

Opinion piece

Check for
updates

Cite this article: Ludington WB. 2024 The importance of host physical niches for the stability of gut microbiome composition. *Phil. Trans. R. Soc. B* **379**: 20230066.
<https://doi.org/10.1098/rstb.2023.0066>

Received: 8 August 2023

Accepted: 4 December 2023

One contribution of 18 to a theme issue
'Sculpting the microbiome: how host factors
determine and respond to microbial
colonization'.

Subject Areas:

developmental biology, microbiology

Keywords:

microbiome, niche, gut, coevolution,
Drosophila

Author for correspondence:

William B. Ludington

e-mail: will.ludington@gmail.com

The importance of host physical niches for the stability of gut microbiome composition

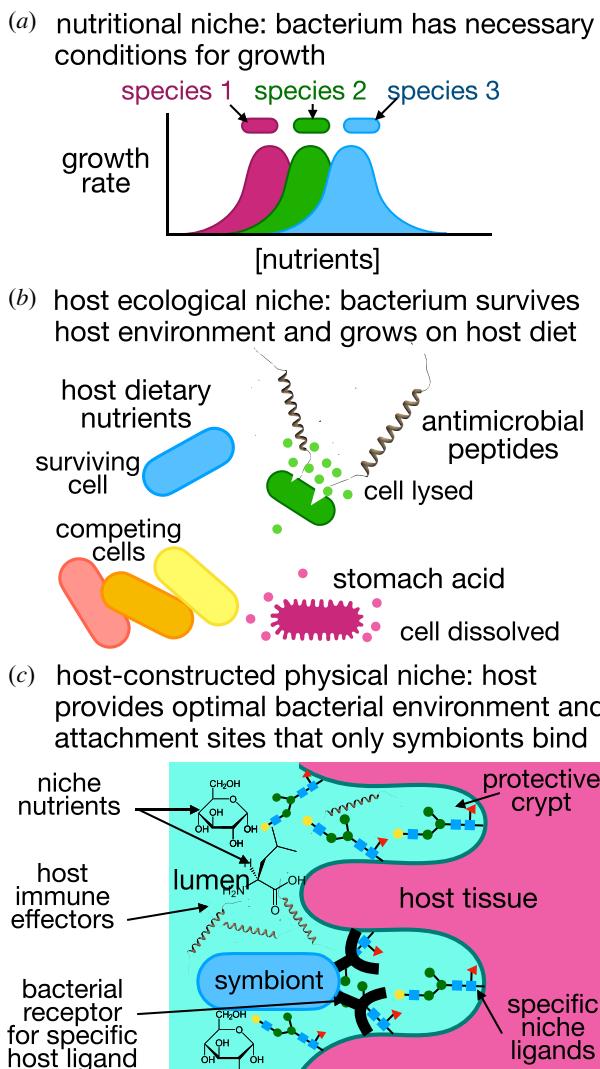
William B. Ludington^{1,2}

¹Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Baltimore, MD 21218, USA

²Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA

ID WBL, 0000-0001-9637-4493

Gut bacteria are prevalent throughout the Metazoa and form complex microbial communities associated with food breakdown, nutrient provision and disease prevention. How hosts acquire and maintain a consistent bacterial flora remains mysterious even in the best-studied animals, including humans, mice, fishes, squid, bugs, worms and flies. This essay visits the evidence that hosts have co-evolved relationships with specific bacteria and that some of these relationships are supported by specialized physical niches that select, sequester and maintain microbial symbionts. Genetics approaches could uncover the mechanisms for recruiting and maintaining the stable and consistent members of the microbiome.


This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.

1. Microbial communities are important to the health of animals, plants and the biosphere

Microbial communities live in every habitat on the Earth and play key roles in biogeochemical nutrient cycles including the carbon and nitrogen cycles, which are critical regulators of global climate change [1]. Microbial communities in soils, for instance, provide essential nutrients for plant growth and drought resistance, which influences primary productivity and carbon dioxide sequestration from the atmosphere [2,3]. In animals, the gut microbiome is crucial for the digestion of plant material, acquisition of vitamins and resistance to disease [4,5]. These processes are important for health and fitness of animals and they influence, for instance, how much plant material a herbivore can consume, which affects the local primary productivity [5]. Microbial communities in animal guts and soils also control whether carbon dioxide or methane will be released as a result of digestion and decomposition processes [6,7]. All of these microbial contributions occur at global scales, underscoring the importance of microbial communities in climate regulation.

2. Specific species of bacteria are consistently found in association with the gut of the same hosts

Colonization of a host gut by a bacterium is a complex process that involves the bacterium entering the host and finding a suitable environment where it can sustain a population. A bacterium requires certain nutrients, and other factors such as pH and oxygen levels are essential to growth (figure 1a). Inside a host, the bacterium must survive additional factors such as digestive proteases, bile salts and the immune system (figure 1b). The environmental filtering model of colonization postulates that the combination of microbial growth, survival of host environments, competition between microbes and random forces including chance exposures of the host to the bacteria determines colonization [8–10].

Figure 1. Different levels of host control for different bacterial niches in the gut. (a) A nutritional niche is defined by the nutrients available to a bacterium in the gut. (b) A host ecological niche provides dietary nutrients but also inhibits the growth of some bacteria through factors like stomach acid, bile salts, competition from other bacteria and immune effectors. (c) A host-constructed physical niche has the highest degree of biological sophistication. In addition to factors in the nutritional niche and host ecological niche, the physical niche provides specific sites for adhesion, protected space that limits loss of bacteria owing to peristaltic flow, and a specifically tailored nutritional and immune environment that selects the proper strains from the milieu of the intestinal flora. (Online version in colour.)

Rather than colonization being owing to chance associations alone, there might also be co-evolved fitness strategies between host and microbe that promote specific associations [11,12]. A classic example is the Hawaiian bobtailed squid, where association with a bioluminescent species of *Vibrio fischeri* is believed necessary for the squid to evade predators in the wild [13]. Both the bacterium and squid have been shown to possess numerous genes that ensure the proper association [13]. Co-phylogenetic analysis of the squid and its symbiont show a parallel evolution, where the diversification of host and symbiont show parallel phylogenies [14]. Applying a similar approach, numerous other groups have found similar co-phylogenetic diversification of host and microbe. Example hosts where this pattern occurs include sap sucking insects such as aphids [15],

cicadas and sharpshooters [15,16], entomopathogenic nematodes and their bacterial symbionts [17], termites [18], stinkbugs [19–21], ants [22] and certain species of gut bacteria in primates [11,23]. While the sap sucking insects have intracellular bacteria that are vertically transmitted, the other associations are for gut bacteria, which are environmentally acquired. There are also many examples where the host and symbiont phylogenies show a lesser degree of detectable co-evolution (or none at all). These include the luminous cardinalfish, *Siphamia* [24], squash bugs [25], corals [26] and sponges [27]. This tends to be true for clades that have less specific associations with their symbionts. The bacterial associations with true bugs are an example where the specificity of the insect for the bacteria is only at the level of the genus, e.g. *Burkholderia*, but competition between bacterial strains determines the strain-level specificity [20]. It is important to consider why some bacterial associations would be more or less specific. Because bugs stand to gain so much from their symbionts, it may make sense from a fitness perspective for the bug to accept any symbiont that is suitable [20]. If multiple suitable strains are present during colonization, the fittest of these is selected through symbiont–symbiont competition [20].

How bacteria are selected contributes to the co-phylogenetic patterns between host and bacterial symbiont. The posterior midgut crypts that are colonized by *Burkholderia* in bugs lie distal to the ‘constricted region’, which filters out undesirable bacteria using a combination of physical, chemical and immune mechanisms, similar to the selective mechanisms that regulate squid light organ colonization [13,20,28]. Factors such as the mechanism of symbiont acquisition (vertical versus environmental), the host diet that influences the environment for the association, and the prevalence of the bacteria in the environment can influence symbiont acquisition [29]. While a lot of emphasis has been placed on vertical transmission as the ultimate insurance of transmission, some of the best-studied hosts with symbiont specificity, such as the bobtail squid, environmentally acquire their symbionts generation after generation [30,31]. It is worth considering that if the host has a very specific need for a function that only a specific symbiont can provide, evolution can still select for mechanisms of obtaining the correct symbiont without vertical transmission [29,31]. It is in these cases without vertical transmission where we expect to find host adaptations to selectively acquire and maintain specific symbionts in host-constructed niches and to discriminate between symbiont strains to select the best ones.

3. Bacteria reside in physical niches in animals

Physical niches represent the utmost host control over a symbiont because they control not only which symbiont strain colonizes, but also where it colonizes, how many cells colonize and how long the symbiont cells spend in the niche before they are expelled ([13,32,33]; figure 1c). Physical niches hold host-selected bacterial symbionts in squid [13], fishes [34,35], bugs [28] and other insects [15]. While numerous other stochastically acquired bacteria may be present, the specific symbionts reside in privileged physical niches. These gut bacteria perform functions for the host such as the aforementioned provision of light for the squid to evade predators, breakdown of host nitrogenous waste in many insects [36]

and detoxification of the diet [37,38]. For instance, *Burkholderia* in the gut of the bean bug, *Riptortus pedestris*, can break down toxic levels of the insecticide, fenitrothion, allowing the bug to survive on treated plants [38]. In addition, host physiology of the niche is influenced by the bacteria. For example, in the squid, secreted nutrients are only provisioned when the correct bacteria are present to consume those nutrients [39]. In the human stomach, crypts that house *Helicobacter pylori* regulate acid secretion, suggesting that host control of stomach pH is influenced by the correct bacterial colonizers [40]. Other physical niches include the cecum in rodents, which is thought to be a reservoir for digestive bacteria that ferment food in the colon [41]. Once thought to be a vestigial organ, the appendix in humans may serve a similar purpose to the rodent cecum [42]. Other physical niches probably exist but are yet to be discovered.

4. Microbiome composition is consistent within a given host species

The diversity of the microbiome is well known from 16S amplicon sequencing surveys [43]. Studies of human stool samples have routinely focused on the high inter-individual variability, and microbiome composition fluctuates wildly as people eat different meals that change the available nutrients in the gut and cause different species to bloom in abundance [44–46]. It should be noted that one of the primary data analysis techniques for analysing 16S amplicon sequencing data is principle component analysis of beta diversity (and similar techniques), which focuses on the variable characters in the data rather than the consistent ones. While weighted methods like Unifrac and Bray–Curtis do take into account differences in relative abundance, in the commonly used unweighted Unifrac method, taxa that are present in all samples are not analysed.

One of the often overlooked aspects of the human microbiome is its remarkable stability over time [47] and resiliency to perturbations including from courses of antibiotics and from diarrhoeal disease [48–50]. Furthermore, there is high consistency of the gut microbiome within an individual host species that clearly delineates different hosts based on their gut bacterial composition [51]. While factors like dietary nutrients feeding the bacteria and transmission networks of bacteria between hosts undoubtedly play a role in this consistency [52], when viewed in light of the temporal resilience of individual hosts, the evidence is also consistent with the hypothesis that host specificity is controlled through host-constructed physical niches. Such niches could guide the recolonization of the gut after diarrhoea or a course of antibiotics [48]. Given the importance of the microbiome to animal health, recolonizing with the correct bacteria would be much less risky if the host maintained reservoirs of these good bacteria in niches spaced throughout the gut, rather than starting anew each time. If the gut did start anew, then the chances of coming up with the same consortium of bacteria from those in the environment after each perturbation would be fleetingly small [53,54]. While the post-recovery microbiome certainly differs from the pre-perturbation microbiome, the degree of consistency between the two is quite high compared with a randomly sampled microbiome. This microbiome consistency is consistent with the physical niche concept.

5. Properties that define a niche

'Niche' has a range of meanings that differ between fields. In a wall, a niche is a small recess, often to hold something. When a person finds their niche in life, they have discovered a fitting lifestyle that brings contentment. In ecology, the fundamental niche is a habitat that provides the set of suitable resources and environmental conditions needed for an organism to survive, while the realized niche is the niche the organism occupies owing to interactions with other organisms [55]. In cell biology, a stem cell niche is similar to the ecological definition, but it often has a high degree of spatial constraint owing to the fact that the survival factors needed for the stem cell to live in the niche are often provided by specialized neighbouring cells [56,57]. The physical niche provided for the bacteria by the host is a protected space that also provides nutrients.

Bacterial niches in eukaryotic organisms are widespread and highly variable. There are intracellular niches, for instance in bacteriocytes of aphids and leaf hoppers, where bacterial cells are contained within the host insect cells, and these bacteria are vertically inherited from the mother [15]. There is an extensive literature on intracellular niches, and it is not discussed further here.

The non-pathogenic bacterial niches in the host gut that are the subject of this essay are extracellular, and there are many factors governing which bacteria can colonize them (figure 1). If the host provides an environment with the correct nutrients, pH and temperature for survival, then a microbe can occupy that environment in the gut, given that it can successfully compete with other gut microbes [58] (figure 1a). Owing to overlaps in microbial metabolisms, an ecological niche in the gut could be occupied by more than one organism [59], and a priority effect might exist, where the first organism to occupy a niche has a competitive advantage over following ones based on how it occupies the habitat [60–63]. Such ecological niches would be expected to have high variability in bacterial composition between individuals, consistent with the high degree of individuality seen in the human gut [61]. As an additional layer of host control, stomach acid, digestive proteases, bile salts and immune effectors kill susceptible bacteria (figure 1b). Physical niches are spatially localized sites that provide a further layer of host control (figure 1c). These niches are evolved sites where the host recruits and maintains specific species while excluding others (e.g. [13,32,34,64,65]). Physical niches often have a consistent set of species or strains that colonize them, and they incorporate elements of nutritional niches such as providing the correct physiological conditions. The major difference from other types of niches is the high degree of spatial specificity and selectivity that a host can exert on a physical niche. Different types of physical niches exert control on their colonizers in different ways. For example, the pouches in the posterior midgut of bean bugs seal off the symbiotic bacteria from the rest of the gut lumen, trapping them [33]. This physical barrier and the constricted region together prevent invasion by external bacteria [64]. The niche in the *Drosophila* foregut also has a pouch-like element, called the crop, but it is not sealed off from invading bacteria [32,66,67]. Instead, the bacteria physically adhere to the wall of the niche. The host could then control the colonizing species by remodeling the extracellular matrix to change the availability of the ligand that the bacteria bind. This very

molecular mechanism of host control would be much more specific in terms of which bacteria can bind the niche versus being trapped in a crypt. However, these are hypotheses yet to be proved.

The exposed gut lumenal wall of the mammalian intestine is similar in that many bacteria colonize by adhering to the mucus layer secreted by the epithelial goblet cells. Lactobacilli and other mucus-adherent bacteria colonize the mucosal layer of the ileum and jejunum [68,69], and studies have found gut region-specific variation in the composition of the glycan layer in terms of its specific residues [70]. The regionality of bacterial composition of the gut correlates with the regionality of the differences in glycan composition [71]. Glycan utilization by specific gut members, such as *Bacteroidetes thetaiotaomicron*'s usage of sialic acid has been biochemically and genetically investigated [72], and many of the original gut bacterial isolates, such as *Lactobacillus reuteri* and *Bifidobacterium infantis* were cultured from mucus scrapings [73]. The physical association of these bacteria with the intestinal wall makes them stable colonizers. The caecum, appendix and colonic crypts have also been recognized as niches that can store bacteria (cf. [74–76]). Differentiating stable colonizers from transient ones is important because stable colonizers have a longer-term relationship with the host and therefore are more likely to have co-evolved [73,77].

6. Identifying new niches

The physical niche concept is appealing because it suggests exquisite control by the host over microbiome composition and that we may be able to uncover the developmental genetic mechanisms in order to therapeutically control colonization. However, doing so in practice requires not only locating the niches but also a high degree of control over gene expression in the niche. A physical niche for bacteria was recently identified in the fruit fly *Drosophila melanogaster*, which might serve as a paradigm for the identification of other niches [32]. *Drosophila* as a host model is one of the most tractable animals for developmental genetics [78]. Individual genes can be turned on and off in specific cell types and tissues at specific times during development as controlled by the experimenter [79–82]. Moreover, *Drosophila* genetic stock centres maintain hundreds of thousands of fly lines that allow researchers to simply request the desired genetic tools in order to test the role of individual genes in specific cell types at defined times during the fly's lifespan.

The lack of a stable microbiome in laboratory-reared *Drosophila* diminished its appeal as a microbiome model [83,84]. However, stable colonizing bacteria were identified in wild *Drosophila* [32,66,67], and these strains also stably colonize laboratory flies, suggesting that the bacteria in laboratory-reared flies lost key genes for stable colonization. The stably colonizing bacteria were isolated by two different laboratories using similar approaches that clear transient bacteria from the gut while leaving stable colonizers. The assays rely on the fly's consumption of germ-free food to push unstable colonizers out of the gut. While flies typically feed on microbe-rich food, the gut clearing approaches that identified stable colonizers both used food with maintained sterility to prevent the reintroduction of bacteria [32,66,67]. Gut clearance techniques have been established in mammals with the similar goal to isolate the stable colonizers [71]. By washing the

intestinal lumen and isolating bacteria from scraped mucus, researchers such as Professor Reuter isolated adherent bacteria and reduced the detection of transient bacteria [73].

To test the stability of the isolated bacteria in the fly gut, several techniques have been performed. First, bacteria were inoculated at low density and tested for their ability to colonize the gut from low initial numbers [32,66,67]. Stable colonizers reach the same population size in the gut regardless of the inoculation density [32].

To test the robustness of colonization, perturbation assays have been employed. In flies, a pulse-chase technique was developed to push out unstably adhered cells and measure the kinetics of the population turnover as a half-life [32]. This revealed a half-life on the order of weeks for a subpopulation of bacteria in the physical niche.

Pulse-chase of *H. pylori* in the stomach crypts of mice identified priority effects where the first colonizer excludes later arrivals [40]. Similar experiments making use of mice colonized by a single bacterial strain found that *Ba. thetaiotaomicron* inhabits colonic crypts with first colonizers outcompeting later arrivals [58,85]. Microscopy imaging defined the spatial locations of the colonization. Key considerations to further confirm the existence of a niche would require similar colonization of the putative niche in conventionally reared animals with a normal microbiome as well as flushing techniques to determine the stability of the niche colonizers. In flies, the specific bacteria still colonize the niche in animals with a conventional microbiome, affirming this as a true niche [32,66,67].

7. Conclusion

Host–microbe associations are prevalent throughout the Metazoa. While many of these associations are transient, non-specific and of little consequence to the host, many others are stable, with a high degree of specificity for both the host and microbe, and these typically have a valuable contribution to the fitness of both host and microbe [86–88]. Understanding how these specific relationships form in development and over evolutionary time is of importance to animal health and the ecological health of our planet.

The specificity of a beneficial host–microbe association is determined by both the host and the microbe, and there are various degrees of specificity with different mechanisms [11,13,15,19,28]. When the host constructs a physical niche that selectively binds with molecular specificity certain bacteria to the exclusion of others, this represents one of the highest degrees of host control [13,32]. By requiring such a high degree of specificity in a physical niche, a host can recruit specific bacteria from the highly diverse pool in the environment without falling vulnerable to pathogen invasion of the niche. Such a specific relationship provides optimal functional benefit to the host.

While host genetics have been elusive in the best-studied organisms such as squid and the true bugs, the discovery of a physical niche housing specific gut bacteria in *Drosophila* provides access to the best-developed toolkit for developmental genetics to study host mechanisms of symbiont specificity [32].

Data accessibility. This article has no additional data.

Declaration of AI use. I have not used AI-assisted technologies in creating this article.

Authors' contributions. W.B.L.: conceptualization, funding acquisition, investigation, writing—original draft, writing—review and editing.

Conflict of interest declaration. I declare I have no competing interests.

Funding. I received funding for this study from NIH (grant nos R01DK128454 and R21AI173779), NSF (grant no. IOS-2144342), and the Carnegie Institution for Science endowment.

References

1. Jansson JK, Hofmockel KS. 2019 Soil microbiomes and climate change. *Nat. Rev. Microbiol.* **18**, 35–46.
2. Xu L *et al.* 2018 Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. *Proc. Natl Acad. Sci. USA* **115**, E4284–E4293. ([doi:10.1073/pnas.1717308115](https://doi.org/10.1073/pnas.1717308115))
3. Malik AA, Martiny J BH, Brodie EL, Martiny AC, Treseder KK, Allison SD. 2019 Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. *ISME J.* **14**, 1–9.
4. Degnan PH, Taga ME, Goodman AL. 2014 Vitamin B12 as a modulator of gut microbial ecology. *Cell Metab.* **20**, 769–778. ([doi:10.1016/j.cmet.2014.10.002](https://doi.org/10.1016/j.cmet.2014.10.002))
5. Xu Q, Qiao Q, Gao Y, Hou J, Hu M, Du Y, Zhao K, Li X. 2021 Gut microbiota and their role in health and metabolic disease of dairy cow. *Front. Nutr.* **8**, 1–13. ([doi:10.3389/fnut.2021.701511](https://doi.org/10.3389/fnut.2021.701511))
6. Difford GF *et al.* 2018 Host genetics and the rumen microbiome jointly associate with methane emissions in dairy. *PLoS Genet.* **14**, 1–22. ([doi:10.1371/journal.pgen.1007580](https://doi.org/10.1371/journal.pgen.1007580))
7. Mackelprang R, Waldrop MP, Deangelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK. 2011 Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. *Nature* **480**, 368–371. ([doi:10.1038/nature10576](https://doi.org/10.1038/nature10576))
8. Walter J, Maldonado-Gómez MX, Martínez I. 2018 To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. *Curr. Opin. Biotechnol.* **49**, 129–139. ([doi:10.1016/j.copbio.2017.08.008](https://doi.org/10.1016/j.copbio.2017.08.008))
9. Ortiz A, Vega NM, Ratzke C, Gore J. 2021 Interspecies bacterial competition regulates community assembly in the *C. elegans* intestine. *ISME J.* **15**, 2131–2145. ([doi:10.1038/s41396-021-00910-4](https://doi.org/10.1038/s41396-021-00910-4))
10. Goldford JE, Lu N, Bajic D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, Segré D, Mehta P, Sanchez A. 2018 Emergent simplicity in microbial community assembly. *Science (New York, NY)* **361**, 469–474. ([doi:10.1126/science.aat1168](https://doi.org/10.1126/science.aat1168))
11. Sanders JG *et al.* 2023 Widespread extinctions of co-diversified primate gut bacterial symbionts from humans. *Nat. Microbiol.* **8**, 1039–1050. ([doi:10.1038/s41564-023-01388-w](https://doi.org/10.1038/s41564-023-01388-w))
12. McFall-Ngai M *et al.* 2013 Animals in a bacterial world, a new imperative for the life sciences. *Proc. Natl Acad. Sci. USA* **110**, 3229–3236. ([doi:10.1073/pnas.1218525110](https://doi.org/10.1073/pnas.1218525110))
13. Nyholm SV, McFall-Ngai MJ. 2021 A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. *Nat. Rev. Microbiol.* **19**, 666–679. ([doi:10.1038/s41579-021-00567-y](https://doi.org/10.1038/s41579-021-00567-y))
14. Nishiguchi MK, Ruby EG, McFall-Ngai MJ. 1998 Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in sepiolid squid-vibrio symbioses. *Appl. Environ. Microbiol.* **64**, 3209–3213.
15. Moran NA, McCutcheon JP, Nakabachi A. 2008 Genomics and evolution of heritable bacterial symbionts. *Annu. Rev. Genet.* **42**, 165–190. ([doi:10.1146/annurev.genet.41.110306.130119](https://doi.org/10.1146/annurev.genet.41.110306.130119))
16. Takiya DM, Tran PL, Dietrich CH, Moran NA. 2006 Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. *Mol. Ecol.* **15**, 4175–4191. ([doi:10.1111/j.1365-294X.2006.03071.x](https://doi.org/10.1111/j.1365-294X.2006.03071.x))
17. Maneesakorn P, An R, Daneshvar H, Taylor K, Bai X, Adams BJ, Grewal PS, Chandrapaty A. 2011 Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae). *Mol. Phylogenet. Evol.* **59**, 271–280. ([doi:10.1016/j.ympev.2011.02.012](https://doi.org/10.1016/j.ympev.2011.02.012))
18. Arora J *et al.* 2023 Evidence of cospeciation between termites and their gut bacteria on a geological time scale. *Proc. R. Soc. B* **290**, 20230619. ([doi:10.1098/rspb.2023.0619](https://doi.org/10.1098/rspb.2023.0619))
19. Hosokawa T, Matsuura Y, Kikuchi Y, Fukatsu T. 2016 Recurrent evolution of gut symbiotic bacteria in pentatomid stinkbugs. *Zool. Lett.* **2**, 1–9. ([doi:10.1186/s40851-016-0061-4](https://doi.org/10.1186/s40851-016-0061-4))
20. Itoh H, Jang S, Takeshita K, Ohbayashi T, Ohnishi N, Meng XY, Mitani Y, Kikuchi Y. 2019 Host–symbiont specificity determined by microbe–microbe competition in an insect gut. *Proc. Natl Acad. Sci. USA* **116**, 22 673–22 682. ([doi:10.1073/pnas.1912397116](https://doi.org/10.1073/pnas.1912397116))
21. Otero-Bravo A, Sabree ZL. 2021 Multiple concurrent and convergent stages of genome reduction in bacterial symbionts across a stink bug family. *Sci. Rep.* **11**, 1–15. ([doi:10.1038/s41598-021-86574-8](https://doi.org/10.1038/s41598-021-86574-8))
22. Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE. 2014 Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. *Mol. Ecol.* **23**, 1268–1283. ([doi:10.1111/mec.12611](https://doi.org/10.1111/mec.12611))
23. Suzuki TA *et al.* 2022 Codiversification of gut microbiota with humans. *Science* **377**, 1328–1332. ([doi:10.1126/science.abm7759](https://doi.org/10.1126/science.abm7759))
24. Gould AL, Fritts-Penniman A, Gaisiner A. 2021 Museum genomics illuminate the high specificity of a bioluminescent symbiosis for a genus of reef fish. *Front. Ecol. Evol.* **9**, 1–14. ([doi:10.3389/fevo.2021.630207](https://doi.org/10.3389/fevo.2021.630207))
25. Stoy KS, Chavez J, De Las Casas V, Talla V, Berasategui A, Morran LT, Gerardo NM. 2023 Evaluating coevolution in a horizontally transmitted mutualism. *Evolution (N.Y.)* **77**, 166–185. ([doi:10.1093/evolut/qpac009](https://doi.org/10.1093/evolut/qpac009))
26. Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, Thurber RV, Zaneveld JR. 2018 Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. *Nat. Commun.* **9**, 1–13. ([doi:10.1038/s41467-018-07275-x](https://doi.org/10.1038/s41467-018-07275-x))
27. Sabrina Pankey M, Plachetzki DC, Macartney KJ, Gastaldi M, Slattery M, Gochfeld DJ, Lesser MP. 2022 Cophylogeny and convergence shape holobiont evolution in sponge–microbe symbioses. *Nat. Ecol. Evol.* **6**, 750–762. ([doi:10.1038/s41559-022-01712-3](https://doi.org/10.1038/s41559-022-01712-3))
28. Oishi S, Harumoto T, Okamoto-Furuta K, Moriyama M, Fukatsu T. 2023 Mechanisms underpinning morphogenesis of a symbiotic organ specialized for hosting an indispensable microbial symbiont in stinkbugs. *MBio* **14**, e00522–23. ([doi:10.1128/mbio.00522-23](https://doi.org/10.1128/mbio.00522-23))
29. Sieber M, Traulsen A, Schulenburg H, Douglas AE. 2021 On the evolutionary origins of host–microbe associations. *Proc. Natl Acad. Sci. USA* **118**, e2016487118. ([doi:10.1073/pnas.2016487118](https://doi.org/10.1073/pnas.2016487118))
30. Russell SL. 2019 Transmission mode is associated with environment type and taxa across bacteria–eukaryote symbioses: a systematic review and meta-analysis. *FEMS Microbiol. Lett.* **366**, 1–13. ([doi:10.1093/femsle/fnz013](https://doi.org/10.1093/femsle/fnz013))
31. van Vliet S, Doebeli M. 2019 The role of multilevel selection in host microbiome evolution. *Proc. Natl Acad. Sci. USA* **116**, 20 591–20 597. ([doi:10.1073/pnas.1909790116](https://doi.org/10.1073/pnas.1909790116))
32. Dodge R *et al.* 2023 A symbiotic physical niche in *Drosophila melanogaster* regulates stable association of a multi-species gut microbiota. *Nat. Commun.* **14**, 2021.09.30.462663. ([doi:10.1038/s41467-023-36942-x](https://doi.org/10.1038/s41467-023-36942-x))
33. Kikuchi Y, Ohbayashi T, Jang S, Mergaert P. 2020 *Burkholderia insecticola* triggers midgut closure in the bean bug *Riptortus pedestris* to prevent secondary bacterial infections of midgut crypts. *ISME J.* **14**, 1627–1638.
34. Gould AL, Dunlap PV. 2019 Shedding light on specificity: population genomic structure of a symbiosis between a coral reef fish and luminous bacterium. *Front. Microbiol.* **10**, 1–12. ([doi:10.3389/fmicb.2019.02670](https://doi.org/10.3389/fmicb.2019.02670))
35. Hendry TA, De Wet JR, Dougan KE, Dunlap PV. 2016 Genome evolution in the obligate but environmentally active luminous symbionts of flashlight fish. *Genome Biol. Evol.* **8**, 2203–2213. ([doi:10.1093/gbe/evw161](https://doi.org/10.1093/gbe/evw161))

36. Ankrah NYD, Douglas AE. 2018 Nutrient factories: metabolic function of beneficial microorganisms associated with insects. *Environ. Microbiol.* **20**, 2002–2011. ([doi:10.1111/1462-2920.14097](https://doi.org/10.1111/1462-2920.14097))

37. Ceja-Navarro JA *et al.* 2015 Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. *Nat. Commun.* **6**, 1–9.

38. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. 2012 Symbiont-mediated insecticide resistance. *Proc. Natl Acad. Sci. USA* **109**, 8618–8622. ([doi:10.1073/pnas.1200231109](https://doi.org/10.1073/pnas.1200231109))

39. Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ. 2000 Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. *Proc. Natl Acad. Sci. USA* **97**, 10 231–10 235. ([doi:10.1073/pnas.97.18.10231](https://doi.org/10.1073/pnas.97.18.10231))

40. Fung C *et al.* 2019 High-resolution mapping reveals that microniches in the gastric glands control *Helicobacter pylori* colonization of the stomach. *PLoS Biol.* **17**, 1–28. ([doi:10.1371/journal.pbio.3000231](https://doi.org/10.1371/journal.pbio.3000231))

41. Altmann GG. 1983 Morphological observations on mucus-secreting nongoblet cells in the deep crypts of the rat ascending colon. *Am. J. Anat.* **167**, 95–117. ([doi:10.1002/aja.1001670109](https://doi.org/10.1002/aja.1001670109))

42. Vitetta L. 2022 The vermiform cecal appendix, expendable or essential? A narrative review. *Curr. Opin. Gastroenterol.* **38**, 570–576. ([doi:10.1097/MOG.0000000000000881](https://doi.org/10.1097/MOG.0000000000000881))

43. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. 2005 Diversity of the human intestinal microbial flora. *Science (N.Y.)* **308**, 1635–1638. ([doi:10.1126/science.1110591](https://doi.org/10.1126/science.1110591))

44. David LA *et al.* 2013 Diet rapidly and reproducibly alters the human gut microbiome. *Nature* **505**, 559–563.

45. Parfrey LW, Knight R. 2012 Spatial and temporal variability of the human microbiota. *Clin. Microbiol. Infect.* **18**, 8–11. ([doi:10.1111/j.1469-0691.2012.03861.x](https://doi.org/10.1111/j.1469-0691.2012.03861.x))

46. Falony G *et al.* 2016 Population-level analysis of gut microbiome variation. *Science (N.Y.)* **352**, 560–564. ([doi:10.1126/science.aad3503](https://doi.org/10.1126/science.aad3503))

47. Faith JJ *et al.* 2013 The long-term stability of the human gut microbiota. *Science* **341**, 1237439. ([doi:10.1126/science.1237439](https://doi.org/10.1126/science.1237439))

48. Dethlefsen L, Relman DA. 2011 Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. *Proc. Natl Acad. Sci. USA* **108**, 4554–4561. ([doi:10.1073/pnas.1000087107](https://doi.org/10.1073/pnas.1000087107))

49. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012 Diversity, stability and resilience of the human gut microbiota. *Nature* **489**, 220–230. ([doi:10.1038/nature11550](https://doi.org/10.1038/nature11550))

50. David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, Erdman SE, Alm EJ. 2014 Host lifestyle affects human microbiota on daily timescales. *Genome Biol.* **15**, 1–15. ([doi:10.1186/gb-2014-15-7-r89](https://doi.org/10.1186/gb-2014-15-7-r89))

51. Mallott EK, Amato KR. 2021 Host specificity of the gut microbiome. *Nat. Rev. Microbiol.* **19**, 639–653. ([doi:10.1038/s41579-021-00562-3](https://doi.org/10.1038/s41579-021-00562-3))

52. Adair KL, Douglas AE. 2017 Making a microbiome: the many determinants of host-associated microbial community composition. *Curr. Opin. Microbiol.* **35**, 23–29. ([doi:10.1016/j.mib.2016.11.002](https://doi.org/10.1016/j.mib.2016.11.002))

53. Furman O *et al.* 2020 Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. *Nat. Commun.* **11**, 1–13. ([doi:10.1038/s41467-020-15652-8](https://doi.org/10.1038/s41467-020-15652-8))

54. Jones EW, Carlson JM, Sivak DA, Ludington WB. 2022 Stochastic microbiome assembly depends on context. *Proc. Natl Acad. Sci. USA* **119**, 1–8. ([doi:10.1073/pnas.2115877119](https://doi.org/10.1073/pnas.2115877119))

55. Holt RD. 2009 Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. *Proc. Natl Acad. Sci. USA* **106**, 19 659–19 665. ([doi:10.1073/pnas.0905137106](https://doi.org/10.1073/pnas.0905137106))

56. MacLean AL, Filippi S, Stumpf MPH. 2014 The ecology in the hematopoietic stem cell niche determines the clinical outcome in chronic myeloid leukemia. *Proc. Natl Acad. Sci. USA* **111**, 3883–3888. ([doi:10.1073/pnas.1317072111](https://doi.org/10.1073/pnas.1317072111))

57. Xie T, Spradling AC. 2000 A niche maintaining germ line stem cells in the *Drosophila* ovary. *Science (N.Y.)* **290**, 328–330. ([doi:10.1126/science.290.5490.328](https://doi.org/10.1126/science.290.5490.328))

58. Shepherd ES, Deloache WC, Pruss KM, Whitaker WR, Sonnenburg JL. 2018 An exclusive metabolic niche enables strain engraftment in the gut microbiota. *Nature* **557**, 434–438. ([doi:10.1038/s41586-018-0092-4](https://doi.org/10.1038/s41586-018-0092-4))

59. Brochet S, Quinn A, Mars RAT, Neuschwander N. 2021 Niche partitioning facilitates coexistence of closely related gut bacteria. *Elife* **11**, e78825. ([doi:10.7554/elife.78825](https://doi.org/10.7554/elife.78825))

60. Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. 2022 Priority effects in microbiome assembly. *Nat. Rev. Microbiol.* **20**, 109–121. ([doi:10.1038/s41579-021-00604-w](https://doi.org/10.1038/s41579-021-00604-w))

61. Sprockett D, Fukami T, Relman DA. 2018 Role of priority effects in the early-life assembly of the gut microbiota. *Nat. Publ. Gr.* **15**, 197–205.

62. Lemon KP, Armitage GC, Relman DA, Fischbach MA. 2012 Microbiota-targeted therapies: an ecological perspective. *Sci. Transl. Med.* **4**, 137rv5.

63. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. 2012 The application of ecological theory toward an understanding of the human microbiome. *Science* **336**, 1255–1262. ([doi:10.1126/science.1224203](https://doi.org/10.1126/science.1224203))

64. Takeshita K, Kikuchi Y. 2017 *Riptortus pedestris* and *Burkholderia* symbiont: an ideal model system for insect-microbe symbiotic associations. *Res. Microbiol.* **168**, 175–187. ([doi:10.1016/j.resmic.2016.11.005](https://doi.org/10.1016/j.resmic.2016.11.005))

65. Kerwin AH, McAnulty SJ, Nyholm SV. 2021 Development of the accessory nidamental gland and associated bacterial community in the Hawaiian bobtail squid, *Euprymna scolopes*. *Biol. Bull.* **240**, 205–218. ([doi:10.1086/713965](https://doi.org/10.1086/713965))

66. Pais IS, Valente RS, Sporniak M, Teixeira L. 2018 *Drosophila melanogaster* establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. *PLoS Biol.* **16**, e2005710. ([doi:10.1371/journal.pbio.2005710](https://doi.org/10.1371/journal.pbio.2005710))

67. Obadia B, Güvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL, Ja WW, Ludington WB. 2017 Probabilistic invasion underlies natural gut microbiome stability. *Curr. Biol.* **27**, 1999–2006. ([doi:10.1016/j.cub.2017.05.034](https://doi.org/10.1016/j.cub.2017.05.034))

68. Nishiyama K, Sugiyama M, Mukai T. 2016 Adhesion properties of lactic acid bacteria on intestinal mucin. *Microorganisms* **4**, 34. ([doi:10.3390/microorganisms4030034](https://doi.org/10.3390/microorganisms4030034))

69. Wang B, Li J, Li Q, Zhang H, Li N. 2009 Isolation of adhesive strains and evaluation of the colonization and immune response by *Lactobacillus plantarum* L2 in the rat gastrointestinal tract. *Int. J. Food Microbiol.* **132**, 59–66. ([doi:10.1016/j.ijfoodmicro.2009.03.016](https://doi.org/10.1016/j.ijfoodmicro.2009.03.016))

70. Holmén Larsson JM, Thomsson KA, Rodríguez-Piñeiro AM, Karlsson H, Hansson GC. 2013 Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin O-glycan patterns reveal a regiospecific distribution. *Am. J. Physiol. Gastrointest. Liver Physiol.* **305**, 357–363. ([doi:10.1152/ajpgi.00048.2013](https://doi.org/10.1152/ajpgi.00048.2013))

71. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. 2009 The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. *Sci. Transl. Med.* **1**, 6ra14. ([doi:10.1126/scitranslmed.3000322](https://doi.org/10.1126/scitranslmed.3000322))

72. Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, Buhler JD, Gordon JI. 2005 Glycan foraging *in vivo* by an intestine-adapted bacterial symbiont. *Science (N.Y.)* **307**, 1955–1959. ([doi:10.1126/science.1109051](https://doi.org/10.1126/science.1109051))

73. Reuter G. 2001 The *Lactobacillus* and *Bifidobacterium* microflora of the human intestine: composition and succession. *Curr. Issues Intest. Microbiol.* **2**, 43–53.

74. Marco ML, Peters THF, Bongers RS, Molenaar D, Van Hemert S, Sonnenburg JL, Gordon JI, Kleerebezem M. 2009 Lifestyle of *Lactobacillus plantarum* in the mouse caecum. *Environ. Microbiol.* **11**, 2747–2757. ([doi:10.1111/j.1462-2920.2009.02001.x](https://doi.org/10.1111/j.1462-2920.2009.02001.x))

75. Pétron T, Mulet C, Dauga C, Frangeul L, Chervaux C, Grompone G, Sansonetti PJ. 2012 A crypt-specific core microbiota resides in the mouse colon. *MBio* **3**, 262–267. ([doi:10.1128/mBio.00116-12](https://doi.org/10.1128/mBio.00116-12))

76. Saffarian A, Mulet C, Regnault B, Amiot A, Tran-Van-Nhieu J, Ravel J, Sobhani I, Sansonetti PJ, Pétron T. 2019 Crypt- and mucosa-associated core microbiotas in humans and their alteration in colon cancer patients. *MBio* **10**, G351–20. ([doi:10.1128/mBio.01315-19](https://doi.org/10.1128/mBio.01315-19))

77. Kohl KD, Dearing MD, Bordenstein SR. 2018 Microbial communities exhibit host species distinguishability and phyllosymbiosis along the length of the gastrointestinal tract. *Mol. Ecol.* **27**, 1874–1883. ([doi:10.1111/mec.14460](https://doi.org/10.1111/mec.14460))

78. Wangler MF *et al.* 2017 Model organisms facilitate rare disease diagnosis and therapeutic research members of the undiagnosed diseases network (UDN), 2. *Genetics* **207**, 9–27. ([doi:10.1534/genetics.117.203067](https://doi.org/10.1534/genetics.117.203067))

79. Lee P-T *et al.* 2018 A gene-specific T2A-GAL4 library for *Drosophila*. *Elife* **7**, 1377.

80. Robles-Murguia M, Hunt LC, Finkelstein D, Fan Y, Demontis F. 2019 Tissue-specific alteration of gene

expression and function by RU486 and the GeneSwitch system. *npj Aging Mech. Dis.* **5**, 2–6. (doi:10.1038/s41514-019-0036-8)

81. Dietzl G *et al.* 2007 A genome-wide transgenic RNAi library for conditional gene inactivation in *Drosophila*. *Nature* **448**, 151–156. (doi:10.1038/nature05954)

82. Ford D, Hoe N, Landis GN, Tozer K, Luu A, Bhole D, Badrinath A, Tower J. 2007 Alteration of *Drosophila* life span using conditional, tissue-specific expression of transgenes triggered by doxycycline or RU486/Mifepristone. *Exp. Gerontol.* **42**, 483–497. (doi:10.1016/j.exger.2007.01.004)

83. Blum JE, Fischer CN, Miles J, Handelsman J. 2013 Frequent replenishment sustains the beneficial microbiome of *Drosophila melanogaster*. *MBio* **4**, e00860-13.

84. Wong AC-N, Chaston JM, Douglas AE. 2013 The inconstant gut microbiota of *Drosophila* species revealed by 16S rRNA gene analysis. *ISME J.* **7**, 1922–1932. (doi:10.1038/ismej.2013.86)

85. Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. 2014 Bacterial colonization factors control specificity and stability of the gut microbiota. *Nature* **501**, 426–429.

86. Gould AL *et al.* 2018 Microbiome interactions shape host fitness. *Proc. Natl Acad. Sci. USA* **115**, E11951–E11960. (doi:10.1073/pnas.1809349115)

87. Walters AW *et al.* 2020 The microbiota influences the *Drosophila melanogaster* life history strategy. *Mol. Ecol.* **29**, 639–653. (doi:10.1111/mec.15344)

88. Chandler JA, Innocent LV, Martinez DJ, Huang IL, Yang JL, Eisen MB, Ludington WB. 2022 Microbiome-by-ethanol interactions impact *Drosophila melanogaster* fitness, physiology, and behavior. *iScience* **25**, 104000. (doi:10.1016/j.isci.2022.104000)