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Abstract

Data-driven decision making plays an important role even in high stakes settings like
medicine and public policy. Learning optimal policies from observed data requires a careful
formulation of the utility function whose expected value is maximized across a population.
Although researchers typically use utilities that depend on observed outcomes alone, in many
settings the decision maker’s utility function is more properly characterized by the joint set
of potential outcomes under all actions. For example, the Hippocratic principle to “do no
harm” implies that the cost of causing death to a patient who would otherwise survive with-
out treatment is greater than the cost of forgoing life-saving treatment. We consider optimal
policy learning with asymmetric counterfactual utility functions of this form that consider
the joint set of potential outcomes. We show that asymmetric counterfactual utilities lead to
an unidentifiable expected utility function, and so we first partially identify it. Drawing on
statistical decision theory, we then derive minimax decision rules by minimizing the max-
imum expected utility loss relative to different alternative policies. We show that one can
learn minimax loss decision rules from observed data by solving intermediate classification
problems, and establish that the finite sample excess expected utility loss of this procedure is
bounded by the regret of these intermediate classifiers. We apply this conceptual framework
and methodology to the decision about whether or not to use right heart catheterization for
patients with possible pulmonary hypertension.
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1 Introduction

The well-known Trolley Problem in ethics goes as follows:

Edward is the driver of a trolley, whose brakes have just failed. On the track ahead
of him are five people; the banks are so steep that they will not be able to get off the
track in time. The track has a spur leading off to the right, and Edward can turn the
trolley onto it. Unfortunately there is one person on the right-hand track. Edward
can turn the trolley, killing the one; or he can refrain from turning the trolley, killing
the five (Thomson, 1976, p. 206).

Should Edward turn the trolley? Is killing someone worse than letting them die? Such ethical

dilemmas frequently confront us in moral and legal debates concerning various issues that range

from abortion to self-driving cars (e.g., Foot, 1967; Lin, 2016). Similarly, in the ethics of modern

medicine, the Hippocratic principle of “do no harm” remains influential (e.g., Jonsen, 1978;

Smith, 2005; Wiens et al., 2019). In the language of utility theory, a physician may assign a

utility loss of greater magnitude to the case where a new drug harms a patient than to the case

where not providing the new drug leads to the failure to save a patient (e.g., Bordley, 2009).

These examples illustrate the potential applications of asymmetric counterfactual utilities that

depend not only on the observed outcome, but also on the counterfactual outcome that could occur

under a different action, and treat actions differently depending on their corresponding potential

outcomes. Yet, to the best of our knowledge, the existing literature on data-driven decision

making and algorithmic policy learning assumes that the decision maker’s utility function only

depends on the observed outcome.

In this paper, we develop the methodological framework for optimal policy learning with

asymmetric counterfactual utilities, which includes standard utilities based on marginal outcomes

as a special case. We show that in general, asymmetric counterfactual utilities lead to an unidenti-

fiable expected utility function. Therefore, we partially identify the expected utility and propose

to minimize the maximum expected utility loss relative to a particular comparison policy. We

consider the maximum expected utility loss relative to constant policies such as always-treat and
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never-treat policies as well as the oracle policy that has complete knowledge of the unidentifiable

terms in the expected utility function. We demonstrate that one can learn minimax decision rules

from observed data by solving intermediate classification problems. We also establish that the

finite sample regret of this procedure is bounded by regret of these intermediate classifiers.

We use this framework to re-assess the use of Right Heart Catheterization (RHC), an invasive

diagnostic tool (Connors et al., 1996). We learn decision rules based on clinical variables as we

vary the asymmetry in the costs between failing to prevent a patient’s death and causing it via

RHC. These decision rules differ depending on whether we minimize the worst-case expected

utility loss relative to a constant policy (always or never using RHC) or the oracle policy that uses

RHC optimally. We inspect how the choice of utility function and comparator affect the learned

decision rules, finding substantial variability based on these choices. Finally, we translate these

findings into directly interpretable patient outcomes, exhibiting a trade-off between limiting the

worst-case proportions of patients that the policy harms or fails to save.

Related Literature. Recent years have seen an increased interest in algorithmic policy learning

from randomized control trials or observational data. Many of these approaches follow a similar

structure. First, quantify the expected utility of a policy based on the marginal distributions of

the potential outcomes. Then, show how to identify the expected utility or regret from observ-

able data and find a policy that optimizes an empirical analog. These approaches typically use

inverse propensity score weighting or double-robust methods for the identification and estima-

tion steps (see Zhao et al., 2012; Kitagawa and Tetenov, 2018; Athey and Wager, 2021, among

others). There is also a related literature that focuses on identifying and estimating optimal poli-

cies in settings with unmeasured confounding via instrumental variables (see Cui and Tchetgen

Tchetgen, 2021; Qiu et al., 2021).

More immediately relevant to our discussion here, recent work builds off classical ideas in

decision theory and treatment choice (e.g. Manski, 2004, 2005, 2011) and considers scenarios

where we cannot point identify the expected utility function for possible policies. One strand of
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work considers choosing between two treatments or fixed decision rules based on a finite sample

of data, when treatment effects are partially identified (e.g. Stoye, 2012; Ishihara and Kitagawa,

2021; Yata, 2021). This work typically involves directly solving an empirical minimax regret

problem, but does not consider optimization over classes of individualized policies.

In contrast, another line of work considers learning optimal individualized decision rules in

situations where treatment effects are only partially identified, using an empirical risk minimiza-

tion approach. These include settings with unmeasured confounding (e.g., Kallus and Zhou,

2021; Pu and Zhang, 2021; Han, 2021; Cui, 2021) or limited overlap between different treatment

conditions (e.g., Ben-Michael et al., 2021; Zhang et al., 2023). D’Adamo (2023) considers a

general setup where the conditional expected potential outcomes and treatment effects are par-

tially identified. These approaches take a minimax approach at the population level, deriving the

population-level minimum expected utility or maximum regret. They then treat the population-

level maximum regret or negative minimum expected utility as a risk, and use empirical risk

minimization approaches and propensity score weighting or double-robust methods as above.

Our work is in the vein, estimating individualized treatment rules via empirical risk minimiza-

tion. However, we consider a different setting where treatment effects are point identified, but the

expected utility function is partially identified because it is a function of the proportion of units

within each principal stratum—an unidentifiable quantity under standard designs.

Finally, Babii et al. (2021) also consider asymmetric utilities, but only using observed out-

comes. In contrast, we consider asymmetric counterfactual utilities, which depend on potential

outcomes and is a generalization of Babii et al.’s approach (see Appendix D for details).

Paper outline. The paper proceeds as follows. Section 2 describes the goal of policy learning

with asymmetric counterfactual utilities and reviews the standard symmetric case. Section 3 dis-

cusses partial identification of the expected utility function and the minimax population policies

relative to different alternatives. Section 4 then shows how to estimate such policies from data.

Finally, Section 5 applies this framework to the use of RHC, and Section 6 concludes.
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2 Preliminaries

In this section, we introduce the notation and assumptions used throughout this paper. We also

discuss the nature of asymmetric counterfactual utilities before providing a brief review of policy

learning with symmetric utilities, which is a special case of our proposed framework.

2.1 Notation and assumptions

Suppose that we have a simple random sample of n units from a super population P where each

unit i = 1, . . . , n has a set of characteristics Xi ∈ X . We consider a binary treatment assignment

decision Di ∈ {0, 1}, which can be made by either individual i or a policy maker. We assume that

the outcome Yi is binary with Yi = 1 indicating a desirable outcome (e.g., survival) and Yi = 0

representing an undesirable outcome (e.g., death). Under the assumption that there is only one

version of treatment and no interference across units, we have two binary potential outcomes for

each unit i where Yi(d) ∈ {0, 1} represents the potential outcome under the scenarios where the

unit receives the decisions Di = d for d = 0, 1.

The setup implies that the observed outcome for unit i can be written as Yi = DiYi(1) +

(1−Di)Yi(0) and the tuple of random variables {Xi, Di, Yi(1), Yi(0)} is assumed to be indepen-

dently and identically distributed. Importantly, under this setting, each unit belongs to one of the

four principal strata defined by the values of the two potential outcomes, i.e., (Yi(1), Yi(0)) =

(y1, y0) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} (Frangakis and Rubin, 2002). For example, the principal

stratum (y1, y0) = (1, 0) represents a group of units who would yield the desirable outcome only

when they are treated, i.e., Di = 1, whereas the principal stratum (y1, y0) = (1, 1) indicates a

group of units whose outcome is desirable regardless of the treatment decision. Since we never

observe the two potential outcomes at the same time for any given unit, it is impossible to know

which principal stratum each unit belongs to without additional assumptions.

Throughout this paper, for notational simplicity, we will drop the individual i subscript in
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expressions involving expectations over the distribution. We will also assume the strong ignora-

bility and strict overlap assumptions for observational studies and randomized control trials.

Assumption 1 (Strong ignorablity and strict overlap). {Y (1), Y (0)} ⊥⊥ D | X and there exists
an η > 0 such that η < d(x) < 1− η for all x ∈ X where d(x) ≡ Pr(D = 1 | X = x) represents
the propensity score.

The assumption allows us to identify the expected potential outcome under decision d given

covariates x, denoted as m(d, x) ≡ E[Y (d) | X = x]. However, it is impossible to identify the

principal score, or the conditional probability of belonging to a principal stratum given covari-

ates, defined as ey1y0(x) ≡ Pr(Y (1) = y1, Y (0) = y0 | X = x), because we do not observe the

two potential outcomes at the same time for a given unit (Ding and Lu, 2017; Jiang et al., 2022).

2.2 Asymmetric counterfactual utilities

We focus on deterministic individualized policies π : X → {0, 1} that assign a binary treatment

decision to individual units according to their characteristics X ∈ X . To learn optimal policies

from the observed data, we consider a utility function u(d; y1, y0) that encodes the utility for

taking treatment decision d for a unit in principal stratum (y1, y0). Crucially, this utility function

depends on the values of both potential outcomes. This contrasts with the standard utility function

u(d; y), which only depends on the realized potential outcome Yi(d) = y under the decision d.

We measure the overall quality of a policy π by its expected utility (also called the value or social

welfare),

V (π) = E

[
1∑

y1=0

1∑
y0=0

1{Y (1) = y1, Y (0) = y0} {u(0; y1, y0)(1− π(X)) + u(1; y1, y0)π(X)}

]

= E

[
1∑

y1=0

1∑
y0=0

ey1y0(X)π(X) {u(1; y1, y0)− u(0; y1, y0)}

]
+ E

[
1∑

y1=0

1∑
y0=0

ey1y0(X)u(0; y1, y0)

]
.

(1)

This setup lets the utility vary across different counterfactual outcomes even when the treat-

ment decision and the realized outcome are the same, allowing for a richer specification of the

decision problem. For example, the disutility from assigning treatment to a patient that is harmed
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by it (i.e., Y (1) = 0 and Y (0) = 1) can be larger than the disutility from assigning treatment to a

patient for whom it is useless (i.e., Y (1) = Y (0) = 0), despite the fact that the realized outcome

Y (1) is identical in both cases. A standard utility function does not distinguish between these

two cases, assigning each a value of u(1, Y (1)). This utility function also allows for asymmetry

in the utility gain or loss from treating a unit across principal strata. Returning to the Hippocratic

oath, we can choose the utility function such that the absolute magnitude of the utility loss for

harming a patient through treatment (|u(1; 0, 1)−u(0; 0, 1)|) is greater than that of the utility gain

when the same treatment benefits another patient (|u(1; 1, 0)− u(0; 1, 0)|).

To encode this, and focus on key ideas, we parameterize the utility function as follows:

(i) the utility gain associated with a “useful treatment,” i.e., (y1, y0) = (1, 0), is ug − cg ≡

u(1; 1, 0)− u(0; 1, 0) (e.g., treating with a drug that would benefit the patient)

(ii) the utility loss associated with a “harmful treatment,” i.e., (y1, y0) = (0, 1), is −ul − cl ≡

u(1; 0, 1)− u(0; 0, 1) (e.g., treating with a drug that would harm the patient)

(iii) the utility loss of treating with a “harmless treatment,” i.e., (y1, y0) = (1, 1), is −c1 =

u(1; 1, 1)− u(0; 1, 1) (e.g., treating with a drug that would not harm the patient)

(iv) the utility loss of treating with a “useless treatment,” i.e., (y1, y0) = (0, 0), is −c0 =

u(1; 0, 0)− u(0; 0, 0) (e.g., treating with a drug that would not benefit the patient)

The values cg, cl, c1, c0 denote the cost of administering the treatment d = 1 relative to not doing

so d = 0 in each of the four principal strata. The values ug and ul represent the magnitude of the

utility gain and loss for administering a useful and harmful treatment, respectively. In this setting,

these utility values are known and fixed by the decision maker. Utility functions of this and more

general forms have been considered in the literature on decision theory (see, e.g., Stefánsson,

2015; Bradley and Stefánsson, 2017). Our focus is, however, on the estimation of individualized

decision rules under these asymmetric counterfactual utility functions.
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Yi(0) = 1 Yi(0) = 0

Yi(1) = 1
Harmless Useful

−c ug − c

Yi(1) = 0
Harmful Useless
−ul − c −c

Table 1: Asymmetric counterfactual utility gain/loss for treating each of the four principal strata,
relative to not treating. Each cell corresponds to the principal stratum defined by the values of the
two potential outcomes, Yi(1) and Yi(0). Each entry represents the utility gain/loss of treatment
assignment, relative to no treatment, for a unit that belongs to the corresponding principal stratum
(u(1; y1, y0)− u(0; y1, y0)). c is the cost of treatment assignment. We assume that ul, ug > 0 and
c ≥ 0. Symmetric utilities are a special case with ug = ul.

Throughout, we will assume that the costs are identical, i.e., cg = cb = c1 = c0 = c. In

addition, we assume ug and ul are positive, and c is non-negative. Table 1 summarizes this asym-

metric counterfactual utility structure. Fixing the costs to be identical amounts to restricting the

utility loss from a harmless and useless treatment to be equal. Without this restriction there will

be an additional asymmetry due to the different costs, which would not affect our development,

except to make the notation more cumbersome and results less interpretable.

Note that our asymmetric counterfactual utilities include symmetric utilities based on ob-

served outcomes as special cases, thereby generalizing the standard setting considered in the pol-

icy learning literature. In Appendix D, we further show that although it is possible to construct

asymmetric utilities without using principal strata (Babii et al., 2021), doing so still implies some

restrictions on the structure of the resulting counterfactual utilities and hence they are a special

case of our framework.

We will primarily be comparing two policies rather than considering one in isolation. We

begin by defining the expected utility loss of policy π relative to another policy ϖ as the difference

in values, V (ϖ)− V (π). Using the relations m(1, x) = e11(x) + e10(x) and m(0, x) = e11(x) +

e01(x), we show in Appendix J that we can write the expected utility loss in a simplified form:

Re01(π,ϖ) ≡ V (ϖ)− V (π) = E [(ϖ(X)− π(X)){ugτ(X) + (ug − ul)e01(X)− c}] . (2)
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where τ(x) ≡ E(Y (1) − Y (0) | X = x) = m(1, x) −m(0, x) is the conditional average treat-

ment effect (CATE) given the covariates X = x. Comparing two policies to each other allows

us to leave the baseline utility for not treating a unit in principal stratum (y1, y0), u(0; y1, y0) un-

specified. In Appendix B we directly consider the expected utility of a single policy, and connect

choices of the baseline utility to our discussion below.

Three components contribute to the expected utility loss in Eqn (2). First, the difference in

the expected treatment effects for those treated under policies ϖ and π, scaled by the utility gain

for a useful treatment ug, represents a symmetric component of the utility, where we compare the

marginal benefits of the policies. The second component is an asymmetric adjustment term, and

relates to the probability of belonging to the principal stratum for whom the treatment is harmful

(i.e., (y1, y0) = (0, 1)). This can counteract the marginal benefit of treatment and is scaled by the

difference between the utility gain for a useful treatment and the loss for a harmful treatment, i.e.,

ug − ul. The final term c corresponds to the difference in the overall costs of the two policies.

The first and third components, the difference in effects and costs, are point identifiable under

Assumption 1. The second component, however, is only partially identifiable due to the uniden-

tifiability of the principal score e01(·). We use the e01 subscript for the expected utility loss in

Eqn (2) to signify this fact. Therefore, we cannot pinpoint whether any policy is superior to any

other policy in general. The remainder of this paper focuses on handling this ambiguity.

2.3 Policy learning with symmetric utilities: A review

Before discussing policy learning under asymmetric counterfactual utility functions, we briefly

review policy learning with symmetric utilities — a special case of our framework — where the

absolute magnitude of the utility gain when the treatment leads to a desirable outcome is equal

to that of the expected utility loss when it leads to an undesirable outcome, i.e., ug = ul. In this

case, a policy can make up for the loss from harming some units by the gain from benefiting other
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units. This can be seen in the following simplified version of the expected utility loss in Eqn (2):

Rsymm(π,ϖ) = E [{ϖ(X)− π(X)}{ugτ(X)− c}] . (3)

The symmetric utility does not involve the principal score e10(·), and is identifiable under

Assumption 1. Thus, under this setting, the oracle optimal policy that minimizes the expected

utility loss relative to any other policy is πsymm(x) ≡ 1{ugτ(x) ≥ c}. This oracle policy assigns

the treatment to all individuals with characteristics x if their expected utility gain of assigning the

treatment relative to not assigning it at least makes up for its cost, i.e., ugτ(x) ≥ c. Note that this

is equivalent to maximizing the value V (π) directly.

Under Assumption 1, therefore, we can write the symmetric expected utility loss in Eqn (3) in

terms of the observed data by using a scoring function Γw(x, d, y) such that E [Γw(X,D, Y ) | X = x] =

m(w, x). For example, the Inverse Probability-of-treatment Weighting (IPW) scoring function

uses the IP weighting function γw(D,X) ≡ wD
d(X)

+ (1−w)(1−D)
1−d(X)

to weight the observed outcome

by the inverse probability of receiving the decision d: Γipw
w (X,D, Y ) = Y γw(D,X). An

alternative is the Doubly Robust (DR) scoring function that combines the observed outcomes

and their conditional expectations: Γdr
w(X,D, Y ) = m(w,X) + {Y − m(w,X)}γw(D,X).

With such a scoring rule, we can then write the symmetric expected utility loss function as:

E [{ϖ(X)− π(X)} {ug(Γ1(X,D, Y )− Γ0(X,D, Y ))− c}], where the observable quantity Γ1(X,D, Y )−

Γ0(X,D, Y ) has replaced the causal quantity τ(X). See Knaus (2020) for a recent review.

In order to empirically find optimal policies from data, recent approaches estimate the propen-

sity score d̂(·) and/or the conditional expected potential outcome m̂(·, ·) to create estimated scores

Γ̂(Xi, Di, Yi). For example, we can estimate the IP weights as γ̂w(D,X) ≡ wD

d̂(X)
+ (1−w)(1−D)

1−d̂(X)
,

the IPW scoring function as Γ̂ipw
w (X,D, Y ) ≡ Y γ̂w(X,D), and the DR scoring function as

Γ̂dr
w(X,D, Y ) ≡ m̂(w,X) + {Y − m̂(w,X)}γ̂w(X,D). Then, we solve the sample analog of
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Eqn (3). This leads to finding policy π̂ that solves the following optimization problem:

min
π∈Π

− 1

n

n∑
i=1

π(Xi)
{
ug

(
Γ̂1(Xi, Di, Yi)− Γ̂0(Xi, Di, Yi)

)
− c
}
,

where Π represents the policy class and restricts the functional form of potential policies. Athey

and Wager (2021) establish strong asymptotic guarantees on the regret of the empirical π̂ relative

to the best-in-class policy when using the DR approach with appropriately cross-fit models (see

also Zhao et al., 2012; Kitagawa and Tetenov, 2018).

3 Policy learning with asymmetric counterfactual utilities

We now turn to the problem of finding optimal policies in the general asymmetric case where

ug ̸= ul. We will first consider the identification problems in the population — i.e., with infi-

nite data. We then show how to learn policies empirically from observed data in Section 4. In

Appendix A, we consider an alternative formulation as a constrained optimization problem.

3.1 The oracle policy with an asymmetric counterfactual utility function

We begin by considering the oracle policy in the general asymmetric case. By direct computation,

the (unconstrained) policy that has the maximal possible value with an asymmetric counterfactual

utility function is given by:

πo ≡ argmax
π

V (π) = 1

{
τ(·) ≥ ul − ug

ug

e01(·) +
c

ug

}
. (4)

We refer to this as the oracle policy, because it has access to the unknown (and generally un-

knowable) principal scores. Unlike in the symmetric case, this policy includes the principal score

e01, which is unidentifiable under Assumption 1. Since 0 ≤ e01(x) ≤ 1 for all x, the asymmetric

oracle policy uses a varying threshold for assigning the treatment where the threshold depends

on the principal score e01(X).

The way in which the oracle policy depends on the principal score is characterized in part
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Figure 1: Example decision rules in a hypothetical example with a single covariate and cost
c = 0. The left plot (a) presents the setting of the example where the values of the principal
score e01(x) = Pr(Y (1) = 0, Y (0) = 1 | X = x) are in red while the conditional expectations
m(d, x) = E(Y (d) | X = x) are in blue for d = 0 and green for d = 1, respectively. The right
plot (b) presents the decision rules corresponding to (i) the oracle in the symmetric case where
ug = ul (in green); (ii) the oracle in the asymmetric case where ug = 0.8 and ul = 1 (in orange);
(iii) the minimal expected utility loss solution relative to always not assigning the treatment d = 0
(in purple); and (iv) the minimax regret solution relative to the oracle (in black). All rules have
been transformed so that the policy takes decision 1 when the rule is greater than or equal to zero.

by the nature of the asymmetry in the utility function. Consider the case where treatment is

costless (c = 0). When ul > ug, causing the undesirable outcome by assigning the treatment is

considered worse than failing to prevent such an outcome by not providing the treatment. This

raises the threshold for assigning the treatment because the expected effect must be larger in order

to compensate for the downside risk of causing the undesirable outcome. As a result, this biases

the oracle policy towards inaction. Conversely, when ul < ug, it is better to cause the undesirable

outcome than fail to prevent it by inaction. In this case, the threshold for the treatment assignment

is lower, biasing the oracle policy towards action.

Figure 1a shows a one-dimensional example of these decision rules where the cost is zero,

c = 0. The principal score e01(x) is shown in red whereas the conditional expectations m(d, x) =

E(Y (d) | X = x) are shown in blue (d = 0) and green (d = 1). Figure 1b shows the functions
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that make up the decision rules in this example, centered so that the corresponding policies assign

d = 1 if the function is positive. The symmetric case is shown in green, while the oracle in the

asymmetric case (ug = 0.8 and ul = 1) is in orange. This plot also shows two other solutions dis-

cussed in Section 3.3; the minimal expected utility loss solution relative to always not assigning

the treatment (purple), and the minimal regret solution relative to the oracle (black).

In this example, providing the treatment d = 1 leads to a higher probability of the desirable

outcome except near zero. Therefore, with a symmetric utility function, the oracle policy would

assign the treatment in most cases (green). However, the asymmetric case is different (orange).

There is a region of the covariate space where the principal score e01(x) is relatively high, leading

to a sufficiently high probability that the treatment causes the undesirable outcome. Therefore,

the asymmetric oracle rule has a higher threshold for the treatment assignment, only providing

the treatment when the CATE τ(x) is large enough and the principal score e10(x) is small enough.

3.2 Partial identification and minimizing worst-case expected utility loss

Recall that the unidentifiability of the principal score e01(x) for any x ∈ X makes it impossible

to identify the expected utility loss in Eqn (2) in the general asymmetric case with ug ̸= ul.

However, we can partially identify the principal score by deriving its sharp upper and lower

bounds, L(x) and U(x). We then take a minimax approach, and find the policy π∗ in the policy

class Π that minimizes the maximal expected utility loss relative to an alternative policy ϖ:

π∗ ∈ argmin
π∈Π

Rsup(π,ϖ) where Rsup(π,ϖ) = max
e01(x)∈[L(x),U(x)]

Re01(π,ϖ). (5)

Note that the maximum expected utility loss Rsup(π,ϖ) is relative to a particular alternative

policy ϖ, and is maximal over all possible values for the principal score e01(x). As we show

below, the choice of this alternative policy will lead to different objectives and optimal solutions

(see Cui, 2021, for a recent general discussion).

Eqn (5) is an example of a treatment choice problem under ambiguity (Manski, 2005, 2011).
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Such minimax formulations of the problem have been widely considered in settings where value

functions depend on the marginal distribution of the potential outcomes, but the CATE τ(x) is not

point identified (e.g. Manski, 2007; Stoye, 2012; Kallus, 2018; Ben-Michael et al., 2021; Ishihara

and Kitagawa, 2021; Yata, 2021; Zhang et al., 2023; D’Adamo, 2023). A key distinction between

Eqn (5) and these other problems, however, is that in our setting the value function depends on

the principal score e10(x), which is not point identified even in randomized control trials.

To derive the sharp lower and upper bounds of the principal score, we first define two classi-

fication functions:

δ+(x) = 1{m(0, x) +m(1, x)− 1 ≥ 0} and δτ (x) = 1{τ(x) ≥ 0}. (6)

Notice that the difference in the probability that both potential outcomes are one and zero is given

by e11(x)− e00(x) = m(0, x) +m(1, x)− 1, which is the decision function for classifier δ+(x).

In other words, we have δ+(x) = 1 if and only if e00(x) ≤ e11(x). Thus, we can view δ+(x) as

classifying whether there is a higher probability that both potential outcomes are one rather than

zero. In contrast, noting that τ(x) = e10(x) − e01(x), δτ (x) classifies whether there is a higher

probability that the treatment is useful rather than harmful. This corresponds to the symmetric

oracle rule with cost c = 0.

With these classifiers, we can use the Fréchet bounds to find the sharp lower and upper bounds

for the principal score, e01(x) ∈ [L(x), U(x)] for all x (e.g. Heckman et al., 1997; Jiang et al.,

2016; Kallus, 2018):

L(x) = max{0, 1−m(1, x) +m(0, x)− 1} = max{0,−τ(x)} = −τ(x){1− δτ (x)} (7)

U(x) = min{m(0, x), 1−m(1, x)} = m(0, x) + δ+(x){1−m(0, x)−m(1, x)}. (8)

These lower and upper bounds are sharp (Rüschendorf, 1981) and are point-identifiable from

observable data. With them we can create a point-identifiable objective.
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3.3 Worst case expected utility loss relative to different alternative policies

We now inspect the worst-case expected utility loss Rsup(π,ϖ) in Eqn (5) for different choices of

alternative policy ϖ. We consider three main alternatives. First, the “never-treat” policy πO that

does not treat anyone, i.e., πO(x) = 0 for all x. Second, the “always-treat” policy π1 that treats

everyone, i.e., π1(x) = 1 for all x. In many cases, the alternative to algorithmic decision making

via a data-driven policy is to take the same decision for everyone; thus these two policies are

of interest as they represent the standard of care in the absence of an individualized policy (see

Appendix B for connections to maximin policies that maximize the minimum expected utility).

We will denote the policies that minimize these worst-case losses as π∗
O
≡ argminπ Rsup(π, π

O)

and π∗
1
≡ argminπ Rsup(π, π

1).

Finally, we consider the minimax regret policy that minimizes the worst case expected utility

relative to the value of the best-possible policy that has access to the principal scores e01(·). For-

mally, the minimax regret policy is defined as π∗
o ≡ argminπ max

e01(x)∈[L(x),U(x)]
maxπ′ Re01(π, π

′).

The definition of the oracle policy πo above implies that this is equivalent to choosing πo as the al-

ternative policy. That is, π∗
o = argminπ Rsup(π, π

o) where Rsup(π, π
o) = max

e01(x)∈[L(x),U(x)]
maxπ′ Re01(π, π

′)

is the regret of policy π.

Minimax regret policies are often studied in the policy learning literature because alterna-

tives, such as maximin policies, tend to be too conservative (see e.g., Manski, 2007, 2011; Stoye,

2012; Yata, 2021, among many others). Note that when defining the minimax regret policy

across a constrained policy class, we compare to the best possible unconstrained policy, i.e.,

argmin
π∈Π

max
e01(x)∈[L(x),U(x)]

maxπ′ Re01(π, π
′) = argmin

π∈Π
Rsup(π, π

o). The resulting policy will be dif-

ferent in general from the policy that minimizes the regret relative to the best-in class policy, and

the unconstrained form of the regret will be larger.

The following theorem shows that the worst-case expected utility loss relative to each of these

three policies takes a common form.
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Theorem 3.1 (Worst case expected utility loss). Let π : X → {0, 1} be a deterministic policy.
For comparison policy ϖ ∈ {πO, π1, πo}, the worst-case expected utility loss of π relative to ϖ
is

Rsup(π,ϖ) = C − E [π(X) {cϖ1 (X)m(1, X) + cϖ0 (X)m(0, X) + cϖ(X)}]
= C − E [π(X) {cϖ1 (X)Γ1(X,D, Y ) + cϖ0 (X)Γ0(X,D, Y ) + cϖ(X)}] ,

(9)

where C is a constant that does not depend on π, and cϖ1 (·), cϖ0 (·), cϖ(·) : X → R are functions
that depend on δ+(·), δτ (·), π∗

O
, or π∗

1
.

The maximum expected utility loss objective in Theorem 3.1 is a weighted average of the

expected potential outcomes under treatment and no treatment plus a proxy for the cost. The

choice of alternative policy ϖ determines these weights cϖ0 (·), cϖ1 (·) and cost cϖ(·), all of which

potentially vary with the covariates X; we give explicit formulas for these functions in Ap-

pendix H. Note that the special case of a symmetric utility (Section 2.3) is also of this form, with

cϖ1 (X) = −cϖ0 (X) = ug and cϖ(X) = c. Similarly, the two classifiers in Eqn (6) have this

form, with δτ corresponding to cϖ1 (X) = −cϖ0 (X) = 1 and cϖ(X) = 0, and δ+ corresponding to

cϖ1 (X) = cϖ0 (X) = 1 and cϖ(X) = −1.

The second line of Eqn (H.1) shows how to write the worst-case expected utility loss Rsup(π,ϖ)

in terms of observable data using the scoring functions Γw (either IPW or DR) discussed in Sec-

tion 2.3. So, targeting the worst-case expected utility loss yields an objective function that is

identifiable, unlike the true expected utility loss. As shown below, this allows us to construct

decision rules based on observable data that control the true expected utility loss by minimizing

the worst-case expected utility loss.

Constructing a utility function based on principal strata allows decision makers to define their

goals directly in terms of individualized notions of useful and harmful treatments. Nevertheless,

Theorem 3.1 shows that the minimax expected utility loss problem reduces to a decision problem

that only involves the marginal distribution of the potential outcomes. The principal score e01(x)

will not be involved in the remaining estimation strategies and results, having been replaced with

point-identifiable upper and lower bounds.
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However, the weighting and cost functions induced by the utility function and choice of alter-

native policy correspond to a covariate-dependent asymmetry in terms of the marginal potential

outcomes. Depending on the values of the nuisance classifiers, Eqn (H.1) places more or less

weight on outcomes under treatment versus outcomes under control. Thus, Eqn (H.1) is re-

lated to the covariate-dependent loss minimization problem considered by Babii et al. (2021) that

depends on marginal outcomes, even though it was derived from placing an asymmetric coun-

terfactual utility on the principal strata. A key distinction is that because Eqn (H.1) involves the

unknown nuisance classifiers, we must estimate the corresponding loss function. We analyze the

consequences of this in Section 4.2.

Finally, note that here we restrict to deterministic policies to derive the form of the minimax

expected utility loss in Theorem 3.1. As Cui (2021) discusses, unlike with the expected utility loss

relative to the always treat or never treat policies, allowing for stochastic policies that randomize

between actions can lead to lower loss, though this leads to a more complicated form. We leave

further understanding the implications for stochastic policies to future work.

Next, we compute and inspect the policy that is the unconstrained minimizer of the maximum

expected utility loss in the population, relative to each of the three alternative policies in turn. We

will then turn to estimating constrained policies in finite samples in Section 4 below.

3.3.1 Expected utility loss relative to a constant decision

We begin by considering the worst-case expected utility loss relative to the never-treat policy.

Corollary 3.2 (Minimax expected utility loss relative to the never-treat policy). If ug ≥ ul, the
solution to Eqn (5), π∗

O
≡ argminπ Rsup(π, π

O) is the symmetric policy,

π∗
O
(x) = 1

{
τ(x) ≥ c

ug

}
= πsymm(x).

Otherwise, if ug < ul, it is given by,

π∗
O
(x) =

 1

{
m(1, x) ≥ ul

ug
m(0, x) + c

ug

}
, δ+(x) = 0,

1

{
m(1, x) ≥ ug

ul
m(0, x) + ul−ug+c

ul

}
, δ+(x) = 1.
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Corollary 3.2 shows that the form of the minimax expected utility loss policy depends on the

direction of the asymmetry. To build intuition, consider the case where the treatment is costless

(c = 0). If ug > ul — so we would rather cause an undesirable outcome than to fail to prevent

it — then the minimax solution relative to the never-treat policy is the same as the optimal rule

under a symmetric utility function: assign the treatment when the CATE is positive. In this case,

the unit is more likely to be in the (y1, y0) = (1, 0) stratum than the (y1, y0) = (0, 1) stratum,

and since ug > ul, it will be better to treat the unit than to not. Conversely, when the CATE is

negative it may still be better to treat the unit, but in the worst case it is not. To minimize the

worst-case expected utility loss relative to never treating, the minimax loss policy does not treat.

However, the minimax solution is different when ug < ul — i.e., when it is worse to cause an

undesirable outcome than to fail to prevent it. In this case, the oracle rule depends on the value

of the classifier δ+(x) = 1{e00(x) ≤ e11(x)}. If both potential outcomes are more likely to be

zero than one, then the policy only treats if the probability that Y (1) equals one is higher than the

probability that Y (0) equals one by a factor of ul

ug
> 1. Comparing to the decision rule under the

symmetric utility, we see that this raises the threshold for assigning the treatment.

In contrast, if both potential outcomes are more likely to be one than zero, the threshold is

raised by adding a constant cost ul−ug

ul
> 0, but the multiplicative factor on the probability that

Y (0) equals one is ug

ul
< 1. Overall, this has the effect of creating a more cautious policy that

provides the treatment less often.

Figure 1b shows the minimax decision rule relative to πO (purple) in the one-dimensional

example where ug < ul and c = 0 — i.e., it is worse to cause an undesirable outcome than fail to

prevent it. In this case, we see that the decision function is well below the symmetric rule shown

in green (i.e. the CATE), leading to a large part of the covariate space being assigned no treatment

even though the CATE is positive. In fact, this policy is overly cautious: it does not assign the

treatment even in many cases where the oracle rule that knows the principal score would provide

the treatment. This is because the alternative policy is to never treat anyone.
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Appendix H shows the result for the minimax expected utility loss policy relative to the

always-treat policy, which is more aggressive than the symmetric policy. It is the mirror image of

the minimax loss policy relative to the never-treat policy, with the relation to ug and ul reversed.

3.3.2 The minimax regret policy

We next consider the policy that minimizes the expected utility loss relative to the oracle πo in

Eqn (4), or, equivalently, that minimizes the regret. For simplicity, we assume zero cost, i.e.,

c = 0; when c > 0, there will be further terms (see the proof of Theorem 3.1 in Appendix J).

Corollary 3.3 (Minimax regret policy). When c = 0, the minimax regret policy for ug ≥ ul is
given by,

π∗
o(x) =


1, δτ (x) = 1,
0, π∗

1
(x) = 0,

1

{
m(1, x) ≥ 2ul

ug+ul
m(0, x)

}
, δτ (x) = 0, δ+(x) = 0,

1

{
m(1, x) ≥ ug+ul

2ul
m(0, x) + ul−ug

2ul

}
, δτ (x) = 0, δ+(x) = 1,

and for ug < ul the minimax regret policy is given by,

π∗
o(x) =


1, π∗

O
(x) = 1,

0, δτ (x) = 0,

1

{
m(1, x) ≥ ug+ul

2ug
m(0, x)

}
, δτ (x) = 1, δ+(x) = 0,

1

{
m(1, x) ≥ 2ug

ug+ul
m(0, x) + ul−ug

ug+ul

}
, δτ (x) = 1, δ+(x) = 1.

Corollary 3.3 shows that we can write the worst-case regret and the minimax regret policy in

terms of observable data, just as for the constant policies above. But, doing so requires four clas-

sifiers rather than one: (i) δ+, which classifies whether e00(x) ≤ e11(x); (ii) δτ , which classifies

whether the CATE is positive; (iii) the minimax loss solution relative to π1 and (iv) the minimax

loss solution relative to πO. Recall from Corollary 3.2 that either π∗
O

(when ug ≥ ul) or π∗
1

(when

ug < ul) is the symmetric policy πsymm. Therefore, if the cost c = 0 as in Corollary 3.3, we only

need three classifiers to construct the objective, since πsymm = δτ in this case.

Inspecting the minimax solution relative to the oracle policy when ug ≥ ul, we see that it

assigns the treatment if the symmetric rule does, whereas it does not provide the treatment if the
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minimax solution relative to the always-treat policy does not. In between these two extremes,

the decision rule lowers the threshold for the treatment assignment relative to the symmetric rule.

The opposite is true when ug < ul. If the symmetric rule does not assign treatment, the minimax

solution relative to the oracle does not either, but it does provide the treatment whenever the

minimax solution relative to the never-treat policy does. In between these two cases, the threshold

for treatment assignment is higher than that under the symmetric rule.

Figure 1b shows the decision rule (black) in our running one-dimensional example where

ug < ul. The decision rule is equivalent to π∗
O

(purple) when the CATE is negative, and is equal

to the CATE decision rule δτ when π∗
O
(x) = 1. When there is disagreement between the CATE

rule δτ and π∗
O

, the minimax oracle rule interpolates between them, leading to a more aggressive

policy that treats more individuals than π∗
O

. Comparing to the oracle rule (orange), we see that

this interpolation causes the decision thresholds for the minimax oracle rule to be close to the

best possible decision thresholds.

4 Learning a policy from data

Having established the behavior and form of the minimax loss policy π∗ in Eqn (5) in the popu-

lation for an unconstrained policy class, we now turn to the problem of learning a policy π̂ from

observed data within a constrained policy class Π.

4.1 Estimation algorithms

To begin, note that in finite samples we know neither the true scoring functions Γw nor the true

weighting and cost functions cϖ1 (·), cϖ0 (·), cϖ(·)—which depend on the nuisance classifiers—and

so they must be estimated from data. As mentioned in Section 2.3, we can obtain estimates of

the DR score Γ̂dr
w by plugging in estimates of the nuisance components. Similarly, with estimates

of the nuisance classifiers, we can directly obtain estimates of the weighting and cost functions

ĉϖ1 (·), ĉϖ0 (·), and ĉϖ(·) by plugging in to the formulas in Theorem 3.1.
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This leads to the following procedure. First, obtain estimates of the nuisance components

m̂ and d̂ and construct the DR scores. Then, estimate the nuisance classifiers and follow The-

orem 3.1 to construct estimates of the weighting and cost functions. To find a policy relative

to either the always-treat (if ug ≥ ul) or never-treat (if ug < ul) policies, we estimate a single

nuisance classifier, δ̂+. Finding a policy relative to the oracle involves estimating three or four

nuisance classifiers: δ̂+, δ̂τ , and the minimax loss policies relative to never and always treating,

π̂O and π̂1. With these in hand, we then find a data-driven policy π̂ that solves the following

optimization problem (dropping the constant that does not depend on the policy π):

π̂ ∈ argmin
π∈Π

R̂sup(π,ϖ) (10)

where R̂sup(π,ϖ) = − 1

n

n∑
i=1

π(Xi)
{
ĉϖ1 (Xi)Γ̂

dr
1 (Xi, Di, Yi) + ĉϖ0 (Xi)Γ̂

dr
0 (Xi, Di, Yi) + ĉϖ(Xi)

}
.

There are two ways to estimate the nuisance classifiers. The first is an empirical risk min-

imzation approach, where we solve Eqn (10) with the appropriate weighting and cost functions.1

Appendix C explicitly details this procedure. As shown in Section 4.2 below, the estimated nui-

sance classifiers must have low regrets relative to the true ones in order for our learned policy π̂

to have low worst-case expected utility loss; therefore, we must choose a flexible policy class.

This is in contrast to estimating our policy of interest π̂, whose performance we measure relative

to the best possible constrained policy. An alternative is to take a plug-in approach, using our

estimates of the conditional expectation function m̂ to directly create estimates of the classifier;

e.g., δ̂+(x) = 1{m̂(1, x) + m̂(0, x) ≥ 1} and δ̂τ (x) = 1{m̂(1, x)− m̂(0, x) ≥ 0}.

4.2 Excess worst-case expected utility loss

To understand the statistical properties of our learned minimax policy π̂, we will compare it to the

policy π∗ that minimizes the worst-case expected utility loss in the population among those in the

policy class Π by solving Eqn (5). For a given alternative policy ϖ, we will use the excess worst-

1For the nuisance classifiers δ+ and δτ , the weighting and cost functions are known, and so need not be estimated.
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case expected utility loss Rsup(π̂, ϖ)−Rsup(π
∗, ϖ) to measure the quality of the learned minimax

loss policy π̂ since Rsup(π
∗, ϖ) is the best possible expected utility loss in the worst case. We

assume that the nuisance components and classifiers have been obtained from a separate sample,

and so can be treated as fixed for our finite sample results. However, our results can be extended

to solving Eqn (10) by cross-fitting nuisance components and classifiers to obtain the estimates

of Γ̂dr
w(Xi, Di, Yi) and ĉωw(Xi) (see Athey and Wager, 2021, and Appendix F.1).

To state our results, we define several new quantities. First, we measure the quality of the

estimated nuisance classifiers, δ̂+ and δ̂τ , by their regrets,

R+(δ̂+) ≡ E
[
1{δ̂+(X) ̸= δ+(X)} |m(1, X) +m(0, X)− 1|

]
Rτ (δ̂τ ) ≡ E

[
1{δ̂τ (X) ̸= δτ (X)} |m(1, X)−m(0, X)|

]
,

where δ̂+ and δ̂τ are treated as fixed and the covariate X is random. Second, we measure the

complexity of the policy class Π by its ability to overfit to noise via the population Rademacher

complexity

Rn(Π) ≡ EX,ε

[
sup
π∈Π

∣∣∣∣∣ 1n
n∑

i=1

εiπ(Xi)

∣∣∣∣∣
]
,

where εi are i.i.d. random variables with Pr(εi = 1) = Pr(εi = −1) = 1/2, and the expectation

is taken over both εi and Xi (Wainwright, 2019, §4).

We now present two finite sample bounds on the excess worst case expected utility loss, one

for learning a minimax loss policy relative to the always or never treat policies (Theorem 4.1),

and the other for learning a minimax loss policy relative to the oracle (Theorem 4.2).

Theorem 4.1. Let π̂ solve Eqn (10) with alternative policy ϖ = πO (if ug < ul) or ϖ = π1 (if
ug ≥ ul), and with nuisance functions m̂ and d̂ and classifier δ̂+ fit on a separate sample. Let π∗

solve the population problem in Eqn (5). The excess worst-case expected utility loss of π̂ relative
to π∗ satisfies

Rsup(π̂, ϖ)−Rsup(π
∗, ϖ) ≤ 2U ×

{
6 + η

η
×
(
2Rn(Π) +

t√
n

)
+

1∑
w=0

∥γ̂w − γw∥2 ∥m̂(w, ·)−m(w, ·)∥2

}

+ (ug − ul)×
{
R+(δ̂+) +

t

2
√
n

}
,
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with probability at least 1 − 2 exp
(
− t2

2

)
, where η is the overlap parameter in Assumption 1, U

is a constant depending on the utility values, ∥γ̂w − γw∥22 ≡ E
[
{γ̂w(D,X)− γw(D,X)}2

]
and

∥m̂(w, ·)−m(w, ·)∥22 ≡ E[{m̂(w,X)−m(w,X)}2].

Theorem 4.2. Let π̂o solve Eqn (10) with alternative policy set to be the oracle, ϖ = πo, and
with nuisance functions m̂ and d̂ and classifiers δ̂+, δ̂τ , π̂O, and π̂1 fit on a separate sample. Let
π∗
o solve the population problem in Eqn (5). The excess worst-case regret of π̂o relative to π∗

o

satisfies

Rsup(π̂0, π
o)−Rsup(π

∗
o , π

o) ≤ U ×

(
6 + η

η
×
(
2Rn(Π) +

t√
n

)
+ ∥γ̂ − γ∥2

1∑
w=0

∥m̂(w, ·)−m(w, ·)∥2

)
+ 2× (Rsup(π̂1, π

1)−Rsup(π
∗
1
, π1)) + 2× (Rsup(π̂O, π

O)−Rsup(π
∗
O
, πO))

+ (ug − ul)×
(
R+(δ̂+) + Rτ (δ̂τ ) +

t

2
√
n

)
,

with probability at least 1− 2 exp
(
− t2

2

)
, where U is a constant depending on the utility values.

Theorems 4.1 and 4.2 reveal three reasons why the data-specific policy π̂ can differ from

the population policy π∗. First, as captured via the Rademacher complexity term, even if the

outcome model, propensity score model, and nuisance classifiers were all known, π̂ could simply

over fit to noisy data. Fortunately, we can choose the complexity of Π and often prefer a relatively

simple policy class for its interpretability and transparency. The results above will be relative to

the best possible policy in the selected policy class. Thus, we could control this by limiting the

complexity of our search space. For example, if the policy class Π has a finite VC dimension ν,

the Rademacher complexity scales like Rn(Π) = O
(√

ν
n

)
(Wainwright, 2019, §5).

Second, there is error in our estimates of the outcome and propensity score models. However,

following Athey and Wager (2021), using the DR scores protects against this error; only the prod-

uct of the errors enter the bound, which decreases faster than 1/
√
n under typical assumptions.

These two sources of error occur in symmetric policy learning problems. In the symmetric case

when ug = ul (and so π1 = πO = πo), Theorem 4.1 is a special case of the results in Athey and

Wager (2021).

Finally, there is error in the nuisance classifiers, which is particular to our setting.2 For the

2This type of error structure appears in other policy learning settings with partial identification (D’Adamo, 2023).
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minimax loss policy relative to never or always treating, this error is measured by the regret for

δ̂+ : if it correctly classifies cases that are not very close to the decision boundary (i.e. |m(0, x)+

m(1, x)−1| is not near zero), this component will be small. Similarly for the minimax loss policy

relative to the oracle, there are additional terms from the regret of δ̂τ and the excess worst case

expected utility for the minimax loss policies relative to always and never treating.

If we estimate the nuisance classifiers via empirical risk minimization, results from Kitagawa

and Tetenov (2018); Athey and Wager (2021) (and Theorem 4.1 for π̂1 and π̂O) imply that the

regret will primarily be controlled by the complexity of the policy classes we optimize over

for the nuisance classifiers. Unlike for the minimax loss policy class Π, unless the nuisance

classifier class contains the true function, there will be irreducible approximation error in the

misclassification term. Therefore, we might choose more complex classes, in which case the

regret of the nuisance classifiers will primarily control the overall excess expected utility loss.

To analyze the plug-in approach, we use a different characterization of the complexity of the

learning problem: the proportion of cases that are close to the decision boundary. Focusing on

the nuisance classifier δ+, we follow Audibert and Tsybakov (2007) and characterize this via the

following margin condition.

Assumption 2 (Margin condition). There exists an α > 0 and a constant C such that for any
t ≥ 0, Pr(|m(1, X) +m(0, X)− 1| ≤ t) ≤ Ctα.

The margin parameter α determines how many cases are allowed to be close to the boundary,

with a larger value leading to a stronger assumption that fewer cases are close; e.g. if X has a

bounded density, then α ≥ 1. Note that the margin condition also leads to faster convergence

rates for empirical risk minimization approaches, provided the policy class contains the true

classifier. See Audibert and Tsybakov (2007) for further discussion. Under this margin condition,

we can further bound the regret of the plug-in nuisance classifier R+(δ̂+), leading to the following

corollary to Theorem 4.1.

Corollary 4.3. Under Assumption 2 and the conditions of Theorem 4.1, using the plug-in nui-
sance classifier δ̂+(x) = 1{m̂(1, x) + m̂(0, x) ≥ 1}, the excess worst-case regret of π̂ relative to
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π∗ satisfies

Rsup(π̂, ϖ)−Rsup(π
∗, ϖ) ≤ 2U ×

(
6 + η

η
×
(
2Rn(Π) +

t√
n

)
+ ∥γ̂ − γ∥2

1∑
w=0

∥m̂(w, ·)−m(w, ·)∥2

)

+ (ug − ul)×
(
21+αC∥m̂−m∥1+α

∞ +
t

2
√
n

)
,

with probability at least 1− 2 exp
(
− t2

2

)
, where ∥m̂−m∥∞ ≡ supw,x |m̂(w, x)−m(w, x)|, and

U is a constant depending on the utility values.

With the plug-in nuisance classifier, R(δ̂+) is controlled by the error in the outcome model;

however for α > 0 this error will be raised to a higher power, leading to a faster rate. In Ap-

pendix H, we show an analogous result for the minimax policy relative to the oracle using plug-ins

for all nuisance classifiers. See D’Adamo (2023) for an application of these techniques for pol-

icy learning in a different partial identification setting, and Kallus (2022) for an application to

estimate bounds on Pr(Y (1) < Y (0)).

Finally, although the minimax loss policies we consider are designed to minimize the worst-

case expected utility loss, in some cases it may be possible that the true, unidentifiable expected

utility loss may also be small. In Appendix E, we conduct a brief simulation study to inspect how

the misclassification rates and the true expected utility loss behave in finite samples.

5 Application to Right Heart Catheterization

We now apply the proposed methodology to a particular decision problem: whether or not to

use Right Heart Catheterization (RHC) in a clinical setting. RHC is a diagnostic tool where a

catheter is inserted into the pulmonary artery. In a controversial observational study, Connors

et al. (1996) found that RHC led to an increase in mortality on average. RHC, however, can lead

to life-saving treatment for some patients. In this section, we will use the data from Connors

et al. (1996) to learn policies for using RHC for certain patients, inspecting how asymmetry in

the policy maker’s utility function can lead to different data driven decision-making processes.
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5.1 Data and setup

The data from Connors et al. (1996) include n = 5, 735 ICU patients, 2,184 of whom had RHC

applied. We will code the outcome Y (d) = 1 as survival by thirty days. In this case, the utility

value ug represents the utility gain in saving a patient’s life under RHC who would otherwise

die without RHC, and ul represents the cost of RHC leading to the death of a patient who would

otherwise survive. In this study, RHC use was not experimentally randomized and so we will be

relying on Assumption 1, using the same set of socioeconomic and health characteristics as those

used by Hirano and Imbens (2001) in their propensity score-based analysis.

Throughout, we will use the estimated doubly robust score Γ̂dr
w . To do so, we need estimates

of the conditional expectation function m(w, ·) and the propensity score d(·). We use a three-fold

cross-fitting procedure to estimate these conditional expectations that we detail in Appendix F.1.

With the combined DR scores, we estimate that RHC leads to an overall increase in 30-day

mortality by 4.5 percentage points, with an estimated standard error of 1.2 percentage points.

This result is consistent with the findings of other existing analyses.

To fit each of these models, we use the full set of socioeconomic and health characteristics

in the data. We will consider, however, decision rules that only use a subset of the covariates

V ⊂ X . As we outline in Appendix F.2, Theorem 3.1 implies that the worst-case utility loss will

involve nuisance classifiers based on the covariates V , using mV(w, v) ≡ E[Y (w) | V = v], the

expected potential outcome given only the covariates V . To adjust for confounding, however,

we still require the DR-scores using the full set of covariates. To construct plug-in estimates of

the nuisance classifiers, we use a variant of the DR-learner (Kennedy, 2022), regressing the DR

scores Γ̂dr
w on the covariates V using gradient boosted decision stumps.

5.2 Threshold decision rules with two variables

We begin by considering decision rules that only use two clinical variables: the estimated prob-

ability of surviving two months and whether the patient has a Do-Not-Resuscitate (DNR) order.
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(b) Relative to oracle policy

Figure 2: Minimax threshold decision rules relative to (a) using RHC for all patients or no patients
and (b) the oracle policy as ul varies and ug = 1 using two variables: the estimated probability
of survival and whether a patient has a Do-Not-Resuscitate (DNR) order. The rules assign RHC
if the estimated probability of survival is below the threshold. The results are shown separately
for patients with (right) and without (left) an DNR order. The dashed line and shaded area are
the smoothed estimate of the conditional average treatment effect and 95% confidence interval,
respectively.

Throughout we will use threshold decision rules that assign RHC via a cutoff on the estimated

probability of surviving two months, using separate thresholds for DNR and non-DNR patients.

First, we consider minimizing the worst-case expected utility loss relative to using RHC for

all patients or never using RHC. We estimate the nuisance classifier classifier δ̂+ via the plug-in

approach (Appendix Figure G.1 shows the resulting classifier). We then create estimates of the

weighting and cost functions ĉ10(·), ĉ11(·), ĉ1(·) and solve Eqn (10) to estimate the minimax policy

π̂1 relative to never using RHC (when ug < ul) and always using RHC (when ug ≥ ul). We set

ug = 1 and vary ul ∈ [0.5, 2] so that the utility loss from a harmful treatment moves between half

and twice as large as the utility loss from failing to give useful treatment.

Figure 2a shows the resulting decision rules for patients with (right) and without (left) a DNR

order. We also estimate the CATE conditioned on the estimated probability of survival and DNR

status with the DR-learner using kernel smoothing (Kennedy, 2022). Note that the estimated

CATE is positive for non-DNR patients with less than a 50% or greater than 80% probability of

survival. Because we restrict to a single threshold, in the symmetric case, this leads to a decision
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rule that applies a threshold of 50% for non-DNR patients, while never assigning RHC to DNR

patients. As the utility gain in saving a life becomes greater than the cost of causing death, the

estimated threshold increases, leading to a decision rule that uses RHC for non-DNR patients

with a higher estimated probability of surviving. Eventually the asymmetry is so large in favor

of prioritizing useful treatment that almost all non-DNR patients and most DNR patients would

be given RHC, even though the CATE is negative. Conversely, as avoiding harm becomes more

important, the decision threshold lowers, assigning RHC for fewer and fewer patients until no

patients would receive it.

Next, we consider finding the minimax regret policy relative to the oracle π̂o, using plug-in

estimates of the classifiers δ̂+, δ̂τ , π̂O, and π̂1.3 Figure 2b shows the decision functions. Similar

to the minimax loss policy relative to always or never using RHC, as ul decreases the threshold

for non-DNR patients increases and as ul increases the threshold decreases. Even in the extreme

case with ul = 0.5, however, DNR patients are not assigned RHC. When ul = 2, DNR patients

with a low probability of survival are still assigned RHC. Mirroring our discussion in Section 3.3,

measuring regret relative to the best possible policy leads to a less aggressive decision rule than

measuring expected utility loss relative to always using RHC.

5.3 Decision trees with several clinical variables

Next we move to decision rules with several clinical variables. Recall that Theorem 3.1 shows

how to cast the minimax problem as a weighted policy learning problem; so we can find policies

from data by solving Eqn (10) using off-the-shelf policy optimization solvers. Here, we focus on

learning depth-3 decision trees, using the policytree package (Sverdrup et al., 2020).

Because finding the optimal decision tree scales super-linearly with the number of covariates,

we first select variables from the set of clinical covariates 4 by fitting a CATE model given the

3Note that we use plug-ins for π̂O and π̂1 rather than the simple threshold decision rules above, to try to capture
the best possible unconstrained classifiers rather than the best possible constrained ones.

4Of the 66 covariates, 56 are clinical variables while the remaining are socioeconomic variables important to
controlling for confounding. See Hirano and Imbens (2001), Table 1, for a full list of covariates.
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Figure 3: Percent of patients assigned RHC under minimax decision rules relative to (a) always or
never using RHC and (b) the oracle policy, with ul ∈ [0.5, 2] and ug = 1. The line is a smoothed
fit. In both panels, the symmetric policy is highlighted in red.

clinical covariates using the DR-learner with random forest regression. We then measure variable

importance as the proportion of times a covariate is split on in the forest, weighted by the node

depth, using the grf package, and select the top 10 most important covariates. See Appendix

Figure G.2 for the variable importance measures for all clinical covariates. As before, we consider

estimating minimax loss policies relative to always or never using RHC as well as the minimax

regret policy relative to the oracle, as the utility asymmetry changes with ug = 1 and ul ∈ [0.5, 2].

We again use plug-in estimates for the nuisance classifiers with the 10 selected covariates.

Figure 3 shows the percent of patients assigned RHC under the different decision rules. As

we move away from the symmetric case towards prioritizing using RHC for patients that will

benefit from it, the minimax loss policies relative to always using RHC and to the oracle assign

more patients to RHC. In the other direction, as we increase ul relative to ug and so seek to

prevent harming patients, the minimax loss policies relative to never using RHC and the oracle

assign fewer patients RHC. However, the minimax policy relative to the oracle is less extreme,

consistent with the two-covariate case in Figure 2 and our discussion in Section 3.3.2.
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Figure 4: Upper bounds on the proportion of patients that do not receive a useful treatment —
the false negative rate — and the proportion of patients given a harmful treatment — the false
positive rate — for minimax depth-3 tree policies relative to always or never using RHC, as ul

varies in [0.5, 2] and ug = 1. The red point is the symmetric depth-3 tree policy.

We can measure the impact of these policies in terms of directly interpretable patient out-

comes rather than the expected utility loss, by inspecting (a) the worst-case proportion of patients

that are given a harmful treatment; (b) the worst-case proportion of patients that are failed to be

given a useful treatment; and (c) the overall expected mortality. Following the argument in Sec-

tion 3, we can find upper bounds on the first two proportions (presented in Appendix H), and use

the DR scores Γ̂dr
w and the plug-in classifier δ̂+ to get plug-in estimates of them.

Figure 4 shows the worst-case proportion of patients for whom π fails to give a useful treat-

ment (y-axis) versus the worst-case proportion for whom π gives a harmful treatment (x-axis) as

we vary ul ∈ [0.5, 2]. We observe the trade-off between these two types of errors, in the worst-

case. If π treats almost no one, in the worst-case almost no patients receive a harmful treatment,

but π could be failing to help up to 25% of patients. Conversely, if π treats almost everyone, then

π necessarily treats almost everyone for whom it is helpful, but could be providing a harmful

treatment for up to 30% of patients. Figure 4 shows the intermediate points between these two

extreme scenarios, corresponding to a Pareto frontier between the errors in the worst case.
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We can also see the impact on overall mortality along the frontier. Appendix Figure G.3 plots

the estimated expected mortality under each policy against the worst-case proportion of patients

for whom π fails to give a useful treatment or gives a harmful treatment as we vary ul ∈ [0.5, 2].

At one extreme, the policy that uses RHC for a large number of patients has the highest expected

mortality, because on average RHC is harmful, but the upper bound guarantees that it fails to give

a useful treatment in almost no cases. The symmetric policy is at the other end of this tradeoff,

with a lower expected mortality but potentially failing to use RHC when it is useful for over 18%

of patients. On the other extreme, the policy that rarely uses RHC has a lower expected mortality

than always using RHC, but a higher one than the symmetric policy. While the symmetric policy

reduces mortality, up to 6% of patients will receive RHC even though it is harmful for them.

6 Discussion

In this paper, we developed a general policy learning framework that allows for asymmetric

counterfactual utilities, reflecting common ethical principles including the Hippocratic oath. The

asymmetry of utility functions leads to the unidentifiability of expected utilities. We addressed

this problem by employing a partial identification approach and then finding a policy that mini-

mizes the maximum expected utility loss relative to a particular policy. We illustrated this frame-

work by reanalyzing the study of Right Heart Catheterization, finding that the minimax optimal

policy varies substantially with the asymmetry in the utility and choice of reference policy.

There are several avenues for future research. First, the optimization problem in Eqn (5) is

a form of distributionally robust optimization (see Bertsimas et al., 2011, for a review). Distri-

butionally robust procedures have been used for risk minimization and policy learning, often by

assuming that the true, unknown underlying distribution is close to some known reference distri-

bution. (see e.g., Duchi and Namkoong, 2021; Kallus and Zhou, 2021; Bertsimas et al., 2023).

In contrast, Eqn (5) considers all potential joint distributions between the potential outcomes—

i.e., all potential principal scores—that agree with the point-identifiable marginal distributions,
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without making additional assumptions. A direction for future work is to explicitly encode dis-

tributional assumptions. For example, we could treat the case where the potential outcomes are

independent as a reference distribution, and assume that the true joint distribution is close to it.

Second, we have restricted our attention to binary outcomes and binary treatments. However,

many decision problems involve multiple potential actions and categorical or continuous out-

comes. This leads to more principal strata and potential asymmetries in the utility function. We

briefly discuss extensions to, and difficulties with, the continuous outcome case in Appendix I,

and leave a more thorough analysis to future work. Third, we may consider decision problems

with utility functions that also depend on other post-treatment variables or mediators, leading to

a different principal stratification structure. Finally, we can consider further constraints that en-

code notions of fairness, such as the concept of principal fairness that is based on on the principal

strata (Imai and Jiang, 2023).
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Supplement to “Policy Learning with Asymmetric Counter-
factual Utilities”

A Constrained optimization formulation
While we have arrived at the objective defined in Eqn (2) through a utility-based framework, we
can also characterize this decision problem in the following constrained form,

min
π

Pr(Y (π(X)) < Y (1))

subject to Pr(Y (π(X)) < Y (0)) ≤ δ,

E[π(X)] ≤ B,

(A.1)

where Pr(Y (π(X)) < Y (0)) = Pr(Y (1) = 0, Y (0) = 1, π(X) = 1) and Pr(Y (π(X)) <

Y (1)) = Pr(Y (1) = 1, Y (0) = 0, π(X) = 0) represent the probabilities that policy π gives
a harmful treatment or fails to give a useful treatment for a randomly selected member of the
population, respectively.

In this formulation, the goal is to find a policy π that minimizes the expected proportion of
false negatives — failing to give a useful treatment — subject to a constraint on the expected
proportion of false positives — providing a harmful treatment — and the treatment budget —
the proportion of units treated. Thus, the decision problem given in Eqn (A.1) allows the policy
maker to explicitly state their preferences via the constraint on the number of false positives and
the budget, rather than implicitly through the utility function in Re01(π,ϖ). It is also possible to
swap the constraints and the objective to minimize the proportion of false positives subject to a
constraint on the proportion of false negatives. We can also interpret Eqn (A.1) through the lens
of multiple testing, for each unit i we have a null hypothesis H0i : Yi(1) < Yi(0), i.e. that unit i
is harmed by treatment. We can view the policy π(Xi) as determining whether to reject H0i or
not. Then, the constraint on the proportion of false positives in Eqn (A.1) is a scaling of the false
detection rate, where the budget constraint limits the number of rejections, and the objective is a
measure of the average power under the alternative H1i : Yi(1) > Yi(0).

However, note that Pr(Y (π(X)) < Y (0)) = E[π(X)e01(X)] and Pr(Y (π(X)) < Y (1)) =

E[(1 − π(X))(τ (x) + e01(X))]. Thus, we can view the expected utility loss Re01(π,ϖ) for a
constant comparison policy — either always or never providing treatment — as a Lagrangian
relaxation of the decision problem defined in Eqn (A.1), where some choice of the false-positive
constraint δ and budget B will correspond to a particular value of the utility ratio ug−ul

ug
and cost

ratio c
ug

. This is in contrast to the regret relative to the oracle policy that maximizes the true value,
which involves unidentifiable terms in the relative weights on τ(x) and e01(x), so it cannot be
written as a Lagrangian relaxation of Eqn (A.1).
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B Connection to maximin policies
Under the maximin approach, we find a policy π that maximizes the worst-case expected utility.
In this appendix we connect the minimax loss policies relative to never and always treating to
maximin policies under particular choices of the utility. To do so, we need to specify the utilities
under no treatment, u(0; y1, y0). We consider two cases.

First, say that u(0; y1, y0) = 0 for all principal strata y1, y0. In that case, the expected utility
is

V (π) = E [π(X) {ugτ(X) + (ug − ul)e01(X)− c}] = −Re(π, πO).

Therefore the maximin policy is equivalent to the minimax loss policy relative to never treating,
π∗
O

.
Alternatively, say that the utility function under no treatment mirrors that under treatment,

i.e.,
u(0; 0, 0) = u(0; 1, 1) = 0, u(0; 0, 1) = ul, u(0; 1, 0) = −ug.

In this case, the expected utility is

V (π) = E [(π(X)− 1) {ugτ(X) + (ug − ul)e01(X)− c}]− c = −Re(π, π1)− c.

So, the maximin policy is equivalent to the minimax loss policy relative to always treating, π∗
1
.

C Algorithms for learning minimax loss policies when esti-
mating nuisance functions via empirical risk minimization

Algorithm 1 Estimated minimax policy π̂ relative to the always-treat policy π1 (when ug ≥ ul)
and the never-treat policy πO (when ug < ul)
Input: Policy classes Π and ∆+

Output: Estimated minimax policy π̂ relative to π1 or πO

1: Find δ̂+ by solving

min
δ∈∆+

− 1

n

n∑
i=1

δ(Xi)
{
Γ̂1(Xi, Di, Yi) + Γ̂0(Xi, Di, Yi)− 1

}
.

2: Compute weighting and cost functions

ĉϖ1 (x) = ug + δ̂+(x)(ul − ug), ĉ
ϖ
0 (x) = −ul − δ̂+(x)(ug − ul) and ĉϖ(x) = δ̂+(x)(ug − ul).

3: Find a policy π̂ ∈ argmin
π∈Π

R̂sup(π,ϖ).
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Algorithm 2 Empirical minimax policy π̂ relative to the oracle policy πo

Input: Policy classes Π, Π′, ∆+, and ∆τ

Output: Empirical minimax policy π̂ relative to the oracle πo

1: Find δ̂+ by solving

min
δ∈∆+

− 1

n

n∑
i=1

δ(Xi)
{
Γ̂1(Xi, Di, Yi) + Γ̂0(Xi, Di, Yi)− 1

}
.

2: if ug ≥ ul then
3: Find π̂1 via Algorithm 1 with policy class Π′.
4: Find π̂O by solving

min
π∈Π′

− 1

n

n∑
i=1

π(Xi)
[
ug

{
Γ̂1(Xi, Di, Yi)− Γ̂0(Xi, Di, Yi)

}
− c
]
.

5: else
6: Find π̂O via Algorithm 1 with policy class Π′.
7: Find π̂1 by solving

min
π∈Π′

− 1

n

n∑
i=1

π(Xi)
[
ug

{
Γ̂1(Xi, Di, Yi)− Γ̂0(Xi, Di, Yi)

}
− c
]
.

8: end if
9: Find δ̂τ by solving

min
δ∈∆τ

− 1

n

n∑
i=1

δ(Xi)
{
Γ̂1(Xi, Di, Yi)− Γ̂0(Xi, Di, Yi)

}
.

10: Compute weighting and cost functions ĉπo

1 (x), ĉπ
o

0 (x), ĉπ
o
(x) via Theorem 3.1.

11: Find the empirical minimax policy π̂ ∈ argmin
π∈Π

R̂sup(π, π
o).

D Asymmetric utilities based on observed outcomes
Although it is possible to construct asymmetric utilities without relying on principal strata (Babii
et al., 2021), doing so places additional restrictions on the structure of utilities. Consider the
following utility function based on observed outcomes alone, u(d, Y (d)) = u11dYi(d)+u10d{1−
Yi(d)}+ u01(1− d)Y (d) + u00(1− d){1− Yi(d)}. This utility function includes the interaction
between the decision and the observed outcome. Indeed, for a binary decision and outcome, this
represents the most general utility that could be specified using the observed outcome.

Table D.1 summarizes the utility gain/loss for treating a unit that belongs to each principal
stratum under this setting. With an interaction term, this utility has different utility gains/losses in
principal strata (Y (1) = 1, Y (0) = 0) and (Y (1) = 0, Y (0) = 1), allowing for the asymmetry in
the utilities as required by the Hippocratic principle. This utility, however, still places restrictions

35



Yi(0) = 1 Yi(0) = 0

Yi(1) = 1
Harmless Useful

u11 − u01 u11 − u00

Yi(1) = 0
Harmful Useless

u10 − 2u01 u10 − u01 − u00

Table D.1: Asymmetric utilities gain/loss for treating a unit, u(1, Yi(1))−u(0, Yi(0)) based on the
observed outcomes for each of the principal strata. The utility function is given by u(d, Yi(d)) =
u11dYi(d)+u10d{1−Yi(d)}+u01(1−d)Yi(d)+u00(1−d){1−Yi(d)}. Each cell corresponds to
the principal stratum defined by the values of the two potential outcomes, Yi(1) and Yi(0). Each
entry represents the utility gain/loss of treatment assignment, relative to no treatment, for a unit
that belongs to the corresponding principal stratum.

on its structure. In particular, it requires that the difference between the utility gains in principal
strata (Y (1) = 1, Y (0) = 1) and (Y (1) = 0, Y (0) = 1) is the same as that between the utility
losses in principal strata (Y (1) = 1, Y (0) = 0) and (Y (1) = 0, Y (0) = 0). Therefore, it might
be violated if the difference between harmful and harmless decisions is much greater than that
between useful and useless decisions. Thus, a fully general construction of asymmetric utili-
ties requires the use of principal strata, and defining the utility function based on both potential
outcomes, u(d;Y (1), Y (0)), with utility functions like the one above as a special case.

E Simulation study
As the results in Section 4.2 show, the misclassification rates of the underlying nuisance clas-
sifiers are important in controlling the excess regret due to estimating the weighting and cost
functions that make up the worst-case regret. Additionally, although the minimax policies we
consider are designed to minimize the worst-case regret, in some cases it may be possible that
the true, unidentifiable regret may also be small. To inspect how the misclassification rates and
the true regret behave in finite samples as the sample size increases, we now conduct a brief
simulation study, where we can know the true values of the principal scores ey1y0(x).

We first generate n 1-dimensional i.i.d. covariates Xi ∼ N(0, 2). We then construct log-linear
principal scores as

ey1y0(x) =
exp (αy1y0 + xβy1y0)∑1

y′1=0

∑1
y′0=0 exp

(
αy′1y

′
0
+ xβy′1y

′
0

) ,
where (α00, α10, α01, α11) = (.2, .15, 0, 0), βy1y0 ∼ N(0, 40) for (y1, y0) ∈ {(0, 0), (1, 0), (0, 1)},
and β11 = 0. We then jointly sample potential outcomes {Yi(1), Yi(0)} according to the principal
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Figure E.1: Performance of nuisance classifiers and the minimax optimal policy relative to the
oracle across simulation runs. Panel (a) shows the misclassification rate for the nuisance classi-
fiers δ̂+ (“More likely in (1,1) stratum”) and δ̂τ (“Positive CATE”), as well as the minimax policy
relative to the never-treat policy for ul = 0.833. Panel (b) shows the true regret of the minimax
optimal policy relative to the oracle, in the sample, for ug = 1 and as ul varies between 0.5 and
1.5.

scores at covariate value Xi. In this simulation study, we consider a randomized control trial with
binary treatment Di sampled independently as Bernoulli random variables with probability one
half.

For each value of sample size n ∈ {100, 500, 1000, 5000, 10000}, we draw 1,000 samples
according to the above data generating process. In each simulation run, we find the minimax
optimal policy with respect to the oracle following Algorithm 2 with zero cost c = 0, ug = 1,
and ul varying between 0.6 and 1.4, where the value of ul changes within each simulation run.

We use the IPW scoring function and restrict all policy classes to be the set of linear thresh-
olds, solving the optimization problem exactly by direct search. Figure E.1a shows the average
misclassification rate for the nuisance classifiers δ̂+ and δ̂τ , as well as the misclassification rate
for the the minimax policy relative to always treating for ul = 0.833. As we expect, we see that
these misclassification rates decrease as the sample size increases.

Figure E.1b shows the true regret of the minimax policy relative to the oracle as ul varies.
Since the oracle is the best possible policy, this regret is always positive. The regret does decrease
along with the sample size, reflecting both the decrease in the nuisance misclassification rate and
the decrease in the worst-case excess regret when the nuisance classifiers are known. Notice,
however, that the regret does stop decreasing after a certain point, flattening out at a different
level depending on the asymmetry in the utility function. In highly asymmetric settings where uℓ
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is small the regret is essentially flat. This is due to the fundamental identifiability problem, and
even with infinite data we cannot guarantee that the true regret will be zero. In contrast, in the
symmetric setting the regret continues to decrease as the sample size increases.

F Implementation details for application to RHC

F.1 Details on cross-fitting procedure
In the empirical application to Right Heart Catheterization in Section 5, we use a three-fold cross
fitting procedure to estimate the nuisance functions. We then use the plug-in method to estimate
the nuisance classifiers. Below we present this procedure step-by-step

1. Randomly split the data into three folds.

2. For each fold k = 1, 2, 3, estimate the outcome model m̂−k(·, ·) and d̂−k(·) on the two other
folds via gradient boosted decision stumps.

3. For each unit i, denote k[i] as the fold that it belongs to, then obtain estimates of the out-
come model m̂−k[i](w,Xi), the propensity score d̂−k[i]

w (Xi), and the IP weight γ̂−k[i]
w (Di, Xi).

4. Use these to construct cross-fit estimates of the DR scoring rule:

Γ̂−k[i]
w (Xi, Di, Yi) = m̂−k[i](w,Xi) + {Yi − m̂−k[i](w,Xi)}γ̂−k[i]

w (Xi, Di),

and cross-fit plug-in estimates of the classifiers

δ̂
−k[i]
+ (Xi) = 1{m̂−k[i](1, Xi) + m̂−k[i](0, Xi) ≥ 1},

δ̂−k[i]
τ (Xi) = 1{m̂−k[i](1, Xi)− m̂−k[i](0, Xi) ≥ 0},

π̂
−k[i]
O

(Xi) =


1

{
m̂−k[i](1, Xi)− m̂−k[i](0, Xi) ≥ c

ug

}
, ug ≥ ul,

1

{
m̂−k[i](1, Xi) ≥ ul

ug
m̂−k[i](0, Xi) +

c
ug

}
, ug < ul and δ̂

−k[i]
+ (Xi) = 0,

1

{
m̂−k[i](1, Xi) ≥ ug

ul
m̂−k[i](0, Xi) +

ul−ug+c

ul

}
, ug < ul and δ̂

−k[i]
+ (Xi) = 1,

π̂
−k[i]
1

(Xi) =


1

{
m̂−k[i](1, Xi)− m̂−k[i](0, Xi) ≥ c

ug

}
, ug < ul,

1

{
m̂−k[i](1, Xi) ≥ ul

ug
m̂−k[i](0, Xi) +

c
ug

}
, ug ≥ ul and δ̂

−k[i]
+ (Xi) = 0,

1

{
m̂−k[i](1, Xi) ≥ ug

ul
m̂−k[i](0, Xi) +

ul−ug+c

ul

}
, ug ≥ ul and δ̂

−k[i]
+ (Xi) = 1.

Then plug in the cross-fit classifiers into the formulas in Appendix H to create cross-fit
estimates of ĉ−k[i]ϖ(Xi).

5. Solve Eqn (10) with the cross-fit estimates:

π̂ ∈ argmin
π∈Π

− 1

n

n∑
i=1

π(Xi)
{
ĉ
−k[i]ϖ
1 (Xi)Γ̂

−k[i]
1 (Xi, Di, Yi) + ĉ

−k[i]ϖ
0 (Xi)Γ̂

−k[i]
0 (Xi, Di, Yi) + ĉ−k[i]ϖ(Xi)

}
.
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F.2 Minimax loss policies using a subset of covariates
It is often that case that we wish to construct minimax loss decision rules that only use a subset
of the covariates V ⊂ X . To consider this case, define mV(w, v) ≡ E[Y (w) | V = v] to be the
expected potential outcome conditioned on the subset of covariates v. Applying Theorem 3.1 to
this setting, we get that we can write the worst-case expected utility loss of π relative to ϖ as

Rsup(π,ϖ) = C − E [π(X) {cϖ1V(V )mV(1, V ) + cϖ0V(V )mV(0, V ) + cϖV (V )}] ,

where the weighting and cost functions cϖ1V(·), cϖ0V(·), cϖV (·) depend on the nuisance classifiers
given only the subset of the covariates V , i.e.

δ+V(v) = 1{mV(1, v) +mV(0, v) ≥ 1},

δτV(v) = 1{mV(1, v)−mV(0, v) ≥ 0},

π∗
OV(v) =


1

{
mV(1, v)−mV(0, v) ≥ c

ug

}
, ug ≥ ul,

1

{
mV(1, v) ≥ ul

ug
mV(0, v) +

c
ug

}
, ug < ul and δ+V(v) = 0,

1

{
mV(1, v) ≥ ug

ul
mV(0, v) +

ul−ug+c

ul

}
, ug < ul and δ+V(v) = 1,

π∗
1V(v) =


1

{
mV(1, v)−mV(0, v) ≥ c

ug

}
, ug < ul,

1

{
mV(1, v) ≥ ul

ug
mV(0, v) +

c
ug

}
, ug ≥ ul and δ+V(v) = 0,

1

{
mV(1, v) ≥ ug

ul
mV(0, v) +

ul−ug+c

ul

}
, ug ≥ ul and δ+V(v) = 1.

.

However, note that in order to use observable data, we must account for confounding, since in
general mV(w, v) ̸= E(Y | V = v,W = w) when V is a subset of X . We can however, still
use the IPW or DR scoring functions since mV(w, v) = E[Γw(X,D, Y ) | V = v]. So we can
write the worst-case expected utility loss in terms of the scoring functions—where we condition
on X—and the nuisance classifiers only conditioning on the subset of covariates V :

Rsup(π,ϖ) = C − E [π(V ) {cϖ1V(V )Γ1(X,D, Y ) + cϖ0V(V )Γ0(X,D, Y ) + cVϖ(V )}] ,

Constructing plug-in estimates of the nuisance classifiers involves estimating mV(w, v) =

E[Γw(X,D, Y ) | V = v], which we can do by regressing the estimated DR scores on the subset
of the covariates V , a variant of the DR-learner (Kennedy, 2022).

Overall, this leads to the following steps:

1. Estimate the DR score Γ̂w(x, d, y) using all covariates X to account for confounding.

2. Estimate the expected potential outcomes given the subset of covariates V , m̂V(w, v) using
the DR-learner and regressing the estimates Γ̂w(Xi, Di, Yi) on V .

3. Form plug in estimates of the nuisance classifiers, e.g. δ̂τ (v) = 1{m̂V(1, v) − m̂V(0, v)}
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and δ̂+(v) = 1{m̂V(1, v) + m̂V(0, v)− 1 ≥ 0}.

4. Get plug-in estimates of the weighting and cost functions ĉϖ1V(Vi), ĉ
ϖ
0V(Vi), ĉ

ϖ
V (Vi), using

the estimates of the nuisance classifiers.

5. Find the policy π̂ : V → {0, 1} by solving

min
π∈Π

− 1

n

n∑
i=1

π(V )
{
ĉϖ1V(V )Γ̂1(X,D, Y ) + ĉϖ0V(V )Γ̂0(X,D, Y ) + ĉVϖ(V )

}
.

Finally, note that as in Section F.1 above, we can use cross-fit estimates here, where for each
fold k, both Γ̂−k

w and m̂−k
V are fit on data not in fold k. In principle we could do a multi-stage

cross-fitting procedure, where for each fold k, we further break up the fold into sub-folds and
cross-fit m̂−k

V within the fold k. We opt to use a simpler cross-fitting procedure here, noting that
it may impact the quality of the DR-learner estimate m̂−k

V .
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Figure G.1: Plug-in estimate of the decision rule δ̂+(v) to classify whether mV(1, v)+mV(0, x) ≥
1 using the estimated probability of survival and DNR status.
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Figure G.2: Variable importance for estimated CATE.
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Figure G.3: Estimated expected mortality versus the worst case proportion of cases where the
policy fails to give a useful treatment (left panel) and where the policy gives a harmful treatment
(right panel), for linear minimax policies relative to never using RHC, as ul varies in [0.65, 1.2]
and ug = 1. The red point is the symmetric linear policy.
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H Additional results
Full statement of Theorem 3.1 Let π : X → {0, 1} be a deterministic policy. For comparison
policy ϖ ∈ {πO, π1}, the worst-case expected utility loss of π relative to ϖ is

Rsup(π,ϖ) = C − E [π(X) {cϖ1 (X)m(1, X) + cϖ0 (X)m(0, X) + cϖ(X)}]
= C − E [π(X) {cϖ1 (X)Γ1(X,D, Y ) + cϖ0 (X)Γ0(X,D, Y ) + cϖ(X)}] ,

(H.1)

where C is a constant that does not depend on π. For ug ≥ ul,

cπ
O

1 (x) = ul + (ug − ul)δτ (x) cπ
O

0 (x) = −ul − (ug − ul)δτ (x) cπ
O

(x) = −c,

cπ
1

1 (x) = ug + δ+(x)(ul − ug) cπ
1

0 (x) = −ul − δ+(x)(ug − ul) cπ
1

(x) = δ+(x)(ug − ul)− c,

and for ug < ul,

cπ
O

1 (x) = ug + δ+(x)(ul − ug) cπ
O

0 (x) = −ul − δ+(x)(ug − ul) cπ
O

(x) = δ+(x)(ug − ul)− c,

cπ
1

1 (x) = ul + (ug − ul)δτ (x) cπ
1

0 (x) = −ul − (ug − ul)δτ (x) cπ
1

(x) = −c.

Define π∗
O

≡ argminπ Rsup(π, π
O) and π∗

1
≡ argminπ Rsup(π, π

1) as the minimax expected
utility loss solutions relative to the never-treat policy and always-treat policy, respectively. The
worst-case regret relative to the oracle policy πo is of the form in Eqn (H.1) where for ug ≥ ul, cπ

o

1 (x)
cπ

o

0 (x)
cπ

o
(x)

 =(1− π∗
1
(x))

 ul + (ug − ul)δτ (x)
−ul − (ug − ul)δτ (x)

−c

+ π∗
O
(x)

 ug − (ug − ul)δ+(x)
−ul − (ug − ul)δ+(x)
(ug − ul)δ+(x)− c


+ (1− π∗

O
(x))π∗

1
(x)

 ul + ug + (ug − ul)(δτ (x)− δ+(x))
−2ul − (ug − ul)(δτ (x) + δ+(x))

(ug − ul)δ+(x)− 2c

 ,

and for ug < ul, cπ
o

1 (x)
cπ

o

0 (x)
cπ

o
(x)

 =(1− π∗
1
(x))

 ug − (ug − ul)δ+(x)
−ul − (ug − ul)δ+(x)
(ug − ul)δ+(x)− c

+ π∗
O
(x)

 ul + (ug − ul)δτ (x)
−ul − (ug − ul)δτ (x)

−c


+ (1− π∗

O
(x))π∗

1
(x)

 ul + ug + (ug − ul)(δτ (x)− δ+(x))
−2ul − (ug − ul)(δτ (x) + δ+(x))

(ug − ul)δ+(x)− 2c

 .

Corollary H.1 (Minimax regret relative to the always-treat policy). If ug ≥ ul, the minimax
regret solution to Equation (5), π∗

1
≡ argminπ Rsup(π, π

1), is

π∗
1
(x) =

 1

{
m(1, x) ≥ ul

ug
m(0, x) + c

ug

}
, δ+(x) = 0,

1

{
m(1, x) ≥ ug

ul
m(0, x) + ul−ug+c

ul

}
, δ+(x) = 1.
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Otherwise, if ug < ul, it is given by the symmetric policy,

π∗
1
(x) = 1

{
τ(x) ≥ c

ug

}
= πsymm(x).

Assumption H.1. There exists an α > 0 and a constant C such that for any t ≥ 0,

(a) Pr(|m(1, X) +m(0, X)− 1| ≤ t) ≤ Ctα.

(b) Pr(|m(1, X)−m(0, X)| ≤ t) ≤ Ctα.

(c) For ug > ul and c,

Pr (|{ug − (ug − ul)δ+(X)}m(1, X)− {ul + (ug − ul)δ+(X)}m(0, X) + (ug − ul)δ+(X)− c| ≤ t) ≤ Ctα.

(d) For ug > ul and c,

Pr(|{ul + (ug − ul)δτ (X)}τ(X)− c| ≤ t) ≤ Ctα.

Theorem H.2. Let ug ≥ ul, and define

L̂b(x) = {ul + δ̂τ (x)(ug − ul)}(m̂(1, x)− m̂(0, x))− c,

Ûb(x) = {ug − (ug − ul)δ̂+(x)}m̂(1, x)− {ul + (ug − ul)δ̂+(x)}m̂(0, x) + (ug − ul)δ̂+(x)− c,

and let π̂plug
O

(x) = 1{L̂b(x) ≥ 0} and π̂plug
1

(x) = 1{Ûb(x) ≥ 0} be the plug-in estimates of the
minimax optimal policies relative to never or always treating. Under Assumptions H.1(b) and
H.1(d), the excess worst case regret for π̂plug

O
relative to π∗

O
is

Rsup(π̂
plug
O

, πO)−Rsup(π
∗
O
, πO) ≤ 21+αCU∥m− m̂∥1+α

∞ ,

where U is a constant depending on the utility values, α, and C. Under Assumptions 2 and
H.1(c), the excess worst case regret for π̂plug

1
relative to π∗

1
is

Rsup(π̂
plug
1

, π1)−Rsup(π
∗
O
, πO) ≤ 21+αCU∥m− m̂∥1+α

∞ ,

where U is a constant depending on the utility values, α, and C.

Corollary H.3. Let ug ≥ ul, π̂o be a solution to Equation (10) with alternative policy ϖ = πo

and with nuisance functions m̂ and d̂ fit on a separate sample and nuisance classifiers δ̂+(x) =

1{m(1, x) + m(0, x) − 1 ≥ 0}, δ̂τ (m(1, x) − m(0, x) ≥ 0), π̂plug
O

, and π̂plug
1

, and let π∗
o be a

solution to Equation (5), with alternative policy ϖ = πo. Under the strict overlap condition in
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Assumption 1, the excess worst-case regret of π̂o relative to π∗
o satisfies

Rsup(π̂0, π
o)−Rsup(π

∗
o , π

o) ≤ 2U1 ×
(
6 + η

η
×
(
2Rn(Π) +

t√
n

)
+ ∥m̂−m∥2∥γ̂ − γ∥2

)
+ 22+αCU2∥m̂−m∥1+α

∞ + (ug − ul)
t

2
√
n
,

with probability at least 1− 2 exp
(
− t2

2

)
, where U1 is a constant depending on the utility values,

and U2 is a constant depending on the utility values, α, and C.

Upper bounds on worst-case proportion of units given a harmful treatment or are failed to
be given a useful treatment.
First, note that

Pr(Y (π(X)) < Y (0)) = Pr(π(X) = 1, Y (0) = 1, Y (1) = 0) = E [π(X)e01(X)] ,

Pr(Y (π(X)) < Y (1)) = Pr(π(X) = 0, Y (0) = 0, Y (1) = 1) = E [(1− π(X))(τ (X) + e01(X))] .

Plugging in the upper and lower bounds on e01(X) in Section 3, we get the following upper
bounds:

sup
e01(x)∈[L(x),U(x)]

Pr(Y (π(X)) < Y (0)) = E (π(X) [m(0, X) + δ+(X) {1−m(1, X)−m(0, X)}]) ,

sup
e01(x)∈[L(x),U(x)]

Pr(Y (π(X)) < Y (1)) = E ({1− π(X)} [m(1, X) + δ+(X) {1−m(1, X)−m(0, X)}]) .

I Continuous outcomes
Here we briefly consider extending our framework to the case with a binary decision D ∈ {0, 1}
but continuous potential outcomes (Y (0), Y (1)) ∈ R2. We define the utility function u(d; y1, y0)

as before and write the value function as

V (π) = E [u(0;Y (1), Y (0)) + π(X)× (u(1;Y (1), Y (0))− u(0;Y (1), Y (0)))] .

Defining ey1y0(x) as the conditional joint density of the potential outcomes given X = x, the
expected utility loss relative to ϖ is

V (ϖ)− V (π) = E
[
π(X)

∫
y1

∫
y0

(u(1; y1, y0)− u(0; y1, y0))ey1y0(x)dy0dy1

]
.

With continuous outcomes, there are many potential ways to choose the utility function. One
option is a utility function such that u(1; y1, y0) − u(0; y1, y0) = y1 − y0 − uℓ1{y1 < y0}.
This is analogous to the utility function with binary outcomes, with an explicit utility gain/loss
associated with a harmful (Y (1) < Y (0)) or useful (Y (1) > Y (0)) treatment. Defining the
conditional probability of harm as h(x) = Pr(Y (1) < Y (0) | X = x), we can write the expected
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utility loss as
V (ϖ)− V (π) = E [π(X){τ(x)− uℓh(x)}] .

As in the binary case, we can use sharp bounds on the distribution of individual treatment
effects (Fan and Park, 2010), h(x) ∈ [Lh(x), Uh(x)], where

Lh(x) = max{sup
y
{F1(y | x)− F0(y | x)}, 0},

Uh(x) = 1 + min{inf
y
{F1(y | x)− F0(y | x)}, 0},

where F1(· | x), F0(· | x) are the marginal CDFs conditional on X = x for the potential outcomes
under treatment and control, respectively. Now we can again define the minimax expected utility
loss policy as the policy that solves

min
π

max
h(x)∈[L(x),U(x)]

E [π(X){τ(x)− ulh(x)}] .

While this again leads to a point-identifiable objective, we note two ways in which this prob-
lem is more difficult than with binary outcomes. First, the upper and lower bounds on the prob-
ability of harm involves the conditional CDFs of Y (1) and Y (0). These can be more difficult to
estimate than the conditional expected outcomes. Second, the bounds involve supremums and
infimums over all y ∈ R. This may require a more careful analysis and stronger assumptions in
order to ensure that the default plug-in approach that we suggest for the binary outcome case will
lead to reasonable guarantees on the excess expected utility loss.

J Proofs and derivations

J.1 Main results
Derivation of the expected utility loss First, notice that the expected utility of policy π is

V (π) = E

[
1∑

y1=0

1∑
y0=0

ey1y0(X)u(0; y1, y0)

]
+ E

[
1∑

y1=0

1∑
y0=0

π(X)ey1y0(X) {u(1; y1, y0)− u(0; y1, y0)}

]
︸ ︷︷ ︸

(∗)

.

The second term can be written as

(∗) = E [π(X) {e10(X)(ug − c)− e01(X)(ul + c)− e00(X)c− e11(X)c}]

= E [π(X)) {e10(X)ug − e01(X)ul − c(e10(X) + e01(X) + e00(X) + e11(X))}]

= E [π(X) {(τ(X) + e01(X))ug − e01(X)ul − c}]

= E [π(X) {ugτ(X) + (ug − ul)e01(X)− c}] ,
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where we have used the fact that τ(x) = e10(x)− e01(x). So the expected utility loss of policy π

relative to policy ϖ is

V (ϖ)− V (π) = E [(ϖ(X)− π(X)) {ugτ(X) + (ug − ul)e01(X)− c}] .

Proof of Theorem 3.1. Define b(x) = ugτ(x) + (ug − ul)e01(X)− c, and

Lb(x) = min
e(x)∈[L(x),U(x)]

{ugτ(x) + (ug − ul)e01(X)− c} ,

Ub(x) = max
e(x)∈[L(x),U(x)]

{ugτ(x) + (ug − ul)e01(X)− c} .

Note that the worst-case regret relative to the always and never treat policies are

Rsup(π, π
O) = −E[π(X)Lb(X)],

Rsup(π, π
1) = E[{1− π(X)}Ub(X)] = E[Ub(X)]− E[π(X)Ub(X)].

From this, we can find the unconstrained minimax regret policies

π∗
O
= argmin

π
− E[π(X)Lb(X)] = 1{Lb(x) ≥ 0},

π∗
1
= argmin

π
− E[π(X)Ub(X)] = 1{Ub(x) ≥ 0}.

Now, the oracle policy is πo(x) = 1{b(x) ≥ 0}. So if Lb(x) ≥ 0 ⇔ π∗
O
(x) = 1 then πo(x) = 1

for all possible values of the principal score e01(x). In this case,

max
e(x)∈[L(x),U(x)]

{πo(x)− π(x)}b(x) = {1− π(x)}Ub(x).

Similarly, if Ub(x) < 0 ⇔ π∗
1
(x) = 0 then πo(x) = 0, and

max
e(x)∈[L(x),U(x)]

{πo(x)− π(x)}b(x) = −π(x)Lb(x).

Finally, if Lb(x) < 0 and Ub(x) ≥ 0 (so π∗
O
(x) = 0 and π∗

1
(x) = 1), then the oracle policy can

be either 0 or 1, πo(x) ∈ {0, 1}. Therefore,

max
e(x)∈[L(x),U(x)]

{πo(x)−π(x)}b(x) = max{(1−π(x))Ub(x),−π(x)Lb(x)} = Ub(x)−π(x){Ub(x)+Lb(x)}.

Putting together the pieces, the worst-case regret relative to the oracle is

Rsup(π, π
o) = E([π∗

O
(X) + {1− π∗

O
(X)}π∗

1
(X)]Ub(X))

− E[π(X) {π∗
O
(X)Ub(X) + (1− π∗

1
(X))Lb(X) + (1− π∗

O
(X))π∗

1
(X)(Ub(X) + Lb(X))}],
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and the unconstrained minimizer is

π∗
o = argmin

π
Rsup(π, π

o) =


π∗
1
(x), π∗

O
(x) = 1,

π∗
O
(x), π∗

1
(x) = 0,

1{Ub(x) ≥ −Lb(x)}, π∗
O
(x) = 0, π∗

1
(x) = 1.

Now notice that π∗
O
(x) = 1 ⇔ Lb(x) ≥ 0 ⇒ Ub(x) ≥ 0 ⇔ π∗

1
(x) = 1, and π∗

1
(x) = 0 ⇔

Ub(x) < 0 ⇒ Lb(x) < 0 ⇔ π∗
O
(x) = 0, so we can simplify this to

π∗
o = argmin

π
Rsup(π, π

o) =


1, π∗

O
(x) = 1,

0, π∗
1
(x) = 0,

1{Ub(x) ≥ −Lb(x)}, π∗
O
(x) = 0, π∗

1
(x) = 1.

To complete the proof, we need to compute Lb(x) and Ub(x). First, we begin with the case
where ug ≥ ul. In this case,

Lb(x) = {ul + (ug − ul)δτ (x)}τ(x)− c = {ul + (ug − ul)δτ (x)}m(1, x)− {ul + (ug − ul)δτ (x)}m(0, x)− c,

Ub(x) = {ug − (ug − ul)δ+(x)}m(1, x)− {ul + (ug − ul)δ+(x)}m(0, x) + (ug − ul)δ+(x)− c.

This gives the form of the worst-case regret relative to π1 and πO. For the worst-case regret
relative to the oracle, we collect terms to get cπ

o

1 (x)

cπ
o

0 (x)

cπ
o
(x)

 =


(ul + (ug − ul)δτ (x),−ul − (ug − ul)δτ (x),−c), π∗

1
(x) = 0,

(ug − (ug − ul)δ+(x),−ul − (ug − ul)δ+(x), (ug − ul)δ+(x)− c), π∗
O
(x) = 1,

(ul + ug + (ug − ul)(δτ (x)− δ+(x)),−2ul − (ug − ul)(δτ (x) + δ+(x)), (ug − ul)δ+(x)− 2c), π∗
O
(x) ̸= π∗

1
(x).

Now for the case where ug < ul, the lower and upper bounds switch:

Lb(x) = {ug − (ug − ul)δ+(x)}m(1, x)− {ul + (ug − ul)δ+(x)}m(0, x) + (ug − ul)δ+(x)− c,

Ub(x) = {ul + (ug − ul)δτ (x)}τ(x)− c = {ul + (ug − ul)δτ (x)}m(1, x)− {ul + (ug − ul)δτ (x)}m(0, x)− c.

For the worst-case regret relative to the oracle, we collect terms to get cπ
o

1 (x)

cπ
o

0 (x)

cπ
o
(x)

 =


(ug − (ug − ul)δ+(x),−ul − (ug − ul)δ+(x), (ug − ul)δ+(x)− c), π∗

1
(x) = 0,

(ul + (ug − ul)δτ (x),−ul − (ug − ul)δτ (x),−c), π∗
O
(x) = 1,

(ul + ug + (ug − ul)(δτ (x)− δ+(x)),−2ul − (ug − ul)(δτ (x) + δ+(x)), (ug − ul)δ+(x)− 2c), π∗
O
(x) ̸= π∗

1
(x).

For the Proofs of Theorems 4.1 H.2 and 4.2, we prove the result for the case where ug ≥ ul.
The case where ug < ul follows in the same way, with πO taking the place for π1

Proof of Theorem 4.1. This follows directly from combining Lemmas J.1 and J.2 below via the
union bound.
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Proof of Theorem 4.2. This follows directly from combining Lemmas J.1 and J.3 below via the
union bound.

Proof of Corollary 4.3. This follows by combining Theorem 4.1 and Lemma J.4 below.

Proof of Theorem H.2. This follows from Lemmas J.4 and J.5 below.

Proof of Corollary H.3. This follows by combining Theorem 4.2, Theorem H.2, and Lemma J.4
below.

J.2 Auxiliary lemmas

Lemma J.1. Let π̂ be a solution to Equation (10) with nuisance functions m̂ and d̂ fit on a
separate sample, and let π∗ be a solution to Equation (5). Under the strict overlap condition in
Assumption 1, the excess worst-case regret between π̂ and π∗ is bounded by

Rsup(π̂, ϖ)−Rsup(π
∗, ϖ) ≤ U ×

{
6 + η

η
×
(
2Rn(Π) +

t√
n

)
+
∑
w=0,1

∥γ̂w − γw∥2 ∥m̂(w, ·)−m(w, ·)∥2

}
+ sup

π∈Π

∣∣∣R̃(π, ĉ(·),m(·);ϖ)− R̃(π, c(·),m(·);ϖ)
∣∣∣ ,

with probability at least 1− exp
(
− t2

2

)
, where

R̃sup(π, c(·),m(·);ϖ) =
1

n

n∑
i=1

π(Xi) {c1(Xi)m(1, Xi) + c0(Xi)m(0, Xi) + c(Xi)} .

and U is a constant depending on the utility values.

Proof of Lemma J.1. First, note that the excess regret can be decomposed into

Rsup(π̂, ϖ)−Rsup(π
∗, ϖ) = Rsup(π̂, ϖ)− R̂sup(π̂, ϖ) + R̂sup(π̂, ϖ)− R̂sup(π

∗, ϖ)︸ ︷︷ ︸
≤0

+R̂sup(π
∗, ϖ)−Rsup(π

∗, ϖ)

≤ 2 sup
π∈Π

|R̂sup(π,ϖ)−Rsup(π,ϖ)|,

where we have used that π̂ minimizes R̂sup(π
∗, ϖ).

We further decompose R̂sup(π,ϖ)−Rsup(π,ϖ) into

R̂sup(π,ϖ)−Rsup(π,ϖ) = R̂sup(π,ϖ)− R̃(π, ĉ(·),m(·);ϖ) (a)

+ R̃(π, c(·),m(·);ϖ)−Rsup(π,ϖ) (b)

+ R̃(π, ĉ(·),m(·);ϖ)− R̃(π, c(·),m(·);ϖ)
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We will now control terms (a) and (b), following closely the proof of Lemma 4 in Athey and
Wager (2021). First note that we have the decompositions

Γ̂1(X,D, Y )−m(1, X) = m̂(1, X)−m(1, X) +
D

d̂(X)
{Y − m̂(1, X)}

= {m̂(1, X)−m(1, X)} ×
(
1− D

d(X)

)
+

D

d̂(X)
{Y −m(1, X)}

+

(
D

d̂(X)
− D

d(X)

)
× {m(1, X)− m̂(1, X)}

and

Γ̂0(X,D, Y )−m(0, X) = m̂(0, X)−m(0, X) +
1−D

1− d̂(X)
{Y − m̂(0, X)}

= {m̂(0, X)−m(0, X)} ×
(
1− 1−D

1− d(X)

)
+

1−D

1− d̂(X)
{Y −m(0, X)}

+

(
1−D

1− d̂(X)
− 1−D

1− d(X)

)
× {m(0, X)− m̂(0, X)} .

With this, we can compute the expectation of term (a):

E[(a)] = E
[
π(X)

(
ĉ1(X)

{
Γ̂1(X,D, Y )−m(1, X)

}
+ ĉ0(X)

{
Γ̂0(X,D, Y )−m(0, X)

})]
= E

[
π(X)ĉ1(X)

(
D

d̂(X)
− D

d(X)

)
× (m(1, X)− m̂(1, X))

]

+ E

[
π(X)ĉ0(X)

(
1−D

1− d̂(X)
− 1−D

1− d(X)

)
× (m(0, X)− m̂(0, X))

]
,

where we have used the fact that

E
[
π(X)ĉ1(X) (m̂(1, X)−m(1, X))×

(
1− D

d(X)

)]
= 0,

E

[
π(X)ĉ1(X)

D

d̂(X)
{Y −m(1, X)}

]
= 0,

E
[
π(X)ĉ0(X) {m̂(0, X)−m(0, X)} ×

(
1− 1−D

1− d(X)

)]
= 0,

E

[
π(X)ĉ0(X)

1−D

1− d̂(X)
{Y −m(0, X)}

]
= 0,

because ĉ, m̂, and d̂ come from a different sample.

50



The expectation of term (b) is

E[(b)] = E[π(X) {c1(X)m(1, X) + c0(X)m(0, X) + c(X)}]−Rsup(π,ϖ) = 0.

Now define a function f : X → R as

fπ(x, d, y) ≡ π(x)
[
ĉ1(x)

{
Γ̂1(x, d, y)−m(1, x)

}
+ ĉ0(x)

{
Γ̂0(x, d, y)−m(0, x)

}]
+π(x) {c1(x)m(1, x) + c0(x)m(0, x) + c(x)}

and the function class F ≡ {fπ | π ∈ Π} as the set of all functions f as we vary π in Π.
With this notation, we can write the sum of terms (a) and (b) as

(a) + (b) =
1

n

n∑
i=1

fπ(Xi, Di, Yi)−Rsup(π,ϖ),

and from above the expectation of fπ(Xi, Di, Yi) is

E[fπ(X,D, Y )] = Rsup(π,ϖ) + E

[
π(X)ĉ1(X)

(
D

d̂(X)
− D

d(X)

)
× (m(1, X)− m̂(1, X))

]

+ E

[
π(X)ĉ0(X)

(
1−D

1− d̂(X)
− 1−D

1− d(X)

)
× (m(0, X)− m̂(0, X))

]
.

Putting together the pieces, we can write

|(a) + (b)| =

∣∣∣∣∣ 1n
n∑

i=1

fπ(Xi, Di, Yi)−Rsup(π,ϖ)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

fπ(Xi, Di, Yi)− E[fπ(X,D, Y )] + E[fπ(X,D, Y )]−Rsup(π,ϖ)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

fπ(Xi, Di, Yi)− E[fπ(X,D, Y )]

∣∣∣∣∣
+

∣∣∣∣∣E
[
π(X)ĉ1(X)

(
D

d̂(X)
− D

d(X)

)
× (m(1, X)− m̂(1, X))

]∣∣∣∣∣
+

∣∣∣∣∣E
[
π(X)ĉ0(X)

(
1−D

1− d̂(X)
− 1−D

1− d(X)

)
× (m(0, X)− m̂(0, X))

]∣∣∣∣∣ .
Now notice that for ϖ ∈ {πO, π1, πo}, |c1(x)m(1, x) + c0(x)m(0, x) + c(x)|, |c1(x)|, and

|c0(x)| are bounded by some constant U depending on the utilities. From the decompositions
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above, by the strict overlap condition in Assumption 1, and because Yi ∈ {0, 1},∣∣∣Γ̂1(Xi, Di, Yi)−m(1, x)
∣∣∣ ≤ ∣∣∣∣{m̂(1, Xi)−m(1, Xi)} ×

(
1− Di

d(Xi)

)∣∣∣∣
+

∣∣∣∣∣ Di

d̂(Xi)
× {Yi −m(1, Xi)}

∣∣∣∣∣
+

∣∣∣∣∣
(

Di

d(Xi)
− Di

d̂(Xi)

)
× {m̂(1, Xi)−m(1, Xi)}

∣∣∣∣∣
≤ 1− η

η
∥m̂−m∥∞ +

1

η
+

∥∥∥∥1d − 1

d̂

∥∥∥∥
∞
∥m̂−m∥∞

≤ 1− η

η
+

1

η
+

1

η
− 1

1− η

≤ 3

η
.

Similarly,∣∣∣Γ̂0(Xi, Di, Yi)−m(0, x)
∣∣∣ ≤ 1− η

η
∥m̂−m∥∞ +

1

η
+

∥∥∥∥ 1

1− d
− 1

1− d̂

∥∥∥∥
∞
∥m̂−m∥∞ ≤ 3

η
.

This combines to give that for any x, d, y,

|fπ(x, d, y)| ≤ U × 6 + η

η
.

This also shows that the Rademacher complexity of F is:

Rn(F) = 2U × 6 + η

η
×Rn(Π).

So by Wainwright (2019) Theorem 4.2, for any n ≥ 1 and t ≥ 0,

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ 2U × 6 + η

η
×
(
2Rn(Π) +

t√
n

)
,

with probability at least 1− exp
(
− t2

2

)
.

Finally, notice that by the Cauchy-Schwarz inequality,∣∣∣∣∣E
[
π(X)ĉ1(X)

(
D

d̂(X)
− D

d(X)

)
× (m(1, X)− m̂(1, X))

]∣∣∣∣∣
≤ U

√√√√√E

( D

d̂(X)
− D

d(X)

)2
E

[
(m(1, X)− m̂(1, X))2

]
,
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and ∣∣∣∣∣E
[
π(X)ĉ0(X)

(
1−D

1− d̂(X)
− 1−D

1− d(X)

)
× (m(0, X)− m̂(0, X))

]∣∣∣∣∣
≤ U

√√√√√E

( 1−D

1− d̂(X)
− 1−D

1− d(X)

)2
E

[
(m(0, X)− m̂(0, X))2

]
.

Combining these two bounds gives the result.

Lemma J.2. For ug ≥ ul,

sup
π∈Π

∣∣∣R̃sup(π, ĉ,m; π∗
1
)− R̃sup(π, c,m, π∗

1
)
∣∣∣ ≤ (ug − ul)×

(
R+(δ̂+) +

t

2
√
n

)
,

with probability at least 1− e−
t2

2 .

Proof of Lemma J.2. First we have the bound,

R̃sup(π, ĉ,m; π∗
1
)− R̃sup(π, c,m, π∗

1
) =

ug − ul

n

n∑
i=1

π(Xi)
{
δ̂+(Xi)− δ+(Xi)

}
{m(1, Xi) +m(0, Xi)− 1}

≤ ug − ul

n

n∑
i=1

1

{
δ̂+(Xi) ̸= δ+(Xi)

}
|m(1, Xi) +m(0, Xi)− 1| .

Now note that

E
[
1

{
δ̂+(Xi) ̸= δ+(Xi)

}
|m(1, Xi) +m(0, Xi)− 1|

]
= R+(δ̂+)

For each i, since 1

{
δ̂+(Xi) ̸= δ+(Xi)

}
|m(1, Xi) +m(0, Xi)− 1| is bounded between 0

and 1, it is sub-Gaussian with scale parameter 1. Furthermore, they are independent across
i = 1, . . . , n, so by the Hoeffding bound,

Pr

(
1

n

n∑
i=1

1

{
δ̂+(Xi) ̸= δ+(Xi)

}
|m(1, Xi) +m(0, Xi)− 1| ≤ R+(δ̂+) +

t√
n

)
≥ 1−exp

(
−2t2

)
.

Combining this with the deterministic bound above gives the result.

Lemma J.3. For ug ≥ ul,

sup
π∈Π

∣∣∣R̃sup(π, ĉ,m; π∗
o)− R̃sup(π, c,m, π∗

o)
∣∣∣

≤ 2×
{
Rsup(π̂1, π

1)−Rsup(π
∗
1
, π1)

}
+ 2×

{
Rsup(π̂O, π

O)−Rsup(π
∗
O
, πO)

}
+(ug − ul)×

(
R+(δ̂+) + Rτ (δ̂τ ) +

t

2
√
n

)
,
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with probability at least 1− 2e−
t2

2 .

Proof of Lemma J.3. Define

Ľb(x) = {ul + (ug − ul)δ̂τ (x)}m(1, x)− {ul + (ug − ul)δ̂τ (x)}m(0, x)− c,

Ǔb(x) = {ug − (ug − ul)δ̂+(x)}m(1, x)− {ul + (ug − ul)δ̂+(x)}m(0, x) + (ug − ul)δ̂+(x)− c,

Q(x) = π∗
O
(x)Ub(x) + (1− π∗

1
(x))Lb(x) + (1− π∗

O
(x))π∗

1
(x)(Ub(x) + Lb(x)),

Q̃(x) = π̂O(x)Ub(x) + (1− π̂1(x))Lb(x) + (1− π̂O(x))π̂1(x)(Ub(x) + Lb(x)),

Q̌(x) = π̂O(x)Ǔb(x) + (1− π̂1(x))Ľb(x) + (1− π̂O(x))π̂1(x)(Ǔb(x) + Ľb(x)).

With these definitions, we can write∣∣∣R̃sup(π, ĉ,m; π∗
o)− R̃sup(π, c,m, π∗

o)
∣∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

π(X){Q(Xi)− Q̌(Xi)}

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

π(X){Q(Xi)− Q̃(Xi)}+
1

n

n∑
i=1

π(X){Q̃(Xi)− Q̌(Xi)}

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣Q(Xi)− Q̃(Xi)
∣∣∣+ 1

n

n∑
i=1

∣∣∣Q̃(Xi)− Q̌(Xi)
∣∣∣ .

Working with the first term:

Q(x)− Q̃(x) = (π̂1(x)− π∗
1
(x))Ub(x)− (π̂1(x)π̂O(x)− π∗

1
(x)π∗

O
(x))(Ub(x) + Lb(x)) + (π̂O(x)− π∗

O
(x))Ub(x)

= (π̂O(x)− π∗
O
(x))× (−Lb(x)π

∗
1
(x) + (1− π∗

1
(x))Ub(x)) (∗)

+ (π̂1(x)− π∗
1
(x))× (−Lb(x)π̂O(x) + (1− π̂O(x))Ub(x)) (∗∗)

Notice that π∗
1
(x) = 0 ⇔ Ub(x) ≤ 0, since Lb(x) ≤ Ub(x), this implies that when π∗

1
(x) = 0,

|Ub(x)| ≤ |Lb(x)|. Therefore,

|(∗)| ≤ 1{π̂O(x) ̸= π∗
O
(x)}|Lb(x)|.

Similarly, if π∗
O
(x) = 1, then 0 ≤ Lb(x) ≤ Ub(x), so |Lb(x)| ≤ |Ub(x)|. So,

|(∗∗)| ≤ 1{π̂1(x) ̸= π∗
1
(x)}1{π̂O(x) = π̂O(x)}| − Lb(x)π

∗
O
(x) + (1− π∗

O
(x))Ub(x)|

+ 1{π̂O(x) ̸= π∗
O
(x)}1{π̂1(x) ̸= π∗

1
(x)}| − π̂O(x)Lb(x) + (1− π̂O(x))Ub(x)|

≤ 1{π̂1(x) ̸= π∗
1
(x)}1{π̂O(x) = π̂O(x)}|Ub(x)|

+ 1{π̂O(x) ̸= π∗
O
(x)}1{π̂1(x) ̸= π∗

1
(x)}|Lb(x)|+ 1{π̂O(x) ̸= π∗

O
(x)}1{π̂1(x) ̸= π∗

1
(x)}|Ub(x)|

≤ 1{π̂1(x) ̸= π∗
1
(x)}|Ub(x)|+ 1{π̂O(x) ̸= π∗

O
(x)}|Lb(x)|+ 1{π̂1(x) ̸= π∗

1
(x)}|Ub(x)|

≤ 21{π̂1(x) ̸= π∗
1
(x)}|Ub(x)|+ 1{π̂O(x) ̸= π∗

O
(x)}|Lb(x)|.
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Putting together the pieces, we get that

|Q(x)− Q̃(x)| ≤ 21{π̂O(x) ̸= π∗
O
(x)}|Lb(x)|+ 21{π̂1(x) ̸= π∗

1
(x)}|Ub(x)|.

So the expectation is bounded by two regret terms:

E

[
1

n

n∑
i=1

∣∣∣Q(Xi)− Q̃(Xi)
∣∣∣] ≤ 2E [1{π̂O(X) ̸= π∗

O
(X)}|Lb(X)|] + 2E [1{π̂1(X) ̸= π∗

1
(X)}|Ub(X)|]

= 2× {Rsup(π̂1, π
1)−Rsup(π

∗
1
, π1)}+ 2× {Rsup(π̂O, π

O)−Rsup(π
∗
O
, πO)}.

Next,
∣∣∣Q(Xi)− Q̃(Xi)

∣∣∣ is bounded between 0 and ug −ul, so by the Hoeffding bound it concen-
trates around its expectation:

Pr

(
1

n

n∑
i=1

∣∣∣Q(Xi)− Q̃(Xi)
∣∣∣ ≤ 2{Rsup(π̂1, π

1)−Rsup(π
∗
1
, π1)}+ 2{Rsup(π̂O, π

O)−Rsup(π
∗
O
, πO)}+ t√

n

)

≥ 1− exp

(
− 2t2

(ug − ul)2

)
.

Now for the second term:

|Q̃(x)− Q̌(x)| =
∣∣(Lb(x)− Ľb(x))(1− π̂1 + (1− π̂O)π̂1) + (Ub(x)− Ǔb(x))(π̂O + (1− π̂O)π̂1)

∣∣
≤ |Lb(x)− Ľb(x)|+ |Ub(x)− Ǔb(x)|.

To re-write this, notice that

|Lb(x)− Ľb(x)| = (ug − ul)1{δ̂τ (x) ̸= δτ (x)}|m(1, x)−m(0, x)|,

|Ub(x)− Ǔb(x)| = (ug − ul)1{δ̂+(x) ̸= δ+(x)}|m(1, x) +m(0, x)− 1|.

So,

|Q̃(x)− Q̌(x)|
ug − ul

≤ 1{δ̂τ (x) ̸= δτ (x)}|m(1, x)−m(0, x)|+1{δ̂+(x) ̸= δ+(x)}|m(1, x)+m(0, x)−1|.

Taking the expectation, we see that it is bounded by:

1

ug − ul

1

n

n∑
i=1

∣∣∣Q̃(Xi)− Q̌(Xi)
∣∣∣ ≤ E

[
1{δ̂τ (x) ̸= δτ (X)}|m(1, X)−m(0, X)|

]
+ E

[
1{δ̂+(X) ̸= δ+(x)}|m(1, X) +m(0, X)− 1|

]
= R+(δ̂+) + Rτ (δ̂τ ).

Again noting that |Q̃(Xi)−Q̌(Xi)| is bounded between 0 and ug−ul, and applying the Hoeffding
inequality gives
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Pr

(
1

n

n∑
i=1

∣∣∣Q̃(Xi)− Q̌(Xi)
∣∣∣ ≤ (ug − ul)×

(
R+(δ̂+) + Rτ (δ̂τ ) +

t√
n

))
≥ 1− exp

(
−2t2

)
.

Combining these two bounds via the union bound gives the result.

Lemma J.4. Let δ̂+(x) = 1{m̂(1, x) + m̂(0, x) − 1 ≥ 0} and δ̂τ (x) = 1{m̂(1, x) − m̂(0, x)}.
Under Assumption 2,

R+(δ̂+) ≤ 21+αC∥m̂−m∥1+α
∞ ,

Pr(δ̂+(X) ̸= δ+(X)) ≤ 2αC∥m̂−m∥α∞.

Under Assumption H.1(b),

Rτ (δ̂τ ) ≤ 21+αC∥m̂−m∥1+α
∞ ,

Pr(δ̂τ (X) ̸= δτ (X)) ≤ 2αC∥m̂−m∥α∞.

Proof of Lemma J.4. This Lemma directly follows Lemma 5.1 in Audibert and Tsybakov (2007).
Note that if δ̂+(x) ̸= δ+(x), then the error is greater than the margin, i.e.,

|m̂(1, x)−m(1, x) + m̂(0, x)−m(0, x)| ≥ |m(1, X) +m(0, X)− 1|

So,

Pr(δ̂+(X) ̸= δ+(X)) ≤ Pr(|m̂(1, X)−m(1, X) + m̂(0, X)−m(0, X)| ≥ |m(1, X) +m(0, X)− 1|)

≤ C(∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(0, ·)−m(0, ·)∥∞)α.

By a similar argument,

R+(δ̂+)−R+(δ+) = E
[
1

{
δ̂+(X) ̸= δ+(X)

}
|m(1, X) +m(0, X)− 1|

]
≤ E [1 {|m̂(1, X)−m(1, X) + m̂(0, X)−m(0, X)| ≥ |m(1, X) +m(0, X)− 1|}

× |m(1, X) +m(0, X)− 1|]

≤ E [1 {|m̂(1, X)−m(1, X) + m̂(0, X)−m(0, X)| ≥ |m(1, X) +m(0, X)− 1|}

× |m(1, X)− m̂(1, X) +m(0, X)− m̂(0, X)|]

≤ (∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(0, ·)−m(0, ·)∥∞)

× Pr(|m̂(1, X)−m(1, X) + m̂(0, X)−m(0, X)| ≥ |m(1, X) +m(0, X)− 1|)

≤ C(∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(0, ·)−m(0, ·)∥∞)1+α.
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Similarly, if δ̂τ (x) ̸= δτ (x), then

|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)| ≥ |m(1, x)−m(0, x)|.

By the same argument as above,

Pr(δ̂τ (X) ̸= δτ (X)) ≤ C(∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(1, ·)−m(1, ·)∥∞)α,

and

Rτ (δ̂τ )−Rτ (δτ ) = E
[
1

{
δ̂τ (Xi) ̸= δτ (Xi)

}
|m(1, Xi)−m(0, Xi)|

]
≤ E [1 {|m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)| ≥ |m(1, X)−m(0, X)|}

× |m(1, X)−m(0, X)|]

≤ E [1 {|m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)| ≥ |m(1, X)−m(0, X)|}

× |m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)|]

≤ (∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(0, ·)−m(0, ·)∥∞)

× Pr(|m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)| ≥ |m(1, X)−m(0, X)|)

≤ C(∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(0, ·)−m(0, ·)∥∞)1+α.

Lemma J.5. Let ug ≥ ul. Define

L̂b(x) = {ul + δ̂τ (x)(ug − ul)}{m̂(1, x)− m̂(0, x)} − c,

Ûb(x) = {ug − (ug − ul)δ̂+(x)}m̂(1, x)− {ul + (ug − ul)δ̂+(x)}m̂(0, x) + (ug − ul)δ̂+(x)− c.

and let π̂plug
O

(x) = 1{L̂b(x) ≥ 0} and π̂plug
1

(x) = 1{Ûb(x) ≥ 0} be the plug-in estimates of
the minimax optimal policies relative to never or always treating. Under Assumption H.1(d), the
excess worst case regret for π̂plug

O
relative to π∗

O
is

Rsup(π̂
plug
O

, πO)−Rsup(π
∗
O
, πO) ≤ uα

gC(2∥m−m̂∥∞)1+α+2ugC∥m−m̂∥∞ Pr
(
δ̂τ (X) ̸= δτ (X)

)
+(ug−ul)Rτ (δ̂τ ).

Under Assumption H.1(c), the excess worst case regret for π̂plug
1

relative to π∗
1

is

Rsup(π̂
plug
1

, π1)−Rsup(π
∗
O
, πO) ≤ uα

gC(2∥m−m̂∥∞)1+α+2ugC∥m−m̂∥∞ Pr
(
δ̂+(X) ̸= δ+(X)

)
+(ug−ul)R+(δ̂+).

Proof of Lemma J.5. First, as in the proof of Lemma J.4, note that π̂plug
O

(x) ̸= π∗
O
(x) implies that
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|Lb(x)− L̂b(x)| ≥ |Lb(x)|. Now, if δ̂τ (x) = δτ (x), then

|Lb(x)− L̂b(x)| = |((1− δτ (x))ul + δτ (x)ug)(m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x))|

≤ ug|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)|,

because |(1 − δτ (x))ul + δτ (x)ug| = |ul + (ug − ul)δτ (X)| ≤ max{ug, ul} ≤ ug in the case
where ug ≥ ul. If δ̂τ (x) ̸= δτ (x) and δτ (x) = 1, we have that

|Lb(x)− L̂b(x)| = |ul(m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)) + (ug − ul)(m(1, x)−m(0, x))|

≤ ul|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)|+ (ug − ul)|m(1, x)−m(0, x)|

≤ ug|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)|+ (ug − ul)|m(1, x)−m(0, x)|.

Similarly, if δ̂τ (x) ̸= δτ (x) and δτ (x) = 0,

|Lb(x)− L̂b(x)| = |ug(m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x))− (ug − ul)(m(1, x)−m(0, x))|

≤ ug|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)|+ (ug − ul)|m(1, x)−m(0, x)|.

Putting together the pieces, we get that

Rsup(π̂
plug
O

, πO)−Rsup(π
∗
O
, πO) = E

[
1{π̂plug

O
̸= π∗

O
}|Lb(x)|

]
≤ E

[
1{|Lb(X)− L̂b(X)| ≥ |Lb(X)|}|L(X)|

]
≤ E

[
1{|Lb(X)− L̂b(X)| ≥ |Lb(X)|}|Lb(X)− L̂b(X)|

]
= E

[
1{|Lb(X)− L̂b(X)| ≥ |Lb(X)|}|Lb(X)− L̂b(X)|1{δ̂τ (X) = δτ (X)}

]
(∗)

+ E
[
1{|Lb(X)− L̂b(X)| ≥ |Lb(X)|}|Lb(X)− L̂b(X)|1{δ̂τ (X) ̸= δτ (X)}

]
.

(∗∗)

By Hölder’s inequality and the margin condition (Assumption H.1(d)), the first term is

(∗) ≤ E [1{|((1− δτ (x))ul + δτ (X)ug)(m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x))| ≥ |L(X)|}

× |m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)|]

≤ E [1{ug|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)| ≥ |L(X)|}

× |m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)|]

≤ E [1{ug|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)| ≥ |L(X)|}]× 2∥m− m̂∥∞
≤ Cuα

g (2∥m− m̂∥∞)1+α.
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Similarly, we can bound the second term as

(∗∗) ≤ E
[
|Lb(X)− L̂b(X)|1{δ̂τ (X) ̸= δτ (X)}

]
≤ E

[
ug|m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)|1{δ̂τ (X) ̸= δτ (X)}

]
+ (ug − ul)E

[
|m(1, X)−m(0, X)|1{δ̂τ (X) ̸= δτ (X)}

]
≤ ug2C∥m− m̂∥∞ Pr

(
δ̂τ (X) ̸= δτ (X)

)
+ (ug − ul)Rτ (δ̂τ ).

Combining these two terms gives the first result.
Now, also note that π̂plug

1
(x) ̸= π∗

1
(x) implies that |Ub(x)− Ûb(x)| ≥ |Ub(x)|. We again break

this error term into cases depending on δ̂+(x) and δ+(x). First, if δ̂+(x) = δ+(x), then

|Ub(x)− Ûb(x)| =

{
|ug(m(1, x)− m̂(1, x))− ul(m(0, x)− m̂(0, x))|, δ+(x) = 0

|ul(m(1, x)− m̂(1, x))− ug(m(0, x)− m̂(0, x))|, δ+(x) = 1

≤ ug|m(1, x)− m̂(1, x)|+ ug|m(0, x)− m̂(0, x)|.

If δ̂+(x) ̸= δ+(x)

|Ub(x)− Ûb(x)| =

{
|ug(m(1, x)− m̂(1, x))− ul(m(0, x)− m̂(0, x)) + (ug − ul)(m(1, x) +m(0, x)− 1)|, δ+(x) = 0

|ul(m(1, x)− m̂(1, x))− ug(m(0, x)− m̂(0, x))| − (ug − ul)(m(1, x) +m(0, x)− 1), δ+(x) = 1

≤ ug|m(1, x)− m̂(1, x)|+ ug|m(0, x)− m̂(0, x)|+ (ug − ul)|m(1, x) +m(0, x)− 1|.

Mirroring the decomposition above, we have that
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Rsup(π̂
plug
1

, π1)−Rsup(π
∗
1
, π1) = E

[
1{π̂plug

1
̸= π∗

1
}|Ub(x)|

]
≤ E

[
1{|Ub(X)− Ûb(X)| ≥ |Ub(X)|}|Ub(X)|

]
≤ E

[
1{|Ub(X)− Ûb(X)| ≥ |Ub(X)|}|Ub(X)− Ûb(X)|

]
= E

[
1{|Ub(X)− Ûb(X)| ≥ |Ub(X)|}|Ub(X)− Ûb(X)|1{δ̂+(X) = δ+(X)}

]
+ E

[
1{|Ub(X)− Ûb(X)| ≥ |Ub(X)|}|Ub(X)− Ûb(X)|1{δ̂+(X) ̸= δ+(X)}

]
≤ E [1{ug|m(1, X)− m̂(1, X)|+ ug|m(0, X)− m̂(0, X)| ≥ |Ub(X)|}

× (ug|m(1, X)− m̂(1, X)|+ ug|m(0, X)− m̂(0, X)|)]

+ E
[
ug|m(1, x)− m̂(1, x)|1{δ̂+(X) ̸= δ+(X)}

]
+ E

[
ug|m(0, x)− m̂(0, x)|1{δ̂+(X) ̸= δ+(X)}

]
+ E

[
(ug − ul)|m(1, x) +m(0, x)− 1|1{δ̂+(X) ̸= δ+(X)}

]
≤ uα

gC(2∥m− m̂∥∞)1+α + ugC2∥m− m̂∥∞P (δ̂+(X) ̸= δ+(X))

+ (ug − ul)R+(δ̂+).
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