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CUTOFF PROFILE OF THE METROPOLIS BIASED CARD SHUFFLING

BY LINGFU ZHANGa

Department of Statistics, University of California, alfzhang@berkeley.edu

We consider the Metropolis biased card shuffling (also called the multi-
species ASEP on a finite interval or the random Metropolis scan). Its conver-
gence to stationarity was believed to exhibit a total-variation cutoff, and that
was proved a few years ago by Labbé and Lacoin (Ann. Probab. 47 (2019)
1541–1586). In this paper, we prove that (for N cards) the cutoff window
is in the order of N1/3, and the cutoff profile is given by the Tracy–Widom
GOE distribution function. This confirms a conjecture by Bufetov and Nejjar
(Probab. Theory Related Fields 83 (2022) 229–253). Our approach is differ-
ent from (Ann. Probab. 47 (2019) 1541–1586), by comparing the card shuf-
fling with the multispecies ASEP on Z, and using Hecke algebra and recent
ASEP shift-invariance and convergence results. Our result can also be viewed
as a generalization of the Oriented Swap Process finishing time convergence
(Ann. Appl. Probab. 32 (2022) 753–763), which is the TASEP version (of our
result).

1. Introduction. In this paper, we study the (Metropolis) biased card shuffling of size
N , which can be viewed as a continuous time Markov chain with state space being the per-
mutation group SN . This Markov chain can be described as follows. Let [N ] denote the
set {1, . . . ,N}, and let elements in SN be represented by bijections from [N ] to itself. Sup-
pose that the current state is λ : [N ] → [N ], then for each i ∈ [N − 1] independently, if
λ(i) < λ(i + 1), with rate 1 we swap λ(i) and λ(i + 1); otherwise, with rate q we swap λ(i)

and λ(i + 1). Here, q ∈ [0,1) is a constant. This Markov chain is known to have a stationary
measure, MN , which is also called the Mallows measure of size N . We let Wλ

N,t be the law
of this chain at time t , starting from a deterministic state λ. Then Wλ

N,t → MN as t → ∞.
Our main result concerns the convergence of Wλ

N,t to MN in the total-variation distance,
which is defined as

‖P −Q‖TV = max
A⊂SN

∣∣P(A) −Q(A)
∣∣

for any two probability measures P and Q of SN .

THEOREM 1.1. For any τ ∈ R, we have

lim
N→∞ max

λ∈SN

∥∥Wλ
N,2(1−q)−1(N+τN1/3)

−MN

∥∥
TV = 1 − FGOE

(
22/3τ

)
,

where FGOE is the distribution function of the Tracy–Widom GOE distribution.

The Tracy–Widom GOE distribution was introduced in [47], where it was shown to govern
the fluctuation of the largest eigenvalue in the Gaussian Orthogonal Ensemble (GOE) random
matrices. It can be defined as

(1.1) FGOE(s) = e−2−1 ∫ ∞
s p(x)+(x−s)2p(x)2 dx,
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where p(x) is the Hastings–McLeod solution of the second Plainlevé equation p′′(x) =
2p(x)3 + xp(x), with boundary condition p(x) ∼ Ai(x) as x → ∞ for Ai being the Airy
function. The appearance of this distribution here is due to that it also comes up in current
fluctuations of 1D interacting particle systems (to be discussed shortly).

Our main result (Theorem 1.1) basically says that there is a cutoff phenomenon in the
total-variation convergence of the biased card shuffling, with a cutoff window in the order of
N1/3, and the cutoff profile is Tracy–Widom GOE.

1.1. Background and related works. The word “cutoff” was first used by Aldous and
Diaconis [4] to describe the phenomenon, where (usually in terms of the total-variation dis-
tance) a Markov chain stays away from its stationary distribution for some time, but then
converges abruptly; see the review articles [18, 44] and the textbook [32]. To rigorously es-
tablish cutoff often requires a rather careful understanding of the particular Markov chains, as
achieved in many instances in the past decades see, for example, [3, 7, 20, 21, 27, 34–36, 42]
where cutoff was proved for various (families of) Markov chains using a variety of methods.
Many of them were on different card shuffling processes.

The “cutoff window” refers to the small period when the total-variation distance decays
from near 1 to near 0, and the “cutoff profile” describes the shape of the decay within the
window. These are refined information on Markov chains and are not available even for most
Markov chains where cutoffs have been established. Among those cases where cutoff profiles
are known, many of them are given by the distribution function of Gaussian random variables;
see, for example, [8, 30, 34] (and also [17] where the cutoff is in a slightly different setting).
Some other types of cutoff profiles have also been discovered; see, for example, [15, 38, 45].

The biased card shuffling, the Markov chain we analyze in this paper, was first studied
by Diaconis and Ram in [19] under the name “random Metropolis scan,” as it is an instance
of the Metropolis algorithm that samples biased random permutations. The mixing of this
Markov chain was later studied in [9], whose main result states that the mixing time is at
most linear in the size N . A simpler proof of this result later appeared in [25]. Since then,
whether a cutoff happens for the biased card shuffling remained an open problem. This was
answered affirmatively by Labbé and Lacoin [27], who proved that the total-variation cutoff
happens at time 2(1 − q)−1N . In the same paper, the spectral gap was also computed.

Simple exclusion process. A closely related Markov chain is the Asymmetric Simple Exclu-
sion Process (ASEP), which has been used as a key tool in studying biased card shuffling.
It is a classical interacting particle system and has been intensively studied in the literature
(back to, e.g., [33]). It can be formulated as follows. For a (finite or infinite) sequence of
sites (indexed by Z or a finite discrete interval), each site may be occupied by a particle or
be empty (later we shall represent this by a function from Z or a finite discrete interval to
{0,1}, with 1 denoting a particle, and 0 denoting a hole). For each particle, if the site next to
it in the right is empty, with rate 1 it jumps to the right; and if the site next to it in the left is
empty, with rate q it jumps to the left. Such jumps happen independently for each particle in
each direction. The ASEP is an important model in the so-called Kardar–Parisi–Zhang (KPZ)
universality class and has exact-solvable structures. The hydrodynamics are well understood,
and its diffusive scaling limit has been identified with the KPZ equation [10]. However, the
scaling invariant and long time limit of the ASEP should be obtained under the KPZ scaling
instead. That limit (when the space is Z) is termed the KPZ fixed point, and was first con-
structed in [37] as the KPZ scaling limit in the totally asymmetric case (i.e., when q = 0),
and later proved for the general q ∈ [0,1) case in [41].

The ASEP on the finite discrete interval [N ] can be easily connected to the biased card
shuffling of size N . Namely, we can get the ASEP on [N ] with k particles, if in the biased
card shuffling we replace each number ≤ k by a particle and each number > k by a hole (see
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FIG. 1. An illustration of projecting the biased card shuffling into single-species ASEPs.

Figure 1). In other words, we can project the biased card shuffling of size N into the ASEP,
for each integer k between 0 and N . It is worth mentioning that given all such projections (for
all k) we can reconstruct the biased card shuffling (see Section 2.2 below for the details). For
this reason, we also refer to the biased card shuffling of size N as “the multispecies ASEP”
or “the colored ASEP” on [N ]. As the ordinary single-species ASEP, the multispecies ASEP
can also be defined on Z or any finite discrete interval (not just [N ]). More precisely, we
define the multispecies ASEP as an evolving bijection from Z or a finite discrete interval
to itself, such that for any pair of nearest neighbors, if the left number is smaller than the
right one, they swap with rate 1; otherwise, they swap with rate q and such swaps happen
independently for all pairs of nearest neighbors.

The paper [9] also studied the mixing of the single-species ASEP on a finite interval, and
proved a “pre-cutoff.” Namely, it was shown that the total-variation distance decays from 1
to 0 in a certain time scale, but not necessarily in a small time window. The cutoff problem
(of the single-species ASEP) was settled in [27] (together with the biased card shuffling
cutoff), using hydrodynamics of the ASEP on Z. In [27], Labbé and Lacoin expected that
the cutoff window should be in the order of N1/3 with the cutoff profile related to the so-
called (parabolic) Airy2 process. These were later established by Bufetov and Nejjar in [15].
They verified the N1/3 order of cutoff window and showed that the cutoff profile is given by
the Tracy–Widom GUE distribution (which is the one point distribution of the Airy2 process
and was introduced by Tracy and Widom in [46] as the scaling limit of the fluctuation of
the largest eigenvalue of the Gaussian Unitary Ensemble (GUE) matrices). As noted in [15],
Section 1.2, while proving the cutoff for the biased card shuffling and the single-species
ASEP follow similar and largely related arguments (in [27]), it is “significantly more delicate”
to study the cutoff profile of the biased card shuffling than the single-species ASEP.

In [15], the authors also conjectured the N1/3 cutoff window and the Tracy–Widom GOE
cutoff profile for the multispecies ASEP, that is, the biased card shuffling. This conjecture
is verified by our Theorem 1.1. The distinction in the cutoff profiles, between the multi and
single-species ASEP, is due to that they are respectively connected to ASEP on Z with step
(i.e., having a particle at each site ≤ 0 and being empty at each site > 0) or flat (i.e., having a
particle at every other site) initial configurations. As will be explained in Section 1.2, under
this connection, the mixing times (for multi and single-species ASEP on [N ]) are described
by the current fluctuations (of ASEP on Z with step and flat initial configurations). By the
KPZ fixed-point limit of ASEP [41], these current fluctuations have scaling limits related to
the parabolic Airy2 process. More precisely, their scaling limits are respectively given by the
one point and global maximum of the process, which are known to be Tracy–Widom GOE
and GUE, respectively. We note that for the step limit configuration, the Tracy–Widom GUE
limit has been established earlier in [48].

The behavior of these chains (single-species/multispecies simple exclusion process in a
finite interval) in the slightly different symmetric setting, that is, where q = 1 rather than
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TABLE 1
A summary of some results on the mixing/cutoff of single-species/multispecies exclusion processes

Mixing time
and cutoff

(Single-species) exclusion
process cutoff profile

Multispecies exclusion
process cutoff profile

Totally Asymmetric (q = 0) [6] [6] Tracy–Widom GUE [14] Tracy–Widom GOE

Partially Asymmetric
(q ∈ (0,1))

[9, 27] [15] Tracy–Widom GUE Our Theorem 1.1
Tracy–Widom GOE

Symmetric (q = 1) [31, 49] [30] (on the cycle) Gaussian unknown

q ∈ [0,1) is quite different. For both single-species and multispecies chains, the mixing time
is in the order of N2 log(N) [49], and cutoff has been proven in [31]. For the single-species
ASEP on a circle, the cutoff window is proven to be in the order of N2, with Gaussian cutoff
profile [30]. See also, e.g., [23, 24, 43], and the survey [29] and the references therein, for
some recent developments in this direction.

The totally asymmetric case. For the biased card shuffling, the special case where q = 0 has
been studied in the literature, first in [6], under the name “Oriented Swap Process” (OSP)
and as a type of random sorting algorithm. Note that in this case, there is a unique absorb-
ing state λ ∈ SN where λ(x) = N + 1 − x for each x ∈ [N ], and mixing of this Markov
chain degenerates into the “absorbing time,” that is, the time of reaching this absorbing
state. In [6], the authors studied various aspects of the OSP, including the trajectories of
the numbers, and various aspects of the absorbing time. In particular, they showed that the
absorbing time divided by N converges to 2 in probability. They also studied the finishing
time of each number, that is, the time a number k ∈ [N ] makes its last move. This can be
viewed as the finishing time (in a segment) of the (single-species) totally asymmetric simple
exclusion process (TASEP), which is the degeneration of the (single-species) ASEP to the
q = 0 case. In [6], the authors showed that the one number finishing time has fluctuation in
the order of N1/3 with Tracy–Widom GUE scaling limit, using TASEP convergence results
from [26].

A question asked in [6] is to figure out the order and distribution of the absorbing time
(which can be viewed as the maximum of the finishing times over all k ∈ [N ]). This was
settled in [14], which proved that the absorbing time fluctuation is in the order of N1/3 with
Tracy–Widom GOE scaling limit, using recently proved symmetries of the six-vertex model
[13]. (This is also the reason why the biased card shuffling cutoff profile is conjectured to be
Tracy–Widom GOE in [15].) Another direction pointed out in [6] is to generalize the results
of OSP to the partially asymmetric (i.e., q > 0) case. Our Theorem 1.1 can be viewed as such
a generalization of [14]. We would also like to mention a recent interesting development [2],
which likely leads to generalizing the results on trajectories in [6] to the q > 0 case.

Finally, we mention that similar exclusion processes in the continuous space setting have
also been studied. More precisely, one considers real numbers 0 ≤ x1 ≤ · · ·xN−1 ≤ N . For
each xi , with rate 1 it is resampled from a certain distribution in [xi−1, xi+1]. Such models
are also referred to as the “adjacent walk on the N -simplex.” In the symmetric case where the
resampling law is taken to be uniform or a symmetric log-concave Beta distribution, cutoff
at π−2N2 log(N) is proved in [16]. The settings of asymmetric Beta distribution resampling
laws are studied more recently in [28], with order N mixing time and a pre-cutoff established.

Some of the above results are summarized in Table 1.

1.2. Our contribution and main tools. We next describe our strategy and the used tools,
in comparison with related previous works (in particular, [15] and [14]). As discussed above,
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[15] studies the general q ∈ [0,1) problem, but at the level of a single-species ASEP projec-
tion; on the other hand, [14] studies the multispecies model, but in the special q = 0 case.

Our proofs use ingredients from both papers. As [14], we can use a shift-invariance prop-
erty of the multispecies ASEP (from [13, 22]), to reduce problems on the multispecies ASEP
on Z to problems on the single-species ASEP on Z with flat initial configuration. In [14],
classical convergence results on the TASEP were then used to get the Tracy–Widom GOE
limit, while here we instead use the more recently proved ASEP convergence to the KPZ
fixed point [41]. (Note that Tracy–Widom GOE limit in ASEP has been formally derived
earlier in [39].) Then the main task is to connect the cutoff profile problem in a finite interval,
with the distribution of the multispecies ASEP on Z.

In the q = 0 case, due to that swaps happen only in one direction, there is a natural cou-
pling between the multispecies TASEP on a finite interval and on Z, using some truncation
operators, as first described in [6]. Such a relation is not available when q > 0. Besides, the
total-variation distance (in the q > 0 case) is also much less tractable than the absorbing time
(in the q = 0 case).

Our main contribution is to develop new ideas to overcome these difficulties, and build the
connection in the above “main task.” We use the height function representation of the single-
species ASEP, and Hecke algebra identities; and the core arguments are given in Section 2.3
and Section 3 below. In more detail, we couple the biased card shuffling (with a determinis-
tic initial configuration) with the stationary one so that the swaps are synchronized. This is
the basic coupling to be defined shortly in Section 2.2. Then the mixing time is reduced to
the stopping time when they are equal for the first time. By considering the single-species
ASEP projections and using ordering properties of the ASEP height function, this problem
is eventually reduced to comparing two (single-species) ASEPs on Z with different initial
configurations.

For two (single-species) ASEPs under the basic coupling, such that the set of particle
locations of one of them contains the set of particle locations of the other one, they are
equivalent to the ASEP with second-class particles. A second-class particle is a particle that
can swap with a hole next to it on the right, or a particle next to it on the left, with rate 1,
respectively. It can also swap with a hole next to it on the left, or a particle next to it on the
right, with rate q , respectively. It is straightforward to check that, by replacing each second-
class particle with a hole or replacing each second-class particle with a particle, one can get
two (single-species) ASEPs that are under the basic coupling. Thus to study the difference
between these two (single-species) ASEPs, one just needs to track the locations of the second-
class particles. For this, we use Hecke algebra identities, reducing it to events under the
Mallows measure, which is well understood with explicit distribution functions (e.g., (2.1)
and (2.3) below).

Some of these ingredients, such as the basic coupling and Hecke algebra, have also ap-
peared in [15]. However, there are several key differences between the arguments in this
paper and [15]. The most significant aspect is in our usage of Hecke algebra. In [15], Hecke
algebra was used to translate events on certain single-species ASEPs to events on certain
ASEPs with second-class particles, which were analyzed directly. In this paper, Hecke alge-
bra is used in the opposite direction. Namely, we introduce second-class particles because
we wish to compare two (single-species) ASEPs; and the Hecke algebra is used to reduce
events on the ASEP with second-class particles to events on another (single-species) ASEP
without second-class particles. Besides, while ordering of particle configurations was also
used in [15], it is more extensively exploited in this paper, with the help of the more intuitive
height function. Using these, we can directly compare ASEPs on a finite interval and Z, and
such comparison was not obtained in [15]. Finally, we mention that our proof can be easily
adapted to the single-species ASEP setting, to get an alternative proof of the main result of
[15] (see Remark 2.6 below).
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Notation and terminologies. Some basic notation are used throughout this paper (and
some of them have appeared already). For any x, y ∈ R∪{−∞,∞}, we let x ∧y = min{x, y}
and x ∨ y = max{x, y}, and let �x, y� be the discrete interval, containing all integers ≥ x

and ≤ y. We also write [N ] = �1,N � for any N ∈ N. Below q always denotes the rate of
reversed jumps or swaps, and we always assume that q ∈ [0,1).

Organization of the remaining text. The remaining text mainly focuses on the proofs. In
Sections 2.1 and 2.2, we set up some notation and provide some preliminary lemmas; then
in Section 2.3 we state the main steps of our arguments, as three propositions, and prove
Theorem 1.1 assuming them. The most important one (of the three steps), where we compare
the biased card shuffling and the multispecies ASEP on Z, is implemented in Section 3. In
the last two sections, we do the remaining steps, respectively. Specifically, in Section 4 we
prove an estimate for certain “ground state hitting time” of the single-species ASEP, and in
Section 5 we deduce convergence to the Tracy–Widom GOE distribution using known ASEP
shift-invariance and convergence results.

2. Preliminaries and main steps.

2.1. The stationary Mallows measure. We start by giving the formal definition of the
Mallows measures, which are stationary measures of the biased card shuffling or the multi-
species ASEP on a finite interval. For the convenience of later arguments, we consider the
interval �m,n� for integers m ≤ n. As in [15], we let Sm,n denote the set of all bijections
between �m,n� and itself, and let Mm,n denote the Mallows measure on Sm,n, such that for
any w ∈ Sm,n,

(2.1) Mm,n(w) = qκ(w)Zm,n,

where (and also for the rest of this paper) we denote κ(w) = ∑
m≤i<j≤n1[w(i) < w(j)] as

the “energy” for any w ∈ Sm,n, and

(2.2) Zm,n = 1∑
w∈Sm,n

qκ(w)
=

n−m+1∏
i=1

1 − q

1 − qi
.

Note that there is a unique w ∈ Sm,n with κ(w) = 0, that is, w : i =�→ m + n − i; and that is
the “ground state.” It is straightforward to check that Mm,n is the stationary measure of the
biased card shuffling on �m,n�.

For each k ∈ �0, n − m + 1�, we let Pk
m,n be the measure on {0,1}�m,n�, obtained from

Mm,n under the projection where each w ∈ Sm,n is mapped to x �→ 1[w(x) ≤ m + k − 1].
In words, under Pk

m,n there are k particles and n − m + 1 − k holes if we view each 1 as a

particle and each 0 as a hole. One can readily check that, for any ω ∈ {0,1}�m,n�,

(2.3) Pk
m,n(ω) = 1

[ ∑
i∈�m,n�

ω(i) = k

]
qκ(ω)Zk

m,n,

where (as a slight misuse of notation, and also for the rest of this paper) κ(ω) =∑
m≤i<j≤n1[ω(i) = 1]1[ω(j) = 0] is the “energy” for any ω ∈ {0,1}�m,n�, and

Zk
m,n = 1∑

w∈{0,1}�m,n�,
∑

i∈�m,n� ω(i)=k qκ(w)
=

∏k
i=1(1 − qi)

∏n−m+1−k
i=1 (1 − qi)∏n−m+1

i=1 (1 − qi)
.

Note that here the “ground state” is given by ω : i �→ 1[i ≥ n − k + 1]. From this definition
of Pk

m,n as a projection of Mm,n, it is stationary under the (single-species) ASEP evolution
on �m,n�.

We will frequently use the following estimate of the “energy” under Pk
m,n.
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LEMMA 2.1. There is a constant C > 0 depending only on q , such that for any integers
m ≤ n, k ∈ �0, n − m + 1�, and any a ∈ N,

(2.4) Pk
m,n

({
ω ∈ {0,1}�m,n� : κ(ω) > a

})
< Cqa/2.

PROOF. For each ω ∈ {0,1}�m,n� and i ∈ �m,n�, denote ri = 1[ω(i) = 1] ×∑
i<j≤n1[ω(j) = 0]. Then

∑n
i=m ri = κ(ω), and ri ≥ rj for any i < j with ω(i) = ω(j) = 1.

Therefore, for each i ∈ Z≥0, we have

∣∣{ω ∈ {0,1}�m,n�, κ(ω) = i
}∣∣ ≤

∣∣∣∣∣
{
{aj }∞j=1 ∈ Z

N≥0 : aj ≥ aj+1,∀j ∈ N,

∞∑
j=1

aj = i

}∣∣∣∣∣.
We note that the right-hand side equals αi , where

∑∞
i=0 αiz

i is the Taylor series for
∏∞

i=1(1−
zi)−1. By (2.3), and noting that Zk

m,n ≤ 1, the left-hand side of (2.4) is at most

∞∑
i=a+1

αiq
i < q(a+1)/2

∞∑
i=a+1

αiq
i/2 < q(a+1)/2

∞∑
i=0

αiq
i/2 = q(a+1)/2

∞∏
i=1

(
1 − qi/2)−1

.

By taking C = q1/2 ∏∞
i=1(1 − qi/2)−1, the conclusion follows. �

For N ∈N and k ∈ �0,N �, below we also write SN = S1,N , MN =M1,N and Pk
N = Pk

1,N ,
for simplicity of notation.

2.2. Setup for several processes. In this subsection, we define some processes to be used
in the proof of Theorem 1.1, and discuss some basic properties of them.

• Let ζ = (ζt )t≥0 be the multispecies ASEP on Z, such that the configuration at any time
t ≥ 0 is denoted as a bijection ζt : Z → Z. Let the initial configuration ζ0 be the identity
map of Z.

In defining the following processes and for the rest of this paper, we take N ∈ N:

• We let ξ = (ξt )t≥0 be the biased card shuffling of size N , with ξt : [N ] → [N ] being the
state at time t . Let the initial configuration ξ0 be the identity map of [N ].

• We let λ = (λt )t≥0 be the same as ξ = (ξt )t≥0, except for that the initial configuration λ0
is some general deterministic element of SN .

• Let ξ = (ξ t )t≥0 be the stationary biased card shuffling of size N . Then for any t ≥ 0 the
law of ξ t is MN .

Basic coupling. For the multispecies or single-species ASEP on Z or a discrete interval, the
evolution can be generated by two independent Poisson point processes on Z × R≥0, with
rates 1 and q , respectively. In the setting of the multispecies ASEP on Z, if there is a point
at (x, t) in the rate 1 Poisson point process, at time t we swap the numbers at x and x + 1,
if before the swap the number at x is smaller than the number at x + 1; and if there is a
point at (x, t) in the rate q Poisson point process, at time t we swap the numbers at x and
x + 1, if before the swap the number at x is larger than the number at x + 1. In the discrete
interval setting, one only considers such points (x, t) with both x and x + 1 in the discrete
interval. One can generate the single-species ASEP (from these Poisson point processes)
similarly. The basic coupling between two or more multispecies or single-species ASEPs is
the coupling under which all these processes are generated from the same pair of Poisson
point processes.

For the defined processes ζ , ξ , λ and ξ , we couple all of them with the basic coupling.
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Projections. For any k ∈ �0,N �, we define the processes ξ k = (ξk
t )t≥0, ζ k = (ζ k

t )t≥0 and

ξ
k = (ξ

k
t )t≥0, as follows. For each t ≥ 0, we let ξk

t , λk
t , ξ

k
t : [N ] → {0,1} be the projections,

where

ξk
t (x) = 1

[
ξt (x) ≤ k

]
, λk

t (x) = 1
[
λt (x) ≤ k

]
, ξ

k
t (x) = 1

[
ξ t (x) ≤ k

]
.

And for each k ∈ Z and t ≥ 0, we let ζ k
t : Z → {0,1} be the projection where

ζ k
t (x) = 1

[
ζt (x) ≤ k

]
.

Then these projections are single-species ASEPs on Z or [N ], and are also coupled together
under the basic coupling (i.e., generated with the same Poisson point processes). We note
that, for each t ≥ 0, given ζ k

t for all k ∈ Z, one can recover ζt by letting

ζt (x) = min
{
k : ζ k

t (x) = 1
}
.

Similar recovery statements hold for ξt , λt , and ξ t .

Height function. For any ω : Z → {0,1} such that ω(x) stabilizes as x → −∞, we define
the height function h{ω} : Z → Z, as follows:

1. For any x ∈ Z, let h{ω}(x) − h{ω}(x − 1) = 1 − 2ω(x).
2. If ω(x) = 0 for all x small enough, we let h{ω}(x) = x for all x small enough.
3. If ω(x) = 1 for all x small enough, we let h{ω}(x) = −x for all x small enough.

A quick and useful observation is that h{ω} is 1-Lipschitz. For any integers m < n and
ω : �m,n� → {0,1}, we also define h{ω} by assuming ω(x) = 0 for any x ∈ Z, x < m and
ω(x) = 1 for any x ∈ �n,∞� (see Figure 2). We note that for any k ∈ �0, n − m + 1�,
among all the configurations in {0,1}�m,n� that have positive probabilities under Pk

m,n,
the “ground state” (i.e., ω : i �→ 1[i ≥ n − k + 1]) has the highest height function (i.e.,
x �→ n − k − |x − n + k|).

Such height functions are widely used in the study of interacting particle systems. For
ω evolving as the single-species ASEP, the height function h{ω} evolves in the following
way: for some x ∈ Z, if h{ω}(x − 1) = h{ω}(x + 1) = h{ω}(x) + 1 for some x ∈ Z, then
h{ω}(x) changes to h{ω}(x) + 2 with rate 1; if h{ω}(x − 1) = h{ω}(x + 1) = h{ω}(x) − 1,
then h{ω}(x) changes to h{ω}(x) − 2 with rate q .

FIG. 2. An illustration of the height function for a single-species ASEP configuration in a finite interval.
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We can define a partial ordering for these height functions. For any f,g : Z →R, we write
f ≤ g if f (x) ≤ g(x) for any x ∈ Z. One reason for using these height functions is that, as
one can check, this ordering is preserved under the ASEP evolution with the basic coupling.
For example, for the processes defined above, the following orderings hold.

LEMMA 2.2. We have h{ξk
t } ≤ h{λk

t }, h{ξk
t } ≤ h{ζ k

t } and h{ξk
t } ≤ h{ξk

t }, for any k ∈
�0,N � and t ≥ 0.

PROOF. We first consider the case where t = 0. We have

h
{
ξk

0
}
(0) = h

{
λk

0
}
(0) = h

{
ζ k

0
}
(0) = h

{
ξ

k
0
}
(0) = 0,

and

h
{
ξk

0
}
(N) = h

{
λk

0
}
(N) = h

{
ζ k

0
}
(N) = h

{
ξ

k
0
}
(N) = N − 2k,

since ∑
x∈[N]

ξk
0 (x) = ∑

x∈[N]
λk

0(x) = ∑
x∈[N]

ζ k
0 (x) = ∑

x∈[N]
ξ

k
0(x) = k.

Then since h{ξk
0 } has slope 1 in �−∞,0� ∪ �k,N � and slope −1 in �0, k� ∪ �N,∞�, and that

h{λk
0}, h{ζ k

0 } and h{ξk
0} are 1-Lipschitz, we have that these inequalities hold when t = 0.

For any t > 0, first note that the inequalities always hold in �−∞,0� and �N,∞�. Indeed,

we have h{ξk
t }(x) = h{λk

t }(x) = h{ξk
0}(x) = x for x ∈ �−∞,0�, and h{ξk

t }(x) = h{λk
t }(x) =

h{ξk
0}(x) = 2N − 2k − x for x ∈ �N,∞�; and h{ζ k

t }(x) ≥ (−x) ∨ (x − 2k) for all x ∈ Z

(since h{ζ k
t }(x) = −x for all small enough x and h{ζ k

t }(x) = x − 2k for all large enough x,
and h{ζ k

t } is 1-Lipschitz). In the interval �1,N − 1�, from the above description of how these
height functions evolve in time, it is straightforward to check that, if the inequalities hold at
any time, any nearest neighbor swap in the basic coupling would not break them. Then the
inequalities hold for any t > 0. �

2.3. Proof of the main result. With the processes defined in the previous subsection, to
understand the cutoff profile (thereby prove Theorem 1.1), we will (1) upper bound the first
time T when λT = ξT ; (2) lower bound the first time T when ξT = ξT , and show that ξ t and
ξt are “quite different” for t between T − o(N1/3) and T . We now give the main steps to
accomplish these tasks.

We start by explaining how the Tracy–Widom GOE distribution is involved. This distribu-
tion appears in scaling limits of the single-species ASEP on Z, as we will later see using the
single-species ASEP convergence results from [41]. From these results and using an ASEP
shift-invariance properties proved in [13, 22], we can deduce convergence results for the mul-
tispecies ASEP on Z, as follows.

For b ∈ R and t ≥ 0, let Db
N,t denote the event where h{ζ k

t }(N − k) > N − k + b for any
k ∈ �0,N �.

PROPOSITION 2.3. For any τ ∈ R, and any real number sequence {bN }N∈N such that
limN→∞ N−1/3bN → 0, we have

lim
N→∞P

[
DbN

N,2(1−q)−1(N+τN1/3)

] = FGOE
(
22/3τ

)
.
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The proof of this proposition will be given in Section 5.
In the TASEP setting (i.e., when q = 0), the multispecies process on a finite interval can be

obtained from the multispecies process on Z, using truncation operators (see, e.g., [6]). Thus
Proposition 2.3 directly implies that the absorbing time has Tracy–Widom GOE distribution
asymptotically; and that is the proof in [14].

For the general q > 0 setting, we need to study the more delicate mixing time (rather than
absorbing time). A more important difference is that there is no such truncation operators
and no exact coupling structure between the process on Z and the process on a finite interval.
Thus we instead show that, under the basic coupling, the processes on Z and a finite interval
are “close to each other” in terms of the height functions of their projections, in the following
sense.

For a ∈ N, b ∈ R, k ∈ �0,N � and t ≥ 0, let Aa,b
N,k,t denote the event where h{ζ k

t }(N − k) >

N − k + b, and

either h
{
ξk
t

}
(N − k − a) < N − k − a or h

{
ξk
t

}
(N − k + a) < N − k − a.

PROPOSITION 2.4. There is a constant C > 0 depending only on q , such that
P[Aa,b

N,k,t ] < Cqa/2 when b > 4a.

We will prove this proposition in Section 3, using Hecke algebra techniques.
In analyzing the first time T when ξT = ξT , a key ingredient we need is that, if ξt and ξ t

are “close to each other” at some time t , they will be the same in a short amount of time. We
state this result as follows.

For a ∈ N, r > 0, k ∈ �0,N � and t ≥ 0, let Ba,r
N,k,t denote the event where

h
{
ξk
t+i

}
(N − k − a) = h

{
ξk
t+i

}
(N − k + a) = N − k − a ∀i ∈ �0, r�,

while h{ξk
t+s}(N − k) < N − k for each s ∈ [0, r] (in other words, ξk

t+s is not at the “ground
state” for each s ∈ [0, r], since h{ξk

t+s}(N − k) = N − k is equivalent to that ξk
t+s(x) = 1[x ≥

N − k + 1]).

PROPOSITION 2.5. There is a constant c > 0 depending only on q , such that

P
[
Ba,log(N)4

N,k,t

]
< e−c log(N)2

,

when 2 ≤ a ≤ log(N)2.

This proposition will be proved in Section 4, using an ASEP hitting time bound from [9].
We now give the proof of our main result (Theorem 1.1), which mainly consists of assem-

bling these propositions.

PROOF OF THEOREM 1.1: UPPER BOUND. The key thing is to show that, for whatever
initial configuration λ0, we have

(2.5) lim inf
N→∞ P[λ2(1−q)−1(N+τN1/3)+log(N)4 = ξ2(1−q)−1(N+τN1/3)+log(N)4] ≥ FGOE

(
22/3τ

)
.

Let us first explain the strategy to prove it. In light of Proposition 2.3, the main idea is to

show that the event in the left-hand side of (2.5) is roughly implied by D8 log(N)4

N,2(1−q)−1(N+τN1/3)
.

We will show that, under D8 log(N)4

N,2(1−q)−1(N+τN1/3)
, for each k ∈ �0,N �, ξk

2(1−q)−1(N+τN1/3)
is

“close” to the ground state, that is, most locations in �N − k + 1,N � have particles, and
most locations in �1,N − k� have holes. Then there exists some small s > 0, such that
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ξk
2(1−q)−1(N+τN1/3)+s

is precisely at the ground state. These two steps are given by Propo-

sitions 2.4 and 2.5. Then h{ξk
2(1−q)−1(N+τN1/3)+s

} reaches the “largest possible state,” that

is, it has slope 1 in �−∞,N − k� and slope −1 in �N − k,∞�. By ordering of the height
functions (Lemma 2.2), this implies the event in the left-hand side of (2.5).

We now give the details of proving (2.5). Consider the event

E0 = D8 log(N)4

N,2(1−q)−1(N+τN1/3)

\ E1 ∪
( ⋃

k∈�0,N �,

i∈�0,log(N)4 �

A�log(N)2�,4 log(N)4

N,k,2(1−q)−1(N+τN1/3)+i

)
∪

( ⋃
k∈�0,N �

B�log(N)2�,log(N)4

N,k,2(1−q)−1(N+τN1/3)

)
.

Here, E1 is the following event:

• For some k ∈ �0,N � and i ∈ �0, log(N)4�, we have

(2.6) h
{
ζ k

2(1−q)−1(N+τN1/3)

}
(N − k) > N − k + 8 log(N)4,

and

(2.7) h
{
ζ k

2(1−q)−1(N+τN1/3)+i

}
(N − k) ≤ N − k + 4 log(N)4.

Now let us assume that E0 happens. By D8 log(N)4

N,2(1−q)−1(N+τN1/3)
\ E1, we have that for any

k ∈ �0,N � and i ∈ �0, log(N)4�, (2.7) does not hold. Then since A�log(N)2�,4 log(N)4

N,k,2(1−q)−1(N+τN1/3)+i

does not hold, we must have that

h
{
ξk

2(1−q)−1(N+τN1/3)+i

}(
N − k − ⌊

log(N)2⌋)
= h

{
ξk

2(1−q)−1(N+τN1/3)+i

}(
N − k + ⌊

log(N)2⌋) = N − k − ⌊
log(N)2⌋

.

Using this for all k ∈ �0,N � and i ∈ �0, log(N)4�, and that B�log(N)2�,log(N)4

N,k,2(1−q)−1(N+τN1/3)
does not

hold, we have that E2 holds, with E2 being the event:

• For any k ∈ �0,N �, we have h{ξk
2(1−q)−1(N+τN1/3)+sk

}(N − k) = N − k for some sk ∈
[0, log(N)4].

In summary, we have shown that E0 implies E2.
We next show that under E2, we must have

(2.8) ξ2(1−q)−1(N+τN1/3)+log(N)4 = λ2(1−q)−1(N+τN1/3)+log(N)4 .

Indeed, assuming E2, for any k ∈ �0,N � we have that h{ξk
2(1−q)−1(N+τN1/3)+sk

} is the function

with slope 1 in �−∞,N − k�, and slope −1 in �N − k,∞�. Thus by Lemma 2.2, the same is

true for h{ξk
2(1−q)−1(N+τN1/3)+sk

} and h{λk
2(1−q)−1(N+τN1/3)+sk

}. Then we have

ξk
2(1−q)−1(N+τN1/3)+sk

= ξ
k
2(1−q)−1(N+τN1/3)+sk

= λk
2(1−q)−1(N+τN1/3)+sk

.

Since ξ and λ are under the basic coupling and sk ≤ log(N)4, this implies that

ξ
k
2(1−q)−1(N+τN1/3)+log(N)4 = λk

2(1−q)−1(N+τN1/3)+log(N)4 .

As this holds for each k ∈ �0,N �, we have (2.8).
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Now we have

P[ξ2(1−q)−1(N+τN1/3)+log(N)4 = λ2(1−q)−1(N+τN1/3)+log(N)4]
≥ P[E2] ≥ P

[
D8 log(N)4

N,2(1−q)−1(N+τN1/3)

] − P[E1]

− ∑
k∈�0,N �,i∈�0,log(N)4 �

P
[
A�log(N)2�,4 log(N)4

N,k,2(1−q)−1(N+τN1/3)+i

]

− ∑
k∈�0,N �

P
[
B�log(N)2�,log(N)4

N,k,2(1−q)−1(N+τN1/3)

]
.

(2.9)

To get (2.5), we next bound P[E1].
Fix k ∈ �0,N �. Let T0 = 0. For each j ∈ N, we let Tj be the smallest positive number with

h
{
ζ k

2(1−q)−1(N+τN1/3)+Tj

}
(N − k) = h

{
ζ k

2(1−q)−1(N+τN1/3)

}
(N − k) − 2j ;

or Tj = ∞ if no such positive number exists. Then given Tj−1 and ζ k
2(1−q)−1(N+τN1/3)+Tj−1

,

Tj − Tj−1 stochastically dominates an Exp(q) random variable. Thus T�2 log(N)4� stochas-
tically dominates the sum of �2 log(N)4� independent Exp(q) random variables. On the
other hand, if (2.6) and (2.7) happen for some i ∈ �0, log(N)4�, we must have T�2 log(N)4� <

log(N)4. Using a Chernoff bound, this happens with probability < Ce−c log(N)4
, for c,

C > 0 being universal constants. By a union bound over k, we have that P[E1] < C(N +
1)e−c log(N)4

.
Using this bound of P[E1], and (2.9), and Propositions 2.3, 2.4, 2.5 and sending N → ∞,

we have that (2.5) holds.
Finally, as the distributions of ξ2(1−q)−1(N+τN1/3)+log(N)4 and λ2(1−q)−1(N+τN1/3)+log(N)4

are given by MN and Wλ0
N,2(1−q)−1(N+τN1/3)+log(N)4 , respectively, by (2.5) we have that

lim sup
N→∞

max
λ∈SN

∥∥Wλ
N,2(1−q)−1(N+τN1/3)+log(N)4 −MN

∥∥
TV ≤ 1 − FGOE

(
22/3τ

)
.

Since t �→ ‖Wλ
N,t −MN‖TV is nonincreasing, and that FGOE is a continuous function (which

is evident from (1.1)), the upper bound of Theorem 1.1 follows. �

The lower bound proof is similar and simpler since for this we just need to show that
ξk

2(1−q)−1(N+τN1/3)
and ξ

k
2(1−q)−1(N+τN1/3) are different with probability at least (roughly)

1 − FGOE(22/3τ). Only the ASEP on Z convergence (Proposition 2.3) and ordering of the
height functions (Lemma 2.2) will be used.

PROOF OF THEOREM 1.1: LOWER BOUND. We consider the events E :

h
{
ξk

2(1−q)−1(N+τN1/3)

}
(N − k) ≤ N − k − log(N)2 ∃k ∈ �0,N �.

and E :

h
{
ξ

k
2(1−q)−1(N+τN1/3)

}
(N − k) ≤ N − k − log(N)2 ∃k ∈ �0,N �.

Since the distribution of ξ2(1−q)−1(N+τN1/3) is Wξ0
N,2(1−q)−1(N+τN1/3)

and the distribution of

ξ2(1−q)−1(N+τN1/3) is MN , we have
∥∥Wξ0

N,2(1−q)−1(N+τN1/3)
−MN

∥∥
TV ≥ P[E] − P[E].
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By Proposition 2.3 and Lemma 2.2, we have lim infN→∞ P[E] ≥ 1 − FGOE(22/3τ). It now
suffices to show that P[E] → 0 as N → ∞.

For each k ∈ �0,N �, the event h{ξk
2(1−q)−1(N+τN1/3)}(N − k) ≤ N − k − log(N)2 implies

that

h
{
ξ

k
2(1−q)−1(N+τN1/3)

}(
N − k − ⌊

log(N)2/2
⌋ + 1

) ≤ N − k − log(N)2 + ⌊
log(N)2/2

⌋ − 1.

Then there exists an integer 1 ≤ x ≤ N − k −�log(N)2/2�+ 1 with ξ
k
2(1−q)−1(N+τN1/3)(x) =

1. This implies that

κ
(
ξ

k
2(1−q)−1(N+τN1/3)

) ≥ ⌊
log(N)2/2

⌋
,

where we recall (from Section 2.1) that κ(ξ
k
2(1−q)−1(N+τN1/3)) is the “energy.” By Lemma 2.1,

the probability of this event is bounded by Cq log(N)2/4, for some C > 0 depending only on q .
Then by taking a union bound over k we have that limN→∞ P[E] = 0, and we complete this
proof. �

REMARK 2.6. Using Propositions 2.4 and 2.5 for a single k, and known one-point distri-
bution convergence of ASEP to the Tracy–Widom GUE distribution (e.g., [48], Theorem 3)
instead of Proposition 2.3, one can recover the main result of [15], via the same arguments
as the proof of Theorem 1.1. Our Proposition 2.5 plays a similar role as the arguments in
Section 3 of [15], and both use a hitting time bound from [9]. Our Proposition 2.4, on the
other hand, plays a similar role as Section 4 of [15], but its proof (to be given in the next
section) is quite different. As discussed above, while both our Proposition 2.4 and [15] use
Hecke algebra as the main tool, it is used in quite different ways with different points of view,
enabling us to analyze this more delicate multispecies setting.

The remaining three sections are devoted to proving the three propositions.

3. ASEP on the line and an interval: Hecke algebra. In this section, we prove Propo-
sition 2.4. We can write Aa,b

N,k,t =Aa,b,+
N,k,t ∪Aa,b,−

N,k,t , where

Aa,b,−
N,k,t : h{ζ k

t }(N − k) > N − k + b and h{ξk
t }(N − k − a) < N − k − a,

Aa,b,+
N,k,t : h{ζ k

t }(N − k) > N − k + b and h{ξk
t }(N − k + a) < N − k − a.

By symmetry, below we just bound the probability P[Aa,b,+
N,k,t ].

3.1. Hecke algebra and basic properties. We start by formally introducing Hecke alge-
bra, the main tool of this section. Several notation below are from [15].

For any integers m < n, we can think of Sm,n as the permutation group of �m,n�, such that
for any w,v ∈ Sm,n we let wv = v ◦ w. The Hecke algebra Hm,n is the algebra with basis
{Tw}w∈Sm,n , and the rules

(3.1) TsTw =
{
Tsw if κ(sw) = κ(w) − 1,

(1 − q)Tw + qTsw if κ(sw) = κ(w) + 1,

for any w ∈ Sm,n and s being any nearest neighbor transposition in Sm,n (i.e., there is some
i ∈ �m,n−1� such that s(i) = i +1, s(i +1) = i and s(j) = j for any j ∈ �m,n� \ {i, i +1}).
Here, we recall (from Section 2.1) that κ(w) = ∑

m≤i<j≤n1[w(i) < w(j)] is the “energy”
for any w ∈ Sm,n.
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We let Hprob
m,n ⊂ Hm,n be the probability subalgebra, containing all

∑
w∈Sm,n

pwTw with∑
w∈Sm,n

pw = 1 and each pw ≥ 0. Then any element in Hprob
m,n corresponds to a probability

measure of Sm,n.
Note that for any m′ ≤ m ≤ n ≤ n′, Sm,n is naturally embedded into Sm′,n′ . This gives a

natural embedding of Hm,n (resp., Hprob
m,n ) into Hm′,n′ (resp., Hprob

m′,n′ ).

Biased card shuffling. From (3.1), it is not difficult to see that the evolution of the biased
card shuffling can be written as multiplying a uniformly chosen random transposition, at
rate n − m. Namely, we denote T̂m,n = (n − m)−1 ∑n−1

i=m Tsi , with si being the transposition
between i and i + 1. Let

Wm,n(t) = e−(n−m)t
∞∑
i=0

((n − m)t)i

i! T̂ i
m,n,

where T̂ i
m,n is the product of i copies of T̂m,n when i ≥ 1, and T̂ 0

m,n = Tid for id ∈ Sm,n

being the identity element (i.e., the identity map of �m,n�). Then Wm,n(t) is in Hprob
m,n , and

its corresponding probability measure is just the time t-distribution of the ASEP on �m,n�,
starting from the identity element.

Mallows element. A particularly useful object is the Mallows element Mm,n of Hprob
m,n , which

is defined as

Mm,n = ∑
w∈Sm,n

Mm,n(w)Tw = ∑
w∈Sm,n

qκ(w)Zm,nTw,

where Zm,n is defined in (2.2). Then the probability measure given by Mm,n is just the Mal-
lows measure Mm,n.

Note that since Mm,n is the stationary measure of the biased card shuffling, we must have
that Wm,n(t) → Mm,n as t → ∞.

Involution. Let i : Hm,n → Hm,n be the linear map where i(Tw) = Tw−1 for any w ∈ Sm,n.
It is straightforward to check that i is an involutive anti-homomorphism; namely, for any
T1, T2 ∈Hm,n we have i(T1T2) = i(T2)i(T1), and i(i(T1)) = T1 (see [15], Proposition 5.1).

We also have that i(Wm,n(t)) = Wm,n(t), since s = s−1 for any nearest neighbor transpo-
sition s in Sm,n. We note that this equality can be interpreted as the ASEP “color-to-position
symmetry,” as proved in [5, 6, 11]. By sending t → ∞, we further have i(Mm,n) = Mm,n.

3.2. Two additional processes. We now explain our strategy of bounding P[Aa,b,+
N,k,t ] (thus

proving Proposition 2.4).
In Aa,b,+

N,k,t , we consider both ζ k , a process on Z, and ξ k , a process on [N ]. To relate them,

we shall extend ξ k , by considering a process on Z, which roughly speaking, is the same as ξ k

is [N ], while equals 0 is �−∞,0� and equals 1 on �N + 1,∞�. This process is also coupled
with ζ k under the basic coupling, and we shall compare it with ζ k .

For the comparison, note that the initial configuration of this “extension” of ξ k is also
(roughly) the same as ζ k

0 in [N ], while different in �−∞,0� and �N + 1,∞�. We then con-
sider an intermediate process, which is also coupled with ξ k and ζ k under the basic coupling.
Its initial configuration is the same as ζ k

0 in �k + 1,∞� (which is identically 0), and the same
as the initial configuration of the “extension” of ξ k in �−∞, k�. This intermediate process
together with ζ k can be encoded as one ASEP, by placing a second-class particle at each
location where they differ. Then comparing these two processes is reduced to tracking the
locations of the second-class particles, and that can be achieved using the above involution of
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FIG. 3. An illustration of various processes and their height functions: the black, yellow, brown and blue func-
tions are h{ξk

0 }, h{ζ̈−1+k−N
0 }, h{ζ̇−X+k−1

0 } = h{ζ̈−X+k−1
0 } and h′{ζ̇ k

0 }, respectively. Note that h′{ζ̇ k
0 } has slope

−1 outside �−X,X�, but that cannot be seen from this figure since we take X very large (at least X > 25). The

process ζ̈
−1+k−N

is the “extension” of ξk , and ζ̈
−X+k−1 = ζ̇

−X+k−1
is the “intermediate process.”

Hecke algebra. The comparison between the intermediate process and the “extension” of ξ k

is analyzed similarly. Putting these together, we get estimates on comparing ζ k and ξ k . See
Figure 3 for an illustration of these processes, whose formal definitions are given below.

We start by defining the “extension” of ξ k and the intermediate process, using the Hecke
algebra Mallows elements. There are two key aspects to note. First, to save notation, we do
not formally use the notion of second-class particles, and just write our proof using the multi-
species ASEP setup. Second, to work with the Hecke algebra, we shall consider a large finite
interval instead of Z.

Take an integer X that is large enough depending on N , k, a, b. In particular, we re-
quire X > N . We let ζ̇ = (ζ̇t )t≥0 and ζ̈ = (ζ̈t )t≥0 be multispecies TASEPs on �−X,X�,
such that the distribution of ζ̇0 is given by M−X,k , and the distribution of ζ̈0 is given by

M−X,kM−X+k,X (both as elements of Hprob
−X,X). Thus ζ̇0 and ζ̈0 can be described as follows:

ζ̇0: In �−X,k�, roughly it is decreasing from k to −X (and the distribution is just
M−X,k). In �k + 1,X�, it is the identity map.

ζ̈0: It can be equivalently defined as follows: first, take the random configuration, which
is the identity map in �−X,−X + k − 1� and has distribution M−X+k,X in �−X + k,X�;
then run the ASEP on �−X,k� to time infinity (this procedure is called “bringing into Q-
equilibrium” in [15], Section 5.3). Thus, in �−X,0�, roughly ζ̈0 is decreasing from X to 0;
in �1, k�, roughly ζ̈0 is decreasing from −X + k − 1 to −X; in �k + 1,X�, roughly ζ̈0 is
decreasing from −1 to −X + k.

The process ζ̇ encodes the coupling between ζ k and the intermediate process, and ζ̈ encodes
the coupling between the intermediate process and the “extension” of ξ k . Namely, if we
denote

ζ̇ i
t (x) = 1

[
ζ̇t (x) ≤ i

]
, ζ̈ i

t (x) = 1
[
ζ̈t (x) ≤ i

]
,
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for each i ∈ �−X,X�, we make the following quick observations:

1. ζ̇ k
0 (x) = 1[x ≤ k] for x ∈ �−X,X�. In particular, the limit of ζ̇ k

0 as X → ∞ is ζ k
0 .

2. ζ̇−X+k−1
0 and ζ̈−X+k−1

0 are equal in distribution: it is straightforward to check that
either of them in �−X,k� has distribution Pk−X,k , and either of them is 0 at every location in

�k + 1,X�. We couple ζ̇−X+k−1
0 and ζ̈−X+k−1

0 so that they equal almost surely. This is the
“intermediate process.”

3. We also consider ζ̈−1+k−N
0 . Roughly, it equals 0 in �−X,0� ∪ �k + 1,N � (recall that

X > N ), and equals 1 in �1, k� ∪ �N + 1,∞�. It is the “extension of ξk
0 .”

See Figure 3 for an illustration of these processes. Given the initial configurations, we couple
the evolution of ζ̇ , ζ̈ with ζ , ξ , so that they are all under the same basic coupling (i.e.,
generated by the same Poisson point processes on Z×R≥0).

For technical reasons, we need to slightly extend the definition of the height function. For
any integers m < n and ω : �m,n� → {0,1}, we define h′{ω} = h{ω′}, where ω′ : Z → {0,1}
is the function satisfying ω′(x) = ω′(x) for x ∈ �m,n�, and ω′(x) = 1 for x ∈ Z \ �m,n�.
Note that compared with h{ω}, the only difference is that we let the slope in �−∞,m� be −1
rather than 1.

We then have the following ordering property (see Figure 3).

LEMMA 3.1. We have h{ζ̈−1+k−N
t } ≤ h{ξk

t } and h{ζ̈−1+k−N
t } ≤ h{ζ̈−X+k−1

t } =
h{ζ̇−X+k−1

t } ≤ h′{ζ̇ k
t } for any t ≥ 0.

PROOF. We first check that

(3.2) h
{
ζ̈−1+k−N

0

} ≤ h
{
ξk

0
}
.

Note that for any x ∈ Z, we always have that h{ζ̈−1+k−N
0 }(x) ≤ x ∧ (2N − 2k − x), since

(by definition) we have h{ζ̈−1+k−N
0 }(−X) = −X, and

∑
x∈�−X,X� h{ζ̈−1+k−N

0 }(x) = X −
N + k; thus h{ζ̈−1+k−N

0 }(X) = 2N − 2k − X, and that h{ζ̈−1+k−N
0 } is 1-Lipschitz. From the

definition of ζ̈0, for each x ∈ �−X,−X + k − 1�, we can find y ∈ �−X,k� with ζ̈0(y) = x.
This implies that ∑

x∈�−X,k�

h
{
ζ̈−1+k−N

0

}
(x) ≥ k,

so we have h{ζ̈−1+k−N
0 }(k) ≤ −k. Then for each x ∈ �1, k� there is h{ζ̈−1+k−N

0 }(x) ≤ −x,
and for each x ∈ �k + 1,N � there is h{ζ̈−1+k−N

0 }(x) ≤ x − 2k (since h{ζ̈−1+k−N
0 } is 1-

Lipschitz). Putting all the bounds together, we get (3.2), since h{ξk
0 }(x) = x ∧ (2N − 2k − x)

for x ∈ �−∞,0� ∪ �N,∞�, h{ξk
0 }(x) = −x for x ∈ �0, k� and h{ξk

0 }(x) = x − 2k for x ∈
�k,N �.

We next check that

(3.3) h
{
ζ̈−1+k−N

0

} ≤ h
{
ζ̈−X+k−1

0

} = h
{
ζ̇−X+k−1

0

} ≤ h′{ζ̇ k
0
}
.

The first inequality holds since
∑

y∈�−X,x� ζ̈−1+k−N
0 (y) ≥ ∑

y∈�−X,x� ζ̈−X+k−1
0 (y), for any

x ∈ �−X,X�. The equality is by the second point above.
For the second inequality, by the second point above we have that∑

x∈�−X,k�

h
{
ζ̇−X+k−1

0

}
(x) = k,
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so we have h{ζ̇−X+k−1
0 }(k) = −k. Then for each x ∈ �1, k� there is h{ζ̇−X+k−1

0 }(x) ≤ −x,
and for each x ∈ �k + 1,X� there is h{ζ̇−X+k−1

0 }(x) ≤ x − 2k (since h{ζ̇−X+k−1
0 } is 1-

Lipschitz). We also have that h{ζ̇−X+k−1
0 }(x) ≤ x ∧ (2X − 2k − x) for any x ∈ Z, since∑

x∈�−X,X� h{ζ̇−X+k−1
0 }(x) = k (thus h{ζ̇−X+k−1

0 }(X) = X − 2k), and that h{ζ̇−X+k−1
0 } is

1-Lipschitz. Putting all the bounds together, we get the second inequality in (3.2), since
h′{ζ̇ k

0 }(x) = −x for x ∈ �−∞, k�, h′{ζ̇ k
0 }(x) = x − 2k for x ∈ �k + 1,X� and h′{ζ̇ k

0 }(x) =
2X − 2k − x for x ∈ �X,∞�.

Finally, using arguments similar to those in the proof of Lemma 2.2, the ordering of these
height functions is preserved under the basic coupling, so the conclusion follows. �

We now define the events:

Ė : h′{ζ̇ k
t }(N − k) > N − k + b and h{ζ̇−X+k−1

t }(N − k + a) < N − k + a.
Ë : h{ζ̈−X+k−1

t }(N − k + a) = N − k + a and h{ζ̈−1+k−N
t }(N − k + a) < N − k − a.

By Lemma 3.1, and the fact that the X → ∞ limit of ζ̇ k
t is ζ k

t , we have that the X → ∞ limit
of Ė ∪ Ë contains Aa,b,+

N,k,t .
Thus it suffices to bound the probabilities of the events Ė and Ë . For this, note that using

the above stated properties of the involution i, we have

(3.4) W−X,X(t)M−X,k = i
(
W−X,X(t)

)
i(M−X,k) = i

(
M−X,kW−X,X(t)

)
,

and

W−X,X(t)M−X,kM−X+k,X

= i
(
W−X,X(t)

)
i(M−X,k)i(M−X+k,X) = i

(
M−X+k,XM−X,kW−X,X(t)

)
.

(3.5)

These two identities can be interpreted as distributional identities, and are key inputs in
bounding P[Ė] and P[Ë].

LEMMA 3.2. We have P[Ė] ≤ Cqb/4−a/2 where C is a constant depending only on q .

PROOF. Assuming Ė , we must have that h′{ζ̇ k
t }(N − k + a) > N − k + b − a (since

h′{ζ̇ k
t } is 1-Lipschitz) and h{ζ̇−X+k−1

t }(N − k + a) < N − k + a. In other words, we have∣∣{x ∈ Z : N − k + a + 1 ≤ x ≤ X, ζ̇t (x) ≤ k
}∣∣ > k − a + b/2,

and ∣∣{x ∈ Z : N − k + a + 1 ≤ x ≤ X, ζ̇t (x) ≤ −X + k − 1
}∣∣ < k.

Now we use the distributional identity implied by (3.4). Let ζ̇
t

be the inverse of ζ̇t (as a group
element in S−X,X). Then the above two inequalities are equivalent to

(3.6)
∣∣{x ∈ Z : ζ̇

t
(x) ≥ N − k + a + 1,−X ≤ x ≤ k

}∣∣ > k − a + b/2,

and

(3.7)
∣∣{x ∈ Z : ζ̇

t
(x) ≥ N − k + a + 1,−X ≤ x ≤ −X + k − 1

}∣∣ < k,

respectively. Note that these events only concern x �→ 1[ζ̇
t
(x) ≤ N − k + a], which is a

random configuration in {0,1}�−X,X�. We next analyze its distribution.
By (3.4), the law of ζ̇

t
is given by M−X,kW−X,X(t), meaning that we can first sample w

from the law given by W−X,X(t), then sample ζ̇
t

from the law given by M−X,kTw . Equiva-

lently, ζ̇
t

is the same as w on �k + 1,X�; and on �−X,k�, the law of ζ̇
t

(conditioned on w)
is the weak limit of running the (multispecies) ASEP from w to time ∞.
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Let φ : �−X,k� → {w(x) : x ∈ �−X,k�} be the unique increasing bijection determined by
w in �−X,k�. Then ζ̇

t
in �−X,k� can be written as φ ◦ v, for v sampled from M−X,k . Now

the event in (3.6) is equivalent to that∣∣{x ∈ Z : φ(x) ≥ N − k + a + 1,−X ≤ x ≤ k
}∣∣ > k − a + b/2.

Since φ is increasing, this is further equivalent to that

φ
(−�−a + b/2�) ≥ N − k + a + 1.

The event in (3.7) is equivalent to that

∃x ∈ �−X,−X + k − 1�, ζ̇
t
(x) = φ

(
v(x)

) ≤ N − k + a.

So (since φ is increasing) these two events together imply that v(x) < a − b/2 for some
x ∈ �−X,−X + k − 1�. Note that since v is sampled from M−X,k , there is always∑

−X≤j≤k 1[v(j) ≥ a − b/2] > k − (a − b/2) (when X is large enough depending on
a, b). If there is some x ∈ �−X,−X + k − 1� with v(x) < a − b/2, we would have∑

−X≤j≤−X+k−1 1[v(j) ≥ a −b/2] ≤ k −1, so
∑

−X+k≤j≤k 1[v(j) ≥ a −b/2] > b/2−a +
1, which further implies that

∑
−X≤i<j≤k 1[v(i) < a − b/2, v(j) ≥ a − b/2] > b/2 − a + 1.

Note that x �→ 1[v(x) < a − b/2] has distribution P�a−b/2�+X
−X,k , so by Lemma 2.1, the prob-

ability of this event is at most Cqb/4−a/2, for some C > 0 depending only on q . Thus the
conclusion follows. �

The bound for P[Ë] is proved using a similar strategy.

LEMMA 3.3. We have P[Ë] ≤ Cqa/2 where C is a constant depending only on q .

PROOF. Assuming Ë , we must have∣∣{x ∈ Z : N − k + a + 1 ≤ x ≤ X, ζ̈t (x) ≤ −X + k − 1
}∣∣ = k,

and ∣∣{x ∈ Z : N − k + a + 1 ≤ x ≤ X, ζ̈t (x) ≤ −1 + k − N
}∣∣ < X − N + k − a.

We let ζ̈
t

be the inverse of ζ̈t (as a group element in S−X,X). Then the above two relations
are equivalent to

(3.8)
∣∣{x ∈ Z : ζ̈

t
(x) ≥ N − k + a + 1,−X ≤ x ≤ −X + k − 1

}∣∣ = k,

and

(3.9)
∣∣{x ∈ Z : ζ̈

t
(x) ≥ N − k + a + 1,−X ≤ x ≤ −1 + k − N

}∣∣ < X − N + k − a,

respectively. By (3.5), the law of ζ̈
t

is given by M−X+k,XM−X,kW−X,X(t), meaning that

we can first sample w from the law given by W−X,X(t), and then sample ζ̈
t

from the law

given by M−X+k,XM−X,kTw . Equivalently, ζ̈
t

can be obtained from w, by first running the
(multispecies) ASEP on �−X,k� to time ∞ to get w′, then running the (multispecies) ASEP
on �−X + k,X� (from w′) to time ∞ to get ζ̈

t
.

From this construction of ζ̈
t
, we have that ζ̈

t
and w′ are the same in �−X,−X + k − 1�.

Then the event in (3.8) is equivalent to that

ζ̈
t
(x) = w′(x) ≥ N − k + a + 1 ∀x ∈ �−X,−X + k − 1�,

and this is further equivalent to that

(3.10)
∣∣{x ∈ �−X + k,X� : w′(x) ≤ N − k + a

}∣∣ = N − k + a + X + 1.
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Let φ : �−X + k,X� → {w′(x) : x ∈ �−X + k,X�} be the unique increasing bijection
determined by w′ in �−X + k,X�. Then ζ̈

t
in �−X + k,X� can be written as φ ◦ v, for v

sampled from M−X+k,X. Under the event in (3.10), we have that φ(N + a) ≤ N − k + a

since φ is increasing. The event in (3.9) is equivalent to that

∃x ∈ �k − N,X�, ζ̈
t
(x) = φ

(
v(x)

) ≥ N − k + a + 1.

Then under the events in (3.10) and (3.9), there exists x ∈ �k − N,X� such that v(x) ≥
N + a + 1. This further implies that∑
−X+k≤i<j≤X

1
[
v(i) ≤ N +a, v(j) ≥ N +a+1

] ≥ ∑
i∈�−X+k,k−N−1�

1
[
v(i) ≤ N +a

] ≥ a+1.

Note that x �→ 1[v(x) ≤ N + a] has distribution PN+a+X−k+1
−X+k,X , so by Lemma 2.1 the proba-

bility of this event is at most Cqa/2, for some C > 0 depending only on q . Thus the conclusion
follows. �

Putting all these estimates together, we can now upper bound P[Aa,b
N,k,t ].

PROOF OF PROPOSITION 2.4. From the definition of Ė and Ë , we have that P[Aa,b,+
N,k,t ] ≤

lim supX→∞P[Ė ∪ Ë] ≤ lim supX→∞P[Ė] + P[Ë]. Then by Lemmas 3.2 and 3.3, we have
P[Aa,b,+

N,k,t ] ≤ Cq(b/4−a/2)∧a/2, for C depending only on q . By symmetry, the same upper

bound holds for P[Aa,b,−
N,k,t ]. Thus the conclusion follows. �

4. Hitting time bound. In this section, we prove Proposition 2.5, for which we need the
following known estimate on the “‘ground state hitting time” of the single-species ASEP.

For any n ∈ Z and m ∈ N, we let ηn,m = (η
n,m
t )t≥0 be the (single-species) ASEP, with

initial condition given by η
n,m
0 (x) = 1 for x ∈ �n − m + 1, n� or x ∈ �n + m + 1,∞�, and

η
n,m
0 (x) = 0 for x ∈ �−∞, n − m� or x ∈ �n + 1, n + m�.

The following estimate is implied by [9], Theorem 1.9, which is also used in [15].

LEMMA 4.1. There is a constant C∗ > 0 depending only on q , such that the following
is true. Let H > 0 be the smallest number with η

n,m
H (x) = 1[x ≥ n + 1] for any x ∈ Z. Then

P[H > C∗m] < 1/m.

Below we also assume that C∗ ∈ Z, since otherwise, we can replace it with �C∗�.
Recall the setting of Proposition 2.5 and the parameters N , k, t , a. The idea of proving

Proposition 2.5 is to split the time interval [0, log(N)4] into segments each with length C∗a,
and use Lemma 4.1 to conclude that the probability of not reaching the “ground state” in each
interval is at most 1/a. Then we can multiply these probabilities for all the intervals, since
the ASEP is Markovian.

For each i ∈ Z≥0, we let Ei be the event where

h
{
ξk
t+iC∗a

}
(N − k − a) = h

{
ξk
t+iC∗a

}
(N − k + a) = N − k − a,

and E ′
i be the event where

h
{
ξk
t+iC∗a+s

}
(N − k) < N − k ∀s ∈ [0,C∗a],

that is, ξk
t+iC∗a+s is not at the “ground state” for any s ∈ [0,C∗a]. Here, C∗ is the constant in

Lemma 4.1.

LEMMA 4.2. We have P[E ′
i |ξk

t+iC∗a] ≤ 1/a for any ξk
t+iC∗a under the event Ei .
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PROOF. Note that h{ηN−k,a
0 }(N − k − a) = h{ηN−k,a

0 }(N − k + a) = N − k − a, and

h{ηN−k,a
0 } has slope 1 in �−∞,N − k − a� ∪ �N − k,N − k + a�, and has slope −1 in �N −

k − a,N − k� ∪ �N − k + a,∞�. Thus assuming Ei , we must have h{ηN−k,a
0 } ≤ h{ξk

t+iC∗a}
since h{ξk

t+iC∗a} is 1-Lipschitz.

We couple (ξk
t+iC∗a+s)s≥0 and ηN−k,a under the basic coupling. Then h{ηN−k,a

s } ≤
h{ξk

t+iC∗a+s} for any s ≥ 0, since (by arguments similar to those in the proof of Lemma 2.2)
ordering of these height functions is preserved under the basic coupling.

Now by Lemma 4.1, with probability ≥ 1 − 1/a we have that ηN−k,a
s (x) = 1[x ≥ N −

k + 1] for any x ∈ Z, thus h{ηN−k,a
s }(N − k) = N − k, for some s ∈ [0,C∗a]. This implies

that we must have h{ξk
t+iC∗a+s}(N − k) = N − k, so E ′

i does not hold. Thus the conclusion
follows. �

PROOF OF PROPOSITION 2.5. Under the event Ba,log(N)4

N,k,t , we must have that Ei and E ′
i

hold, for each i ∈ �0, log(N)4/(C∗a) − 1�. By Lemma 4.2 and that the ASEP is Markovian,
we have that

P

[
E ′

i

∣∣ ⋂
0≤j≤i

Ei ∩ ⋂
0≤j<i

E ′
i

]
≤ 1/a.

Thus by taking the product of this over i ∈ �0, log(N)4/(C∗a) − 1�, and using that 2 ≤ a ≤
log(N)2, we have P[Ba,log(N)4

N,k,t ] < a−�log(N)4/(C∗a)� < e− log(2)�log(N)2/C∗�. So, the conclusion
follows. �

5. ASEP shift-invariance and convergence to the KPZ fixed point. In this section, we
deduce Proposition 2.3.

The first input we need is the shift-invariance property of the multispecies ASEP, which
is deduced from the shift-invariance property of the colored six-vertex model from [13, 22].
Namely, we obtain the following result. Recall ζ (the multispecies ASEP on Z) and its pro-
jections from Section 2.2.

PROPOSITION 5.1. For any N ∈N and b ∈ R, t ≥ 0, the event

h
{
ζ k
t

}
(N − k) > N − k + b ∀k ∈ �0,N �,

has the same probability as the event

h
{
ζ 0
t

}
(N − 2k) > N + b ∀k ∈ �0,N �.

This is deduced directly from a special case of [13], Theorem 1.2, or [22], Theorem 1.6,
using the limit transition from the colored six-vertex model to the multispecies ASEP. Such
transition was first observed in [12], and then proved in [1] in the colorless setting; the col-
ored version follows the same proof. See also [50], Section 3.1. We omit the proof of Propo-
sition 5.1.

Now we just need to analyze the process ζ 0 = (ζ 0
t )≥0, which is the single-species ASEP

with step initial condition, and study how the minimum of its height function grows. By skew-
time reversibility of ASEP (stated as, e.g., (1.4) of [41]), this is equivalent to understanding
the one-point height function distribution of the single-species ASEP with flat (periodic)
initial data (i.e., the process ηN,∗ to be introduced in the proof of Lemma 5.3). We then
need that distribution (under scaling) to converge to the Tracy–Widom GOE distribution.
Such convergence has been nonrigorously derived in [39], by formal asymptotic analysis
of a Fredholm Pfaffian formula. It is then rigorously implied by the more recently proved
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convergence of the single-species ASEP [41] to the KPZ fixed point, which is a random
process h : R≥0 × R → R and can be described as a continuous time Markov chain h(t, ·)
with explicit transition probabilities. The state space of this Markov chain is the upper semi-
continuous (UC) space, containing all upper semicontinuous functions f : R → [−∞,∞)

with f (x) < C(|x| + 1) for some C < ∞ and f (x) > −∞ for some x. We refer the readers
to [37], Definition 3.12, for the precise definition of the KPZ fixed point.

We need the following convergence of the single-species ASEP to the KPZ fixed point.

PROPOSITION 5.2 ([41], Theorem 2.2(2)). For each ε > 0, let ηε = (ηε
t )t≥0 be the

(single-species) ASEP with deterministic initial configuration ηε
0, such that ηε

0(x) stabilizes
as x → −∞ (so that its height function is well defined) and let gε ∈ R. Let h0 : R → R be
continuous with |h0(x)| < C(1 + |x|1/2) for some C < ∞. Suppose that

x �→ −ε1/2h
{
ηε

0
}(

2ε−1x
) + gε

converges to h0, uniformly on compact sets. Then for any t > 0,

x �→ −ε1/2h
{
ηε

2ε−3/2t

}(
2ε−1x

) + gε + ε−1(1 − q)t

converges to h((1 − q)t, ·) in distribution, in the uniform on compact sets topology, with h

being the KPZ fixed point with initial data h(0, ·) = h0. Here, we regard h{ηε
0} and h{ηε

2ε−3/2t
}

as functions on R, by linearly interpolating between integers.

Using Propositions 5.1 and 5.2, we now prove the following statement, which directly
implies Proposition 2.3.

LEMMA 5.3. For any τ ∈ R, we have that

−22/3N−1/3 min
{
h
{
ζ k

2(1−q)−1(N+τN1/3)

}
(N − k) + k : k ∈ �0,N �

} + 22/3N2/3 + 22/3τ

converges in distribution to the Tracy–Widom GOE distribution, as N → ∞.

PROOF. Let ηN,∗ = (η
N,∗
t )t≥0 be the single-species ASEP with the following initial

configuration: η
N,∗
0 (x) = 1 for x ∈ �−∞,−N �; and η

N,∗
0 (x) = 0 for x ∈ �N + 1,∞�; and

η
N,∗
0 (−N − 1 + 2x) = 0, η

N,∗
0 (−N + 2x) = 1, for x ∈ �1,N �. Thus we have

h
{
η

N,∗
0

}
(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−x when x ∈ �−∞,−N �,

N when x ∈ 2�0,N � − N,

N + 1 when x ∈ 2�0,N − 1� − N + 1,

x when x ∈ �N,∞�.

By skew-time reversibility of ASEP (see, e.g., (1.4) of [41]), for any t ≥ 0 and b ∈ R, we
have

(5.1) P
[
h
{
ζ 0
t

}
(N − 2k) > N + b,∀k ∈ �0,N �

] = P
[
h
{
η

N,∗
t

}
(0) > 2N + b

]
.

See Figure 4. Then by Proposition 5.1 we have

P
[
h
{
ζ k
t

}
(N − k) > N − k + b,∀k ∈ �0,N �

] = P
[
h
{
η

N,∗
t

}
(0) > 2N + b

]
.

Namely, we have

(5.2) min
{
h
{
ζ k
t

}
(N − k) + k : k ∈ �0,N �

} − N
d= h

{
η

N,∗
t

}
(0) − 2N,

where d= denotes equal in distribution.
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FIG. 4. An illustration of the skew-time reversibility, as given by, for example (1.4) of [41].

Note that for any τ ∈ R, we have that

x �→ −(
N + τN1/3)−1/3

h
{
η

N,∗
0

}(
2
(
N + τN1/3)2/3

x
) + (

N + τN1/3)−1/3
N

converges (uniformly in compact sets) to 0, as N → ∞. Then by Proposition 5.2, we have
that

−(
N + τN1/3)−1/3

h
{
η

N,∗
2(1−q)−1(N+τN1/3)

}
(0) + (

N + τN1/3)−1/3
N + (

N + τN1/3)2/3

converges in distribution to h(1,0) as N → ∞, for h being the KPZ fixed point with initial
data h(0, ·) = 0. We note that with such initial data, x �→ 2−1/3h(1,22/3x) is the so-called
Airy1 process, and h(1,0) has the same distribution as supx∈RA(x)−x2, for A(x)−x2 being
the parabolic Airy2 process (see, e.g., (4.15) and Example 4.20 in [37]). Thus 22/3h(1,0) is
Tracy–Widom GOE (see, e.g., (1.25) of [40]). By multiplying 22/3N−1/3(N + τN1/3)1/3, we
have that

−22/3N−1/3h
{
η

N,∗
2(1−q)−1(N+τN1/3)

}
(0) + 25/3N2/3 + 22/3τ

converges in distribution to the Tracy–Widom GOE distribution, as N → ∞. Using (5.2), the
conclusion follows. �
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