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Gut bacteria are prevalent throughout the Metazoa and form complex
microbial communities associated with food breakdown, nutrient provision
and disease prevention. How hosts acquire and maintain a consistent bac-
terial flora remains mysterious even in the best-studied animals, including
humans, mice, fishes, squid, bugs, worms and flies. This essay visits the evi-
dence that hosts have co-evolved relationships with specific bacteria and that
some of these relationships are supported by specialized physical niches that
select, sequester and maintain microbial symbionts. Genetics approaches
could uncover the mechanisms for recruiting and maintaining the stable
and consistent members of the microbiome.

This article is part of the theme issue ‘Sculpting the microbiome: how
host factors determine and respond to microbial colonization’.
1. Microbial communities are important to the health of
animals, plants and the biosphere

Microbial communities live in every habitat on the Earth and play key roles in
biogeochemical nutrient cycles including the carbon and nitrogen cycles, which
are critical regulators of global climate change [1]. Microbial communities in
soils, for instance, provide essential nutrients for plant growth and drought resist-
ance, which influences primary productivity and carbon dioxide sequestration
from the atmosphere [2,3]. In animals, the gut microbiome is crucial for the diges-
tion of plant material, acquisition of vitamins and resistance to disease [4,5].
These processes are important for health and fitness of animals and they influ-
ence, for instance, how much plant material a herbivore can consume, which
affects the local primary productivity [5]. Microbial communities in animal
guts and soils also control whether carbon dioxide or methane will be released
as a result of digestion and decomposition processes [6,7]. All of these microbial
contributions occur at global scales, underscoring the importance of microbial
communities in climate regulation.
2. Specific species of bacteria are consistently found in
association with the gut of the same hosts

Colonization of a host gut by a bacterium is a complex process that involves the
bacterium entering the host and finding a suitable environment where it can
sustain a population. A bacterium requires certain nutrients, and other factors
such as pH and oxygen levels are essential to growth (figure 1a). Inside a host,
the bacterium must survive additional factors such as digestive proteases, bile
salts and the immune system (figure 1b). The environmental filtering model of
colonization postulates that the combination of microbial growth, survival
of host environments, competition between microbes and random forces
including chance exposures of the host to the bacteria determines colonization
[8–10].
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(a)

(b)

(c)

Figure 1. Different levels of host control for different bacterial niches in the
gut. (a) A nutritional niche is defined by the nutrients available to a bacter-
ium in the gut. (b) A host ecological niche provides dietary nutrients but also
inhibits the growth of some bacteria through factors like stomach acid, bile
salts, competition from other bacteria and immune effectors. (c) A host-con-
structed physical niche has the highest degree of biological sophistication. In
addition to factors in the nutritional niche and host ecological niche, the
physical niche provides specific sites for adhesion, protected space that
limits loss of bacteria owing to peristaltic flow, and a specifically tailored
nutritional and immune environment that selects the proper strains from
the milieu of the intestinal flora. (Online version in colour.)
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Rather than colonization being owing to chance associ-
ations alone, there might also be co-evolved fitness
strategies between host and microbe that promote specific
associations [11,12]. A classic example is the Hawaiian bob-
tailed squid, where association with a bioluminescent
species of Vibrio fischeri is believed necessary for the squid
to evade predators in the wild [13]. Both the bacterium and
squid have been shown to possess numerous genes that
ensure the proper association [13]. Co-phylogenetic analysis
of the squid and its symbiont show a parallel evolution,
where the diversification of host and symbiont show parallel
phylogenies [14]. Applying a similar approach, numerous
other groups have found similar co-phylogenetic diversifica-
tion of host and microbe. Example hosts where this pattern
occurs include sap sucking insects such as aphids [15],
cicadas and sharpshooters [15,16], entomopathogenic nema-
todes and their bacterial symbionts [17], termites [18],
stinkbugs [19–21], ants [22] and certain species of gut bacteria
in primates [11,23]. While the sap sucking insects have intra-
cellular bacteria that are vertically transmitted, the other
associations are for gut bacteria, which are environmentally
acquired. There are also many examples where the host and
symbiont phylogenies show a lesser degree of detectable coe-
volution (or none at all). These include the luminous
cardinalfish, Siphamia [24], squash bugs [25], corals [26] and
sponges [27]. This tends to be true for clades that have less
specific associations with their symbionts. The bacterial
associations with true bugs are an example where the speci-
ficity of the insect for the bacteria is only at the level of the
genus, e.g. Burkholderia, but competition between bacterial
strains determines the strain-level specificity [20]. It is impor-
tant to consider why some bacterial associations would be
more or less specific. Because bugs stand to gain so much
from their symbionts, it may make sense from a fitness
perspective for the bug to accept any symbiont that is
suitable [20]. If multiple suitable strains are present
during colonization, the fittest of these is selected through
symbiont–symbiont competition [20].

How bacteria are selected contributes to the co-phylo-
genetic patterns between host and bacterial symbiont. The
posterior midgut crypts that are colonized by Burkholderia
in bugs lie distal to the ‘constricted region’, which filters
out undesirable bacteria using a combination of physical,
chemical and immune mechanisms, similar to the selective
mechanisms that regulate squid light organ colonization
[13,20,28]. Factors such as the mechanism of symbiont acqui-
sition (vertical versus environmental), the host diet that
influences the environment for the association, and the preva-
lence of the bacteria in the environment can influence
symbiont acquisition [29]. While a lot of emphasis has been
placed on vertical transmission as the ultimate insurance of
transmission, some of the best-studied hosts with symbiont
specificity, such as the bobtail squid, environmentally acquire
their symbionts generation after generation [30,31]. It is
worth considering that if the host has a very specific need
for a function that only a specific symbiont can provide, evol-
ution can still select for mechanisms of obtaining the correct
symbiont without vertical transmission [29,31]. It is in these
cases without vertical transmission where we expect to find
host adaptations to selectively acquire and maintain specific
symbionts in host-constructed niches and to discriminate
between symbiont strains to select the best ones.
3. Bacteria reside in physical niches in animals
Physical niches represent the utmost host control over a sym-
biont because they control not only which symbiont strain
colonizes, but also where it colonizes, how many cells colo-
nize and how long the symbiont cells spend in the niche
before they are expelled ([13,32,33]; figure 1c). Physical
niches hold host-selected bacterial symbionts in squid [13],
fishes [34,35], bugs [28] and other insects [15]. While numer-
ous other stochastically acquired bacteria may be present, the
specific symbionts reside in privileged physical niches. These
gut bacteria perform functions for the host such as the afore-
mentioned provision of light for the squid to evade predators,
breakdown of host nitrogenous waste in many insects [36]
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and detoxification of the diet [37,38]. For instance, Burkhol-
deria in the gut of the bean bug, Riptortus pedestris, can
break down toxic levels of the insecticide, fenitrothion, allow-
ing the bug to survive on treated plants [38]. In addition, host
physiology of the niche is influenced by the bacteria. For
example, in the squid, secreted nutrients are only provisioned
when the correct bacteria are present to consume those
nutrients [39]. In the human stomach, crypts that house Heli-
cobacter pylori regulate acid secretion, suggesting that host
control of stomach pH is influenced by the correct bacterial
colonizers [40]. Other physical niches include the cecum in
rodents, which is thought to be a reservoir for digestive bac-
teria that ferment food in the colon [41]. Once thought to be a
vestigial organ, the appendix in humans may serve a similar
purpose to the rodent cecum [42]. Other physical niches
probably exist but are yet to be discovered.
s.R.Soc.B
379:20230066
4. Microbiome composition is consistent within a
given host species

The diversity of the microbiome is well known from 16S
amplicon sequencing surveys [43]. Studies of human stool
samples have routinely focused on the high inter-individual
variability, and microbiome composition fluctuates wildly
as people eat different meals that change the available nutri-
ents in the gut and cause different species to bloom in
abundance [44–46]. It should be noted that one of the pri-
mary data analysis techniques for analysing 16S amplicon
sequencing data is principle component analysis of beta
diversity (and similar techniques), which focuses on the vari-
able characters in the data rather than the consistent ones.
While weighted methods like Unifrac and Bray–Curtis do
take into account differences in relative abundance, in the
commonly used unweighted Unifrac method, taxa that are
present in all samples are not analysed.

One of the often overlooked aspects of the human micro-
biome is its remarkable stability over time [47] and resiliency
to perturbations including from courses of antibiotics and
from diarrhoeal disease [48–50]. Furthermore, there is high
consistency of the gut microbiome within an individual
host species that clearly delineates different hosts based on
their gut bacterial composition [51]. While factors like dietary
nutrients feeding the bacteria and transmission networks of
bacteria between hosts undoubtedly play a role in this
consistency [52], when viewed in light of the temporal
resilience of individual hosts, the evidence is also consistent
with the hypothesis that host specificity is controlled through
host-constructed physical niches. Such niches could guide the
recolonization of the gut after diarrhoea or a course of anti-
biotics [48]. Given the importance of the microbiome to
animal health, recolonizing with the correct bacteria would
be much less risky if the host maintained reservoirs of these
good bacteria in niches spaced throughout the gut, rather
than starting anew each time. If the gut did start anew,
then the chances of coming up with the same consortium
of bacteria from those in the environment after each
perturbation would be fleetingly small [53,54]. While the
post-recovery microbiome certainly differs from the pre-
perturbation microbiome, the degree of consistency between
the two is quite high compared with a randomly sampled
microbiome. This microbiome consistency is consistent with
the physical niche concept.
5. Properties that define a niche
‘Niche’ has a range of meanings that differ between fields. In a
wall, a niche is a small recess, often to hold something. When a
person finds their niche in life, they have discovered a fitting
lifestyle that brings contentment. In ecology, the fundamental
niche is a habitat that provides the set of suitable resources
and environmental conditions needed for an organism to
survive, while the realized niche is the niche the organism
occupies owing to interactions with other organisms [55]. In
cell biology, a stem cell niche is similar to the ecological defi-
nition, but it often has a high degree of spatial constraint
owing to the fact that the survival factors needed for the
stem cell to live in the niche are often provided by specialized
neighbouring cells [56,57]. The physical niche provided for the
bacteria by the host is a protected space that also provides
nutrients.

Bacterial niches in eukaryotic organisms are widespread
and highly variable. There are intracellular niches, for
instance in bacteriocytes of aphids and leaf hoppers, where
bacterial cells are contained within the host insect cells, and
these bacteria are vertically inherited from the mother [15].
There is an extensive literature on intracellular niches, and
it is not discussed further here.

The non-pathogenic bacterial niches in the host gut that
are the subject of this essay are extracellular, and there are
many factors governing which bacteria can colonize them
(figure 1). If the host provides an environment with the cor-
rect nutrients, pH and temperature for survival, then a
microbe can occupy that environment in the gut, given that
it can successfully compete with other gut microbes [58]
(figure 1a). Owing to overlaps in microbial metabolisms, an
ecological niche in the gut could be occupied by more than
one organism [59], and a priority effect might exist, where
the first organism to occupy a niche has a competitive advan-
tage over following ones based on how it occupies the habitat
[60–63]. Such ecological niches would be expected to have
high variability in bacterial composition between individuals,
consistent with the high degree of individuality seen in the
human gut [61]. As an additional layer of host control,
stomach acid, digestive proteases, bile salts and immune
effectors kill susceptible bacteria (figure 1b). Physical niches
are spatially localized sites that provide a further layer of
host control (figure 1c). These niches are evolved sites
where the host recruits and maintains specific species while
excluding others (e.g. [13,32,34,64,65]). Physical niches often
have a consistent set of species or strains that colonize
them, and they incorporate elements of nutritional niches
such as providing the correct physiological conditions. The
major difference from other types of niches is the high
degree of spatial specificity and selectivity that a host can
exert on a physical niche. Different types of physical niches
exert control on their colonizers in different ways. For
example, the pouches in the posterior midgut of bean bugs
seal off the symbiotic bacteria from the rest of the gut
lumen, trapping them [33]. This physical barrier and the con-
stricted region together prevent invasion by external bacteria
[64]. The niche in the Drosophila foregut also has a pouch-like
element, called the crop, but it is not sealed off from invading
bacteria [32,66,67]. Instead, the bacteria physically adhere to
the wall of the niche. The host could then control the coloniz-
ing species by remodeling the extracellular matrix to change
the availability of the ligand that the bacteria bind. This very
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molecular mechanism of host control would be much more
specific in terms of which bacteria can bind the niche
versus being trapped in a crypt. However, these are
hypotheses yet to be proved.

The exposed gut lumenal wall of the mammalian intestine
is similar in that many bacteria colonize by adhering to the
mucus layer secreted by the epithelial goblet cells. Lactobacilli
and other mucus-adherent bacteria colonize the mucosal layer
of the ileum and jejunum [68,69], and studies have found gut
region-specific variation in the composition of the glycan layer
in terms of its specific residues [70]. The regionality of bacterial
composition of the gut correlates with the regionality of the
differences in glycan composition [71]. Glycan utilization by
specific gut members, such as Bacteroidetes thetaiotaomicron’s
usage of sialic acid has been biochemically and genetically
investigated [72], and many of the original gut bacterial iso-
lates, such as Lactobacillus reuteri and Bifodobacterium infantis
were cultured from mucus scrapings [73]. The physical associ-
ation of these bacteria with the intestinal wall makes them
stable colonizers. The caecum, appendix and colonic crypts
have also been recognized as niches that can store bacteria
(cf. [74–76]). Differentiating stable colonizers from transient
ones is important because stable colonizers have a longer-
term relationship with the host and therefore are more likely
to have co-evolved [73,77].
6. Identifying new niches
The physical niche concept is appealing because it suggests
exquisite control by the host over microbiome composition
and that we may be able to uncover the developmental
genetic mechanisms in order to therapeutically control colo-
nization. However, doing so in practice requires not only
locating the niches but also a high degree of control over
gene expression in the niche. A physical niche for bacteria
was recently identified in the fruit fly Drosophila melanogaster,
which might serve as a paradigm for the identification of
other niches [32]. Drosophila as a host model is one of the
most tractable animals for developmental genetics [78]. Indi-
vidual genes can be turned on and off in specific cell types
and tissues at specific times during development as con-
trolled by the experimenter [79–82]. Moreover, Drosophila
genetic stock centres maintain hundreds of thousands of fly
lines that allow researchers to simply request the desired gen-
etic tools in order to test the role of individual genes in
specific cell types at defined times during the fly’s lifespan.

The lack of a stable microbiome in laboratory-reared Dro-
sophila diminished its appeal as a microbiome model [83,84].
However, stable colonizing bacteria were identified in wild
Drosophila [32,66,67], and these strains also stably colonize
laboratory flies, suggesting that the bacteria in laboratory-
reared flies lost key genes for stable colonization. The stably
colonizing bacteria were isolated by two different laboratories
using similar approaches that clear transient bacteria from the
gut while leaving stable colonizers. The assays rely on the
fly’s consumption of germ-free food to push unstable coloni-
zers out of the gut. While flies typically feed on microbe-rich
food, the gut clearing approaches that identified stable colo-
nizers both used food with maintained sterility to prevent
the reintroduction of bacteria [32,66,67]. Gut clearance tech-
niques have been established in mammals with the similar
goal to isolate the stable colonizers [71]. By washing the
intestinal lumen and isolating bacteria from scraped mucus,
researchers such as Professor Reuter isolated adherent
bacteria and reduced the detection of transient bacteria [73].

To test the stability of the isolated bacteria in the fly
gut, several techniques have been performed. First, bacteria
were inoculated at low density and tested for their ability
to colonize the gut from low initial numbers [32,66,67].
Stable colonizers reach the same population size in the gut
regardless of the inoculation density [32].

To test the robustness of colonization, perturbation assays
have been employed. In flies, a pulse-chase technique was
developed to push out unstably adhered cells and measure
the kinetics of the population turnover as a half-life [32].
This revealed a half-life on the order of weeks for a subpopu-
lation of bacteria in the physical niche.

Pulse-chase of H. pylori in the stomach crypts of mice
identified priority effects where the first colonizer excludes
later arrivals [40]. Similar experiments making use of mice
colonized by a single bacterial strain found that Ba. thetaiotao-
micron inhabits colonic crypts with first colonizers
outcompeting later arrivals [58,85]. Microscopy imaging
defined the spatial locations of the colonization. Key con-
siderations to further confirm the existence of a niche
would require similar colonization of the putative niche in
conventionally reared animals with a normal microbiome
as well as flushing techniques to determine the stability of
the niche colonizers. In flies, the specific bacteria still colonize
the niche in animals with a conventional microbiome,
affirming this as a true niche [32,66,67].
7. Conclusion
Host–microbe associations are prevalent throughout the
Metazoa. While many of these associations are transient,
non-specific and of little consequence to the host, many
others are stable, with a high degree of specificity for both
the host and microbe, and these typically have a valuable
contribution to the fitness of both host and microbe [86–88].
Understanding how these specific relationships form in
development and over evolutionary time is of importance
to animal health and the ecological health of our planet.

The specificity of a beneficial host–microbe association is
determined by both the host and the microbe, and there are
various degrees of specificity with different mechanisms
[11,13,15,19,28]. When the host constructs a physical niche
that selectively binds with molecular specificity certain bac-
teria to the exclusion of others, this represents one of the
highest degrees of host control [13,32]. By requiring such a
high degree of specificity in a physical niche, a host can
recruit specific bacteria from the highly diverse pool in the
environment without falling vulnerable to pathogen invasion
of the niche. Such a specific relationship provides optimal
functional benefit of the symbionts to the host.

While host genetics have been elusive in the best-studied
organisms such as squid and the true bugs, the discovery of a
physical niche housing specific gut bacteria in Drosophila pro-
vides access to the best-developed toolkit for developmental
genetics to study host mechanisms of symbiont specificity
[32].
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