L = OX(L) a line bundle on X and
S a smooth divisor on X. Then the following are equivalent.

(1) π∗L→ π∗(L|S) is surjective,
(2) H0(X,L)→ H0(S,L|S) is surjective or equivalently |L|S = |L|S|,
(3) |L/U |S = |L|S/U |.

Proof. (1) implies (2). Since U is Stein, H0(U, π∗L) → H0(U, π∗(L|S)) is
surjective, and hence so is H0(X,L)→ H0(S,L|S).

(2) implies (1). Since U is Stein, π∗(L|S) is globally generated by sec-
tions of H0(U, π∗(L|S)) ∼= H0(S,L|S). By assumption these sections lift to
H0(U, π∗L) ∼= H0(X,L). Thus π∗L→ π∗(L|S) is surjective.

(3) implies (1). Since U is Stein, π∗(L|S) is globally generated by sections
of H0(U, π∗(L|S)) ∼= H0(S,L|S). Fix u ∈ U and g1u, . . . , g

k
u ∈ H0(S,L|S) local

generators of π∗(L|S) at u. IfG1
u, . . . , G

k
u ∈ |L|S| are the corresponding divisors,

then by assumption there are divisors Gi ∈ |L+π∗C i| such that Gi|S = Gi
u and

C i is Cartier on U . Since the C i are Cartier, there is an open subset u ∈ V ⊂ U
such that C i|V is principal, and hence π∗C i|XV

∼ 0, where XV := π−1V . But
then Gi|XV

∼ L|XV
and (Gi|XV

)|SV
= Gi

u|SV
, where SV = S ∩XV . This means

that
g1u|SV

, . . . , gku|SV
∈ im

(
H0(L|XV

)→ H0(L|SV
)
)
.

Since g1u, . . . , g
k
u ∈ H0(S,L|S) are local generators of π∗(L|S) at u, then π∗L→

π∗(L|S) is surjective at u. Since u ∈ U is arbitrary, (1) holds.
(1) implies (3). It is clear that |L/U |S ⊂ |L|S/U |. Suppose that GS ∈

|L|S/U |, then we must show that GS = G|S for some G ∈ |L/U |. By defi-
nition, there is a Cartier divisor C on U such that GS ∼ L|S + (π∗C)|S. By
our assumption, π∗L → π∗(L|S) is surjective, and hence so is π∗L(π∗C) →
π∗(L(π∗C)|S) (here we use the projection formula and the fact that OU(C)
is invertible). Since U is Stein, this induces a surjection on global sections
and hence H0(X,L(π∗C))→ H0(S,L(π∗C)|S) is surjective, i.e. GS = G|S for
some G ∈ |L(π∗C)|. Thus G ∼U L concluding the proof.

#

Lemma 2.26. Let π : X → U be a projective morphism from a smooth complex
variety to a Stein space, L = OX(L) a line bundle on X. For any point x ∈ X,
we have that Bs(|L|) does not contain x if and only if Bs(|L/U |) does not
contain x, if and only if π∗L→ π∗(L/mx) is surjective.

Proof. Since |L| ⊂ |L/U |, it is clear that if Bs(|L|) does not contain x, then
Bs(|L/U |) does not contain x.
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Suppose now that Bs(|L/U |) does not contain x. So there is a divisor
0 ≤ G ∈ |L/U | such that x ̸∈ Supp(G). Since G ∼ L + π∗C, where C is a
Cartier divisor on U , we may find an open subset π(x) ∈ V ⊂ U such that
C|V is a principal divisor, i.e. C|V ∼ 0. But then G|XV

∼ L|XV
and it follows

that L|XV
is globally generated at x. L→ L/mx

∼= Cx is surjective, and hence
so is π∗L→ π∗(L/mx), since U is Stein.

Suppose now that π∗L→ π∗(L/mx) is surjective. Since U is Stein,

H0(X,L) ∼= H0(U, π∗L)→ H0(U, π∗(L/mx)) ∼= H0 ({x},L/mx) ∼= Cx

is surjective, and hence Bs(|L|) does not contain x. #

Lemma 2.27. Let π : X → U be a projective morphism from a smooth variety
to a Stein space and let D1, . . . , Dℓ ∈ DivQ(X) be such that |Di|Q ̸= ∅ for each
i. Let V ⊂ DivR(X) be the subspace spanned by the components of D1, . . . , Dℓ,
and let P ⊂ V be the convex hull of D1, . . . , Dℓ. Assume that the ring

R(X ;D1, . . . , Dℓ) :=
⊕

(m1,...,mℓ)∈Nk

H0
(
X,OX

(∑
miDi

))

is finitely generated. Then:

(1) Fix extends to a rational piecewise affine function on P;
(2) there exists a positive integer k such that for every D ∈ P and every

m ∈ N, if m
k D ∈ Div(X), then Fix(D) = 1

mFix|mD|.

Proof. See the proof of [CL10, Lemma 2.28]. #

2.4. Kähler classes. In this section we recall a well known to the experts,
characterizations of Kähler classes. Since we were unable to find complete
references in the literature, we include a detailed proof below.

We consider the following set-up. Let X be a compact, normal complex
space. The objects we will work with in this subsection are introduced below.

Definition 2.28. Let (Ai)i∈I be an open finite covering of X such that each
subset Ai is a local analytic subset of some open subset Ωi ⊂ CNi. The space
of forms of type (p, q), denoted by Ck

p,q(X), is defined by local restrictions of
forms of type (p, q) which are k times differentiable on the sets Ωi above. Here
k is a positive integer or ∞. The definition of the space of currents on X is
then completely parallel to the smooth case.

A Hermitian metric g on X corresponds to a smooth, positive definite (1, 1)-
form. By this we mean that locally g|Ai

is given by the restriction of a Her-
mitian form on Ωi. For a more complete presentation we refer the reader to
the first part of the article [Dem85].
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Let α ∈ C∞
1,1(X) be a smooth (1, 1)-form on X . We assume that α is ∂ and ∂̄

closed, such that moreover the following properties hold true.

(1) The class {α} is nef, i.e, we have (fε)ε>0 ⊂ C∞(X) such that

α + i∂∂̄fε ≥ −εg

on X .

(2) The class {α} is big, i.e. there exists a function τ ∈ L1(X) such that

α + i∂∂̄τ ≥ ε0g

as currents on X , where ε0 > 0 is a positive constant.

(3) Let V ⊂ X be a positive dimensional (compact) reduced analytic sub-
set. Then we have ∫

Vreg

αdim(V ) > 0.

Then we show that the following holds true.

Theorem 2.29. Let X be a compact analytic normal variety and α ∈ C∞
1,1(X)

such that ∂α = 0, ∂̄α = 0. We assume moreover that the properties (1)-(3)
above are satisfied. Then α is a Kähler class, i.e. there exists a function
ϕ ∈ C∞(X) such that

(2.1) α + i∂∂̄ϕ ≥ ε1g

on X, where ε1 > 0.

In particular, X is a Kähler space in the sense adopted in [BG13] provided
that α is locally in the image of the ∂∂̄ operator. But in any case we can
construct the function ϕ with the properties of (2.1).

Remark 2.30. In caseX admits an embedding into a Kähler manifold (i.e. non-
singular, but not assumed to be compact or even complete) Theorem (2.29) is
a direct consequence of the main result of the article [CT16] by Collins-Tosatti.
This hypothesis is not necessarily satisfied in our case, but nevertheless many
of the techniques of [CT16] will be used in the next proof.

2.4.1. Psh functions on complex spaces. We recall here a few basic facts con-
cerning psh functions defined on normal complex spaces. Our main reference
is the first section of the article [Dem85].

To start with, a quasi-psh function φ : X → [−∞,∞[ is by definition given by
the restriction to each Ai of a quasi-psh function on Ωi, for all i ∈ I. A locally
integrable function ψ : X → [−∞,∞[ is called weakly quasi-psh if it is locally
bounded from above and such that

(2.2) i∂∂̄ψ ≥ −Cg
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for some positive real constant C > 0. Note that the local boundedness
hypothesis is automatic in the non-singular case, but this is no longer true in
our actual context.

We quote next a result which plays a crucial role in what follows. Its proof (cf.
[Dem85], Theorem 1.7) relies on two fundamental facts: the desingularization
theorem of Hironaka and the characterisation of psh functions by restrictions
to holomorphic disks, due to Fornaess-Narasimhan.

Theorem 2.31. [Dem85, Theorem 1.7] Let ψ be a weakly quasi-psh function
defined on a normal compact complex space X. Then the function

(2.3) ψ⋆(x) := lim sup
y→x

ψ(y)

is quasi-psh on X. Moreover, if i∂∂̄ψ ≥ −Cγ for some smooth form γ on X
then the Hessian of the function ψ⋆ in (2.3) has the same property.

The following statement is a direct consequence of Theorem 2.31.

Corollary 2.32. Let p : Y → X be a modification, where X and Y are
normal complex spaces. We assume that p⋆α + i∂∂̄ψY ≥ Cp⋆g, where C is a
real number. Then there exist a quasi-psh function ψX : X → [−∞,∞[ such
that

(2.4) α+ i∂∂̄ψX ≥ Cg

in the sense of currents on X.

Indeed, ψX is obtained by taking the direct image of ψY and then applying
the usc regularisation procedure (2.3). We notice that the direct image of ψY

is automatically locally bounded from above.

Proof of Theorem 2.29. The first step consists in constructing a (new) func-
tion τ with similar properties as in (2) above such that its singularities are
concentrated along an analytic subset of X .
Let π : X̂ → X be a desingularization of X . The pull-back of (2) shows that
we have

(2.5) Θ := π⋆α + i∂∂̄(τ ◦ π) ≥ ε0π
⋆g.

In other words Θ is a closed (1, 1)-current on X̂ , greater than ε0π⋆g. This
implies that {Θ} contains a so-called Kähler current, that is to say a repre-
sentative which is greater than a positive multiple of a Hermitian metric on
X̂ .

By Demailly’s regularisation theorem (cf. [Dem92], main result), we can
replace Θ by a cohomologous current say Θ1 ∈ {Θ} such that

(2.6) Θ1 := π⋆α + i∂∂̄ϕ1 ≥ ε1ĝ, Θ1|X̂\W ∈ C∞(X̂ \W )
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on X̂ , where W ⊂ X̂ is a proper analytic subset and ĝ is a Hermitian metric
on X̂ .

The direct image π⋆Θ1 has the property (2) and it is non-singular on the
complement of the analytic set Y ⊂ X

(2.7) Y := Xsing ∪ π(W ).

In order to keep the notations as simple as possible, we assume from now on
that τ in (2) is smooth in the complement of an analytic set Y .

The next step consists in establishing the following simple statement, which
will be used to argue by induction.

Lemma 2.33. Let Z ⊂ X be any normal analytic subspace. Then the restric-
tion α|Z defines a (1, 1)-form on Z which satisfies properties (1)-(3).

Proof of Lemma 2.33. It is clear that α|Z satisfies the properties (1) and (3).
We show next that it is the case for (2) as well. By the existence of the current
Θ1 as in (2.6) it follows that a further modification of the complex manifold
X̂ is Kähler, see [DP04, Theorem 0.7]. We assume that it is the case for X̂
itself. In particular, X is in Fujiki’s class C.

Let pZ : Ẑ → Z be a desingularization of Z. As we have seen that X is in
Fujiki’s class C, by [Fuj83, A, page 235], Z is also in the class C. Therefore
passing to a higher desingularization we may assume that Ẑ is Kähler.

Then the class p⋆Z{α} is nef, and

∫

Ẑ

p⋆Zα
d > 0. By [DP04, Theorem 0.5] it

contains a Kähler current, whose direct image combined with Corollary 2.32
allow us to conclude. #

In this last step we remove the singularities of π⋆Θ1 by induction. For
this, we are using the gluing techniques as in [Dem90] (the reader may also
consult Complex Analytic and Differential Geometry by J.-P. Demailly, book
available on the author’s website, pages 411-414). We have to face two types
of difficulties:

• The space Y may have several components.
• Even if Y is irreducible, it may not be normal (which will give us troubles,

since we intend to use induction).

In order to understand how it works, we first assume that Y is irreducible
and normal. Lemma 2.33 plus the induction hypothesis show the existence of
a function τY ∈ C∞(Y ) such that

(2.8) α|Y + i∂∂̄τY ≥ ε2g|Y .

By the proof of Theorem 4 in [Dem90] we can assume that there exists an
open subset Y ⊂ U ⊂ X such that (2.8) holds true on U . That is to say, there
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exists an extension τ̃Y ∈ C∞(U) of τY such that

(2.9) α|U + i∂∂̄τ̃Y ≥ ε3g|U

for some strictly positive ε3 > 0. Intuitively the construction of τ̃Y is clear:
thanks to (2.8) the eigenvalues of the Hessian of τY in the tangent directions
of Y are suitable, we simply ”correct” the normal directions as indicated in
loc. cit. In this process there is a loss of positivity involved (since one is using
a partition of unity) but since ε2 > 0, we can afford that.

Now we consider the regularized maximum function

(2.10) ϕ := max
reg

(τ, τ̃Y − C)

(cf. [Dem90], part of the proof of Lemma 5) where C ≫ 0 is a large enough
constant, such that ϕ = τ near the boundary of U . This is possible since
τ is smooth on the complement of Y . On the other hand, we clearly have
ϕ = τ̃Y −C in a neighborhood of Y , since τ equals −∞ when restricted to Y .
Now the usual properties of the regularised maximum of two functions (see
especially loc. cit., page 287) show that we have (2.9).

In order to treat the general case, we formulate the following statement.

Claim 2.34. Let Y ! X be an analytic subset of X . Then there exists an open
subset U such that Y ⊂ U ⊂ X and a function τ̃Y for which the property (2.9)
is valid.

Before explaining the arguments of the claim, a first thing to remark is that
it would settle Theorem 2.29, by the maximum technique used in the particular
case we have just treated above. We proceed in two steps.

• It is enough to establish the Claim 2.34 in case of an analytic space Y
which is irreducible. This is done by decomposing

(2.11) Y = Y1 ∪ · · · ∪ YN

the set Y as union of irreducible analytic sets and applying the maximum
procedure sketched above combined with induction on N . Although standard,
we explain next the construction of (U, τ̃Y ) ifN = 2, i.e. we assume that Y only
has two components. For an arbitrary N there are no additional arguments
to be invoked.

Let (U1, τ̃1) and (U2, τ̃2) corresponding to Y1 and Y2, respectively such that
(2.9) holds true. By [Dem90, Lemma 5] there exists a quasi-psh function v
with log-poles along Y1 ∩ Y2 and smooth in the complement of this analytic
set. We consider the function

(2.12) τ̃1 + εv
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where 0 < ε≪ 1 is small enough -fixed- such that

(2.13) α|U1
+ i∂∂̄ (τ̃1 + εv) ≥

1

2
ε3g|U1

.

This operation may seem silly –since τ̃1 is smooth and by adding the small
multiple of v the resulting function becomes singular along the intersection
Y1 ∩ Y2. Nevertheless, thanks to it we can conclude. Let W ⊂ U1 ∩ U2 be an
open subset of X containing Y1 ∩ Y2, and C ≫ 0 large enough such that we
have

(2.14) τ̃1 + εv ≥ τ̃2 − C

on ∂W , the boundary of W . We fix such a constant C and remark that the
function

(2.15) max
reg

(τ̃1 + εv, τ̃2 − C)

defined on U1 is smooth, its Hessian verifies an inequality similar to (2.13) and
moreover it equals τ̃2−C near Y1∩Y2. By shrinking U1 and U2 we can combine
(smoothly!) the function constructed in (2.15) with τ̃2−C and therefore obtain
(U, τ̃Y ).

• Induction. We assume that Theorem 2.29 is established in case of a
normal analytic space of dimension smaller than dim(X) and that Claim 2.34
is established for analytic sets Z such that dim(Z) ≤ dim(Y )− 1.

Let Y ! X be an irreducible, proper analytic subset of X . Then there exists
a modification f : X1 → X with the following properties.

(i) The analytic space X1 is compact and normal.

(ii) f is an isomorphism over a neighborhood of the general points of Y .

(iii) Let Y1 ⊂ X1 be the strict transform, then Y1 → Y is a resolution.

To construct f we proceed as follows. Let Y ′ → Y be a resolution of singular-
ities given by the following finite sequence of successive blow ups

(2.16) Y ′ := Y n gn
!! Y n−1 !! · · · !! Y 1 g1

!! Y 0 =: Y ,

so that gi : Y i → Y i−1 is the blow up of an ideal I i−1 ⊂ OY i−1 . We will now
define inductively a sequence of closed immersions Y i ↪→ X i with Y 0 = Y
and X0 = X . proceeding by induction, suppose that Y i−1 ↪→ X i−1 has been
defined. Let J i−1 ⊂ OXi−1 be the full inverse image of the ideal sheaf I i−1

under the surjection OXi−1 $ OY i−1 . Let fi : X i → X i−1 be the blow up of
X i−1 along the ideal sheaf J i−1. Then we have the following commutative
diagram of blow ups and closed immersions (also see [Har77, Corollary 7.15,
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page 165])

(2.17) Y i ! " !!

gi

""

X i

fi

""

Y i−1 ! " !! X i−1

We let X ′ = Xn and X1 → X ′ be the normalization, then the induced mor-
phism f : X1 → X satisfies (i) and (ii) and if Y1 is the strict transform of
Y ′ under f , then Y1 → Y ′ is a proper finite bimeromorphic morphism. Since
Y ′ is smooth (and in particular normal), Y1 → Y ′ is an isomorphism (due to
Zariski’s main theorem), and hence (iii) also holds.

The restriction f ⋆α|Y1
of the f -inverse image of α to Y1 is still nef and big.

Indeed, the nefness is clear, since we can pull-back the functions (fε) given in
(1) and restrict them to Y1. Moreover, we have

∫

Y1

f ⋆αd > 0

as consequence of the condition (3) and thus f ⋆α|Y1
is big.

Thus it contains a Kähler current

(2.18) f ⋆α|Y1
+ i∂∂̄ψ1 ≥ g1|Y1

,

where the function ψ1 can be assumed to have analytic singularities and g1 is
a Hermitian metric on X1. In particular ψ1 is smooth in the complement of
a proper analytic subset W1 ! Y1. We can also assume that W1 contains the
analytic set in the complement of which the restriction of the map f |Y1

: Y1 →
Y is a biholomorphism.

By modifying the function ψ1 as in [Dem90], we infer the following: there exists
an open set Λ containing Y1 \W1 such that

(2.19) f ⋆α + i∂∂̄ψ1 ≥
1

2
g1

on Λ. A more general version of this is established in the article [CT15] pages
1181-1185.

Next, we consider the direct image W := f(W1) ! Y and we use the induction
hypothesis: there exists an open subset UW ⊂ X and a smooth function
τW : UW → R such that (2.9) holds true. By taking the inverse image via f
we get

(2.20) f ⋆α + i∂∂̄(τW ◦ f) ≥ ε4f
⋆g

pointwise on f−1(UW ).
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By combining (2.20) and (2.19) we obtain a C∞ function τ1 on an open subset
f−1(UY ), the inverse image of an open subset UY containing Y . In other words,
we have

(2.21) f ⋆α + i∂∂̄τ1 ≥ ε5f
⋆g

on f−1(UY ). The “pinched” open subset Λ is involved in the gluing process,
but this makes absolutely no difference as the arguments in [CT15] show (the
point is that the function τW used in the gluing procedure is defined on an
open subset containing W1).

The inequality (2.21) shows that the smooth function τ1 is constant on every
positive dimensional fiber of f at some point of UY . It therefore descends to
UY and Claim 2.34 is established.

As we have already mentioned, we can glue the function constructed in our
claim with τ obtained in the first part of the proof: in this way we obtain
ϕ. #

We also include the following result whose proof follows exactly as in the non-
singular case, modulo the use of Theorem 2.31.

Lemma 2.35. Let X be a normal, compact Kähler analytic variety and α ∈
H1,1
∂∂̄

(X) is a nef class. Then α is a big class on X if and only if αn > 0, where
n = dimX.

Proof of Lemma 2.35. Let f : Y → X be a resolution of singularities of X .
Given that X is Kähler, it will equally be the case for Y . Then f ∗α is nef and
(f ∗α)n = αn, by the projection formula. By a quick direct image argument it
follows that α is big if and only if f ∗α is big. But the equivalence between the
positivity of the top self-intersection and bigness for a nef class on a Kähler
manifold is well-known [DP04]. #

Theorem 2.36. Let X be a compact Kähler analytic variety and consider
α ∈ C∞

1,1(X) a smooth (1, 1)-form such that ∂̄α = 0, ∂α = 0. Then α is a nef
class if and only if α|Z is a pseudo-effective class for all irreducible analytic
subvarieties Z ⊂ X.

Proof of Theorem 2.36. If α is nef, then the restriction α|Z to any irreducible
analytic subvariety Z ⊂ X is also nef. If moreover Z is normal, then it follows
that α|Z is pseudo-effective by the usual argument: we construct a closed
positive current in the pullback of α|Z on any non-singular model of Z and
then take the direct image. In general, the argument is as follows. Consider

p : Zν → Z
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a normalisation of Z. This is a proper map with finite fibers and then there
exists a quasi-psh function ρ defined on Zν such that

T := p⋆(α|Z) + i∂∂̄ρ ≥ 0

on Zν , since Zν is normal. By [Dem85], Prop. 1.13 we have

p⋆i∂∂̄ρ = i∂∂̄p⋆ρ

and moreover the direct image preserves the positivity of T .
The map p is proper and finite, thus we have p⋆

(
p⋆(α|Z)

)
= dα|Z where d is

the degree of p and therefore the class given by α|Z is pseudo-effective.
For the other direction, we proceed as follows: Let t = inf{s ≥ 0|α +
sω is Kahler}, then α + tω is nef but not Kähler. Suppose that t > 0, then
(α + tω)|Z is big (and nef) for every Z ⊂ X (including Z = X), and hence
by Lemma 2.35, (α + tω)dimZ · Z = ((α + tω)|Z)dimZ > 0. Then by Theorem
2.29, α + tω is Kähler, which is easily seen to contradict the definition of t.
Therefore t = 0 and so α is nef. #

Remark 2.37. Theorem 2.36 holds without the assumption that X is Kähler,
by using the gluing procedure employed in the proof of Theorem 2.29.

Lemma 2.38. Let f : X ′ → X be a proper surjective morphism of normal
compact Kähler varieties. Then a class α ∈ H1,1

BC(X) nef if and only if f ∗α is
nef.

Proof. If α is nef then it follows easily that f ∗α is nef. Suppose now that
f ∗α is nef and in particular f ∗α is pseudo-effective. Let t = inf{s ≥ 0 | α +
sω is Kähler}. Suppose that t > 0, then α + tω is nef but not Kähler, and
we claim that

∫
V (α + tω)k > 0 for any subvariety V of codimension k. It

follows that conditions (1) and (3) of Theorem 2.29 are satisfied by α + tω,
and condition (2) is immediate from Lemma 2.35. Thus, by Theorem 2.29,
α + tω is Kähler, a contradiction. In particular t = 0 and α is nef.

We now prove the claim. For any analytic subvariety V ⊂ X , let V ′ be
the unique irreducible component of f−1V dominating V , F a general fiber
of V ′ → V . Assume that dimV = k, dim V ′ = k + j, η Kähler on X ′, and
λ =

∫
F η

j > 0 then, by the projection formula we have

λ ·

∫

V

(α + tω)k =

∫

V ′

f ∗(α + tω)k ∧ ηj ≥

∫

V ′

f ∗(tω)k ∧ ηj = λtk
∫

V

ηk > 0

as f ∗α is nef. #

Finally we extend [DP04, Corollary 0.3] to the singular case.

Corollary 2.39. Let X be a compact normal Kähler variety, ω a Kähler form
on X, and α ∈ H1,1

BC(X), then
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(1) α is nef if and only if
∫
V α

k∧ωp−k ≥ 0 for every analytic p-dimensional
subvariety V ⊂ X and for all 0 < k ≤ p, and

(2) α is Kähler if and only if
∫
V α

k ∧ ωp−k > 0 for every analytic p-
dimensional subvariety V ⊂ X and for all 0 < k ≤ p.

Proof. The only if part is clear, so assume that
∫
V α

k ∧ ωp−k ≥ 0 for any
analytic subvariety V ⊂ X with p = dimV and any 0 < k ≤ p. Let V ⊂ X be
a proper subvariety, and ν : Ṽ → V the normalization. Suppose that α̃ = ν∗α
is the pull-back of α, then it follows easily by induction on the dimension that
α̃ is nef. Let f : X ′ → X be a resolution of singularities and V ′ ⊂ X ′ a
subvariety such that f(V ′) = V . If ν ′ : Ṽ ′ → V ′ is the normalization and
α′ = f ∗α, then α̃′ = ν ′∗α′ is nef as it is the pull-back of α̃ via the induced map
Ṽ ′ → Ṽ .

It suffices to show that αϵ := α + ϵω is nef for any 0 < ϵ≪ 1. Clearly
∫

X′

f ∗(αk
ϵ ∧ ω

n−k) =

∫

X

αk
ϵ ∧ ω

n−k ≥ ϵk
∫

X

ωn > 0.

Let ω′ be a Kähler class on X ′ and α′
ϵ := f ∗αϵ, then ωδ := f ∗ω+ δω′ is Kähler

for δ > 0 and by continuity
∫
X′(α′

ϵ)
k ∧ ωn−k

δ > 0 for 0 < δ ≪ ϵ. Assume now
that V ′ ⊂ X ′ is a proper subvariety of dimension p < dimX ′, then since α̃′ is
nef (as observed above), we have

∫

V ′

(α′
ϵ)

k ∧ ωp−k
δ =

∫

Ṽ ′

(α̃′ + ϵ(f ◦ ν ′)∗ω)k ∧ (ν ′)∗ωp−k
δ ≥ 0.

By [DP04, Corollary 0.3], α′
ϵ is nef, and hence by Lemma 2.38, αϵ is nef. This

proves (1). To see (2), note that if α is Kähler then the stated inequalities
clearly hold. For the reverse implication, simply observe that the Kähler cone
coincides with the interior of the nef cone. #

2.5. Kawamata-Viehweg vanishing. The fundamental result in this con-
text is Kawamata-Viehweg vanishing cf. [Nak87, Theorem 3.7] and [Fuj13,
Corollary 1.4].

Definition 2.40. Let f : X → Y be a proper surjective morphism of analytic
varieties and L is a line bundle onX . Then L is called f -nef-big, if c1(L)·C ≥ 0
for all curves C ⊂ X such that f(C) = pt, and κ(X/Y, L) = dimX − dimY
(see [Nak87, (B), Page 554]).

The following version of (relative) Kawamata-Viehweg vanishing theorem for
a proper morphism between analytic varieties follows from [Nak87, Theorem
3.7] and [Fuj13, Corollary 1.4].

Theorem 2.41. [DH20, Theorem 2.21] Let π : X → S be a proper surjective
morphism of analytic varieties. Let ∆ ≥ 0 be a Q-divisor on X such that
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(X,∆) is klt, and D is a Q-Cartier integral Weil divisor on X such that
D − (KX +∆) is π-nef-big. Then

Riπ∗OX(D) = 0 for all i > 0.

2.6. Relative cone and contraction theorems for projective morphisms.
Here we collect a cone theorem from [Nak87]. Recall that if f : X → Y is a
projective surjective morphism of analytic varieties and W ⊂ Y is a compact
subset of Y , then Z1(X/Y ;W ) is generated by curves C ⊂ X such that f(C)
is a point in W . We say that two curves C1, C2 are numerically equivalent
over W , C1 ≡W C2 if f ∗L · (C1 −C2) = 0 for any Cartier divisor L defined on
a neighborhood of W . Then N1(X/Y ;W ) := Z1(X/Y ;W )⊗Z R/ ≡W .
We also define Z̃1(X/Y ;W ) as the group of line bundles defined over some
neighborhood of W modulo the following equivalence relation: for L1 ∈
Pic(f−1U1) and L2 ∈ Pic(f−1U2), where U1 and U2 are open neighborhoods
of W , L1 ≡W L2 if L1 · C = L2 · C for all curves C ⊂ X such that
f(C) = pt ∈ W . Then N1(X/Y ;W ) := Z̃1(X/Y ;W )⊗Z R.

Definition 2.42 (Property P and Q). [Fuj22b] Let f : X → Y be a projective
surjective morphism of analytic varieties and W ⊂ Y is a compact subset of
Y . We say that f : X → Y and W satisfy property P if the following holds:

(P1) X is a normal analytic variety,
(P2) Y is a Stein space,
(P3) W is a Stein compact subset of Y , i.e. W has a fundamental system

of Stein open neighborhoods, and
(P4) W ∩Z has finitely many connected components for any analytic set Z

defined on an open neighborhood of W .

We will simply say that f : X → Y satisfies property P if W is understood.

We say that f : X → Y satisfies property Q if

(Q1) X is normal, and
(Q2) X and Y are both compact.

• We will say that a projective morphism f : X → Y and a compact
subset W ⊂ Y satisfies either property P or Q if either f : X → Y
and W ⊂ Y satisfy property P or f : X → Y satisfies property
Q. Moreover, if only the property Q is satisfied, then we will denote
N1(X/Y ), N1(X/Y ), etc. to mean N1(X/Y ; Y ), N1(X/Y ; Y ), etc.

Remark 2.43. By [Nak04, Chapter II. 5.19. Lemma], if f : X → Y and
W ⊂ Y satisfy either property P or Q then N1(X/Y ;W ) (and hence also
N1(X/Y ;W )) is finitely dimensional over R. Unluckily, this result is only
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stated in the case that X → Y is a projective morphism. By a result of
Siu, [Siu69, Theorem 1], it is known that property (P4) holds if and only if
Γ(W,OW ) is notherian. In particular, for any w ∈ W there is a neighborhood
w ∈ V ⊂ Y such that V satisfies (P3) and (P4).

Theorem 2.44 (Cone Theorem). [Nak87, Theorem 4.12] Let f : X → Y be a
projective surjective morphsim of analytic varieties and W ⊂ Y is a compact
subset satisfying either property P or Q. Let B ≥ 0 a Q-divisor on X such
that (X,B) is klt. Then the following hold:

(1) If KX +B is not f -nef over W , then

NE(X/Y ;W ) = NEKX+B≥0(X/Y ;W ) +
∑

R≥0[li]

where each li is an irreducible curve in N1(X/Y ;W ). Furthermore,∑
R≥0[li] is locally finite and for any R = R≥0[li], there exists L ∈

Z̃1(X/Y ;W ) such that R = {Γ ∈ NE(X/Y ;W ) \ {0}|(L ·Γ) = 0} and
that L is f -nef over W . Such an L is called a supporting function of
R and R is called an extremal ray over W with respect to KX +B.

(2) For an extremal ray R, there exist an open neighborhood U of W and
a proper surjective morphism φ : f−1(U) → Z over U onto a normal
variety Z such that

φ(C) = pt if and only if [C] ∈ R

for any irreducible curve C of f−1(U) which is mapped to a point of
W . This φ is denoted by contR and called the contraction morphism
associated with R.

(3) φ = contR has the following properties:
(a) −(KX +B)|f−1(U) is φ-ample.
(b) Let E be an irreducible component of Ex(f) of maximal dimension,

n = dimE − dim f(E) and p ∈ f(E) a general point, then Ep =
E∩f−1(p) is covered by a family of compact rational curves {Γt}t∈T
such that φ(Γt) = pt for all t ∈ T and −(KX +B) ·Γt ≤ 2n, where
n = dimX.

(c) Image(φ∗ : Pic(Z) → Pic(f−1(U))) = {D ∈ Pic(f−1(U)) | (D ·
Γ) = 0 ∀ r ∈ R}.

(d) The following mutually dual sequences are exact.

0→ N1(f
−1(U)/Z; g−1(W ))→ N1(X/Y ;W )→ N1(Z/U ;W )→ 0,

0← N1(f−1(U)/Z; g−1(W ))← N1(X/Y ;W )← N1(Z/U ;W )← 0.

Here g : Z → U is the structure morphism. In particular, ρ(X/Y ;W ) =
ρ(Z/U ;W ) + 1.
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Proof. Everything here is in [Nak87, Theorem 4.12], except the claim 3(b).
This follows from [DO24, Theorem 1.23]. #

Finally we prove a relative dlt cone theorem.

Theorem 2.45. Let (X,∆) be a dlt pair, f : X → Y a projective surjective
morphism of analytic varieties and W ⊂ Y is a compact set satisfying either
property P or Q. Assume that X is Q-factorial over W . Then there are
countably many rational curves {Ci}i∈I such that f(Ci) = pt for all i ∈ I,
0 < −(KX +∆) · Ci ≤ 2 dimX and

NE(X/Y ;W ) = NE(X/Y ;W )(KX+∆)≥0 +
∑

i∈I

R≥0 · [Ci].

Proof. Fix a f -ample divisor H on X . Then for any n ∈ N we can write
KX +∆+ 1

nH = KX +(1−ε)∆+( 1nH+ε∆) such that 1
nH+ε∆ is f -ample for

ε ∈ Q≥0 sufficiently small (depending on n). Note that (X, (1 − ε)∆) is a klt
pair. Thus by Theorem 2.44, there are finitely many (KX +∆+ 1

nH)-negative
extremal rays generated by rational curves {Ci}i∈In contained in the fibers of
f such that 0 < −(KX +∆) · Ci ≤ 2 dimX and

(2.22) NE(X/Y ;W ) = NE(X/Y ;W )(KX+∆+ 1
n
H)≥0 +

∑

i∈In

R≥0 · [Ci].

Define I := ∪n≥1In. Then clearly NE(X/Y ;W ) = NE(X/Y ;W )(KX+∆+ 1
n
H)≥0+∑

i∈I R
≥0 · [Ci]. Note that we also have

NE(X/Y ;W )(KX+∆)≥0 = ∩
∞
n=1NE(X/Y ;W )(KX+∆+ 1

n
H)≥0.

Therefore from (2.22) we have

NE(X/Y ;W ) = ∩∞n=1

(

NE(X/Y ;W )(KX+∆+ 1
n
H)≥0 +

∑

i∈I

R≥0 · [Ci]

)

⊃ ∩∞n=1

(
NE(X/Y ;W )(KX+∆+ 1

n
H)≥0

)
+
∑

i∈I

R≥0 · [Ci]

= NE(X/Y ;W )(KX+∆)≥0 +
∑

i∈I

R≥0 · [Ci].

Suppose now that the inclusion is strict and so we have an element v ∈

∩∞n=1

(
NE(X/Y ;W )(KX+∆+ 1

n
H)≥0 +

∑
i∈I R

≥0 · [Ci]
)
not contained in

NE(X/Y ;W )(KX+∆)≥0 +
∑

i∈I

R≥0 · [Ci].

Intersecting NE(X/Y ;W ) with an appropriate affine hyperplane H we may as-
sume that NE(X/Y ;W )∩H is compact and convex and v ∈ NE(X/Y ;W )∩H.
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For each n ≥ 1, we can write v = vn+wn, where vn ∈ NE(X/Y ;W )(KX+∆+ 1
n
H)≥0∩

H and wn ∈
∑

i∈I R
≥0 · [Ci]∩H. By compactness, passing to a subsequence, we

may assume that limits exist, and v∞ = lim vi and w∞ = limwi such that v =
v∞ + w∞. Since NE(X/Y ;W )(KX+∆)≥0 = ∩∞n=1NE(X/Y ;W )(KX+∆+ 1

n
H)≥0 is

closed, v∞ ∈ NE(X/Y ;W )(KX+∆)≥0∩H. Since
∑

i∈I R
≥0 · [Ci]∩H is compact,

w∞ ∈
∑

i∈I R
≥0 · [Ci]∩H. By standard arguments (see the end of the proof of

[Kol96, Theorem III.1.2]) one sees that NE(X/Y ;W )(KX+∆)≥0+
∑

i∈I R
≥0 · [Ci]

is closed and hence
∑

i∈I

R≥0 · [Ci] ⊂ NE(X/Y ;W )(KX+∆)≥0 +
∑

i∈I

R≥0 · [Ci].

Thus w∞ = v0+w′
∞, where v0 ∈ NE(X/Y ;W )(KX+∆)≥0 and w′

∞ ∈
∑

i∈I R
≥0 · [Ci].

Finally, since v = (v∞ + v0) + w′
∞, we obtain the required contradiction. #

Part 2. MMP for Projective Morphisms

3. Finite generation following Cascini-Lazić

In [CL10] it is shown that adjoint rings with big boundaries on projective
varieties are finitely generated. In this section we will extend this result to the
case of a projective morphism of analytic varieties.

Theorem 3.1. Let π : X → U be a projective morphism of complex analytic
varieties, where X is smooth variety with dimX = n. Let B1, . . . , Bk be Q-
divisors on X such that ⌊Bi⌋ = 0 for all i, and such that the support of

∑k
i=1Bi

has simple normal crossings. Let A be a π-ample Q-divisor on X, and denote
Di = KX + A+Bi for every i. Then the adjoint ring

R(X/U ;D1, . . . , Dk) =
⊕

(m1,...,mk)∈Nk

π∗OX

(
⌊
∑

miDi⌋
)

is a locally finitely generated OU -algebra.

Note that if KX +B+A is klt and relatively nef, then the finite generation
of R(X/U,KX +A+B) follows from the base point free theorem, cf. [Nak87,
Theorem 4.8, Corollary 4.9]. The proof in [CL10] is an induction on the
dimension proving the two statements [CL10, Theorem A and B]. We will begin
by showing that [CL10, Theorem B] implies a similar result in our setting.
Recall that a (rational) polytope P ⊂ Rn is the convex hull of finitely many
(rational) points in Rn.
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Theorem 3.2. Let (X,
∑p

i=1 Si) be a log smooth pair, where S1, . . . , Sp are
distinct prime divisors and π : X → U is a projective morphism to a Stein
variety U . Let V =

∑p
i=1R ·Si ⊂ DivR(X), and A ≥ 0 be a π-ample Q-divisor

on X. Define

L(V ) := {B =
p∑

i=1

biSi ∈ V | 0 ≤ bi ≤ 1 for all i}.

Then
EA(V ) := {B ∈ L(V ) : |KX + A+B/U |R ̸= ∅}

is a rational polytope.

Proof. By [CL10, Theorem B] we know that Theorem 3.2 holds in the projec-
tive case and hence we may assume that dimU > 0, so that dimXu ≤ n − 1
for any u ∈ U .

We will first prove the claim assuming that every Si dominates U . Let
U ′ ⊂ U be the biggest open subset such that, denoting (X ′,

∑p
i=1 S

′
i) :=

(X,
∑p

i=1 Si)×U U ′ then (Xu,
∑p

i=1 Si,u) is log smooth for any u ∈ U ′.
Let Wu be the subspace of DivR(Xu) spanned by the irreducible compo-

nents of Si,u and Vu ⊂ Wu be the image of V under the restriction map
ru : DivR(X) → DivR(Xu). Then EAu(Wu) is a rational polytope, and hence
so is EAu(Vu) (since it is obtained by intersecting a rational polytope with a
rational subspace). Note that ru defines an isomorphism of R-vector spaces
ru : V → Vu. In what follows we often will identify V and Vu.

For every u ∈ U ′, let B1
u, . . . , B

ku
u ∈ ru(DivR(X)) be a set of Q-divisors

generating the rational polytope EAu(Vu). Consider the set C0 = {B} (resp.
C1 = {B}) of finite subsets B = {B1, . . . , Bk}, where Bi ∈ DivQ(X) such that

U(B) := {u ∈ U ′ | EAu(Vu) = ⟨B
1
u, . . . , B

k
u⟩}

is (resp. is not) uncountably Zariski dense. Here ⟨B⟩ := ⟨B1, . . . , Bk⟩ denotes
the polytope spanned by B1, . . . , Bk. Note that U ′ = ∪B∈C0∪C1U(B), where
C0, C1 are countable as their elements are finite subsets of the countable set
V ∩ DivQ(X). Since, ∪B∈C1U(B) is contained in a countable union of closed
analytic subsets, then

U0 := ∪B∈C0U(B) = U ′ \ ∪B∈C1U(B)

contains the complement of countably many analytic proper closed subsets in
U ′. In particular, C0 is non-empty and for any B ∈ C0, U(B) is uncountably
Zariski dense.

Fix B̄ ∈ C0 and write B̄ = {B̄1, . . . , B̄k}. For any u ∈ U(B̄), we have that
EAu(Vu) is the rational polytope generated by the Q-divisors B̄1|Xu , . . . , B̄

k|Xu

and there exists an integer m = m(u) such that |m(KXu +A|Xu + B̄i|Xu)| ≠ ∅
for all 1 ≤ i ≤ k. Since U(B̄) is uncountably Zariski dense, it must contain
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an uncountably Zariski dense (in U ′) set W ⊂ U(B̄) such that m(u) = m̄ is
independent of u ∈ W .

Now observe that, by the generic flatness, the upper semi-continuity theo-
rem, and the cohomology and base-change theorem (see Theorem V.4.10 and
Theorem III.4.12 in [BS76]) it follows that there is a dense Zariski open subset
U m̄ ⊂ U ′ such that f is flat over U m̄ and

f∗OX(m̄(KX + A+ B̄i))⊗ C(u)→ H0(OXu(m̄(KXu + A|Xu + B̄i|Xu)))

is an isomorphism for all 1 ≤ i ≤ k and for all u ∈ U m̄.

Since W is uncountably Zariski dense in U ′, we have that W ∩U m̄ ̸= ∅ and
it follows from the relation above that f∗OX(m̄(KX + A + B̄i)) ⊗ C(u0) ̸= 0
for any u0 ∈ W ∩ U m̄ ⊂ U . Then since U is Stein, we have

Γ(X,OX(m̄(KX + A + B̄i))) = Γ(U, f∗OX(m̄(KX + A + B̄i))) ̸= 0.

In particular, |m̄(KX + A + B̄i)| ≠ ∅ and |m̄(KXu + Au + B̄i
u)| ̸= 0 for all

1 ≤ i ≤ k and for all u ∈ U m̄.
This shows that B̄i

u′ ∈ EAu′
(Vu′) for all u′ ∈ U m̄. Thus we have that

(3.1)
r−1
u (EAu(Vu)) ⊂ r−1

u′

(
EAu′

(Vu′)
)

for all u ∈ W and for all u′ ∈ U m̄.

Since U m̄ ∩ U(B) ̸= ∅ for any B ∈ C0, it follows that for u′ ∈ U m̄ ∩ U(B) we
have

⟨B̄⟩ = r−1
u (EAu(Vu)) ⊂ r−1

u′

(
EAu′

(Vu′)
)
= ⟨B⟩.

By symmetry, we have that ⟨B⟩ = ⟨B̄⟩ and hence C0 = {B̄}. In particular
this shows that ⟨B̄⟩ ⊂ EA(V )

For the reverse inclusion, simply pick B ∈ EA(V ), then Γ(X,OX(m(KX +
A + B))) ̸= 0 for some m > 0, and so Γ(Xu,OXu(m(KXu + Au + Bu))) ̸= 0
for general u ∈ U . This means that Bu ∈ EAu(Vu) for general u ∈ U(B̄), and
hence B is contained in the polytope spanned by B̄. Thus EA(V ) = ⟨B̄⟩ is a
rational polytope.

To complete the proof, we consider the case when S1, . . . , Sp′ dominate U and
Sp′+1, . . . , Sp do not dominate U (and hence π(Si)∩U ′ = ∅ for i = p′+1, . . . , p).

It suffices to show that if B =
∑p

i=1 biSi and B′ =
∑p′

i=1 biSi, then B ∈
EA(V ) if and only if B′ ∈ EA(V ). One direction is clear: if B′ ∈ EA(V ) then
KX + A + B′ ∼R,U D′ ≥ 0 so that KX + A + B ∼R,U D′ + B − B′ ≥ 0, and
hence B ∈ EA(V ). Conversely, if B ∈ EA(V ), then KX + A + B ∼R,U D ≥ 0
and so KXu +Au+Bu ∼R Du ≥ 0 for all u ∈ U ′′, where U ′′ is the largest open
subset of U ′ containing the points u ∈ U ′ such that Xu ̸⊂ Supp(D). Note that
Bu = B′

u for any u ∈ U ′′ and hence KXu +Au +B′
u ∼R Du ≥ 0 for all u ∈ U ′′.
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Then arguing as above there is a dense Zariski open subset Ū ⊂ U such that
f is flat over Ū and

f∗OX(m̄(KX + A+B′))⊗ C(u)→ H0(OXu(m̄(KXu + A|Xu +B′|Xu)))

is an isomorphism for all u ∈ Ū . Since H0(OXu(m̄(KXu + A|Xu + B′|Xu))) =
H0(OXu(m̄(KXu + A|Xu + B|Xu))) ̸= 0 for u ∈ U ′′ ∩ Ū , then f∗OX(m̄(KX +
A + B′)) ̸= 0. Since U is Stein, then H0(f∗OX(m̄(KX + A + B′))) ̸= 0 and
so it follows that KX + A+ B′ ∼R D∗ ≥ 0 for some effective R-divisor D∗ on
X . #

The rest of this section is devoted to the proof of Theorem 3.1. We will
proceed by induction and show that Theorems 3.1n−1 and 3.2n imply Theo-
rem 3.1n (here Theorem 3.1n means Theorem 3.1 for n-dimensional varieties
dimX = n). Thus Theorem 3.1 holds in all dimensions. Unluckily, we are
unable to find a direct proof and so we will follow closely the arguments of
[CL10]. We will not repeat the details of each step of the corresponding proof
in [CL10], rather we will emphasize the necessary changes to the statements,
the arguments and the references used. As remarked above, [CL10] works with
X projective. We will instead assume that π : X → U is a projective mor-
phism of normal analytic varieties where U is Stein and relatively compact. If
(X,B) is a simple normal crossings pair, we will not assume (unless otherwise
stated) that (X,B) is simple normal crossings over U . There are 3 kinds of
results that play a prominent role in the arguments of [CL10]. The extension
theorems from [CL10, Section 3] rely mainly on Kawamata-Viehweg vanishing
and hence generalize easily to our context (cf. Theorem 2.41). The results
about convex polytopes and diophantine approximation require no changes.
The results about the Zariski decomposition are (with one simple exception
discussed below) not used in the proof of Theorem 3.1.

3.1. Extension Theorems. As an immediate consequence of Kawamata-
Viehweg vanishing, one obtains the following basic extension result correspond-
ing to [CL10, Lemma 3.1].

Lemma 3.3. Let (X,B) be a log smooth pair of dimension n, where B is a
Q-divisor such that ⌊B⌋ = 0 and π : X → U is a projective morphism to a
Stein variety. Let A be a π-nef-big Q-divisor.

(i) Let S be a smooth prime divisor such that S ̸⊂ SuppB. If G ∈ Div(X)
is such that G ∼Q,U KX + S + A+B, then |G|S = |G|S|.

(ii) Let f : X → Y be a bimeromorphic morphism of varieties projective
over U , and let V ⊂ X be an open set such that f |V is an isomorphism. Let
H ′ be a very ample/U divisor on Y and let H = f ∗H ′. If F ∈ Div(X) is such
that F ∼Q,U KX + (n+ 1)H +A+B, then |F | is basepoint free at every point
of V .
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Proof. Consider the short exact sequence

0→ OX(G− S)→ OX(G)→ OS(G|S)→ 0.

By Kawamata-Viehweg vanishing (Theorem 2.41), we have Riπ∗OX(G−S) = 0
for all i > 0, and hence a surjection π∗OX(G)→ π∗OS(G|S); this is equivalent
to (i), by Lemma 2.25.

The proof of (ii) proceeds by induction. Pick a point x ∈ V . Pick elements
T1, . . . , Tn ∈ |H ⊗ mx|, and let X0 = X,Xi = T1 ∩ . . . ∩ Ti for any 1 ≤ i ≤ n.
Since H ′ is very ample over U and U is Stein, OX(H)⊗mx is generated over
U . We may assume that T1 ∩ . . . ∩ Tn has a 0-dimensional component X ′

n

supported at x. For any 0 ≤ i ≤ n− 1, we have short exact sequences

0→ OXi
((F − Ti+1)|Xi

)→ OXi
(F |Xi

)→ OXi+1
(F |Xi+1

)→ 0.

Since Rkπ∗OX(F − lH) = 0 for k > 0 and 0 ≤ l ≤ n (by Kawamata-Viehweg
vanishing, Theorem 2.41 and by induction), it is easy to see that Rkπ∗OXi

((F−
lH)|Xi

) = 0 for k > 0 and 0 ≤ l ≤ n− i (cf. proof of [Kaw99, Lemma 2.11]).
Thus the homomorphisms

π∗OX(F )→ π∗OX1
(F |X1

)→ . . .→ π∗OXn(F |Xn)

are surjective. Note that x ∈ X is an irreducible component of the support
of OXn(F |Xn) and so there is a surjection OXn(F |Xn) → OXn(F |Xn)/mx. It
follows that the evaluation map Γ(OX(F )) → OX(F )/mx is also surjective,
i.e. OX(F ) is generated at x.

#

All results of [CL10, Section 3] follow similarly assuming that π : X → U
is a projective morphism to a (relatively compact) Stein variety. For ease of
notation we will say that π : X → U is a morphism to a relatively compact
variety if it is the restriction of a morphism π′ : X ′ → U ′ over a relatively
compact open subset U ⊂ U ′ so that X = X ′×U ′ U . Note that in this context,
we consider π-ample, π-nef and π-big divisors instead of ample, nef and big
divisors, however we do not require that smooth varieties (resp. log smooth
pairs) are relatively smooth, i.e. the corresponding morphism is not assumed
to be smooth. We use Theorem 2.13 and Lemma 2.15 for the existence of
log resolutions, Theorem 2.12 for useful facts about relatively ample divisors,
Lemma 2.21 for a result about klt pairs, and Theorem 2.20 for the required
Bertini Theorem.

3.2. Proof of Finite Generation Theorem. The key step in the proof
of Theorem 3.1 is to show that the restricted algebras are finitely generated
(locally around every point u ∈ U). In order to accomplish this we will need the
following set up. Let (X,S+

∑p
i=1 Si) be a log smooth pair, where S, S1, . . . , Sp

are distinct prime divisors and π : X → U is a projective morphism to a
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Stein space. Let V =
∑p

i=1RSi ⊂ DivR(X), A be a π-ample Q-divisor and
W ⊂ DivR(S) is the subspace spanned by the components of S1|S, . . . , Sp|S.
By Theorem 3.2, we know that EA|S(W ) is a rational polytope. If E1, . . . , Ed

are its vertices, then by induction on the dimension, the ring R(S/U ;KS +
A|S +E1, . . . , KS +A|S +Ed) is a locally finitely generated OU -algebra. After
shrinking U , we may assume that this ring is in fact a finitely generated OU -
algebra. For any Q-divisor E ∈ EA|S(W ) we let

F(E) := Fix(KS + A|S + E).

Recall that since U is Stein, by Lemma 2.24 we have Fix(KS + A|S + E) =
Fix(KS +A|S +E/U). By Lemma 2.27, F(E) extends to a rational piece-wise
affine function on EA|S(W ), and there exists an integer k > 0 such that for
any E ∈ EA|S(W ) and any integer m > 0 such that (m/k)A|S and (m/k)E are
integral, then

F(E) =
1

m
Fix|m(KS + A|S + E)|.

The subset

F = {E ∈ EA|S(W ) | E ∧ F(E) = 0} ⊂ EA|S(W )

is defined by finitely many rational linear equalities and inequalities, and hence
is a finite union of rational polytopes F = ∪iFi. For any Q-divisor B ∈
BS
A(V ) := {B ∈ L(V ) | S ̸⊂ B(KX + S + A+B)}, we let

FS(B) := FixS(KX + S + A+B).

For any integer m > 0 such that mA and mB are integral and S ̸⊂ Bs|m(KX+
S + A+B)|, we let

Φm(B) := B|S −B|S ∧
1

m
Fix|m(KX + S + A +B)|S,

Φ(B) := B|S − B|S ∧ FS(B) = lim supΦm(B).

With this notation and assumptions, we have the following analog of [CL10,
Lemma 4.2].

Lemma 3.4. If B ∈ BS
A(V ), then Φm(B) ∈ EA|S(W ) and Φm(B)∧F(Φm(B)) =

0. Thus if BS
A(V ) ̸= ∅, then F ≠ ∅.

Proof. This follows by the proof of [CL10, Lemma 4.2]. #

The next result is the analog of [CL10, Theorem 4.3].

Theorem 3.5. Let G be a rational polytope contained in the interior of L(V ),
and assume that (S,G|S) is terminal for every G ∈ G. If P = G ∩BS

A(V ), then

(1) P is a rational polytope, and
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(2) Φ extends to a piece-wise affine function on P, and there exists a pos-
itive integer ℓ with the property that Φ(P ) = Φm(P ) for every P ∈ P
and every positive integer m such that mP/ℓ is integral.

Proof. This follows by the proof of [CL10, Theorem 4.3].
#

Theorem 3.6. Assume Theorem 3.1 in dimension n−1. Let π : X → U be a
projective morphism of complex analytic varieties, where X is smooth variety
with dimX = n. Let S, S1, . . . , Sp be distinct prime divisors on X such that
S+

∑p
i=1 Si has simple normal crossings. Let A be a π-ample Q-divisor on X,

V =
∑p

i=1RSi ⊂ DivR(X), B1, . . . , Bm ∈ ES+A(V ) be Q-divisors and denote
Di = KX + S +A+Bi for every i. Then the ring resSR(X/U ;D1, . . . , Dm) is
a locally finitely generated OU -module.

Proof. This follows along the lines of the proof of [CL10, Lemma 6.2]. #

Proof of Theorem 3.1. Let P = conv(B1, . . . , Bk) ⊂ DivR(X) be the polytope
spanned by Bi and R = R≥0(KX + A + P). We may assume that U is a
relatively compact Stein space. It suffices to show that R(X/U,R) is locally
finitely generated (cf. [CL10, Lemma 2.27]). By Theorem 3.2, PE = P∩EA(V )
is a rational polytope, where V ⊂ DivR(X) is the vector space spanned by the
components of B1, . . . , Bk. Since H0(X,OX(KX +A+D)) = 0 for any divisor
D ∈ P \ PE , it suffices to show that R(X/U,RE) is locally finitely generated,
where RE = R≥0(KX + A + PE). By Gordan’s lemma (cf. [CL10, Lemma
2.11]) the monoid RE ∩ Div(X) is finitely generated, so there are Q-divisors
Ri = pi(KX + A + Pi), where pi ∈ Q≥0 and Pi are Q-divisors with simple
normal crossings support such that ⌊Pi⌋ = 0 for 1 ≤ i ≤ ℓ. Since Pi ∈ EA(V ),
we have KX + A + Pi ∼Q,U Gi ≥ 0. Replacing B1, . . . , Bk by P1, . . . , Pℓ, we
may assume that KX + A + Bi ∼Q,U Fi ≥ 0 for all i. Replacing X by a
log resolution (see Theorem 2.13), we may assume that (X,

∑
(Bi + Fi)) is a

simple normal crossings pair.
Consider now W ⊂ DivR(X) the subspace spanned by the components

S1, . . . , Sp of
∑

(Bi + Fi). Let T = {(t1, . . . , tk) | ti ≥ 0,
∑

ti = 1} and for
any τ = (t1, . . . , tk) ∈ T , we let

Bτ =
∑

tiBi, Fτ =
∑

tiFi ∼Q,U KX + A+Bτ .

Consider the following rational polytopes for 1 ≤ i ≤ p,

B = {Fτ +B | τ ∈ T , 0 ≤ B ∈ W, Bτ +B ∈ L(W )} ⊂W,

Bi = {Fτ +B ∈ B | Si ⊂ ⌊Bτ +B⌋} ⊂ W.
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We also have rational polyhedral cones C = R≥0B, Ci = R≥0Bi and monoids
S = C ∩ Div(X), Si = Ci ∩ Div(X). Following the proof of [CL10, Theorem
6.3], it suffices to show that

(1) C = ∪pi=1Ci,
(2) there exists an integer M > 0 such that if

∑
αiSi ∈ Cj for some j and

some αi ∈ N with
∑
αi ≥M , then

∑
αiSi − Sj ∈ C, and

(3) the rings resSj
R(X/U,Sj) are locally finitely generated for 1 ≤ j ≤ p.

(1) Pick 0 ̸= G ∈ C. Then there exists τ ∈ T , 0 ≤ B ∈ W and r > 0 such
that Bτ +B ∈ L(W ) and G = r(Fτ +B). Let

λ = max{t ≥ 1|Bτ + tB + (t− 1)Fτ ∈ L(W )},

and B′ = λB + (λ− 1)Fτ , then

λG = λr(Fτ +B) = r(Fτ + λB + (λ− 1)Fτ ) = r(Fτ +B′),

where ⌊Bτ + B′⌋ is non-empty and hence contains a component Sj0 for some
1 ≤ j0 ≤ p. Thus G ∈ Cj0 as required.

(2) Fix ϵ > 0 such that the coefficients of Bi are ≤ 1− ϵ, and hence for any
τ ∈ T the coefficients of Bτ are also ≤ 1− ϵ. Now let || · || be the sup norm on
the vector space W so that for any D ∈ W , ||D|| is the largest coefficient of
D in the unique decomposition D =

∑p
i=1 aiSi. Since each set Bj is compact,

there exists a constant C > 0 such that for any Ψ ∈ ∪pj=1Bj we have ||Ψ|| ≤ C.
Define M := pC/ϵ. Let G =

∑p
i=1 αiSi ∈ Cj , where

∑p
i=1 αi ≥M . Then

||G|| = max{αi} ≥

∑p
i=1 αi

p
≥

M

p
=

C

ϵ
.

Since G ∈ Cj , there exists r > 0 such that G = rG′ for some G′ ∈ Bj . Thus

||G′|| ≤ C, and hence r = ||G||
||G′|| ≥

1
ϵ . Since G

′ ∈ Bj , we may write G′ = Fτ +B

where τ ∈ T , 0 ≤ B ∈ W , Bτ + B ∈ L(W ) and Sj ⊂ ⌊Bτ + B⌋. But then
multSj

(B) = 1−multSj
(Bτ ) ≥ ϵ ≥ 1/r, so that

G− Sj = r(Fτ +B −
1

r
Sj) ∈ C.

(3) We pick generatorsE1, . . . , El of Sj = Cj∩Div(X). For any i ∈ {1, . . . , l},
there exist ki ∈ Q>0, τi ∈ T ∩ Qk, 0 ≤ Bi ∈ W such that Bτi + Bi ∈ L(W ),
Sj ≤ ⌊Bτi + Bi⌋ and Ei = ki(Fτi + Bi). If E ′

i := KX + A + Bτi + Bi, then
Ei ∼Q kiE ′

i. Now, resSj
(X/U ;E ′

1, . . . , E
′
l) is finitely generated by Theorem 3.6

and hence resSj
(X/U ;E1, . . . , El) is also finitely generated (cf. [CL10, Lemma

2.25]). Finally the claim follows from the surjection

resSj
(X/U ;E1, . . . , El)→ resSj

(X/U ;Sj).

#
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Corollary 3.7. Let π : X → U be a projective morphism of normal varieties
and (X,B) is a klt pair such that KX +B is π-big. Then R(X/U,KX +B) :=
⊕m≥0π∗OX(⌊m(KX + B)⌋) is locally finitely generated over U . In particu-
lar, if W ⊂ U is a compact subset, then after shrinking U near W suitably,
R(X/U,KX + B) is finitely generated over U , and hence the log canonical
model ProjanR(X/U,KX +B)→ U of (X,B) over U exists.

Proof. Working locally on U we may assume that U is a relatively compact
Stein space. Since KX + B is π-big, we have KX + B ∼Q,U A + N , where
A is π-ample Q-divisor and N ≥ 0. Let f : Y → X be a log resolution of
(X,B +N) as in Theorem 2.13. Write KY + Γ = f ∗(KX +B) + E such that
Γ ≥ 0, E ≥ 0,Γ∧E = ∅, f∗Γ = B and f∗E = 0. Let F ≥ 0 be a f -exceptional
Q-divisor such that −F is f -ample. Then A′ = f ∗A − F is (π ◦ f)-ample.
Choose a rational number 0 < ϵ≪ 1 such that (Y,Γ+ ϵf ∗N + ϵF ) is klt and

(1 + ϵ)f ∗(KX +B) + E ∼Q KY + Γ+ ϵf ∗N + ϵF + ϵA′.

Thus from Theorem 3.1 and [CL10, Corollary 2.26] it follows thatR(X/U,KX+
B) is locally finitely generated over U .

Moreover, if W ⊂ U is a compact subset, then there exists a positive integer
m > 0 and finitely many open subsets Ui ⊂ U, 1 ≤ i ≤ k such thatW ⊂ ∪ki=1Ui

and R(Xi/Ui, KXi
+Bi) is finitely generated in degree ≤ m for all i = 1, 2 . . . , k;

where Xi = X ×U Ui and Bi = B|Xi
. The claim then follows replacing U by

∪ki=1Ui. #

4. Relative MMP for projective morphisms

In this section we prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. We follow the ideas of [Fuj15]. By the proof of [Fuj15,
Theorem 5.1] (also see [Fuj22b, 21.5]), there is a projective morphism g : Z →
Y from a complex manifold Z such that X !!" Z is bimeromorphic to the
Iitaka fibration of KX + B over Y and (Z,BZ ≥ 0) is a log smooth klt pair
such that KZ +BZ is big over Y and

⊕m≥0f∗OX(me(KX + B)) ∼= ⊕m≥0g∗OZ(me′(KZ +BZ))

for some integers e, e′ > 0. Then the result follows from Corollary 3.7.
#
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Proof of Theorem 1.4. We are free to replace U by arbitrarily small neighbor-
hoods of W , see [Fuj22b, 1.11]. If KX +B is nef over W , then there is nothing
to prove. Otherwise, by the Cone Theorem (cf. Theorem 2.44), there is a
negative extremal ray R = R≥0[l] and a divisor L ∈ A1(X/U ;W ) such that
R = NE(X/U ;W ) ∩ L⊥, where L is nef over U . Let φ = contR : X → Z be
the corresponding morphism (which is defined after possibly further shrinking
U). If dimZ < dimX , this is a Mori fiber space. If dimZ = dimX and φ
contracts a divisor, then this is a divisorial contraction. In this case we let
(Z,φ∗B) = (X1, B1) and we note that (X1, B1) is klt and Q-factorial near W .
If on the other hand, dimZ = dimX and φ is small, then by Corollary 3.7,
R(X/Z,KX +B) is finitely generated and hence we obtain a small birational
morphism ψ : X !!" X1 := ProjanR(X/Z,KX + B) (note that as X → Z is
birational, the bigness assumption is automatically satisfied). In this case we
note that (X1, B1 = ψ∗B) is klt and Q-factorial near W . We may now replace
(X,B) by (X1, B1) and repeat the procedure. This proves (1).

Suppose now that we are running the MMP with scaling of a sufficiently π-
ample Q-divisor A. This means that we have a sequence of flips and divisorial
contractions

(X,B) = (X0, B0) !!" (X1, B1) !!" (X2, B2) !!" . . . ,

a π-ample divisor A and a sequence of rational numbers λ0 ≥ λ1 ≥ λ2 ≥
. . . ≥ 0 such that KXi

+ Bi + λAi is nef over U for λi ≥ λ ≥ λi+1. It
suffices to show that this sequence terminates locally over a neighborhood
of any point of W . We claim that there exists a constant ϵ > 0 such that
we may assume that B ≥ ϵA. Indeed, in Case (2), first if B is π-big, then
B ∼Q,U δA + E, where δ > 0 and E ≥ 0. Then for any rational number
0 < γ ≪ 1, (X,B′ = (1−γ)B+γ(δA+E)) is klt, and KX +B′ ∼Q,U KX +B.
Thus the above MMP is also a (KX + B′)-MMP with the scaling of A, and
B′ ≥ γδA. In this case we are done by replacing B by B′ and setting ϵ = γδ.
On the other hand, if KX+B is π-big, then we can write KX+B ∼Q,U δA+E,
where δ > 0 and E ≥ 0. Then again for any rational number 0 < γ ≪ 1,
(X,B′ = B+ γ(δA+E)) is klt and KX +B′ ∼Q,U (1+ γ)(KX +B). It follows
that the above MMP is a (KX + B′)-MMP with scaling of (1 + γδ)A. Since
B′ ≥ γδA, the claim follows letting ϵ := γδ

1+γ . In Case (3) this holds since
KX +B is not π-pseudo-effective, and therefore KX +B+ ϵA is not π-pseudo-
effective for some 0 < ϵ ≪ 1. In particular, λi > ϵ for all i. Replacing B by
B + ϵA and λi by λi − ϵ the claim follows.

We will now show that the corresponding minimal model programs termi-
nate. Suppose that U is relatively compact and Stein. Fix || · || a norm on
N1(X/U ;W ). Let λ = limλi.

We may pick relatively ample Q-divisors H1, . . . , Hr such that



4-DIMENSIONAL KÄHLER MMP 39

(1) Hj ≥ ϵA for some 0 < ϵ≪ 1 and 1 ≤ j ≤ r,
(2) (X,Hj) is klt for 1 ≤ j ≤ r,
(3) ||(B + λA)−Hj||≪ 1 for 1 ≤ j ≤ r,
(4) if C = R≥0(KX+B)+

∑r
j=1R

≥0(KX+Hj) ⊂ DivR(X), then KX+B+
λA is in the interior of C, and the dimension of C equals dimN1(X/U ;W ).

By Theorem 3.1, it then follows that R(X/U, C) is a finitely generated OU

algebra. Arguing as in [CL13, Theorem 6.5], the corresponding MMP with
scaling terminates.

In the general case, we observe that since U is relatively compact, it suffices
to prove termination locally over U . This follows from the above argument. #

Part 3. MMP in dimension 4

5. Cone and Contraction Theorems

5.1. Cone and contraction theorems in dimension 3. We begin by prov-
ing a unified cone theorem for Q-factorial dlt pairs (X,B) that works both
when KX + B pseudo-effective and non pseudo-effective. We will need the
following lemma on the length of extremal rays.

Lemma 5.1. Let (X,∆) be a compact Kähler lc pair of dimension n. Let
∆0 ≥ 0 be a Q-divisor such that (X,∆0) is klt. Let R be a (KX +∆)-negative
extremal ray of NA(X) and f : X → Y is the projective morphism contracting
R, i.e. a curve C ⊂ X is contracted by f if and only if [C] ∈ R. Then there is
a rational curve Γ ⊂ X contained in a fiber of f such that R = R≥0 · [Γ] and

0 < −(KX +∆) · Γ ≤ 2n.

Proof. The same proof as in [BCHM10, Theorem 3.8.1] works using [DO24,
Theorem 1.23] in place of [Kaw91, Theorem 1]. #

Theorem 5.2. Let (X,B) be a Q-factorial compact Kähler 3-fold dlt pair.
Then there exists a countable collection of rational curves {Ci}i∈I such that
0 < −(KX +B) · Ci ≤ 6 and

NA(X) = NA(X)(KX+B)≥0 +
∑

i∈I

R≥0 · [Ci].

Moreover, if ω is a Kähler class, then there are only finitely many extremal
rays Ri = R≥0 · [Ci] satisfying (KX +B + ω) · Ci < 0 for i ∈ I.

Proof. The theorem is known when KX + B is pseudo-effective (see [CHP16,
Theorem 1.3] and [DO24, Theorem 2.26]).

We give a unified proof of all the cases below.
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Let {Ci}i∈I be a set of curves spanning the (KX+B)-negative extremal rays
such that 0 < −(KX +B) · Ci ≤ 6, and N ⊂ N1(X) be the cone defined by

N := NA(X)(KX+B)≥0 +
∑

i∈I

R≥0 · [Γi].

First we will show that NA(X) = N . Clearly N ⊂ NA(X) holds, so assume
that the reverse inclusion does not hold. Then there is a nef class α such that
α · γ > 0 for all 0 ̸= γ ∈ N and α · γ = 0 for some γ ∈ NA(X). Clearly
NA(X)(KX+B)≥0 is a closed sub-cone of NA(X). Let K be a compact slice of
NA(X)(KX+B)≥0. Then there exists an ϵ > 0 such that (α− ϵ(KX +B)) ·γ > 0
for all 0 ̸= γ ∈ K. But then α−ϵ(KX +B) is strictly positive on NA(X)\{0},
and so α′ = 1

ϵα = KX+B+ω, where ω := 1
ϵ (α−ϵ(KX+B)) is strictly positive

on NA(X), and hence a Kähler class by [HP16, Corollary 3.16]. Replacing α
by α′ we may assume that α = KX + B + ω for some Kähler class ω such
that α · γ > 0 for all 0 ̸= γ ∈ N and α · γ = 0 for some γ ∈ NA(X). By
[DH20, Theorem 1.7], there exists a projective morphism ψ : X → Z such
that KX + B + ω ≡ ψ∗αZ where αZ is a Kähler class on Z. In particular, ψ
is not an isomorphism, and thus by Theorem 2.45, there is a rational curve
C ⊂ X contained in a fiber of ψ generating an extremal ray contained in the
face α⊥∩NA(X) such that 0 > (KX +B) ·C ≥ −6 and (KX +B+ω) ·C = 0.
This is a contradiction and so NA(X) = N .

By [HP16, Lemma 6.1] it follows that N is a closed cone and so NA(X) = N .
We note that the proof of [HP16, Lemma 6.1] works with KX replaced by
KX + B. Finally, for any Kähler class ω, if (KX + B + ω) · Ci < 0, then
ω · Ci < −(KX + B) · Ci ≤ 6. Hence by a Douady space argument there are
finitely many extremal rays Ri = R≥0 · [Ci] satisfying (KX +B + ω) · Ri < 0.

#

We deduce the non Q-factorial version of this theorem below which is used
throughout the article.

Corollary 5.3. Let (X,B) be a compact Kähler 3-fold dlt pair. Then there
exists a countable collection of rational curves {Ci}i∈I such that 0 < −(KX +
B) · Ci ≤ 6 for all i ∈ I and

NA(X) = NA(X)(KX+B)≥0 +
∑

i∈I

R≥0 · [Ci].

Moreover the following holds:

(1) For any Kähler class ω, there are only finitely many extremal rays
Ri := R≥0 · [Ci] such that (KX +B + ω) ·Ri < 0.
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(2) For any (KX +B)-negative extremal ray R = R≥0 · [Ci], there is a nef
class α ∈ H1,1

BC(X) such that α⊥ ∩ NA(X) = R and α = KX + B + η
for some Kähler class η.

Proof. Since (X,B) is a dlt pair, there is a log resolution φ : Y → X of
(X,B) such that a(E,X,B) > −1 for all exceptional divisors E of φ. Define
BY := φ−1

∗ B +Ex(φ). Then running a (KY +BY )-MMP over X as in [DH20,
Proposition 2.26], we may assume that there is a Q-factorial dlt pair (X ′, B′)
and a small projective bimeromorphic morphism f : X ′ → X such that KX′ +
B′ = f ∗(KX + B). Then by the cone Theorem 5.2 for (X ′, B′) there exist
countably many rational curves {C ′

i}i∈I′ onX ′ such that 0 < −(KX′+B′)·C ′
i ≤

6 for all i ∈ I ′ and

(5.1) NA(X ′) = NA(X ′)(KX′+B′)≥0 +
∑

i∈I′

R≥0 · [C ′
i].

Now from [HP16, Proposition 3.14] it follows that f∗NA(X ′) = NA(X). Let
f(C ′

i) = Ci ⊂ X for all i ∈ I ′ such that f(C ′
i) ̸= pt and let {Ci}i∈I be the

collection of all non contracted curves. Applying f∗ on both sides of (5.1) we
claim NA(X) = NA(X)(KX+B)≥0 +

∑
i∈I R

≥0 · [Ci]. If not, then assume that

(5.2) NA(X) " NA(X)(KX+B)≥0 +
∑

i∈I

R≥0 · [Ci].

Then there exists a (1, 1) class α ∈ N1(X) such that α is positive on the
RHS of (5.2) and NA(X) ∩ α≤0 ̸= ∅. Let ω be a Kähler class on X and
λ ∈ R≥0 is defined as λ := inf{t ≥ 0 : α+ tω is a Kähler class}. Then α+ λω
is a nef class which is not Kähler. Consequently, from [HP16, Corollary 3.16]
it follows that (α + λω)⊥ ∩ NA(X) ̸= {0}. Let β = α + λω; then β is nef and
β⊥ ∩NA(X) ̸= {0}. In particular, β⊥ ∩NA(X) is an extremal face of NA(X);
let’s denote this face by F . Let F ′ be the extremal face of NA(X ′) defined
by f ∗β, i.e. F ′ := (f ∗β)⊥ ∩ NA(X ′). Then from Lemma 5.4 it follows that
F ′ = (f ∗)−1F ∩NA(X ′). We claim that KX′ +B′ is negative on F ′ \ (f ∗)−1(0),
where 0 ∈ NA(X) is the zero vector. Indeed, if γ′ ∈ F ′ \ (f ∗)−1(0), then
f∗γ′ ∈ F \ {0} and thus β · f∗γ′ = 0. In particular, α · f∗γ′ < 0, and thus
(KX + B) · f∗γ′ < 0 (it follows from the construction of α). Therefore by the
projection formula we have (KX′ +B′) · γ′ < 0.
Now by the cone theorem on (X ′, B′) and [DH20, Theorem 1.7], there must
be a (KX′ + B′)-negative extremal ray, say R′ = R≥0 · [C ′

i] ⊂ F ′ \ (f ∗)−1(0).
Then Ci = f(C ′

i) ̸= pt is one of the curves in the collection {Ci}i∈I above
and (KX + B) · Ci < 0. But [Ci] ∈ F = β⊥ ∩ NA(X) and this is a contra-
diction, since by our assumption α·Ci > 0, and hence β ·Ci = (α+λω)·Ci > 0.
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Now (1) is proved exactly as in Theorem 5.2. For the second part, from
[HP16, Lemma 6.1] we see that V = NA(X)(KX+B)≥0 +

∑
i∈I,i ̸=i0

R≥0[Ci] is

a closed subcone on NA(X); note that [HP16, Lemma 6.1] is only stated for
KX , but this was never used in the proof, and the exact same proof works for
KX+B. Then by [Deb01, Lemma 6.7(d)] there is a nef class α ∈ H1,1

BC(X) such
that α is strictly positive on V \ {0} and α⊥ ∩ NA(X) = R. Then scaling α
appropriately we observe that α−(KX+B) is strictly positive on NA(X)\{0},
and thus by [HP16, Corollary 3.16], α− (KX +B) = η is a Kähler class on X ,
i.e. α = KX +B + η.

#

The following lemma is taken from [Wal18].

Lemma 5.4. [Wal18, Lemma 3.1] Let f : V → W be a surjective linear
transformation of finite dimensional vector spaces over R. Suppose that CV ⊂
V and CW ⊂ W are closed convex cones of maximal dimensions and H ⊂ W
is a vector subspace of codimension 1. Assume that the following hold:

(1) f(CV ) = CW .
(2) CW ∩H ⊂ ∂CW .

Then f−1H ∩ CV ⊂ ∂CV and also f−1H ∩ CV = f−1(H ∩ CW ) ∩ CV .

The following contraction theorem is a direct generalization of [DH20, The-
orem 1.7].

Theorem 5.5 (Contraction Theorem). Let (X,B) be a compact Kähler 3-fold
klt pair, and α ∈ N1(X) be a nef class such that α − (KX + B) is nef and
big. Then there exists a proper morphism f : X → Y with connected fibers to
a normal compact Kähler variety Y with rational singularities and a Kähler
class ωY ∈ N1(Y ) such that α = f ∗ωY . In particular, if α − (KX + B) is a
Kähler class, then f is projective.

Proof. Let g : Z → X be a small Q-factorialization of X obtained by run-
ning an appropriate relative MMP on a log resolution of (X,B) as in [DH20,
Proposition 2.26]. Set KZ + BZ := g∗(KX + B); then g∗α − (KZ + BZ) is
nef and and big. Thus by [DH20, Theorem 1.7], there is proper morphism
h : Z → Y with connected fibers to a normal compact Kähler variety Y with
rational singularities and a Kähler class ωY ∈ N1(Y ) such that g∗α = h∗ωY .
Now we will apply the rigidity lemma. Note that since g is a proper bira-
tional morphism, the positive dimensional fibers of g are covered by projective
curves. Let C ⊂ Z be a curve such that g(C) = pt. Then by the projection
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formula g∗α ·C = 0. Thus 0 = h∗ωY ·C = ωY ·h∗C, and hence C is contracted
by h, as ωY is a Kähler class on Y . Therefore, by the rigidity lemma [BS95,
Lemma 4.1.13], there is a proper morphism f : X → Y such that f ◦ g = h,
and thus by pushing forward by g it follows that α = f ∗ωY .

Finally, if ωX := α− (KX + B) is a Kähler class, then −(KX +B) ≡f ωX ,
and hence −(KX +B) is f -ample, thus f is projective.

#

The following variant is often useful in applications.

Corollary 5.6. Let (X,B) be a compact Kähler 3-fold dlt pair, and α ∈ N1(X)
a nef class such that α− (KX + B) is a Kähler class. Moreover, assume that
B = B0 + B′, where B0 ≥ 0, B′ ≥ 0 are Q-divisors such that KX + B0 is Q-
Cartier and (X,B0) has klt singularities. Then there exists a proper morphism
f : X → Y with connected fibers to a normal compact Kähler variety Y with
rational singularities and a Kähler class ωY ∈ N1(Y ) such that α = f ∗ωY . In
particular, if α− (KX +B) is a Kähler class, then f is projective.

Proof. Let α = KX +B+ω, where ω is a Kähler class. Then for a sufficiently
small ε ∈ Q≥0 we can write α = KX + B0 + (1 − ε)B′ + (ω + εB′) so that
ω + εB′ is a Kähler class and (X,B0 + (1 − ε)B′) is klt. In particular, α −
(KX +B0 + (1− ε)B′) is a Kähler class, and thus by Theorem 5.5 there exists
a projective morphism f : X → Y such that α = f ∗ωY for some Kähler class
ωY on Y . #

6. Termination of flips for effective pairs

We will prove termination of flips for effective pairs as in [Bir07]. In order
to do this first we prove the existence of dlt models (local and global) and
the ACC property for log canonical thresholds. Note that the ACC for for log
canonical thresholds is also proved in [Fuj22a].

Theorem 6.1 (Global dlt model). Let (X,B) be a compact Kähler lc pair of
dimension 4. Then there exists a Q-factorial dlt pair (X ′, B′) and a projective
bimeromorphic morphism g : X ′ → X such that KX′ +B′ = g∗(KX +B).

Proof. Let f : Y → X be a log resolution of (X,B). Define BY := f−1
∗ B +

Ex(g). Then using the cone Theorem 2.45 we will run a (KY +BY )-MMP over
X . If R = R≥0 · [Ci] is a (KY +BY )-negative extremal ray of NE(Y/X), then
from a standard argument using the rationality theorem as in [Nak87, Theorem
4.11] it follows that there is a f -nef line bundle L on Y such that L−(KY +BY )
is f -ample and L⊥ ∩ NE(X/Y ) = R. Write L = KY + BY + H for some f -
ample class H ; then L = KY + (1− εBY ) + (H + εBY ) such that H + εBY is
f -ample for ε ∈ Q≥0 sufficiently small. Note that (Y, (1−ε)BY ) is klt and thus
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by the Base-Point Free Theorem [Nak87, Theorem 4.8], there is a projective
bimeromorphic morphism φ : Y → Z over X contracting the ray R. If φ is
a small morphism, then the existence of the flip follows from Corollary 3.7.
Note that from our construction above it follows that at each step (Yi, BYi

), the
contracted locus is contained in ⌊BYi

⌋. Since the log minimal model program
is known in dimension ≤ 3 due to [DH20], special termination holds and the
above MMP terminates. Let g : (X ′, B′) → (X,B) be the end result of this
MMP. Then from the negativity lemma it follows that KX′+B′ = g∗(KX+B),
and (X ′, B′) is a Q-factorial compact Kähler dlt pair of dimension 4. #

Theorem 6.2 (Local dlt-model). Let (X,B) be a log canonical pair, where
X is a relatively compact Stein open subset of a Kähler variety and there is
a compact subset W ⊂ X. Then shrinking X around W if necessary, there
exists a projective bimeromorphic morphism f : Y → X such that KY +BY =
f ∗(KX +B) and (Y,BY ) is a Q-factorial dlt pair, where BY := f−1

∗ B+Ex(f).

Proof. The proof of [KK10, Theorem 3.1] works here with few changes. Their
proof uses ample divisors on X and Bertini’s theorem on a resolution of sin-
gularities of X . The ampleness assumption is replaced by assuming that X
is Stein, and the required Bertini theorem follows from Theorem 2.20. Addi-
tionally, [KK10, Theorem 3.1] uses [BCHM10] to obtain a log terminal model
of a klt pair by running a relative MMP for projective morphism. We achieve
the same thing here by Theorem 1.4. #

Definition 6.3. Let (X,B) be a relatively compact log canonical pair and
M ≥ 0 an R-Cartier divisor. Then we define

lct(X,B;M) := sup {t ≥ 0 : (X,B + tM) is lc}.

Now fix two sets I ⊂ [0, 1] and J ⊂ [0,∞). Let In(I) be the set of all log
canonical pairs (X,B), where X is a relatively compact Kähler variety of
dimension n, and the coefficients of B belong to the set I. We define

LCTn(I, J) := {lct(X,B;M) : (X,B) ∈ In(I)},

where the coefficients of M belong to the set J .

Theorem 6.4. Fix a positive integer n, and sets I ⊂ [0, 1] and J ⊂ [0,∞). If
I and J are DCC sets, then LCTn(I, J) satisfies the ACC.

Proof. By contradiction assume that there is a strictly increasing sequence
{ci}, where ci = lct(Xi, Bi;Mi). Now first assume that there is a component
Si of Mi which is a lc center of (Xi, Bi + ciMi) for infinitely many i. Let
the coefficient of Si in Bi and Mi be bi and mi, respectively. Then we have
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bi+ cimi = 1. Since bi and mi are both contained in DCC sets, by passing to a
common subsequence we may assume that bi and mi are both monotonically
increasing sequences. Then from cimi = 1 − bi we see that the LHS is a
strictly increasing sequence (since {ci} is strictly increasing) while the RHS is
a monotonically decreasing sequence, a contradiction.
Thus passing to a tail of the sequence {ci} we may assume that all lc centers
of (Xi, Bi + ciMi) are contained in the support of Mi are of codimension at
least 2. Let Zi be a maximal lc center of (Xi, Bi + ciMi) contained in SuppMi

for all i. Next choose a relatively compact Stein open subset Ui ⊂ Xi such
that Ui ∩ Zi ̸= ∅ and Zi|Ui

is still a maximal lc center of (Ui, (Bi + ciMi)|Ui
).

Replacing (Xi, Bi + ciMi) by (Ui, (Bi + ciMi)|Ui
) we may assume that Xi is

relatively compact Stein space. Note that shrinking Xi further we can pick a
small open subset Vi ⊂ Xi such that Vi ∩Zi ̸= ∅ is still a maximal lc center of
(Vi, (Bi + ciMi)|Vi

), and additionally V i ⊂ Xi holds.
Now let fi : Yi → Ui be a dlt model of (Ui, (Bi + ciMi)|Ui

) as in Theorem 6.2.
Then there is an exceptional divisor Ei intersecting the strict transform of Mi

such that fi(Ei) = Zi. Now write

KYi
+ Ei + Γi = f ∗(KXi

+Bi + ciMi)

so that fi∗Γi = Bi + ciMi.
Then by adjunction, (Ei,Θi) is a dlt pair, whereKEi

+Θi = (KX+Ei+Γi)|Ei
=

f ∗
i ((KXi

+ Bi + ciMi)|Vi
). Note that Θi has a component whose coefficient in

Θi is of the form

(6.1)
m− 1 + f + kci

m
,

where k,m ≥ 1 and f ∈ D(I).
Now let Fi be a general fiber of the induced morphism fEi

:= fi|Ei
: Ei →

fi(Ei). Then Fi is projective, since fi is projective, and by adjunction we have
KFi

+ ΘFi
= (KEi

+ Θi)|Fi
≡ 0. Note that ΘFi

has a coefficient of the form
(6.1), and thus we arrive at a contradiction by Theorem 1.5 and Lemma 5.2
of [HMX14].

#

Remark 6.5. We note that Fujino independently proved a slightly more general
result on ACC for LCT in [Fuj22a, Theorem 1.6].

Theorem 6.6. [Bir07, Theorem 1.3] Let (X,B) be a relatively compact dlt
4-fold pair such that (KX + B) ∼Q D ≥ 0. Then any sequence {(Xi, Bi)} of
(KX +B)-flips where Xi is Kähler for all i, terminates.

Proof. The same proof as in [Bir07] works here using Theorems 6.2 and 6.4. #
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7. MMP for κ(X,KX +B) ≥ 0

In this section we will prove Theorem 1.1. First we prove the following easy
lemma which will allow us to perturb a nef (but not Kähler) class of the form
KX + B + ω, where ω is a Kähler class, such that its null locus intersects
NA(X) precisely along an extremal ray.

Lemma 7.1 (General and very general Kähler class). Let V be a vector space
(resp. a finite dimensional vector space) over R and C ⊂ V a cone in V which
is not contained in any hyperplane. Let V ∗ denote the dual space of V , and
fix a finite collection (resp. a countable collection) of dual vectors {Ci}i∈I in
V ∗ such that ω · Ci := Ci(ω) > 0 for all ω ∈ C. Additionally, assume that
Ci ̸= λCj for any i ̸= j ∈ I and λ ∈ R. Fix an element D ∈ V . Then there is
a finite (resp. countable) union of hyperplanes H ⊂ V such that if ω ∈ C \ H,
then for any t ∈ R, (D + tω) · Ci = 0 for at most one i ∈ I.

Proof. Since Ci ̸= λCj for any i ̸= j and λ ∈ R, ⟨Ci, Cj⟩⊥ is a codimension 2
linear subspace of V . Define for i ̸= j

H(Ci, Cj) := {ω ∈ C | (D + tω) ∈ ⟨Ci, Cj⟩
⊥ for some t ∈ R}.

Then H(Ci, Cj) is contained in some hyperplane. Indeed, ifD+tω ∈ ⟨Ci, Cj⟩⊥,
then tω ∈ ⟨Ci, Cj⟩⊥ − D, and hence ω is contained in the linear subspace
spanned by ⟨Ci, Cj⟩⊥ −D, which is contained in a hyperplane.
Define H := ∪i ̸=jH(Ci, Cj). Thus H is contained in a finite (resp. countable)
union of hyperplanes, and for any ω ∈ C \ H it follows from our construction
above that D + tω ̸∈ ⟨Ci, Cj⟩⊥ for all i ̸= j ∈ I and any t ∈ R; in particular,
for any t ∈ R, (D + tω) · Ci ̸= 0 for at most one i ∈ I. #

In the following we will show that if (X,B) is a dlt pair such thatKX+B ∼Q

M ≥ 0 and all (KX +B)-negative extremal contractions are contained in the
support of ⌊B⌋, then we have a minimal model.

Theorem 7.2. Let (X,S + B) be a Q-factorial compact Kähler dlt pair of
dimension 4 such that ⌊S + B⌋ = S and (KX + S + B) ∼Q D ≥ 0 for some
effective Q-divisor D ≥ 0. Assume that Supp(D) ⊂ S. Then there exists a
finite sequence of flips and divisorial contractions

φ : X = X0
!!❴❴❴❴ X1

!!❴❴❴❴ · · · !!❴❴❴❴ Xn

such that KXn + Sn +Bn is nef, where Sn +Bn = φ∗(S +B).

Proof. If KX + S + B is nef, then we are done, and so we will assume that
KX + S + B is not nef. Note that the set of all curves in X corresponds to
countably many classes of curves {Ci}i∈I in N1(X), by [Tom16, Lemma 4.4].
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So we can choose a very general Kähler class ω ∈ H1,1
BC(X) as in Lemma 7.1.

Define

λ := inf{t ≥ 0 | KX + S +B + tω is Kähler}.

Replacing ω by λω, we may assume that KX+S+B+ω is nef but not Kähler.
Then KX + S + B + ω ≡ D + ω is a nef and big class but not Kähler. We
make the following claim.

Claim 7.3. There exists an irreducible component T of S and a curve Γ = Ci

for some i ∈ I, such that (KX + S + B + ω) · Γ = 0 and T · Γ < 0 and
(KX + S +B + ω) ·Cj > 0 for any i ̸= j ∈ I. In particular, KT +BT + ωT :=
(KX + S +B)|T + ω|T is nef but not Kähler.

Proof of Claim 7.3. Since KX + S + B + ω is nef and big but not Kähler, by
Theorem 2.29 there exists a subvariety V ⊂ X such that ((KX + S + B +
ω)|V )dimV = 0, i.e. ((D + ω)|V )dimV = 0. By Lemma 2.35, it follows that
(D + ω)|V ν is not a big class on V ν , where V ν → V is the normalization of
V . In particular, V is contained in the support of D, and hence there is an
irreducible component, say T of S such that V ⊂ T . Clearly, KT +BT +ωT :=
(KX + S + B)|T + ω|T is nef but not Kähler. Then by Corollary 5.3, the
(KT +BT )-negative extremal face F := (KT +BT +ωT )⊥∩NA(T ) is generated
by finitely many curve classes, say [Σ1], . . . , [Σr], i.e. F = ⟨Σ1, . . . ,Σr⟩.

Then R · [Σ1] = R · [Ci] ⊂ N1(X) for some i ∈ I. Since ω is very general and
KX+S+B+ω is nef, from Lemma 7.1 it follows that (KX+S+B+ω) ·Ci = 0
and (KX+S+B+ω) ·Cj > 0 for all j ̸= i ∈ I. Therefore R≥0 · [Σk] = R≥0 · [Ci]
in N1(X) for all 1 ≤ k ≤ r. Let Γ = Ci. Observe that we have D · Γ < 0, in
particular, there is an irreducible component T ′ of S such that T ′ · Γ < 0. It
then follows that

(KT ′ +BT ′ + ω|T ′) · Γ = (KX + S +B + ω) · Γ = (D + ω) · Γ = 0,

and thus KT ′ + BT ′ + ω|T ′ is nef but not Kähler. Thus replacing T by T ′

we may assume that (KT + BT + ω|T ) · Γ = 0 and T · Γ < 0. In particular,
T · Σk < 0 and thus Σk ⊂ T for all 1 ≤ k ≤ r.

#

By Corollary 5.6, there exists a projective morphism ϕ : T → W contracting
the (KT +BT )-negative extremal face F = (KT +BT + ωT )⊥ ∩ NA(T ). Note
that W is a normal compact Kähler variety and ωW a Kähler class on W such
that KT + BT + ω|T = ϕ∗ωW . Also, recall that the face F is generated by
the classes of finitely many curves Σ1, . . . ,Σr ⊂ T such that T · Σi < 0 for
all i = 1, . . . , r, and a curve C ⊂ T is contracted by ϕ if and only if its class
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[C] ∈ F . Thus

NE(T/W ) = NE(T/W ) =

{
r∑

i=1

aiΣi | ai ≥ 0 for all i = 1, 2, . . . , r

}

,

and hence from [Nak87, Proposition 4.7(3)] it follows that OT (−mT ) is ϕ-
ample, where m > 0 is the Cartier index of T in X .

By [HP16, Proposition 7.4] or [DH23, Theorem 1.1], there exists a proper
bimeromorphic morphism f : X → Y to a normal compact analytic variety
Y such that f |T = ϕ and f |X\T is an isomorphism. From the discussion
above it follows that the face F of NA(T ) corresponds to a (KX + S + B)-
negative extremal ray R = R≥0 · [Γ], where Γ = Ci. Moreover, we know that
(KX + S +B + ω) · Γ = 0, and thus −(KX + S +B) is f -nef-big. Then Y has
rational singularities by Lemma 8.8. From [HP16, Lemma 3.3] it follows that
ρ(X/Y ) := dimR H

1,1
BC(X)− dimRH

1,1
BC(Y ) = 1. An immediate consequence of

this is that KX +S+B+ω = f ∗ωY for some (1, 1) class ωY on Y . Clearly ωY

is nef and big. If V is a subvariety of Y of positive dimension, then we claim
that (ωY |V )dimV > 0. If V ⊂W , then let λ =

∫
F ω

d > 0, where F is a general
fiber of f−1(V )→ V and d = dimF . Then by the projection formula (see eg.
[Nic, Corollary 4.5])

λ ·

∫

V

(ωY )
dimV =

∫

f−1(V )

(f ∗ωY )
dimV ∧ ωd =

∫

ϕ−1(V )

(ϕ∗ωW )dimV ∧ ωd

= λ ·

∫

V

ωdimV
W > 0.

If V ̸⊂W , then let V ′ be the strict transform of V . If V ′ is not contained in
the support of D, then clearly (KX + S +B + ω)|V ′ = (D + ω)|V ′ is big (and
nef), and so (ωY |V )dimV = (D + ω)|dimV

V ′ > 0 by Lemma 2.35. On the other
hand, if V ′ is contained in a component, say T ′ ̸= T , of the support of D, then
(KX +S +B+ω)|T ′ = KT ′ +BT ′ +ωT ′, where (T ′, BT ′) is dlt, ωT ′ = ω|T ′ and

KT ′ +BT ′ + ωT ′ = (KX + S +B + ω)|T ′ = (f ∗ωY )|T ′ = (f |T ′)∗ωW ′,

where ωW ′ = ωY |W ′. By Corollary 5.6, there is a contraction g : T ′ → W̄ such
that KT ′ +BT ′ +ωT ′ ≡ g∗ωW̄ , where ωW̄ is a Kähler class on W̄ . The curves Γ
contracted by g are precisely the curves in T ′ such that (KX +S+B+ω) ·Γ =
(KT ′ + BT ′ + ωT ′) · Γ = 0. But these are also the curves contracted by f and
so by the rigidity lemma (see [BS95, Lemma 4.1.13]) it follows that W ′ = W̄ .
Thus

(ωY |V )
dimV = ((KX+S+B+ω)|V ′)dimV = ((KT ′+BT ′+ωT ′)|V ′)dimV = (ωW̄ |V )

dimV > 0.

Then from Theorem 2.29 it follows that ωY is a Kähler class, and hence Y is
a Kähler variety.
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Now if f is a divisorial contraction, then by a similar argument as in the
projective case one can show that Y is Q-factorial and (Y, SY + BY ) has dlt
singularities, where SY +BY := f∗(S +B).
If f : X → Y is a flipping contraction, then by Corollary 3.7 the flip f ′ : X ′ →
Y exists, and again as in the algebraic case it follows that X ′ is Q-factorial and
(X ′, S ′+B′) has dlt singularities, where S ′+B′ := φ∗(S+B) and φ : X !!" X ′

is the induced bimeromorphic map.
Finally, the termination of flips follows from special termination in this case,
since all the contracted curves are contained in Supp(D) and Supp(D) ⊂ S =
⌊S+B⌋. Note that the special termination holds here, since MMP in dimension
≤ 3 is known due to [DH20].

#

Remark 7.4. The above proof essentially gives a cone theorem in dimension
4 under the given hypothesis. More specifically, with the same hypothesis as
in Theorem 7.2, if KX + S + B is not nef, then there exists countably many
rational curves {Ci}i∈I in X such that 0 < −(KX + S + B) · Ci ≤ 6 and
NA(X) = NA(X)(KX+B)≥0 +

∑
i∈I R

≥0 · [Ci].

Remark 7.5. Let (X,∆) be a Q-factorial compact Kähler 4-fold dlt pair and
C an effective Q-divisor. Fix a positive real number t > 0 and let Λ be the
countable set indexing all (KX+∆)-negative curve classes [Γi] on X such that
−(KX + ∆) · Γi ≤ 6, Γi · C > 0 and (KX + ∆ + tC) · Γi > 0. Let m > 0 be
the smallest positive integer such that m(KX +∆) and mC are both Cartier.
Then the intersection numbers (KX + ∆) · Γi and C · Γi are all contained in
the set 1

mZ for all i ∈ Λ. Moreover, since 0 < −(KX + ∆) · Γi ≤ 6 for all
i ∈ Λ, the numbers (KX +∆) · Γi are contained in a finite set, say K. Then
(K+ t

mN)∩R>0 is a DCC set and hence it has a non-zero minimum, say γ > 0.
Thus we can choose a sufficiently small rational number ϵ ∈ Q≥0 such that

(7.1) 0 < ϵ <
tγ

γ + 6
.

The following theorem allows us to run the MMP with scaling in certain
cases. This result is in the technical heart of the proof of Theorem 1.1 below.

Theorem 7.6. Let (X,∆ = S+B) be a Q-factorial compact Kähler 4-fold dlt
pair. Assume that there is an effective Q-divisor C ≥ 0 and effective R-divisors
D,D′ ≥ 0, and a positive real number α > 0 such that

(1) KX +∆ + C is nef,
(2) KX +∆ ∼R D,
(3) D = αC +D′, and Supp(D′) ⊂ S.
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Then we can run a (KX +∆)-MMP with scaling of C and it terminates with
a log terminal model φ : X !!" Y (see Definition 2.8) such that KY + φ∗∆ is
nef.

Proof. Let
t := inf{s ≥ 0 | KX +∆ + sC is nef}.

Then 0 ≤ t ≤ 1. Note that if t = 0, then we are done, otherwise, by Theorem
2.36, there is a subvariety V ⊂ X such that (KX + ∆ + (t − ϵ)C)|V is not
pseudo-effective for any t ≥ ϵ > 0. We fix ϵ satisfying the following

(7.2) 0 < ϵ < min

{
t+ α,

tγ

γ + 6
,

1

6m2 + 1

}
,

where γ ∈ R≥0 and m ∈ Z≥0 are defined in the Remark 7.5 above. Since

KX +∆ + (t− ϵ)C =
t+ α− ϵ

t+ α
(KX +∆+ tC) +

ϵ

t + α
(KX +∆− αC)

and t+α−ϵ
t+α > 0, it follows that (KX+∆−αC)|V ≡ D′|V is not pseudo-effective.

Since the support of D′ is contained in S, V is contained in an irreducible
component, say T , of S.

Also, note that t(KX +∆+ (t− ϵ)C) = (t− ϵ)(KX +∆+ tC) + ϵ(KX +∆).
Thus (KX + ∆)|V is not pseudo-effective; in particular, (KT + ∆T )|V is not
pseudo-effective, and hence not nef, where KT +∆T := (KX +∆)|T . Let I be
the countable set of all (KT + ∆T )-negative extremal rays generated by the
rational curves {Γi}i∈I as in Corollary 5.3. We make the following claim.

Claim 7.7. (KX +∆+ tC) · Γi = 0 for some i ∈ I.

Proof of Claim 7.7. To the contrary assume that (KX +∆ + tC) · Γi > 0 for
all i ∈ I. Then we claim that there is a δ > 0 such that (KX +∆+ tC) ·Γi ≥ δ
for all i ∈ I. To see this, let m ≥ 1 be the smallest positive integer such that
m(KX +∆) and mC are both Cartier. Then (KX +∆) · Γi and C · Γi belong
to 1

mZ for all i ∈ I. Since 0 > (KX + ∆) · Γi = (KT + ∆T ) · Γi ≥ −6 by
Corollary 5.3, the intersection numbers (KX +∆) · Γi are contained in a finite
set K ⊂ 1

mZ. But then, since t > 0 is a fixed number, the set (K+ t
m ·N)∩R>0 is

a DCC set and hence has a positive minimum δ > 0, i.e. (KX+∆+tC)·Γi ≥ δ
for all i ∈ I.
By Remark 7.5 we see that I ⊂ Λ, and hence δ ≥ γ. Then from our choice of
ϵ > 0 in equation (7.2), it follows that

0 < ϵ <
tγ

γ + 6
≤

tδ

δ + 6
.

Thus we have

(KT +∆T + (t− ϵ)C|T ) · Γi ≥ (t− ϵ)δ + ϵ(KT +∆T ) · Γi ≥ (t− ϵ)δ − 6ϵ > 0
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for all i ∈ I, and if η ∈ NA(T )KT+∆T≥0, then

(KT +∆T + (t− ϵ)C|T ) · η = (t− ϵ)(KT +∆T + tC|T ) · η+ ϵ(KT +∆T ) · η ≥ 0.

Therefore, by the cone theorem on T (see Corollary 5.3), KT + ∆T + (t −
ϵ)C|T intersects every class in η ∈ NA(T ) non-negatively. Then by [HP16,
Proposition 3.6], KT +∆T + (t− ϵ)C|T is nef, which is a contradiction.

#

Now let {Rj}j∈JT be the countable set of all (KT +∆T )-negative extremal
rays which are spanned by rational curves Γj ⊂ T as in Corollary 5.3, for some
component T of S = ⌊∆⌋. Let J ′

T ⊂ JT be the subset of (KT +∆T + tC|T )-
trivial curves, and J ′ := ∪T∈SJ ′

T and J := ∪T∈SJT , where T ∈ S means T is a
component of S. By the above claim, J ′ ̸= ∅. Let R̄j ∈ N1(X) be the image
of Rj for j ∈ J , and C ⊂ N1(X) be the cone corresponding to the image of∑

T∈S NA(T ). Note that since NA(T ) = NA(T )KT+∆T≥0 +
∑

j∈JT
Rj for each

component T ⊂ S, we have C = CKX+∆≥0 +
∑

j∈J R̄j . Moreover, C ⊂ NA(X)
and

{R̄j | j ∈ J ′} ⊂ (KX +∆+ tC)⊥ ∩NA(X).

Let ω ∈ N1(X) be a very general Kähler class as in Lemma 7.1, and

λ := inf{l > 0 | (−tC + lω) · R̄j ≥ 0 for all j ∈ J ′}.

Claim 7.8. There is a unique ray R̄j′ for some j′ ∈ J ′ such that (−tC + λω) ·
R̄j′ = 0.

Proof. Since ω is very general in N1(X) as in Lemma 7.1, it suffices to show
that there is one such ray. By definition of λ, for each n ≥ 1, there is a j′n ∈ J ′

such that (−tC+(λ−1/n)ω) ·Γj′n < 0, where R̄j′n = R≥0 · [Γj′n]. Then we have

(KT +∆T +(λ/2)ω) ·Γj′n = (KX +∆+(λ/2)ω) ·Γj′n = ((λ/2)ω− tC) ·Γj′n < 0

for all n > 2
λ . By the cone theorem (Corollary 5.3) there are only finitely many

(KT +∆T +(λ/2)ω)-negative extremal rays and so the Γj′n correspond to only
finitely many distinct numerical equivalence classes in N1(T ), and hence in
N1(X). Thus, there is a ray j′ ∈ J ′ such that (−tC + (λ − 1/n)ω) · Γj′ < 0
for infinitely many n > 0, and hence (−tC + λω) · Γj′ ≤ 0. Then from our
construction of λ above it follows that (−tC + λω) · Γj′ = 0.

#

Re-scaling ω, we may assume that (−tC+ω)·R̄j′ = 0 and (−tC+ω)·R̄j > 0
for all Rj ̸= Rj′, j ∈ J ′. Now recall that m ≥ 1 is the smallest positive integer
such that m(KX +∆) and mC are both Cartier.
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Claim 7.9. For any 0 < ε≪ 1, the class αε := KX+∆+(1−ε)tC+εω ∈ N1(X)
is nef but not Kähler.

Proof. We begin by showing that C ⊂ (αε)≥0 or equivalently that αε|T is nef
for all components T of S. Write

αε = (1− ε)(KX +∆+ tC) + ε(KX +∆+ ω).

It then follows that, if C is not contained in (αε)≥0, then there is a (KX+∆+ω)-
negative extremal ray R̄j for some j ∈ J such that αε · R̄j < 0. Note that
this set of rays, say indexed by the set Λ, is a finite set, by Corollary 5.3
(applied on each component T of S). So, in particular we may assume that
there exists a γ > 0 such that if j ∈ Λ and (KX + ∆ + tC) · R̄j > 0, then
(KX+∆+tC)·Γj > γ, where R̄j = R≥0[Γj]. But then αε ·Γj ≥ (1−ε)γ−6ε > 0
for ε < γ/(6 + γ), which is a contradiction. Therefore, we may assume that
(KX +∆ + tC) · R̄j = 0 for all j ∈ Λ, i.e. Λ ⊂ J ′

T . But then, by Claim 7.8,
(−tC + ω) · R̄j ≥ 0 for all j ∈ Λ, and so

αε · R̄j = (KX +∆+ tC) · R̄j + ε(−tC + ω) · R̄j ≥ 0,

this is a contradiction to the fact that αε · R̄j < 0 for all j ∈ Λ. Thus αε|T is
nef for all component T of S.

Now if αε is not nef onX , then by Theorem 2.36 there is a subvariety V ⊂ X
such that αε|V is not pseudo-effective. Since αε = KX +∆ + (1 − ϵ)tC + εω
and ω is Kahler, (KX +∆+(1− ε)tC)|V is not pseudo-effective. Observe that

KX +∆ + (1− ε)tC =
(1− ε)t+ α

t+ α
(KX +∆+ tC) +

εt

t + α
(KX +∆− αC)

and thus (KX +∆−αC)|V ≡ D′|V is not pseudo-effective. Since SuppD′ ⊂ S,
it follows that there is a component T of S such that V ⊂ T . In particular,
αε|T is not pseudo-effective; this is a contradiction to the fact that αε|T is nef
for all T of S as proved above.

#

From what we have proved above it follows that C ∩ (αε)⊥ = R̄j′ for a
unique j′ ∈ J ′ as in Claim 7.8. Thus R̄j′ ⊂ α⊥

ε ∩ NA(X). Note that a priori
we don’t know whether this inclusion is an equality or not. However, we have
the following:

α :=
1

ε
αε = KX +∆ + ω +

1− ε

ε
(KX +∆+ tC) = KX +∆+ ωε,

where

(1) ωε := ω + 1−ε
ε (KX +∆+ tC) is Kähler,

(2) α is nef, and
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(3) α⊥ ∩ C = R̄j′ ⊂ α⊥ ∩ NA(X).

Then we have

Rj′ ⊂ F := (α|T )
⊥ ∩ NA(T )

for some component T of S.
Note that this inclusion could be strict, never the less, from Corollary 5.3 it
follows that F is spanned by a finite collection of (KT +∆T )-negative extremal
rays {Rj}j∈J ′′ such that (KT + ∆T + tCT ) · Rj = 0, i.e. J ′′ ⊂ J ′. Note that
Rj′ is one of these extremal rays. By Corollary 5.6, there exists a projective
contraction ϕ : T → W to a normal compact Kähler variety W contracting
the face F such α|T = ϕ∗αW , where αW is a Kähler class on W . Let Rj be
generated by the curve Σj ⊂ T and J ′′ = {1, 2, . . . , r}, i.e. Rj = R≥0 · [Σj ]
for all j = 1, 2, . . . , r. Then by our construction (KX + ∆ + ωϵ) · Σj = 0
for all j = 1, 2, . . . , r. Note that Rj′ = R≥0 · [Σj′], where Σj′ = Σj for some
j ∈ {1, 2, . . . , r}. Let R̄j′ be the image of Rj′ in N1(X) and R̄j′ = R≥0 · [Γj′] ⊂
NA(X). Then R≥0 ·[Σj′ ] = R≥0 ·[Γj′] in N1(X). Now recall that, since ω is very
general (and hence so is ωε), (KX+∆+ωε) ·Γj′ = 0 and (KX+∆+ωε) ·Γj > 0
for all j ̸= j′ ∈ J ′. Therefore

(7.3) R≥0 · [Σj ] = R≥0 · [Σj′] = R≥0 · [Γj′] in N1(X) for all j = 1, 2, . . . , r.

Next we claim that OT (−mT ) is ϕ-ample. First observe that

NE(T/W ) = NE(T/W ) =

{
r∑

j=1

aj [Σj ] | aj ≥ 0 for all j

}

.

Therefore by [Nak87, Proposition 4.7(3)] it is enough to show that −T ·Σj > 0
for all j ∈ J ′′.

Now let Σ ⊂ T be a curve in a fiber of ϕ such that Σ is not contained in
Supp(S − T ). Then there are real numbers aj ≥ 0 for all j ∈ J ′′ such that
[Σ] =

∑
j∈J ′′ aj [Σj ] in N1(T ). Now recall that tC · Σj = −(KX + ∆) · Σj =

−(KT + ∆T ) · Σj > 0, and thus D′ · Σj < 0 for all j ∈ J ′′. Write D′ =
bT + D′′ such that b > 0 and D′′ doesn’t contain T as a component. Then
(bT +D′′) ·Σ =

∑
j∈J ′′ aj(D′ ·Σj) < 0, and hence T ·Σ < 0, since D′′ ·Σ ≥ 0 by

construction of Σ. But from equation (7.3) it follows that R≥0 · [Σj ] = R≥0 · [Σ]
for all j = 1, 2, . . . , r. Hence T · Σj < 0 for all j = 1, 2, . . . , r.

Then by [HP16, Proposition 7.4] or [DH23, Theorem 1.1], ϕ extends to a
projective bimeromorphic morphism φ : X → Y to a normal compact analytic
variety Y such that φ|T = ϕ. Note that by construction −(KX + ∆) is φ-
ample. Then from Lemma 8.8 it follows that Y has rational singularities.
Consequently, by Lemma 8.7 we have α = φ∗ωY for some (1, 1) class ωY on Y .
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Clearly ωY is nef and big. Following the arguments of Theorem 7.2, it follows
that if V is a subvariety of Y of positive dimension, then (ωY |V )dimV > 0 as
long as V is contained in W or in the image of the support of D′ or not
contained in the image of the support of D.

Thus, we may assume that V ′, the strict transform of V , is contained in the
support of D but not in the support of D′. Then we write

αϵ = KX +∆+(1−ϵ)tC+ ϵω = (1−λ)(KX+∆−αC)+λ(KX+∆+ tC)+ ϵω,

where λ = (1−ϵ)t+α
α+t so that 0 < λ < 1. Since (KX +∆ − αC)|V ≡ D′|V ′ ≥ 0,

(KX +∆ + tC)|V ′ is nef and ω|V ′ is Kähler, then αϵ|V ′ is big and so ωY |V is
also big.

Then from Theorem 2.29 it follows that ωY is a Kähler class, and hence
Y is a Kähler variety. In particular, Null(α) = Ex(φ). Also, observe that
from the discussion above it follows that a curve C ⊂ X contracted by φ
if and only if R≥0 · [C] = R≥0 · [Γj′] = R̄j′ in N1(X). Thus it follows
that α⊥ ∩ NA(X) = R̄j′ , and hence from Lemma 8.7 again it follows that
ρ(X/Y ) = dimR H

1,1
BC(X)− dimRH

1,1
BC(Y ) = 1.

Now if φ : X → Y is a divisorial contraction, then we replace (X,∆) by
(Y,φ∗∆). Note that KY +φ∗∆+ tφ∗C is nef on Y . If φ is flipping contraction,
then the flip φ′ : X ′ → Y exists by Corollary 3.7. Let ψ : X !!" X ′ be the
induced bimeromorphic map. Then from a standard argument it follows that
(X ′,ψ∗∆) is a Q-factorial dlt pair, KX′ + ψ∗(∆ + tC) is nef (as (KX + ∆ +
tC) · Rj′ = 0), KX′ + ψ∗∆ ≡ ψ∗D and ψ∗D = (α/t)ψ∗(tC) + ψ∗D′, where the
support of ψ∗D′ is contained in the support of ψ∗S. Therefore, replacing

X,∆, S, B, C,D,D′,α by X ′,ψ∗∆,ψ∗S,ψ∗B,ψ∗(tC),ψ∗D,ψ∗D
′,
α

t
,

the hypothesis still hold and we may repeat the procedure. In this way we ob-
tain a sequence of (KX+∆)-flips and divisorial contractions for the (KX+∆)-
MMP with scaling of C. Since KX +∆ ∼Q D ≥ 0, this procedure terminates
after finitely many steps by Theorem 6.6.

#

Lemma 7.10. Let (X,B) be a compact Kähler lc pair of dimension 4 and
{Ei}i∈I a finite set of exceptional divisors over X with a(Ei, X,B) ≤ 0 for
all i ∈ I. Then there exists a Q-factorial dlt pair (X ′, B′) and projective
bimeromorphic morphism f : X ′ → X such that the following holds:

(1) KX′ +B′ = f ∗(KX +B).
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(2) Every Ei is an f -exceptional divisor, and for an arbitrary f -exceptional
divisor F either F = Ei for some i ∈ I or a(F,X,B) = −1 holds.

Proof. Let g : Y → X be a log resolution of (X,B) which extracts all ex-
ceptional divisors {Ei}i∈I . Let {Fj}j∈J be the set of all g-exceptional divi-
sors. Let J ′ ⊂ J such that {Fj}j∈J ′ = {Ei}i∈I . We define BY := f−1

∗ B −∑
j∈J ′ a(Fj , X,B)Fj +

∑
j∈J\J ′ Fj . Observe that BY ≥ 0 is an effective divisor

and
KY +BY = g∗(KX +B) +

∑

j∈J\J ′

(1 + a(Fj , X,B))Fj.

Now we run a (KY + BY )-MMP over X as in the proof of Theorem 6.1 and
obtain a Q-factorial dlt pair (X ′, B′) such that KX′ +B′ is nef over X . Let f :
X ′ → X be the induced bimeromorphic morphism. Then from the negativity
lemma it follows that KX′ +B′ = f ∗(KX +B). #

Definition 7.11. Let X be a normal variety and D =
∑

aiDi an R-divisor.
Then we define D≤1 :=

∑
a′iDi, where a′i = min{ai, 1}.

Proof of Theorem 1.1. We closely follow the proof of [Bir10, Proposition 3.4]
using Theorem 7.6 as our main technical tool for running the MMP with
scaling.
Let (W,∆) be a log pair, i.e. ∆ ≥ 0 is a Q-divisor such that KW + ∆ is
Q-Cartier. We will call (W,∆) an effective pair if there exists an effective
Q-Cartier divisor D ≥ 0 such that KW +∆ ∼Q D. We will denote such a pair
by the triple (W,∆, D). Let M be the collection of all 4-dimensional triples
(X,B,M) such that (X,B) is a Q-factorial dlt pair with (KX +B) ∼Q M ≥ 0
and (X,B) does not admit a log minimal model. Let θ(X,B,M) be the
number of components P of M such that multP (B) < 1. Pick (X,B,M) ∈M
such that θ(X,B,M) is minimal. If θ(X,B,M) = 0, then SuppM ⊂ ⌊B⌋ and
thus by Theorem 7.2, (X,B) has a log minimal model in fact a log terminal
model); hence (X,B,M) ̸∈M. So assume that θ(X,B,M) > 0. Let f : Y →
X be a log resolution of the pair (X,B +M). Let E be the reduced sum of
all exceptional divisors of f . Then (Y,BY := f−1

∗ B + E) is a log smooth dlt
pair and

MY := (KY +BY )− f ∗(KX +B) + f ∗M ∼Q KY +BY .

Note that MY ≥ 0 is an effective divisor, since (X,B) is dlt. Moreover,
the components of MY are either the components of f−1

∗ M or f -exceptional
divisors, and

(7.4) θ(Y,BY ,MY ) = θ(X,B,M).
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Observe that, if (Y,BY ) has a log minimal model, then (X,B) also has log
minimal model (see [Bir10, Remark 2.6(i)]). Therefore replacing (X,B,M) by
(Y,BY ,MY ) we may assume that (X,B + M) is a log smooth pair. Define
α > 0 as follows:

α := min{t > 0 : ⌊(B + tM)≤1⌋ ≠ ⌊B⌋}.

Note that α is a rational number, since B and M are Q-divisors. We can write
(B + αM)≤1 = B + C, where C is an effective Q-divisor such that Supp C ⊂
SuppM . Moreover, we can write αM = C+M ′ such that SuppM ′ ⊂ Supp⌊B⌋,
and C = αM outside of Supp⌊B⌋. In particular, SuppM ⊂ Supp(B + C).
Now observe that we have (KX +B + C) ∼Q M + C such that (X,B + C) is
a log smooth dlt pair and θ(X,B + C,M + C) < θ(X,B,M). Therefore by
the minimality of θ, it follows that (X,B + C) has a log minimal model, say
(Y,BY +CY +E), where φ : X !!" Y is the induced bimeromorphic map and
E is the sum of all exceptional divisors of φ−1. If D is divisor on X , we will
denote φ∗D by DY from now on. Observe that (KY + BY + E) ∼Q MY + E,
where MY := φ∗M , since (KX + B) ∼Q M . Moreover, since αM = C + M ′

on X for some Q-divisor M ′ ≥ 0 such that SuppM ′ ⊂ ⌊B⌋, it follows that
MY +E = ( 1αM

′
Y +E)+ 1

αCY such that Supp(M ′
Y +E) ⊂ ⌊BY +E⌋. Then the

hypothesis of Theorem 7.6 are satisfied and we can run a (KY +BY +E)-MMP
with scaling of CY . Assume that this MMP terminates with Y !!" Y ′ such
that KY ′ +BY ′ + EY ′ is nef.

Note that this is a nef model of (X,B); however, it is not clear whether it is
a log minimal model of (X,B) or not, since the strict inequality a(P,X,B) <
a(P, Y ′, BY ′ + EY ′) does not necessarily hold for every divisor P on X excep-
tional over Y ′. Let

T = {t ∈ [0, 1] | KX +B + tC has a log minimal model}.

Note that using the minimality of θ(X,B,M) we have already shown above
that (X,B+C) has a log minimal model, i.e. 1 ∈ T . Now our goal is to show
that 0 ∈ T . For any 0 < t ∈ T , let φt : X !!" Yt be a log minimal model
for KX + B + tC such that KYt + Bt + Et + tCt is nef. Proceeding as above,
we run a (KYt + Bt + Et)-MMP with scaling of tCt as in Theorem 7.6. Since
a(P,X,B + tC) < a(P, Yt, Bt + tC + Et) for any divisor P on X exceptional
over Yt, we also have that a(P,X,B + t′C) < a(P, Yt, Bt + t′C + Et) for any
divisor P on X exceptional over Yt and 0 ≤ t − t′ ≪ 1. But then, this MMP
with the scaling of tCt also yields a log minimal model for KX + B + t′C for
0 ≤ t− t′ ≪ 1. Thus [t′, t] ⊂ T .

Let τ = inf{t ∈ T }. By what we have seen above, if τ ∈ T , then τ = 0
and we are done. Suppose therefore that τ ̸∈ T and tk ∈ T is a strictly
decreasing sequence with lim tk = τ ; we will derive a contradiction. For each
k ≥ 1, let (Ytk , Btk + tkCtk + E) be a log minimal model of (X,B + tkC)
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whose existence is guaranteed by the definition of T . Then we get a nef model
(Y ′

tk
, B′

tk
+E ′

tk
+τC ′

tk
) of (X,B+τC) by running a (KYtk

+Btk+E+τCtk)-MMP
with the scaling of (τ − tk)Ctk as in Theorem 7.6.

Let D ⊂ X be a divisor contracted by X !!" Y ′
tk
, then by the arguments in

Step 5 of the proof of [Bir10, Proposition 3.4], we have

a(D,X,B + tkC) < a(D, Y ′
tk
, B′

tk
+ τC ′

tk
+ E ′

tk
).

Passing to a subsequence of the tk, we may assume that X !!" Y ′
tk

contracts
a fixed set of components of the support of B + C. By [Bir10, Claim 3.5] we
have that

a(D, Y ′
tk
, B′

tk
+ τC ′

tk
+ E ′

tk
) = a(D, Y ′

tk+1
, B′

tk+1
+ τC ′

tk+1
+ E ′

tk+1
)

for every divisor D over Y ′
tk

and for all k ≥ 1. It then follows that

a(D,X,B + τC) = lim a(D,X,B + tkC) ≤ a(D, Y ′
tk
, B′

tk
+ τC ′

tk
+ E ′

tk
).

This is not yet a log minimal model because we need the inequality to be strict
for every divisor D on X exceptional over Y ′

tk
. To remedy this, it suffices to

construct a bimeromorphic model ν : Y ♯ → Y ′
k which extracts exactly the divi-

sors D on X exceptional over Y ′
tk
such that a(D,X,B+ τC) = a(D, Y ′

tk
, B′

tk
+

τC ′
tk
+E ′

tk
) holds. Note that a(D,X,B + τC) ≤ 0 and (Y ′

tk
, B′

tk
+ τC ′

tk
+E ′

tk
)

is lc, so this can be done by Lemma 7.10. Let KY ♯ +BY ♯ + τCY ♯ = ν∗(KY ′

tk
+

B′
tk
+ τC ′

tk
+ E ′

tk
) such that ν∗BY ♯ = B′

tk
+ E ′

tk
; then (Y ♯, BY ♯ + τCY ♯) is a

Q-factorial dlt pair and a(D,X,B+ τC) < a(D, Y ♯, BY ♯ + τCY ♯) for every di-
visor D on X exceptional over Y ♯. Therefore X !!" Y ♯ is a log minimal model
of (X,B + τC). Thus, we have shown that τ ∈ T , which is a contradiction.

#

Corollary 7.12. Let (X,B) be a Q-factorial compact Kähler plt pair of di-
mension 4 such that κ(X,KX +B) ≥ 0. Then (X,B) has log terminal model.

Proof. This follows from Theorem 1.1 and Lemma 2.9. #

8. MMP for Semi-stable pairs

The main result of this section is Theorem 1.2. We start with various
definitions and establish necessary results first.

Definition 8.1. Let f : X → T be a proper surjective morphism from a
normal Kähler variety X to a smooth curve T and W ⊂ T a compact subset.
Let B ≥ 0 be an effective Q-divisor on X . We say that (X,B/T ;W ) is a
semi-stable klt pair if (X,Xw +B) is plt for any w ∈ W . It is well known that
this implies (and is in fact equivalent to) the following conditions:
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(1) the fibers Xw of f are all reduced, irreducible and normal,
(2) SuppB does not contain any fiber Xw, and
(3) KX +B is Q-Cartier and (Xw, Bw) is klt, where Bw := B|Xw .

By abuse of notation, we will occasionally omit W and simply say that
f : (X,B)→ T is a semi-stable klt pair to mean that (X,B/T ;W ) is a semi-
stable klt pair. We wish to run a relative MMP for KX +B over T in a neigh-
borhood ofW (so we will repeatedly replace T by an appropriate neighborhood
of W ). We will say that KX + B is nef over W if KXw +Bw = (KX + B)|Xw

is nef for every w ∈ W .

Definition 8.2. Let f : X → T be a proper morphism from a normal analytic
variety X to a smooth curve T such that every fiber of f is an irreducible and
reduced normal complex space. Let W ⊂ T be a fixed compact subset and
U ⊂ T an open neighborhood of W .
If τ is a real closed bi-dimension (1, 1) current on Xu for some u ∈ U , then for
any real closed (1, 1) form η on f−1U with local potentials, we define

τ(η) := (ιu,∗τ)(η) = τ(η|Xu),

where ιu : Xu ↪→ X is the closed embedding.
We define N1(X/T ;W ) to be the vector space generated by the real closed
bi-dimension (1, 1) currents τ on Xw as w varies in W , modulo the following
equivalence relation:

τ1 ≡ τ2 if and only if τ1(α) = τ2(α)

for all classes α ∈ H1,1
BC(XU), for some open neighborhood U ⊂ T of W such

that XU = f−1U ⊃ f−1W . We define NA(X/T,W ) ⊂ N1(X/T,W ) to be the
closed cone generated by the classes of closed positive currents.

We also define N1(XU/U,W ) as the vector space generated by the classes
α ∈ H1,1

BC(XU) modulo the following equivalence relation:

α1 ≡ α2 if and only if [τ ](α1) = [τ ](α2)

for τ real closed bi-dimension (1, 1) currents on Xw for all w ∈ W . Note
that if U ⊃ U ′ are open subsets containing W , then there is a natural re-
striction map N1(XU/U,W ) → N1(XU ′/U ′,W ). Finally let N1(X/T,W ) :=
lim−→W⊂U

N1(XU/U,W ).

We also define Pic(X/T,W ) as the direct limit of Pic(f−1U), where W ⊂
U ⊂ T is an open neighborhood of W , i.e.

Pic(X/T,W ) := lim−→
W⊂U

Pic(f−1U).
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Remark 8.3. We note that N1(X/T,W ) and N1(X/T,W ) could be infinite di-
mensional vector spaces over R, since X and T are not assumed to be compact
here.

8.1. Relative cone theorem for 4-folds. We now prove a weak form of the
relative cone theorem for proper morphisms f : X → T from a Kähler variety
to a curve. We say that a form ω or a class ω ∈ N1(X/T ;W ) is relatively nef
(resp. relatively Kähler) if ωt := ω|Xt is nef (resp. Kähler) for any t ∈ T .

Lemma 8.4. Let f : X → T be as above, ω a relatively Kähler form and
W ⊂ T a compact subset. Fix M > 0 and let {Ci}i∈I be the set of f -vertical
curves such that f(Ci) ⊂ W and ω · Ci ≤ M , then the Ci belong to finitely
many families of curves.

Proof. Let η be a Kähler form onX . Then for each t ∈ W there exists an ϵt > 0
such that (ω− ϵtf ∗η)|Xt is a Kähler form on Xt. It follows that (ω− ϵtf ∗η)|Xs

is Kähler for any s in a neighborhood of t. Since W is compact, we may pick
an ϵ > 0 such that (ω− ϵf ∗η)|Xt is Kähler for every t is a neighborhood of W .
Then

η · Ci <
1

ϵ
ω · Ci ≤

M

ϵ
.

Since the relative cycle space has only finitely many components of bounded
degree with respect to η, it follows that the curves Ci belong to finitely many
families (see for example [Tom21, Theorem 5.5] for further details).

#

The following result gives a weak form of relative cone theorem for semi-
stable klt pairs.

Theorem 8.5. Let f : X → T be a proper surjective morphism from a Kähler
4-fold X to a curve T such that f∗OX = OT . Let W ⊂ T be a compact subset
and (X,B/T ;W ) is a semi-stable klt pair. Fix a Kähler form ω on X. Then
there are finitely many classes of curves {Ci}i∈J (J is a finite set) over W
such that 0 > (KX +B) · Ci ≥ −6 and for each t ∈ W

NA(Xt) = NA(Xt)(KXt+Bt+ωt)≥0 +
∑

i∈J

R≥0[Ci].

Suppose now that KXt + Bt + ωt is nef for all t ∈ W , where ωt := ω|Xt is
Kähler for all t ∈ W . Let

λ := inf{s ≥ 0 | KXt +Bt + sωt is nef for all t ∈ W}.

If λ > 0, then there are finitely many classes of curves {Ci}i∈I (I ⊂ J) over
W which satisfy the following properties:

(1) Ci ⊂ Xt for some t ∈ W , and R≥0[Ci] is a (KXt+Bt)-negative extremal
ray of NA(Xt) such that (KXt +Bt + λωt) · Ci = 0,
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(2) if C ⊂ Xt is a curve such that (KXt+Bt+λωt) ·C = 0 for some t ∈ W ,
then [C] ≡

∑
i∈I ci[Ci] in N1(X/T,W ) for some ci ∈ R≥0,

(3) if ω ∈ N1(X/T,W ) is general, then |I| = 1 (i.e. we may assume that
there is a unique such class [Ci] ∈ N1(X/T,W )).

Proof. By Corollary 5.3, for any t ∈ T there are finitely many (KXt +Bt+ωt)-
negative extremal rays Ci where i ∈ Jt and 0 > (KXt+Bt)·Ci = (KX+B)·Ci ≥
−6. Let J = ∪t∈TJt. Since ω · Ci = ωt · Ci < −(KXt +Bt) · Ci ≤ 6, it follows
from Lemma 8.4 that J is finite. The first statement is proven.

Suppose now that KXt +Bt + ωt is nef for all t ∈ W . Define the set

Λ := {t ∈ W | KXt +Bt + λωt is nef but not Kähler} ⊂ T.

Then Λ ̸= ∅, as otherwise arguing as in the proof of Lemma 8.4 above, one
sees that KX +B + λω is relatively Kähler over a neighborhood of W , which
contradicts the definition of λ. For any t ∈ Λ, we have Ft := (KXt + Bt +
λωt)⊥ ∩ NA(Xt) ̸= {0} by [HP16, Corollary 3.16]. Moreover, from Corollary
5.3 it follows that Ft is generated by finitely many classes of curves, each of
which generates a (KXt + Bt)-negative extremal ray. Let Γ := {C ⊂ Xt | t ∈
Λ, C generates a (KXt+Bt)-negative extremal ray such that (KXt+Bt+λωt)·
C = 0}. Then for a curve C ∈ Γ we have C ⊂ Xt for some t ∈ Λ, and

ω · C = ωt · C =
−1

λ
(KXt +Bt) · C ≤

6

λ
.

By Lemma 8.4 the curves in Γ belong to finitely many families, and hence
correspond to finitely many numerical classes. This proves (1).

For (2), let C ⊂ Xt be a curve such that (KXt + Bt + λωt) · C = 0. Then
[C] ∈ Ft, and by Corollary 5.3 and Part (1) above it follows that there is a
subset J ⊂ I such that Ft is generated by the curves Cj for j ∈ J . In particu-
lar, [C] =

∑
ci[Ci] in H1,1

BC(Xt) for some ci ∈ R≥0, and hence also in H1,1
BC(X).

(3) now follows from Lemma 7.1.
#

Definition 8.6. We say that (X,B) is a minimal model over W if KX + B
is nef over W . If, possibly replacing T by an appropriate neighborhood of
W , there is a morphism g : X → Z over T such that dimX > dimZ and
−(KX + B) is ample on each fiber of g, then we say that g is a Mori fiber
space over W . We say that (X/T ;W ) is Q-factorial if: (i) every Weil divisor
D defined over a neighborhood of W is Q-Cartier over a (possibly smaller)
neighborhood of W , and (ii) (ω⊗m

X )∗∗ is a line bundle over a neighborhood of
W for some m ≥ 1.



4-DIMENSIONAL KÄHLER MMP 61

We will use the following variant of [HP16, Lemma 3.3]. The main point
here is that X and Y are not assumed to be compact. The proof is similar
to that of [HP16], however, we reproduce it here for the convenience of the
reader.

Lemma 8.7. [HP16, Lemma 3.3] Let f : X → Y be a proper birational map
between normal complex spaces in Fujiki’s class C with rational singularities.
Then we have an injection

f ∗ : H1,1
BC(Y ) = H1(Y,HY ) ↪→ H1(X,HX) = H1,1

BC(X)

such that Im(f ∗) = {α ∈ H1(X,HX) | α·C = 0 for all curves C ⊂ X s.t. f(C) =
pt}.

Proof. Note that we are not assuming that X, Y are compact and so it is not
clear that H1(X,HX) → H2(X,R) and H1(Y,HY ) → H2(Y,R) are injective.
However, we still have a commutative diagram similar to [HP16, Eqn. (5),
page 224]:

(8.1) 0 !! H1(Y,HY ) !!

""

H1(X,HX)
ϕ

!!

ψ

""

H0(Y,R1f∗HX)

∼=

""

0 !! H1(Y,R) !! H1(X,R)
ϕ′

!! H0(Y,R2f∗R)

Suppose now that α ∈ H1(X,HX) such that α · C = 0 for all curves C ⊂ X
such that f(C) = pt. Then from the claim (⋆) in the proof of [KM92, Thm.
12.1.3, page 649] it follows that (ϕ′ ◦ ψ)(α) = 0. Therefore from the diagram
above it follows that there exists a β ∈ H1(Y,HY ) such that α = f ∗β.

#

Lemma 8.8. Let f : X → Y be a proper morphism of normal analytic vari-
eties and f∗OX = OY . Let B ≥ 0 be an effective Q-divisor such that KX +B
is Q-Cartier. Assume that one of the following conditions hold:

(i) (X,B) is klt and −(KX +B) is f -nef-big.
(ii) (X,B) is dlt, KX is Q-Cartier and −(KX +B) is f -ample.

Then Y has rational singularities.

Proof. It follows from [DH20, Lemma 2.44] and its proof. #
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Proposition 8.9. Let (X,B/T ;W ) be a Q-factorial semi-stable klt pair of
dimension 4. Let R = R≥0 · [Γ] be a (KX + B)-negative extremal ray of
NA(X,B/T ;W ) generated by a curve Γ ⊂ X. Assume that contraction of R
exists, i.e. there is an open neighborhood U of W and a projective morphsim
g : f−1U → Z over U such that a (compact) curve C ⊂ f−1U which maps to
a point f(C) ∈ W is contracted by g if and only if [C] ∈ R. Let h : Z → U be
the induced morphism. Then the following hold:

(1) We have the following exact sequences:

(8.2) 0 !! N1(Z/U,W ) !! N1(f−1U/U,W )
α0→α·Γ

!! R !! 0

and

(8.3) 0 !! Pic(Z/U,W ) !! Pic(f−1U/U,W )
L 0→L·Γ

!! Z !! 0.

(2) If g is a divisorial contraction, then (Z/U,W ) is Q-factorial semi-stable
klt pair.

(3) If g is a flipping contraction with flip g′ : V → Z, then (V/U,W ) is
Q-factorial semi-stable klt pair.

Proof. First note that using [Nak87, Proposition 1.4] we may replace U by
a smaller open neighborhood of W and assume that −(KX + B)|f−1U is g-
ample. Thus by Lemma 8.8, Z has rational singularities. The exactness of
the sequence (8.2) follows from Lemma 8.7. Next, let L be a line bundle on
f−1U such that L · Γ = 0. Then L · C = 0 for all curves in the fibers of g; in
particular, L|g−1(z) is nef for all z ∈ h−1W . Then (L−(KX+B))|g−1(z) is ample
for all z ∈ h−1W . Then again from [Nak87, Proposition 1.4] it follows that
L − (KX + B) is g-ample over a neighborhood of h−1W . Since h : Z → U is
proper and flat (as U is a smooth curve), and hence is both an open and closed
morphism, shrinking U suitably near W we may assume that L − (KX + B)
is g-ample.
Next, for the exactness of the sequence (8.3), observe that if L ·Γ = 0, then we
need to show that L ∼= g∗M for some line bundle M on Z. Since g∗L is unique,
it is enough to show locally on Z that g∗L is a line bundle and L ∼= g∗MZ

locally over Z, where MZ is a line bundle on an appropriate open subset of Z.
So we may assume that Z is Stein. Then L is given by a Cartier divisor (since g
is projective), and hence by the base-point free theorem as in [Nak87, Theorem
4.8] and the rigidity lemma [BS95, Lemma 4.1.13] it follows that L ∼= g∗MZ

for some line bundle MZ on Z. Then by the projection formula, g∗L ∼= M is
a line bundle, as required. This shows the exactness of the sequence (8.3).
Now assume that g is a divisorial contraction. Then from a standard argument
using (8.3) it follows that (Z/U,W ) is Q-factorial. Since (X,Xw +B) has plt
singularities for any w ∈ W and R = R≥0 · [Γ] is also a (KX+Xw+B)-negative
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extremal ray, then by the proof of [KM98, Corollary 3.44] (Z,Zw + BZ) has
plt singularities, where Zw+BZ = g∗(Xw +B). Thus (Z,BZ/U ;W ) is a semi-
stable klt pair.
If g is a flipping contraction, let g′ : V → Z be the flip. Then again from
a standard argument it follows that (V,B′/U ;W ) is a Q-factorial semi-stable
klt pair, where B′ := φ∗B and φ : f−1U → V is the induced bimeromorphic
morphism. #

Lemma 8.10. Let (X,B/T ;W ) be a Q-factorial semi-stable klt pair of dimen-
sion 4, and φ : X !!" X ′ is either a (KX +B)-flip or a divisorial contraction
over T . Then φ∗ : N1(X/T ;W ) → N1(X ′/T ;W ) is well defined and surjec-
tive.

Proof. We omit this proof as it follows from the standard well known argu-
ments of the corresponding compact and projective results.

#

Lemma 8.11. Let (X,B/T ;W ) be a semistable klt pair. Then the following
are equivalent.

(1) κ(KXt +Bt) ≥ 0 for all t ∈ W .
(2) κ(KXt +Bt) ≥ 0 for very general t ∈ W .
(3) W ⊂ Suppf∗OX(m(KX +B)) for some m > 0.
(4) For every positive constant µ > 0, KXt + Bt + µωt is pseudo-effective

for very general t ∈ W .

Proof. (1) clearly implies (2).
(2) implies (3). Since the supports of f∗OX(m(KX +B)) are closed subsets

of W it suffices to show that for a very general point w ∈ W there is an integer
m > 0 such that w ∈ Suppf∗OX(m(KX + B)). Assume that κ(KXt + Bt) ≥
0 for very general t ∈ W . Let T ′ ⊂ W be the set of t ∈ W for which
κ(KXt + Bt) ≥ 0 and for each t ∈ T ′, let m(t) > 0 be the smallest positive
integer such that m(t)(KXt +Bt) is Cartier and H0(Xt, m(t)(KXt +Bt)) ̸= 0.
Let m(t)(KXt+Bt) ∼M(t) ≥ 0 for some effective Cartier divisor M(t) for any
t ∈ T ′. Since T ′ is a complement of countably many analytic subsets, it follows
that for any w ∈ W there is a subset T ′′ ⊂ T ′ such that w is an accumulation
point of T ′′ and m(KXt + Bt) ∼ M(t) for all t ∈ T ′′ for some positive integer
m independent of t ∈ T ′′. Therefore, from Grauert’s theorem (see [GPR94,
Theorem III.4.7]) it follows that w ∈ Suppf∗OX(m(KX + B)) ̸= 0. This
concludes the proof that (2) implies (3).
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(3) implies (1). Suppose that W ⊂ Suppf∗OX(m(KX + B)), then for
any t ∈ W , there is an open subset t ∈ V ⊂ T and an effective divisor
DV on XV such that m(KV + BV ) ∼V DV . Discarding vertical compo-
nents of BV we may assume that DV contains no fibers and hence we have
m(KXt+Bt) ∼ Dt := DV |Xt for every t ∈ V and κ(KXt+Bt) ≥ 0 for all t ∈ W .

(2) clearly implies (4) and hence it suffices to show that (4) implies (2).
So, suppose that for every µ > 0, KXt +Bt+µωt is pseudo-effective for very

general t ∈ W . Let Wk = {t ∈ W | KXt + Bt +
1
kωt is pseudo − effective},

then Wk contains the complement of countably many points and hence so does
W∞ = ∩k≥0Wk. But then KXt + Bt is pseudo-effective for any t ∈ W∞. By
[DO24, Theorem 1.1], κ(KXt +Bt) ≥ 0. #

Now we are ready to prove the existence of minimal models for a semi-stable
klt pairs (X,B/T ;W ) when KX + B is effective over W i.e. when any of the
equivalent conditions of Lemma 8.11 hold.

Theorem 8.12. Let f : (X,B) → T be a semi-stable klt pair of dimension
4 and W ⊂ T a compact subset. If (X/T ;W ) is Q-factorial and KX + B is
effective over W , then we can run the (KX +B)-MMP over a neighborhood of
W in T which ends with a minimal model over W .

Proof. Suppose that KX + B is not nef over W . Choose a Kähler class ω on
X such that KXt + Bt + ωt is nef for all t ∈ W , where ωt := ω|Xt. We may
assume that ω is general in N1(X/T ;W ). Let

λ := inf{s ≥ 0 | KX +B + sω is nef over W},

then we have the following. By Theorem 8.5, there exists a (KXt + Bt)-
negative extremal ray Rt = R≥0[C] ⊂ N1(Xt) on Xt for some t ∈ W such that
(KXt +Bt + λωt) ·C = 0 and if C ′ ⊂ Xt′ is a (KX +B + λω)-trivial curve for
some t′ ∈ W , then [C ′] ∈ R := R≥0[C] ⊂ NA(X/T ;W ).

Replacing λω by ω, we may assume that KXt +Bt + ωt is nef for all t ∈ W
and KX + B + ω supports the extremal ray R ⊂ N1(X/T ;W ). Note that
KX +B + ω may cut out (KXt +Bt)-negative faces Ft from multiple or even
all fibers Xt with t ∈ W . By Theorem 5.5, there is an extremal contraction
gt : Xt → Zt for the face Ft ⊂ NA(Xt). By [KM92, Proposition 11.4], this
extends to a contraction g : XU → ZU over a neighborhood U of t ∈ T ,
where XU = X ×T U (we note that Xt, Zt are compact, gt,∗OXt = OZt and
R1gt,∗OXt = 0 by the relative Kawamata-Viehweg vanishing Theorem 2.41,
as −(KXt + Bt) is gt-ample). Note that XU → ZU is a surjective morphism
of normal varieties with connected fibers which contracts precisely the set of
curves C ⊂ Xt for some t ∈ U such that [C] ∈ R ⊂ N1(X/T ;W ). Suppose



4-DIMENSIONAL KÄHLER MMP 65

that U, U ′ ⊂ T are two such open subsets, then over U ∩ U ′, XU → ZU and
XU ′ → ZU ′ are isomorphic, since they are both surjective morphisms of normal
varieties with connected fibers which contract identical subsets (see the rigidity
lemma in [BS95, Lemma 4.1.13]). Thus these contractions glue together to give
a projective contraction g : X → Z over T . Note that if dimZt < dimXt for
some t ∈ T , then from the flatness over T it follows that dimZ < dimX , which
is impossible as KX +B is pseudo-effective. In particular, g is bimeromorphic.
If g is a divisorial contraction, then we replace X with Z and B with g∗B. If g
is a flipping contraction, then flip g+ : X+ → Z exists by Corollary 3.7. Then
we replace X by the flip X+.

Note that by construction, for every t ∈ W we have that KXt + Bt + ωt

is nef, and by Corollary 5.6, KXt + Bt + ωt = g∗tωZt for some Kähler form
ωZt on Zt. Since −(KX + B) is g-nef-big, by Proposition 8.8, Z has rational
singularities. By Lemma 8.7, KX +B+ω = g∗α for some form α on Z. Since
(g∗α)|Xt = g∗tωZt for every t ∈ W , it follows that α is Kähler over W (see eg.
the proof of Theorem 7.2).
If X → Z is a flipping contraction, then since KX+ + B+ is ample over Z, it
follows that (g+)∗α + ϵ(KX+ +B+) is Kähler over W .

Termination of flips follows from Theorem 6.6, however termination of di-
visorial contractions is not immediately clear as N1(X/T ;W ) may be infinite
dimensional. But observe that if X → Z is a divisorial contraction, then the
exceptional divisor E dominates T and so ρ(Xt) > ρ(Zt) for general t ∈ T .
Therefore there are no infinite sequences of divisorial contractions. #

Next we prove the existence of Mori fiber space when KX+B is not effective
over W .

Theorem 8.13. Let (X,B/T ;W ) be a Q-factorial semi-stable klt pair of di-
mension 4, where W ⊂ T is a compact subset. If KX +B is not effective over
W (see Lemma 8.11), then we can run a (KX +B)-MMP over a neighborhood
of W which ends with a Mori fiber space.

Proof. Throughout the proof we will repeatedly shrink T in a neighborhood
of W without further mention.

The existence of flips and divisorial contractions here works exactly as in
Theorem 8.12, and so we will only discuss the termination of flips below.

To see termination, we proceed as follows. First by inversion of adjunction,
(X,Xt+B) is dlt for any t ∈ T . Moreover, it is easy to see that any (KX+B)-
MMP over T is also a (KX +Xt+B)-MMP over T for a fixed t ∈ T , and thus
by special termination the flipping locus is disjoint from Xt after a finitely
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many steps. Note also that any divisorial contraction must induce a nontrivial
morphism on Xt for general t ∈ T , and hence decreases its Picard number
ρ(Xt). Therefore, we may assume that there are no divisorial contractions
after finitely many steps of this minimal model program. We fix a point t0 ∈ T ,
and from now on we will assume that any (KX + B)-MMP over T is disjoint
from the fixed fiber Xt0 ; regardless of what MMP we run. In particular, the
flipping loci do not dominate the base curve T , and hence the flipping curves
for any given flip are contained in finitely many fibers of f . Since there are
at most countably many flips for any given (KX +B)-MMP over T , it follows
that, for very general t ∈ T , any finite sequence of steps of a (KX +B)-MMP
over T will induce an isomorphism on a neighborhood of Xt.

By contradiction assume that flips do not terminate for any (KX+B)-MMP
over T . Let ω be a Kähler class on X such that KX +B+ω is Kähler over W .
Now we will discuss the strategy our proof first without full technical details.
The idea is as follows. We run a minimal model program with the scaling of
ω: X = X1 !!" X2 !!" . . . !!" Xn. As we have observed above, this MMP
is disjoint from a very general fiber Xs and from any fiber Xt for n ≫ 0. It
follows that there is a sequence of fibers Xti

∼= X i
ti containing a flipping curve

for X i !!" X i+1. Let Ci ⊂ Xti be a curve whose isomorphic image in X i
ti

is a flipping curve of X i !!" X i+1; we will identify Ci with its image in X i
ti .

Suppose that (KXi + Bi + λiωi) · Ci = 0, where λ1 ≥ λ2 ≥ . . . are the nef
thresholds. By Lemma 8.11 limλi = µ > 0, as KX + B is not effective over
W , and so

ω · Ci = ωi · Ci =
−1

λi
(KXi

ti
+Bi

ti) · Ci ≤
6

µ
.

By Lemma 8.4, these Ci ⊂ X belong to finitely many families and so must
be contained in finitely many fibers. This is a contradiction, and hence the
sequence of flips terminates. Unluckily, there are several technical issues that
arise in the proof. Since we do not have a cone theorem here, it is not clear
whether for each i there is a unique (KXi + Bi)-negative extremal ray Ri of
NA(X/T ;W ) such that (KXi +Bi + λiωi) · Ri = 0.

However, this can be achieved as long as each ωi is general in N1(X/T ;W ),
and so at each step it suffices to perturb the given Kähler class. Thus we end
up with a sequence of Kähler classes ωi+1 = ωi + ϵiαi such that αi is general
in N1(X/T ;W ) and 0 < ϵi ≪ 1. This is discussed in detail below.

As mentioned above, we will run a (KX + B)-MMP over W with scaling
of a sequence of general Kähler classes ωi. This means that: There exists a
sequence X = X1 !!" X2 !!" · · · !!" Xn of (KX + B)-flips and divisorial
contractions over W and real numbers λ1 > λ2 > · · · > λn > 0 satisfying the
following properties:



4-DIMENSIONAL KÄHLER MMP 67

(1) ωi := ωi−1 + ϵiαi,ω1 = ω, where αi ∈ N1(X/T ;W ) is a general class
and 0 < ϵi ≪ 1 for all i ≥ 1. In particular, we may assume that
ω + 2(ωi − ω) and KX +B + ωi are both Kähler over W for i ≥ 1.

(2) λi := inf{s ≥ 0 : KXi +Bi + sωi
i is nef over W}.

(3) For each i ≥ 1, (KXi +Bi+λiωi
i)

⊥∩NA(X i/T ;W ) = R is an extremal
ray. Moreover, there is a point wi ∈ W and a curve Ci ⊂ X i

wi
spanning

the ray R.
(4) KXi +Bi + tωi

i is Kähler over W for 0 < t− λi ≪ 1.
(5) There is a positive integer n ≥ 1 such that there is a morphism Xn →

Zn over W such that dimXn > dimZn, −(KXn + Bn) is relatively
ample over Zn and KXn +Bn + λnωn

n is relatively trivial over Zn.

Note that this MMP is still disjoint from the fiber Xt0 . We explain the
details of running this MMP below. Let X := X1 and λ0 = 1. Suppose that
φi−1 : X1 !!" X i−1 have already been constructed so that properties (1-4)i−1

are satisfied. In particular, by (3-4)i−1 we have that KXi−1 + Bi−1 + tωi−1
i−1 =

φi−1
∗ (KX + B + tωi−1) is Kähler for 0 < t − λi−1 ≪ 1 and (KXi−1 + Bi−1 +
λi−1ω

i−1
i−1)

⊥ ∩ NA(X i−1/T ;W ) = Ri−1 is an extremal ray spanned by a curve
Ci−1. If Ri−1 defines a Mori fiber space, then we are done. Otherwise, by what
we argued above, we may assume that we have a flip, say ψi−1 : X i−1 !!" X i.
If gi−1 : X i−1 → Z i−1 and hi : X i → Z i−1 are the corresponding flipping and
flipped contraction, then arguing as in the proof of Theorem 8.12, ηZi−1 :=
gi−1
∗ (KXi−1 + Bi−1 + λi−1ω

i−1
i−1) is Kähler over W . Since ρ(X i/Z i−1) = 1 and

KXi +Bi is ample over Z i−1, it follows that −ωi
i−1 is Kähler over Z i−1. Then

for 0 < δ ≪ 1 we have

KXi+Bi+(λi−1−δ)ω
i
i−1 = ψi−1

∗ (KXi−1+Bi−1+(λi−1−δ)ω
i−1
i−1) = (hi)∗η−δωi

i−1

is Kähler over W . Note that since N1(X/T ;W )→ N1(X i/T ;W ) is surjective
by Lemma 8.10, and since αi ∈ N1(X/T ;W ) is a general class, then so is its
pushforward αi

i ∈ N1(X i/T ;W ). In particular, ωi
i = ωi

i−1 + ϵiαi
i is a general

class in N1(X i/T ;W ). Since 0 < ϵi ≪ 1, we may assume that

KXi +Bi + (λi−1 − δ)ω
i
i = KXi +Bi + (λi−1 − δ)ω

i
i−1 + ϵi(λi−1 − δ)α

i
i

is Kähler over W . Let λi := inf{s ≥ 0 : KXi + Bi + sωi
i is nef over W}.

Clearly property (2)i is satisfied. Since 0 < ϵi ≪ 1,

KX+B+ωi = KX+B+ωi−1+ϵiαi and ω+2(ωi−ω) = ω+2(ωi−1−ω)+2ϵiαi,

property (1)i−1 implies property (1)i.
To see (3)i we proceed as follows. We write

(8.4)

KXi +Bi + λiω
i
i =

1

m+ 1

(
KXi +Bi +m

(
KXi +Bi +

(
m+ 1

m

)
λiω

i
i

))
.
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For m ≫ 0, λi < λi
(
m+1
m

)
≤ λi−1 − δ, and hence KXi + Bi + λi

(
m+1
m

)
ωi
i

is Kähler over W . From Theorem 8.5 it easily follows that the face F =
(KXi +Bi + λiωi

i)∩NA(X/T ;W ) is generated finitely many classes of curves.
Since ωi

i is general in N1(X i/T ;W ), it follows that (KXi + Bi + λiωi
i)

⊥ ∩
NA(X i/T ;W ) = Ri is an extremal ray spanned by a curve Ci ⊂ X i

wi
for some

wi ∈ T and so (3)i holds.

To see (4)i, simply note that the sum of a nef class and a Kähler class is
Kähler, and hence KXi +Bi + tωi

i is Kähler over W for λi−1 − δ ≥ t > λi and
δ > 0.

Finally, we must show that the process terminates after finitely many steps.
We claim that limλi > 0. By contradiction assume that limλi = 0. For a

very general t ∈ T , we have Xt
∼= X i

t for all i ≥ 1 (as discussed above). By
Lemma 8.11, there exists a µ > 0 such that KXt + Bt + µωt is not pseudo-
effective for very general t ∈ T . Since

KXt +Bt + µωt = KXt +Bt + λi(ωi)t + (µωt − λi(ωi)t)

and µωt − λi(ωi)t is Kähler for i ≫ 0 (as limλi = 0), it follows that KXt +
Bt + λi(ωi)t is not pseudo-effective for i≫ 0. Since

KXt +Bt + λi(ωi)t = KXi
t
+Bi

t + λi(ω
i
i)t

is nef (for t ∈ T very general), this is the required contradiction. So limλi =
λ > 0.

Now for a fixed point w0 ∈ W , let Cw0
⊂ Xw0

be a flipping curve of the
above MMP. Note that every step of the above MMP is also a step of the
(KX + B + Xw0

)-MMP over W . Thus by special termination, after finitely
many steps the flipping locus of the above MMP is disjoint from the fiber Xw0

.
So after passing to a subsequence we may assume that for each i ≥ 1, ti ∈ W
is a point such that the fiber Xti contains a flipping curve of the above MMP
for the very first time. Consequently, we have that X = X1 !!" X i is an
isomorphism over a neighborhood of ti; in particular, Xti

∼= X i
ti . Let Ci ⊂ X i

ti
be a flipping curve of the above MMP as in Theorem 8.5. Then identifying Ci

with its image in Xti we get

(KX +B+λiωi) ·Ci = (KXi +Bi+λiω
i
i) ·Ci = (KXi

ti
+Bi

ti +λi(ω
i
i)ti) ·Ci = 0.

Since λi ≥ λ > 0, and 2ωi − ω = ω + 2(ωi − ω) is Kähler, it follows that

ω · Ci ≤ 2ωi · Ci = 2(ωi
i)ti · Ci =

−2

λi
(KXi

ti
+Bi

ti) · Ci ≤
12

λ
,

and so by Lemma 8.4, the curves {Ci}i, belong to finitely many families of
curves on X (over W ). Consequently, the curves {Ci}i are contained in finitely
many fibers Xt1 , . . . , Xtk , where ti ∈ W , and hence by special termination this
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sequence of flips must terminate, this is a contradiction. Therefore, we may
assume that KXm + Bm + λmωm is nef for some m ≥ 1, and there is a Mori
fiber space Xm → Z over T .

#

Proof of Theorem 1.2. This follows from Theorem 8.12 and 8.13. #

References

[BCHM10] C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, Existence of minimal
models for varieties of log general type, J. Amer. Math. Soc. 23(2), 405–468
(2010).

[BG13] S. Boucksom and V. Guedj, Regularizing properties of the Kähler-Ricci flow,
in An introduction to the Kähler-Ricci flow, volume 2086 of Lecture Notes in
Math., pages 189–237, Springer, Cham, 2013.

[Bir07] C. Birkar, Ascending chain condition for log canonical thresholds and termina-
tion of log flips, Duke Math. J. 136(1), 173–180 (2007).

[Bir10] C. Birkar, On existence of log minimal models, Compositio Mathematica
146(4), 919–928 (2010).

[BM97] E. Bierstone and P. D. Milman, Canonical desingularization in characteristic
zero by blowing up the maximum strata of a local invariant, Invent. Math.
128(2), 207–302 (1997).

[Bou04] S. Boucksom, Divisorial Zariski decompositions on compact complex manifolds,
Ann. Sci. École Norm. Sup. (4) 37(1), 45–76 (2004).
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[Dem92] J.-P. Demailly, Regularization of closed positive currents and intersection the-
ory, J. Algebraic Geom. 1(3), 361–409 (1992).

[DH20] O. Das and C. Hacon, The log minimal model program for Kähler 3-folds, arXiv
e-prints , arXiv:2009.05924v3 (September 2020), 2009.05924v3.

[DH23] O. Das and C. Hacon, On the Minimal Model Program for Kähler 3-folds ,
arXiv e-prints , arXiv:2306.11708v1 (June 2023), 2306.11708v1.

[DO24] O. Das and W. Ou, On the log abundance for compact Kähler threefolds,
Manuscripta Math. 173(1-2), 341–404 (2024).

[DP04] J.-P. Demailly and M. Paun, Numerical characterization of the Kähler cone of
a compact Kähler manifold, Ann. of Math. (2) 159(3), 1247–1274 (2004).

[Fuj83] A. Fujiki, On the structure of compact complex manifolds in C, in Algebraic
varieties and analytic varieties (Tokyo, 1981), volume 1 of Adv. Stud. Pure
Math., pages 231–302, North-Holland, Amsterdam, 1983.

[Fuj13] O. Fujino, A transcendental approach to Kollár’s injectivity theorem II, J. Reine
Angew. Math. 681, 149–174 (2013).

[Fuj15] O. Fujino, Some Remarks on the Minimal Model Program for Log Canonical
Pairs, J. Math. Sci. Univ. Tokyo 22, 149–192 (2015).

[Fuj22a] O. Fujino, ACC for log canonical thresholds for complex analytic spaces, arXiv
e-prints , arXiv:2208.11872 (August 2022), 2208.11872.

[Fuj22b] O. Fujino, Minimal model program for projective morphisms between complex
analytic spaces, (2022).

[GPR94] H. Grauert, T. Peternell and R. Remmert, editors, Several complex variables.
VII, volume 74 of Encyclopaedia of Mathematical Sciences, Springer-Verlag,
Berlin, 1994, Sheaf-theoretical methods in complex analysis, A reprint of ıt
Current problems in mathematics. Fundamental directions. Vol. 74 (Russian),
Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow.

[Har77] R. Hartshorne, Algebraic geometry, volume No. 52., Springer-Verlag, New York-
Heidelberg, 1977.

[HMX14] C. D. Hacon, J. McKernan and C. Xu, ACC for log canonical thresholds, Ann.
of Math. (2) 180(2), 523–571 (2014).
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