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Abstract

The connection between galaxies and dark matter halos is often quantified using the stellar mass—halo mass
(SMHM) relation. Optical and near-infrared imaging surveys have led to a broadly consistent picture of the
evolving SMHM relation based on measurements of galaxy abundances and angular correlation functions.
Spectroscopic surveys at z 2> 2 can also constrain the SMHM relation via the galaxy autocorrelation function and
through the cross-correlation between galaxies and Ly« absorption measured in transverse sight lines; however,
such studies are very few and have produced some unexpected or inconclusive results. We use ~3000 spectra of
z~ 2.5 galaxies from the Lya Tomography IMACS Survey (LATIS) to measure the %alaxy galaxy and galaxy—
Ly« correlation functions in four bins of stellar mass spanning 107 < <My /Mg < 10'%, Parallel analyses of the
MultiDark N-body and ASTRID hydrodynamic cosmological simulations allow us to model the correlation
functions, estimate covariance matrices, and infer halo masses. We find that results of the two methods are
mutually consistent and broadly accord with standard SMHM relations. This consistency demonstrates that we are
able to measure and model Ly« transmission fluctuations ¢z in LATIS accurately. We also show that the galaxy—
Ly« cross-correlation, a free by-product of optical spectroscopic galaxy surveys at these redshifts, can constrain
halo masses with similar precision to galaxy—galaxy clustering.

, Simeon Bird? s

Unified Astronomy Thesaurus concepts: Galaxy dark matter halos (1880); Lya forest (980); Lyman-break

galaxies (979)

1. Introduction

Although the luminosity and stellar mass of a galaxy are
more readily observed, the mass of its dark matter halo is
considered to be the most fundamental parameter for theoretical
galaxy evolution models. Measurements of the evolving
statistical connection between galaxies’ luminosities or stellar
masses and their halo masses are therefore crucial for testing
and constraining such models. The simplest measure of the
galaxy-halo connection is the stellar mass—halo mass (SMHM)
relation, which relates the mass of a dark matter halo to its
average stellar content.

The main empirical tools for constraining the SMHM
relation—and the only ones generally applicable beyond
7z~ 1—have been measures of galaxy abundances and cluster-
ing. The subhalo abundance matching hypothesis (Vale &
Ostriker 2004; Conroy & Wechsler 2009; Behroozi et al. 2010;
Guo et al. 2010; Moster et al. 2010) enables the SMHM
relation to be derived from an observed luminosity or stellar
mass function by assummg a monotonic relation between these
quantities and the halo® mass or related properties. Galaxy
clustering is also used to constrain the SMHM relation by
relating the galaxy—galaxy two-point correlation function to
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Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

that of dark matter halos; more massive halos exhibit stronger
clustering (e.g., Mo & White 1996) because they occupy
denser environments (Pujol et al. 2017; Shi & Sheth 2018). The
galaxy correlation function can be modeled analytically using a
halo occupation distribution (HOD) model (Benson et al. 2000;
Berlind & Weinberg 2002; Cooray & Sheth 2002; Zheng et al.
2007) or the related conditional luminosity (or stellar mass)
function (Yang et al. 2003; Cooray 2006; van den Bosch et al.
2007). Galaxy clustering may also be modeled by matching
directly to subhalos in cosmological simulations (Reddick et al.
2013; Guo et al. 2016; Zheng & Guo 2016). These techniques
have been widely applied to galaxy survey data to constrain the
galaxy—halo connection (e.g., Jing et al. 1998; Zehavi et al.
2005, 2011; Zheng et al. 2007; Conroy & Wechsler 2009;
Wake et al. 2011; Leauthaud et al. 2012; Behroozi et al. 2013a;
Moster et al. 2013; Behroozi et al. 2019; Shuntov et al. 2022,
and see references below).

Beyond quasars, studies of galaxy clustering at high redshifts
initially focused on Lyman-break galaxies (LBGs; Adelberger
et al. 1998, 2005; Giavalisco et al. 1998; Ouchi et al. 2001;
Foucaud et al. 2003), extremely red objects (EROs) seen in
infrared surveys (Daddi et al. 2000; Moustakas & Somer-
ville 2002; Roche et al. 2002; Zheng 2004), and submillimeter-
selected sources (SMGs; Webb et al. 2003; Blain et al. 2004).
These initial studies showed that LBGs occupy a substantial
fraction of halos with masses M, ~ 10"112 M, o, Whereas EROs
and SMGs occupy somewhat more massive halos. UV-brighter
LBGs were found to occupy more massive halos (Giavalisco &
Dickinson 2001; Foucaud et al. 2003; Ouchi et al. 2004,
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Adelberger et al. 2005; Allen et al. 2005; Lee et al. 2006;
Hildebrandt et al. 2009). With the advent of deep and wide
near-infrared imaging surveys, the focus shifted to quantifying
stellar mass—dependent clustering at redshifts z <2, with
samples usually selected based on photometric redshifts rather
than color criteria tailored to galaxy subpopulations (Foucaud
et al. 2010; Wake et al. 2011; Bielby et al. 2014; McCracken
et al. 2015). More recently such efforts have been extended to
z=1>5 (Ishikawa et al. 2017; Cowley et al. 2018; Shuntov et al.
2022). These studies revealed that the SMHM relation retains a
similar shape over time, with a peak M, /M}, =~ 0.02 occurring
around a characteristic mass M)~ 10" M. that gradually
increases with redshift, and they also provided constraints on
quenching and the evolution of satellite galaxies.

All of these studies measured the angular correlation
function from imaging data in which the distances to most
individual galaxies are poorly known. Using a sufficiently large
spectroscopic survey, it possible to measure 3D galaxy—galaxy
correlation functions. Usually such functions are projected
along the line of sight, using well-measured redshifts to
eliminate most unassociated galaxy pairs. In addition to
measuring the halo mass of the targeted population via its
autocorrelation (Trainor & Steidel 2012; Bielby et al. 2013;
Durkalec et al. 2018), cross-correlations enable the host halo
mass of rare objects to be measured (e.g., hyperluminous
quasars; Trainor & Steidel 2012). Precise measurements of
high-redshift galaxy clustering and redshift-space distortions
are a premier probe of inflation and early dark energy and
motivate massive spectroscopic surveys (e.g., Schlegel et al.
2022).

To date only Durkalec et al. (2015, 2018) have measured
stellar mass—dependent clustering within a spectroscopic
galaxy sample at z > 2. Although their initial study (Durkalec
et al. 2015) suggested reasonable agreement with the canonical
models discussed above, their final analysis based on the full
VIMOS Ultra Deep Survey (VUDS; Durkalec et al. 2018)
indicated extremely low halo masses for the lowest-mass
galaxies with M, < 10°? M., suggesting a remarkably high
stellar mass fraction M, /M}, ~ 0.1. The authors interpreted this
as evidence of very efficient star formation in low-mass z~ 3
galaxies, which might have been missed by earlier surveys that
did reach the lowest masses. If confirmed, this finding would
have major implications for galaxy formation models, but it
clearly requires verification.

Another tool to constrain the halo masses of high-z galaxies
is to measure the cross-correlation between galaxies and the
surrounding H1 absorption, as observed in transverse sight
lines toward quasars or background galaxies. Excess HI is
found around z>2 galaxies to very large distances. The
simplest tracer of the galaxy—H 1 cross-correlation is the Ly«
flux (Adelberger et al. 2003, 2005; Crighton et al. 2011; Bielby
et al. 2017; Chen et al. 2020), but Voigt profile fitting (Rudie
et al. 2012) or pixel optical depth methods (Rakic et al. 2012)
can be applied to high-resolution quasar spectra. These studies
have examined the galaxy—H I correlation at small separations
to constrain the spatial extent, kinematics, and temperature of
inflows and outflows in the circumgalactic region. At
separations well beyond ~1 cMpc (comoving Mpc), on the
other hand, the correlation is instead dominated by large-scale
structure and is expected to depend mainly on the halo mass
(Momose et al. 2021b).

Newman et al.

Kim & Croft (2008) made an initial estimate of the halo
mass of LBGs based on the surrounding Lya absorption,
although the data of Adelberger et al. (2003) permitted only
loose constraints with an uncertainty of 0.6 dex. Rakic et al.
(2013) refined the technique and applied it to an improved data
set, deriving a halo mass estimate with a precision of 0.2 dex
that was consistent with estimates based on galaxy—galaxy
clustering. Momose et al. (2021a) were the first to measure the
galaxy—-Lya cross-correlation in bins of stellar mass using
spectra from the COSMOS Lya Mapping and Tomography
Observations (CLAMATO) survey (Lee et al. 2018; Horowitz
et al. 2022). Their models based on a cosmological
hydrodynamic simulation showed differences from the mea-
sured cross-correlations at distances up to several comoving
megaparsecs, but these were not used to infer halo masses.

Altogether, optical to near-infrared imaging surveys have
assembled a relatively consistent picture of the SMHM around
z~2-3, whereas there are very few measurements of stellar
mass—dependent galaxy—galaxy or galaxy-Lya clustering
based entirely on spectroscopic surveys at these redshifts, and
these have yielded unexpected or inconclusive results. In this
paper we use LBG spectra from the Lya Tomography IMACS
Survey (LATIS; Newman et al. 2020) to examine both the
galaxy—galaxy and galaxy—Ly« correlations consistently. Key
advantages of LATIS include a large sample of ~3000 galaxies
at z & 2-3, precise and calibrated redshifts, and coverage of the
Lya forest at a spectral resolving power of R ~ 900.

Our goals are (1) to constrain the SMHM relation at z =2.5
using galaxy—galaxy and galaxy-Lya clustering, both to
inform the galaxy-halo connection generally and as a key
input to future papers examining the galaxy—intergalactic
medium (IGM) connection using LATIS; (2) to assess the
consistency of the methods as a precise test of the methodology
and of systematic errors in the LATIS Ly« forest data; and (3)
to evaluate the relative precision of galaxy—galaxy and galaxy—
Ly« clustering as constraints on halo occupation to help inform
future surveys.

We introduce our galaxy-galaxy clustering analysis in
Section 2. We then turn to measurements of the galaxy-Lyo
cross-correlation (Section 3), calculation of the halo-Ly«
cross-correlation in a cosmological simulation (Section 4), and
the resulting constraints on halo masses (Section 5). We
compare the SMHM relations from galaxy—galaxy and galaxy—
Lya clustering to one another and to the literature (Section 6)
and summarize their implications (Section 7).

2. Galaxy-Galaxy Clustering

We begin with our methods for estimating the observed
galaxy and simulated (sub)halo correlation functions. A key
challenge is the construction of an accurate covariance matrix,
which we address using mock surveys within a large
cosmological simulation. After developing the method, we
first estimate the typical halo mass of the LATIS galaxies,
undifferentiated by stellar mass, based on their autocorrelation
function. This measurement is required for some analyses in
which the galaxy sample is not divided by mass, e.g., Newman
et al. (2022). Second, we consider subsets of galaxies defined
by stellar mass and derive halo masses using a new method that
incorporates all N(N + 1)/2 auto- and cross-correlations among
the N subsamples.
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Figure 1. Redshift distribution of galaxies used to measure galaxy—galaxy
clustering. The full sample is shown along with the COSMOS and D1+D4
subsamples plotted separately to illustrate field-to-field variations. Each
histogram is a normalized probability density function (pdf); the right axis
shows the corresponding number of galaxies per bin in the full sample. The
dashed line shows the polynomial fit used to generate random points.

2.1. Observations

We measure the clustering of LATIS LBGs with high-
confidence (zqual =3 or 4) redshifts z =2-3, approximately
the central 90% of the redshift distribution shown in Figure 1,
combining all three survey fields (COSMOS and Canada—
France-Hawaii Telescope Legacy Survey (CFHTLS) D1 and
D4). Redshifts are derived from full spectral modeling, and for
the high-confidence subset used in this paper, we visually
identified multiple spectral features. Newman et al. (2020)
estimated that the catastrophic error rate for the high-
confidence redshifts was <2%, which we will consider as
negligible. We exclude galaxies that were observed only as part
of “bright target” masks intended for poor weather conditions
(Newman et al. 2020), since they do not cover the entire survey
area; galaxies whose spectra are heavily blended; quasars; and
targets not covered by the near-infrared imaging required to
estimate stellar masses robustly, which affects only the
CFHTLS-D4 field.

The photometric catalogs and derivation of stellar masses from
spectral energy distribution fitting are described by N. Chartab
et al. (2023, in press). Figure 2 shows the stellar mass distribution.
Although its full range spans log My /M, = 8.4-11.4, galaxies
are concentrated around the median M, =10"" M., and the
central 90% range is log My/M, = 9.1-10.4, a factor of 20. The
total number of galaxies used to measure galaxy—galaxy clustering
is 2991.

2.2. Clustering Estimator

The two-point correlation function &(r,, 7) is the excess
probability of finding a galaxy at a transverse separation r,, and
line-of-sight separation 7 (in redshift space) from another
galaxy, relative to a uniformly distributed population. We will
primarily use the two-point correlation function projected along
the line of sight:

Wy(ry) = f " €y, myd. )

—Tmax

Note that in this convention w), has units of distance. The
integral limits 7.« are generally selected to be large enough

Newman et al.

to desensitize the measurement to redshift-space distortions and
galaxy redshift errors, while being small enough to avoid
adding excessive noise from uncorrelated pairs. Typical values
of Mpax are 15-30 ! cMpc (e.g., Trainor & Steidel 2012;
Marulli et al. 2013; Kashino et al. 2017; Durkalec et al. 2018),
and we set Tma = 20 A~ cMpc. Our mock surveys, described
below, showed that the precision of the inferred halo masses is
not very sensitive to the choice of m,,x within this range.

To estimate &(r,, 7), we generate a large number of
unclustered random points (see below), convert the celestial
coordinates and redshifts of the observed galaxies and random
points into comoving Cartesian coordinates, and use the
Corrfunc code (Sinha & Garrison 2020) to compute the
Landy & Szalay (1993) estimator rapidly. In the case of an
autocorrelation, the simple version of this estimator is:

DD — 2DR + RR
r,, T) = s 2
§(rp, m) ZR ()

where DD, DR, and RR are the normalized number of galaxy—
galaxy, galaxy-random, and random-random pairs, respec-
tively, within a given bin of r, and 7. These counts are
normalized to account for the oversampling of random points:
DD :NDD/[ND(ND — 1)], DR :NDR/(NDNR)s and RR :NRR/
[Nr(Ng — 1)], where Npp, Npg, and Nig represent the raw pair
counts (e.g., Kerscher et al. 2000). In the case of a cross-
correlation between two galaxy or halo samples, we have:

DD, — DRy — DR + RiR,

f(rp’ ™) = RiR,

3)

where the normalized counts are D;D, = Np,p,/(NpNp,),
DR, = Np,g,/(Np,Ng,) (analogous for D,R;), and RR, =
NRle/(NRlNRz)’ and NDlDz’ NDIRZ’ NDZR], and NR]R2 are the raw
galaxy—galaxy, galaxy—random, and random—random pair counts.
Once the 2D correlation function £(r,,, ) has been estimated, we
integrate along the line of sight to obtain wy,(,,). Numerically the
integration consists of summing estimates of & over 7 bins with a
width of 1 £~" cMpc.

An essential aspect of estimating & is the generation of
random coordinates of unclustered objects that must respect the
survey geometry and redshift distribution. For each of the three
survey fields, we randomly draw Nk =100 X Np celestial
coordinates within the survey area, excluding masked regions
around bright stars (see Appendix B), where Np, is the number
of observed galaxies. The redshift distribution of an unclustered
population would not be uniform due to the LATIS target
selection function, which depends on a galaxy’s r-band
magnitude and colors. The best estimate of the selection
function is empirical: the redshift pdf of the observed sample.
Although this estimate inevitably and undesirably includes
large-scale structure, its influence can be mitigated by
averaging over independent fields and smoothing the distribu-
tion (e.g., Trainor & Steidel 2012; Marulli et al. 2013). Figure 1
shows the redshift pdf constructed in bins of Az=0.05 and
modeled with a polynomial of degree n =4, which we use to
draw random samples. We find that our results are extremely
insensitive to n for any reasonable value n > 2. Although only
z7=2-3 galaxies are used to estimate &, we include galaxies
over a slightly wider redshift range when fitting this polynomial
to constrain the endpoints better.
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Figure 2. Stellar mass distributions of galaxies used in the galaxy—galaxy (left panel) and galaxy—Ly« (right) clustering analyses. Different shadings indicate the four

stellar mass bins.

We use a weighting scheme to account for nonuniformity in
the survey sensitivity and sampling. Appendix B describes our
estimates of the target sampling rate (TSR) and spectroscopic
success rate (SSR) as a function of celestial coordinates. The
TSR gives the fraction of the LATIS parent sample that was
observed, while the SSR gives the fraction of the observed
sample for which a high-confidence spectroscopic redshift was
determined. The product of these rates is the effective sampling
rate (ESR). The ESR exhibits a variety of angular dependencies
arising from slit mask design constraints, instrumental effects,
and time-dependent observing conditions. Similar to other
studies (e.g., Marulli et al. 2013) we account for angular
variation of the ESR by weighting galaxy i by w;=ESR".
Specifically, in the weighted estimator of {(r,, m), the pair
counts above are replaced by the sum of the product of weights
S ESR; ! x ESR;I, and all random points receive the mean
weight. (Recall that random points are already constrained to
lie within the observed survey area.)

Beyond contributing to these large-angle variations in the
ESR, slit mask design constraints lead to a deficit of close
galaxy pairs in LATIS relative to the parent sample. However,
this deficit requires no correction because it exceeds 5% only
for separations less than 0!/3 (see also Newman et al. 2022),
which is smaller than any separation bin that we will consider.

These procedures are initially used to estimate w),(r,) in each
of the three LATIS fields separately, and we then compute a
final w),(r,,) from a weighted mean over the fields, where field i
receives weight W, In the limit of Poisson errors, inverse-
variance weighting would assign a weight proportional to the
number of pairs in a given radial bin. In the limit that 7, is
much smaller than the survey volume, this expected pair
number is proportional to n;”V,, where n; is the galaxy space
density and V; is the volume of field i. We therefore use
W, = n?V;/S3 n?V; the weights for the COSMOS, D1, and
D4 fields are 0.59, 0.36, and 0.05, respectively. Experiments
with the mock surveys introduced below shows that these
simple weights are close to optimal in terms of minimizing
variance.

2.3. Halo Correlation Functions

We compute halo correlation functions using the MultiDark
Planck 2 simulation (MDPL2; Klypin et al. 2016), which was

selected to enable a sufficient number of mock surveys (see
below) distributed within its 1 A~ Gpc® volume. We use the
snapshot at zg, = 2.535, which is very close to the mean
redshift of the galaxies (z) =2.52. We compute the correlation
functions of all halos (i.e., distinct halos and subhalos) in the
RockStar (Behroozi et al. 2013b) catalog, as appropriate for
our comparison to galaxy clustering; for reference, about 8% of
halos with masses M, = 10"/ M, are subhalos. We define M),
using the virial mass Mvir. Due to the small expected fraction
of subhalos in the relevant mass and redshift ranges along with
our limited constraining power on submegaparsec scales, we
prefer our single-parameter approach over fitting a more flexible
HOD model, which could suffer from significant degeneracies.

First, we compute w,(r,,) for thresholded samples of halos, i.e.,
those with a virial mass My > M™*" for a selected M1, We
find the positions of these halos in redshift space by perturbing
their comoving z-coordinates by v.(1 4 z)/H(z), where v, is the
physical halo velocity in the z-direction. For speed, we randomly
select a subsample of at most 5 x 10° halos, which we find is
sufficient to estimate w, to ~1% precision. We use Corrfunc to
compute w,, on a grid of log M;™*" /M, spanning 10.7 to 13.5 in
steps of 0.1, and we use linear interpolation to evaluate w), between
grid points.

Second, we consider the cross-correlations between two halo
samples, each consisting of an essentially “mono-mass” halo
population defined by a narrow range of 0.1 dex around a
specified mass M. We compute w,(r,) on a 2D grid and use
bilinear interpolation where necessary.

Our galaxy sample spans a range of redshifts z=2-3 over
which clustering evolves, whereas the halo clustering is
calculated at a single redshift. In the limit of linear growth
and biasing, the halo autocorrelation function is:

b*(z)D?(z)

_ 2 =72 <2 s
fh(Z) =b(2) fdm(z) - I:bz(Zsim)Dz (Zsim)

] gh (Zsim), 4)

where b(z) is the bias, D(z) is the linear growth factor, and &y,
is the dark matter correlation function. We find that
(b2(2)D*(2))/[D* zsim) D (zeim)] = 1.0002, where the average
is taken over the redshifts z; of galaxies in our sample, which
means that we can directly compare the galaxy and halo
autocorrelation functions when the full galaxy sample is
considered. However, when we consider auto- and cross-



THE ASTROPHYSICAL JOURNAL, 961:27 (20pp), 2024 January 20

100 1§ R Y

wp [h~1 cMpc]
Galaxy pairs

1 10
rp [h~* cMpc]

0.2 04 06 0.8 1.0 ———————
Correlation coefficient 11.0 11.5 12.0

Newman et al.

Probability density
N
1

Iog Mft]hresh [Mo]

Figure 3. Left: the projected galaxy-galaxy correlation function w),(r,) for the entire LATIS sample, undivided by stellar mass. Black points show measured values
with error bars CJ*° derived from the mock surveys. These data are modeled by the autocorrelation function of mass-thresholded halos; blue curves show 10 posterior
samples. The dotted line and right axis show the number of galaxy pairs (within |Az| < y,x) in each 7, bin. Middle: the correlation matrix Cj; / (Ci; C,-j)0~5 derived from
the mock surveys. Each row or column corresponds to a bin of r,, increasing down and to the right. Right: posterior probability density for the threshold halo

mass Mhresh,

correlations of galaxies in bins of stellar mass, we make
small corrections for clustering evolution, because the mean
redshift of the galaxies varies slightly with stellar mass.
We do this by rescaling the halo w, by the factor f =
b(21)D(21)b(22) D(22)/[b* (2sim) D* (Zeim )], Where z; and z, are
the mean redshifts of the galaxy subsamples. We use the Tinker
et al. (2010) bias model and the Colossus code (Die-
mer 2018) to evaluate f, which is quite weakly sensitive to halo
mass. We find that this amounts to a very minor correction with
0.976 < f< 1.019.

2.4. The Integral Constraint

Consider the average value of an estimator &' of the
correlation function evaluated over random pairs of points
within a survey volume. Because ' is an excess probability
relative to random pairs, this average must be zero regardless of
the true value (£™°) that would be obtained over an infinite
volume. The difference is known as the integral constraint (IC;
Infante 1994; Roche et al. 2002). The IC is approximately a
negative additive bias that can be estimated by averaging £™°
over random pairs in the survey volume; the projected
correlation function then satisfies wy* (R) ~ wy"*(R) — IC x
2Tmax- We estimate the IC as part of our fitting process by
evaluating it for each proposed halo population (Wake et al.
2011). Although the IC is often a significant correction to
angular correlation functions, it has far less impact on a
spectroscopic survey, because the distance between random
points is dominated by the survey’s line-of-sight depth, which
is much larger than 7. We correct for the IC but find that it
changes w, by at most a few percent in the outermost
radial bins.

2.5. Clustering of the Full Galaxy Sample

Figure 3 (left panel) shows the autocorrelation function of
the LATIS galax1es computed in 10 logarithmic bins of r
spanning 0.3-20 4~ cMpc. Our first aim is to model the galaxy
clustering with a thresholded halo sample defined by
M, > M"™>". The main difficulty in such modeling is that w,,
errors in different radial bins are correlated, and on sufficiently
large scales, this correlation is dominated by large-scale
structure. As in many prior clustering studies (e.g., de la Torre

et al. 2013; Durkalec et al. 2015), we use mock surveys to
estimate the data covariance matrix. These mock surveys
require an initial estimate of M, M which we derive by
assigning independent Poisson errors to the w, measurement in
each radial bin, and then ﬁtting these data with our set of halo
wp(rp,) profiles using a maximum likelihood procedure. The
1n1t1al estimate is log M), thresh / M, = 11.56.

For each LATIS survey field, we then select nonoverlapping
subvolumes that fill the MDPL2 simulation box. For the largest
field, there are 135 such subvolumes. With each subvolume, we
assign a mock redshift z, to each halo such that the comoving
line-of-sight distance from zy,;, = 2 to zp matches the distance
of the halo to the front of the simulation box. We also assign
mock celestial coordinates (R.A.q, decl.y) to each halo by
converting its x- and y-coordinates to angular transverse
distances, appropriate to the halo’s mock redshift, from a sight
line passing through the center of the subvolume; the celestial
coordinates of this sight line are set to the center of the
observed field. These calculations assume the distant observer
approximation. We then randomly select halos with masses
My, > M= with a probability proportional to ESR(R.A.o,
decl.g) % zpdf(zo) The total number of selected halos matches
the total number of LATIS galaxies in the field. We then use
the same code to compute w,, that is applied to the observed
data. This process is repeated to realize 100 random halo
selections per subvolume. Finally, we select many random
triplets (i, j, k), where i, j, and k identify a realization of a
subvolume associated with each of the three survey fields, and
compute the mean w), using the same weights applied to the
observations. From these realizations we estimate the covar-
iance matrix C;; of w,,. The correlation matrix C;;/(C;; Cj)'/? is
shown in Figure 3. Note that the bins are increasingly
correlated at larger 7,

We can now perform a Bayesian inference on M"™". We
take a broad, uniform prior on log M;, and assume a Gaussran
likelihood with the covariance matrix C;; estimated from the
mock surveys. The resulting posterior is shown in Figure 3
(right panel). We summarize the pdf using the mode and the
16th and 84th percentiles: log M™" /M, = 11.56739. The
mock surveys showed the pdf mode to be an unbiased
estimator, whereas the median is biased low because the pdfs
are left skewed. The minimum y”= 8.3 for nine degrees of
freedom, so deviations from the model are consistent with the
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uncertainties. Since our inferred M™" matches the initial

estimate M;¢*™" (but with much more realistic errors), we did
not find it necessary to iterate this procedure.

To facilitate comparisons with future work, we also fit a
power-law model, though we stress that this plays no role in
our halo mass inference. If the 3D correlation function follows
a power law £(r) = (r/rp)” 7, then the projected correlation
function w,, can be expressed as a power law multiplied by a
hypergeometric function, which appears due to the finite
integration window over 7 (see Trainor & Steidel 2012,
Equation (10), which must be multiplied by 27, to match our
w,, convention). We fix = 1.5 since, like Trainor & Steidel
(2012), we found this value to match the shape of the halo
autocorrelation function within the relevant mass range, and

measure ro=4.9+0.3 h~' cMpc.

2.6. Stellar Mass—dependent Clustering

We now consider the clustering of LATIS galaxies as a
function of their stellar mass. A common method to analyze mass-
dependent galaxy clustering is to compute w, for a series of stellar
mass—thresholded subsamples, i.e., My > M2 and to fit such
data with an HOD model (e.g., Wake et al. 2011; Durkalec et al.
2018). This approach has drawbacks for analyzing high-redshift
spectroscopic samples. First, no such sample is stellar mass
limited; in the case of LATIS, the stellar mass distribution has a
shape closer to Gaussian than a truncated mass function.
Therefore observed galaxies at relatively undersampled masses
need to be up-weighted, and this introduces a dependence on the
assumed stellar mass function. Second, in the high stellar mass
bins, the threshold approach incorporates only the pairs of massive
galaxies with themselves, omitting their many pairs with lower-
mass galaxies. This is not optimal when sample sizes are limited.

We introduce a different method in which galaxies are divided
into N, bins of stellar mass, and we compute and simultaneously
model all of the auto- and cross-correlations (hereafter simply
cross-correlations) between the Nj, X (N, + 1)/2 pairs of bins.
This approach incorporates all galaxy pairs into the analysis.
Figure 4 shows the 10 cross-correlations arising from the four
stellar mass bins listed in Table 1. Given the smaller number of
galaxies in the individual mass bins, we calculate w,(,,) using a
reduced set of six 7, bins.

We compare these galaxy cross-correlations to halo cross-
correlations, modeling each galaxy stellar mass bin as a mono-
mass halo population. The procedure is analogous to that
described in Section 2.5. We first estimate an initial M; , for
each of the four bins, indexed by i, by using Poisson error
estimates and simultaneously fitting the 10 cross-correlations.
We then build mock surveys; in each realization, we now select
four random samples of halos around M, ,, with the number of
halos matching the number of observed galaxies in stellar mass
bin i. Halos are selected according to the z,qr described by
galaxies in the associated stellar mass bin. The covariance
matrix Cj; is calculated as before, but it is now 60 x 60. We
then proceed to a Bayesian inference, as before. To sample the
posterior, we use emcee (Foreman-Mackey et al. 2013). The
main difference compare to Section 2.5 is that we find that
three iterations are necessary: after each iteration, we use the
resulting estimates of the halo masses to create a new suite of
mock surveys. After three iterations, the inferred halo masses
are sufficiently converged (AlogM;, < o/4, where o is the
random error). The change in log M), between the first and last
iterations is <0.08 in all stellar mass bins; therefore, by

Newman et al.

iteratively bringing the mocks and observations into agreement,
we improve internal consistency but ultimately make a small
refinement to the halo masses.

Figure 4 shows that all cross-correlations can be simulta-
neously modeled within their uncertainties, with a minimum
x> =50.1 for 56 degrees of freedom. The comner plot in
Appendix A shows that the posteriors are unimodal and
covariance among the four halo mass parameters is low. The
halo masses that we infer (Table 1) increase monotonically with
stellar mass. These results are consistent with our analysis of the
LATIS sample as a whole (Section 2.5): above a threshold of
Mt — 11,56, the median halo mass is log M, = 11.80,
which is consistent with the interpolation of the halo mass
estimates in Table 1 to the median log My = 9.72. In Section 6,
we will return to these measurements and compare them to the
literature and our Ly« analysis.

To facilitate comparisons with future work and to help
clarify the significance of differences among the stellar mass
bins in Figure 4, we also fit a power-law model (see
Section 2.5) to each of the the auto- and cross-correlation
functions independently. Values of r, assuming a fixed y=1.5
are shown in each subpanel.

3. Galaxy-Lya Cross-correlation: Observations

We now turn to the second method for measuring halo
masses: the galaxy—Lya cross-correlation. In this section we
describe the observations and measurements, while Section 4
describes our calculation of the halo-Lya cross-correlation from
a cosmological hydrodynamic simulation, and Section 5 presents
the inference procedure and the resulting halo mass estimates.

3.1. Lya Forest Spectra

We measure Ly absorption in a set of 3007 sight lines
toward galaxies and quasars. Among the full LATIS sample, we
select objects with z>2.277 so that the Lya forest is at least
partly observed, and we exclude sources identified as having
major data reduction flaws, poor fits of the spectral models that
describe the unabsorbed continuum, or severe blending. The
processing of spectra was described by Newman et al. (2020).
The key measurement is the Ly« transmission fluctuation:

F J—
(F)(2)

where F is the flux at a given wavelength normalized by the
unabsorbed continuum model (see Newman et al. 2020) and
(F)(z) is the redshift-dependent mean flux transmitted through
the IGM (Faucher-Giguere et al. 2008). We consider only
spectral pixels for which the uncertainty o5, < 2. This leaves
4.7 x 10° Ly forest pixels in our data set.

There are two further processing steps. First, we attempt to
exclude high-column-density absorption lines from our cross-
correlation. Although not an essential step, we find that their
inclusion does not substantially improve constraining power, but
it increases model dependence because subgrid models are
required to simulate these lines accurately. We use a simple
technique that masks lines with a high equivalent width (EW; see
Newman et al. 2020). Briefly, we convolve the continuum-
normalized spectrum with a 5 pixel boxcar, identify local
minima, and measure the EW. The EW is measured within the
smallest wavelength interval over which F < (F)(z), truncated to
a maximum of +1000 km s~ from the minimum in order to

bp = L 3
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Figure 4. The projected auto- and cross-correlations among LATIS galaxies in four bins of stellar mass listed in Table 1. Each panel shows the measured w,(r;,) (black
points) with C{ error bars based on the covariance matrix C;; derived from the mock surveys. Blue curves show 10 posterior samples of the halo model. The
correlation length ro, expressed in units of #~' cMpc, is shown in each subpanel.

Table 1
Halo Mass Constraints from Galaxy—Galaxy Clustering
Bin num. log My (log M) Nga (2) log M,
1 <9.4 9.21 547 2.58 11.397042
2 9.4-9.8 9.61 1181 2.53 11787014
3 9.8-10.2 9.97 899 2.49 12.037313
4 >10.2 10.46 364 2.47 12.447053

Note. Masses are expressed in units of M.

avoid identifying broad, shallow features. If the rest-frame
EW>5 A and the feature is significantly detected
(EW/ogw > 5), the line is masked over the wavelength interval
where F < (F)(z). Based on the simulations described in
Section 4, we find that this simple method identifies 95% of
lines with column densities Ny > 10*%7 cm™?; it inevitably also
masks some lower-Ny; lines that are blended at our spectral
resolution.

Second, we refine the unabsorbed continuum model for each
sight line using a multiplicative polynomial that forces (§) ~ 0
on large scales. The polynomial order depends on the length of
the Ly« forest that is covered by the spectrum (see Newman
et al. 2020), but the filtering scale is typically Az=0.2. This
process is called mean flux regularization (MFR; Lee et al.
2012). MFR mitigates errors in the spectrophotometric
calibration, but it also suppresses large-scale correlations.

It is important to bear in mind that we measure a processed
version of dr, and that the same procedures that exclude high-
EW lines and perform MFR will be applied to the simulated
Ly« forest spectra to enable an accurate comparison.

3.2. Foreground Galaxies and Redshift Estimates

The foreground sample consists of the galaxies whose
positions will be cross-correlated with Lya absorption. We use
a subset of the galaxy sample described in Section 2.1,
restricting to the redshift range zg, = 2.22-2.90. The lower limit
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Figure 5. Calibration of LATIS redshifts using transverse absorption and nebular emission. Left: average spectrum (and 1o uncertainty band) of sight lines within
r, <4 k' cMpc of LATIS galaxies, shifted into each galaxy’s rest frame using the LATIS UV redshifts. We detect a small asymmetry around Av = 0 attributed to a
systematic offset in the UV redshifts. Right: comparison of LATIS UV redshifts to MOSDEF nebular redshifts for 18 galaxies in common.

ensures that the region within £2000 km s~ of Lya lies within
our observed spectral range, while the upper limit is motivated
by the rapidly declining number of background sources.

Rest-frame UV redshifts rely mainly on the resonant Ly«
line (in emission and absorption) and metallic absorption lines
produced in part by outflowing gas; neither traces the galaxy
systemic redshift directly. Rest-frame UV surveys often have
systematic velocity offsets compared to indicators of galaxies’
systemic redshifts. Although these are irrelevant to galaxy—
galaxy clustering, such offsets would affect the galaxy-Ly«
cross-correlation. One way to estimate a systematic velocity
offset is to examine the average transverse Lya absorption
profile, which should be symmetric about galaxies’ systemic
redshifts (Rakic et al. 2012). For each sight line—foreground
galaxy pair with a transverse separation r, < 4 h~' cMpe, we
shift the continuum-normalized spectrum into the galaxy’s rest
frame using the LATIS redshift (see Newman et al. 2020), and
we then compute the inverse-variance weighted mean over
pairs (Figure 5). We find that the absorption is nearly
symmetric about Av = vy — vyy = 0, but we do detect a small
offset Av =394 16 km s~ '. The offset shows no clear trend
with spectral morphology as indicated by the Lya EW, so we
simply add the same Av to all LATIS redshifts.

We can also evaluate systematic offsets, as well as random
errors, in the LATIS redshifts by comparing them to nebular
redshifts for 18 galaxies in common with the MOSDEF survey
(Kriek et al. 2015). We find that the median offset of
AV =1V, — Vov =96 £ 36 km s~ is consistent with, but less
precise than, the estimate from transverse Ly« absorption. (The
uncertainties are determined from bootstrap resampling.) The
standard deviation of velocity difference is o, = 120 4= 24 km sfl,
which may be taken as an error in the UV redshifts given that the
errors in MOSDEF redshifts are expected to be much smaller;
however, inspecting the histogram in Figure 5 shows that o, is
heavily influenced by the two largest outliers. The LATIS
redshifts for these two galaxies are very sensitive to whether the
Ly« region is included in the spectral model fit; if it is not, the
redshifts obtained from the interstellar absorption lines agrees well
with the MOSDEEF redshifts. This situation is rare: a comparably
large (>300 km s~ ") dependence on the inclusion of Ly occurs
in only 0.7% of the LATIS sample, which indicates that the subset
in common with MOSDEEF is likely unrepresentative. Excluding
those two galaxies, the estimated redshift error becomes

0,=66+8 km s'. Such an exclusion is reasonable but still
uncomfortably ad hoc. We use these results only to estimate a
reasonable prior on o, for our galaxy—Lyc analysis: we will use a
normal distribution centered on the average of our two estimates
(120 and 66 km s~ ') with a dispersion set to their half-difference,
ie,93+£27 kms .

3.3. Estimating the Galaxy—Lyo Cross-correlation

To estimate the cross-correlation between LATIS galaxies
and Lya absorption, we follow a similar procedure as Font-
Ribera et al. (2012), who measured the cross-correlation
between damped Lya absorbers and Ly« fluctuations mea-
sured in quasar spectra. The cross-correlation is defined as:

ZieAWi(SF,i

Lya , ==L 6
Y (rp, ) S (6)

where the summations are over a list A of those pixels located
within a separation bin (r,, = Ar,, 7 £ An) from a galaxy in the
foreground sample; note the same pixel may appear multiple
times. This is simply a weighted mean of &, and £ can be
equivalently thought of as an Ly« absorption profile. We use
inverse-variance weights that incorporate both observational
noise and the intrinsic variance in the Ly« forest:

Wi = [U%(Zi) + U%and,i + Ugont,i]il’ (7)

where J%:(Zi) is the intrinsic variance at the redshift z; of pixel i,
Orand,; 1S the random noise in 6z, and ocone; 1S the estimated
noise in O, attributed to errors in the continuum model. We
approximate or(z) = 0.20[(1 + z)/3.5]** based on the simu-
lated spectra that we introduce below, and therefore o%
represents the total variance in noiseless spectra with the same
spectral resolution and processing as the LATIS data. We
evaluate oon; as a function of the continuum-to-noise ratio
following (Newman et al. 2020, Section 7.4). Note that these
weights naturally prevent the dominance of a few spectra with
high signal-to-noise ratios.

We use linear bins of 7, spanning 0-20 k' cMpc with widths
of 1 ' ¢cMpc and bins of 7 spanning —15 to 15 A" cMpc
with widths of 1.2 4~' cMpc, which approximately match the
LATIS pixel scale (1.8 A) at the mean redshift. We then fold
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Figure 6. The galaxy—-Lya cross-correlation &-Y

computed from the full LATIS foreground galaxy sample, independent of stellar mass. Panel (a): the observed 2D

correlation function. Contours begin at €Y = —0.2 and decrease to —0.0125 in factors of two. Dashed and solid contours indicate the observed and model correlation
functions, respectively. Panel (b): the model 2D correlation function; contours are the same as in panel (a). Panel (c): the projected cross-correlation w;‘y". Black points
show observed values with 1o errors derived from the covariance matrix, and blue curves show 10 posterior samples of the model. Gray points show a null test

constructed by scrambling the Ly« forest spectra among the sight lines.

he cross-correlation about 7 =0, averaging estimates in the
fore- and background; therefore the first m bin covers 0 to
0.6 ' cMpc.

Figure 6(a) shows the 2D galaxy—Lya cross-correlation
derived from the entire LATIS sample, independent of stellar
mass. A strong detection of excess Lya absorption to large
distances is clearly apparent, along with an anisotropic shape.
We will discuss the 2D structure of the cross-correlation further
in Section 4.

It is useful to consider a projected cross-correlation function
akin to the w,, statistic that we employed to measure galaxy—
galaxy clustering. We define w;y“‘ by averaging &= within
7| < Tipax = 6.6 A~ cMpc:

1

L
Wpya(rp) =

f ™ ey, mdn.

~Tmax

(®)

7Tmax
Numerically this corresponds to averaging the first six 7 bins
(see Figure 6) with half the weight given to the first bin as to
the others, since it is centered on 0. Note that this convention
differs from that for the galaxy—galaxy w,, which is an integral
over m rather than an average. The disadvantage of our

definition for prya is that it does not converge as Ty,x — 0O,

but we find it convenient for wll;y“ to maintain a dimensionless
form to facilitate comparisons with systematic uncertainties in
0. No single choice of 7y, is optimal at all 7, but based on
the simulations introduced below, we find that the signal-to-
noise ratio of pry“ is close to maximal over a wide range of r,
for our choice of Ty .

When analyzing galaxy—galaxy clustering we had to account
for angular variations in the ESR arising from any source, since
they directly affect the number of pairs that are counted. In
LATIS such variations mainly depend on a galaxy’s position
within the IMACS field of view. Such sampling variations are
not relevant to the galaxy—Lya cross-correlation, since they do
not bias the measured 6. Potentially concerning are variations
in ESR that correlate with local density, and thus ¢z. Newman
et al. (2022) simulated the recovery of galaxy density in a two-
pass LATIS-like survey, respecting geometrical constraints
imposed by slit mask design. On 2-8 &~ ' cMpc scales, where

€% is best constrained, the galaxy density was biased <2%
within density fluctuations <3o. Only a small fraction of LBGs
reside in higher-density regions, so we can safely assume that
any such sampling bias has a negligible effect on &= °.

3.4. Data Covariance Matrix

Measurements of £ in different bins are highly covariant
for several reasons. First, a given Ly« forest pixel forms pairs
with many galaxies and so appears in many bins. Second,
continuum errors are coherent along sight lines. Third, Ly«
forest fluctuations are correlated by large-scale structure. We
follow Font-Ribera et al. (2012) to estimate the covariance
matrix analytically.

Consider two separation bins A and B of £ The
covariance of the cross-correlation Cyp is:

= zieAZjeBWi w; Gy
Cp=—— ©))
Do Wi ) Wi
icA  jeB
which is based on Equation (3.11) of Font-Ribera et al. (2012),
where C;; = (0r,;0r,) is the correlation of 6 measured in pixels
i and j. Taking the transverse and perpendicular separations of
these pixels to be r,;; and 7;, we estimate the correlation as:

Cj = ErUpips ) + Trana i 65 + Tonii 0P (i), (10)

which is analogous to Equation (3.12) of Font-Ribera et al.
(2012). The first term is the intrinsic autocorrelation of 6z, which
we compute directly from the simulations introduced below.
This term encodes cosmic variance. The second term represents
the random noise in the spectra, which appears only with i =j
such that the Kronecker delta function 65 =1 (65 = 0 when
i=j). The last term represents the continuum error, which
appears only when the pixels are members of the same sight line
so that the Dirac function 6 (rpi) =1 and (6" (rp,;) = 0 when
1,5 = 0. We approximate the continuum error as being perfectly
correlated along a sight line with a variance o2, that is a
function of the median continuum-to-noise ratio along the
sight line (see Section 7.4 in Newman et al. 2020). Thus
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covariance matrix C of £, it is straightforward to calculate the
covariance matrix of the projected [I;y”.
Ly «

The matrix C is slow to compute. Each bin of £ is formed
by averaging pixels from many galaxy—-Lya pairs. Computing
Cyp then requires calculating a weighted mean of C;; over every
pair of pixels in bins A and B. To speed the calculation, we
parallelize it and approximate =0 when r, ; or |7;| exceeds
30 A" cMpc.

whenever the third term is active. Given the

4. Galaxy—Lya Cross-correlation: Simulations

In order to estimate a halo mass from the observed galaxy—
Lya cross-correlation, we compute simulated halo-Lya cross-
correlations using the large and high-resolution (2 x 5500°
particles in a volume of 250° h~° cMpc®) cosmological
hydrodynamic simulation ASTRID (Bird et al. 2022; Ni et al.
2022). In this section we describe our construction of Lya
skewers from ASTRID, the processing of these skewers into
mock LATIS spectra, and the calculation of redshift- and mass-
dependent halo—Ly« cross-correlations.

4.1. Ly Optical Depths

Our construction of Lya absorption spectra from the
ASTRID simulations follows the procedures described in
Section 2.2 of Qezlou et al. (2022) and Section 3.1 of Qezlou
et al. (2023). Briefly, each gas particle in the simulation is
treated as an individual absorber with internal physical
properties smoothed by a quintic spline kernel. The absorption
spectrum is then composed of all the Voigt profiles of the
absorbers along a given line of sight. We estimate the neutral
hydrogen fraction by assuming a uniform ultraviolet back-
ground (UVB) and solving the collisional /photoionization and
recombination rate networks from Katz et al. (1996). The self-
shielding of dense neutral gas is modeled using fitting formulae
derived from radiative transfer models (Rahmati et al. 2013).
We effectively set the UVB intensity by scaling the Ly« optical
depths to match the mean flux evolution observed by Faucher-
Giguere et al. (2008), as corrected for metal absorption. We
compute a grid of 1000 sight lines parallel to the z-axis with a
transverse spacing of 0.25 4~ cMpc. The spectral pixel size is
also 0.25 ' cMpc, or about 27 km s~ '. This procedure is
repeated for snapshots at z=2.3, 2.5, 2.7, and 2.9, approxi-
mately matching the range of our foreground galaxy sample.

4.2. Halo Masses in ASTRID versus MultiDark

Among our goals is to compare the consistency of halo
masses estimated from galaxy—galaxy and galaxy—Ly« cluster-
ing. We use different simulations that are most appropriate for
each analysis: the large, N-body simulation MDPL2 to enable a
large suite of mocks for galaxy—galaxy clustering, and the
smaller but hydrodynamic simulation ASTRID to compute
Lya spectra. These simulations are based on slightly different
cosmological parameters, particularly og, and different methods
were used to construct the subhalo catalogs: RockStar
(Behroozi et al. 2013b) for MDPL2 and SUBFIND (Springel
et al. 2001; see Bird et al. 2022) for ASTRID.

We present halo masses derived from each method (galaxy—
galaxy and galaxy-Lya clustering) based on the associated
simulation. However, when we compare the results from these
methods in Section 6, we will account for the expected mass
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Figure 7. Differences in the masses of halo populations with matched autocorrelation
functions in MDPL2 and ASTRID. For each halo population in ASTRID (mono-
mass: | log M,/Mj, astrip| < 0.1; thresholded: M), > M), astrip), We adjust the mass
parameter Mj,nvppr2 in MDPL2 to achieve the best match to w, defined as the rms
fractional difference over 1 <7,/ (™' eMpc) < 10 h~'. Linear fits are shown:
Alog My, = log My, mppL2/My astriD = a(10g My astrip/10'%M,) + b, with a,
b =0.15, —0.04 (mono-mass) or 0.11, —0.03 (thresholded).

differences arising from differences in the simulations. We
estimate these mass differences by comparing halo-halo
clustering in MDPL2 and ASTRID. Figure 7 shows that halo
populations with matching autocorrelation functions w,, have
slightly different masses in MDPL2 and ASTRID, with
|Alog M| < 0.1 at masses relevant for our analysis. In other
words, if we were able to conduct both analyses self-
consistently within ASTRID, we expect the halo masses from
galaxy—galaxy clustering would be slightly higher, by
|Alog My, than those we inferred using MDPL2.

4.3. Synthesizing Mock LATIS Spectra

The high-resolution synthetic spectra are then processed to
mimic the LATIS data. First, we smooth the spectra by the LATIS
line-spread function. Based on the average extent of galaxies
measured in the 2D spectra, the line-spread function can be
approximated as a Gaussian with o/(km s~ =227-98()\/500
nm). We evaluate this expression for each snapshot at the observed
wavelength of Lya. The convolved spectra are then resampled to a
velocity grid with a cell size that matches the LATIS pixel size of
1.8 A in the observed frame.

The spectra must then be further processed to account for the
masking of high-EW lines and MFR (Section 3.1). Our
ultimate aim of extracting the mean Lya absorption signal
around halos does not directly require us to inject noise.
However, correctly capturing the average effect of the high-EW
line masking procedure does require the spectra to have noise
properties similar to LATIS. Therefore we temporarily inject
random noise and continuum errors into the synthetic spectra.
The random noise is Gaussian white noise with a dispersion
randomly chosen for each sight line by drawing a pixel from
LATIS at a redshift close to that of the snapshot. We also inject
continuum error by multiplying F by a sinusoid scaled so that
its variance is o2, which in turn is a function of the sight
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Figure 8. Trends in the projected halo—Ly« cross-correlation with halo mass and redshift. Panel (a): the variation in wf;y‘”(rp) with halo mass (log M, /M, indicated in
legend) in the z = 2.5 simulation snapshot. Panel (b): the ratio of each curve in panel (a) to the M, = 10'"* M_, curve, highlighting the weak dependence of the shape
of w};y"(r,,) on M,,. Panel (¢): the variation of w};y“(rp) with redshift at the fixed halo mass indicated. Panel (d): the ratio of each curve in panel (c) to the one at z = 2.5.
Panel (e): the variation of w};y‘” with redshift at fixed M), (indicated in legend) and fixed r, = 4 h~' cMpc, highlighting the linearity of the redshift dependence.

line’s continuum-to-noise ratio (Newman et al. 2020). We find
that our results are not sensitive to the details of the continuum
error modeling; they have only an indirect effect of modulating
which high-EW lines are masked, and these are relatively rare
and do not dominate the mean absorption signal.

We then identify the high-EW lines and perform MFR on the
noisy synthetic spectra, following methods applied to the
observations (Section 3.1). One complication is that the MFR
polynomial order depends on the observed forest length, which
is a distribution that varies with redshift, whereas the synthetic
sight lines all span the full box. We mimic MFR as follows. For
a given snapshot and sight line, we first draw a random LATIS
background galaxy whose Ly« forest probes the snapshot
redshift, and we compute the observed length L of the forest as
limited by our blue cutoff A >3890 A. Starting from a random
position along the sight line, we partition it into (one or two)
chunks of length L, wrapping around the periodic boundary
when necessary, and then perform MFR separately on each. In
many cases L exceeds the ASTRID box size, and the
simulation is therefore missing power on scales that are
observed. However, MFR removes power on scales Az <0.3,
depending on L, while the depth of the ASTRID box is
Az=0.31 at z=2.5. Therefore the missing power would be
removed by MFR anyway, and we conclude that the simulation
box is large enough to mimic MFR adequately. In a small
fraction 7 x 107> of sight lines, MFR makes a large >4x
correction to the continuum level that can result in extreme
values of 6y and even unphysically negative continua. We
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mask these rare sight lines; they have no counterparts in the
observed data set.

Finally we apply these high-EW line masks and MFR
polynomials to the noiseless synthetic spectra. We are left with
10° sight lines per snapshot that mimic the LATIS resolution,
sampling, and processing.

4.4. Halo-Lyo. Cross-correlations

We next compute the average Ly« absorption around halos as a
function of their mass and redshift. As in our galaxy—galaxy
clustering analysis, we consider both thresholded samples with
My, > M™™" and mono-mass samples with masses in a narrow
range |log(M;,/M;0)| < 0.1. For a given snapshot and halo
sample, we first randomly select a subsample of up to 5 x 10°
halos. We compute the redshift-space position of each halo and
round it to the nearest point defined by the grid of synthetic sight
lines. (In the spectral direction, this nearest-neighbor assignment
mimics our procedure of assigning LATIS pixels to the nearest 7
bin when constructing £¥“) We extract a 3D cube of &
measurements around this point, and we average these cubes over
the halo subsample. We verified that the absorption is centered in
the resulting flux cube. We then project each flux cube into a 2D
(r,,» ™) grid with the same cell sizes as the observed £, averaging
over 7, and using spline interpolation over 7.

Figure 8 illustrates the main trends. We first consider pry“
for ease of visualization. Panels (a) and (b) show that, at a fixed
redshift, Ly« absorption around halos is approximately scale
independent, i.e., it differs by a factor that depends on M), but
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Figure 9. The insensitivity of the shape of the halo-Ly« correlation function
£ to halo mass is demonstrated by comparing &= “(M,, = 10" M) (colors
following Figure 6, and dashed contours) to 0.54 x <YM, = 10" M)
(solid contours). Both are computed at z = 2.5.

little on r,,. Only at the highest masses M), 2 10'*7 M, does the
shape of w,(r,) appreciably change. Panels (c) and (d) show
that at fixed M, the shape of w),(r,,) varies with redshift. When
we fix both M), and r,, and examine the dependence on redshift
(panel (e)), we find that it is quite linear over the range
z7=2.3-2.9. This permits a simplification: we need not consider
the distribution of redshifts of our foreground galaxy sample
when fitting a model; only the mean redshift is relevant.

The spatial distribution of Lya absorption is insensitive to
the halo mass not only in projection, but also in its 2D
structure, as noted by Kim & Croft (2008). Figure 9 shows that
contours of fLya(Mh), at fixed redshift, have an almost identical
shape even for halo masses that differ by a factor of 20. It is
only the amount of Ly« absorption that constrains the halo
mass, not its radial or line-of-sight distribution.

5. Galaxy-Lya Cross-correlation: Fitting and Results

Finally we compare our observed 2D and 1D galaxy—Ly«
cross-correlations, £~ and w};y“, to the computed halo-Ly«
cross-correlations and infer halo masses. Fitting £ in 2D
should provide the most constraining power, not because the
redshift-space anisotropies it encodes are sensitive to halo mass
(see Section 4.4), but simply because it is analogous to a
matched filter. Our simple definition of pry‘”, which uses fixed
integration limits my,s, cannot provide an optimal estimator of
the total absorption at every r,, and so must lose some statistical
power. On the other hand, the projected cross-correlation
function pry” has the merits of being insensitive to the
modeling of redshift errors and redshift-space distortions; it
should be less precise but possibly more robust. We will fit
both and compare results. As in our galaxy—galaxy clustering
analysis, we model the full LATIS galaxy sample with a
thresholded halo population, and galaxy subsamples binned by
stellar mass with mono-mass halo populations.

5.1. Inference

Consider a division of the LATIS foreground galaxies into N
stellar mass bins: we will use N=1 for the full sample and
N =4 for the stellar mass—defined subsamples. We begin by
describing the inference of halo masses from the 2D cross-
correlation £, Since €Y has 20 bins of 7, and 13 bins of 7,
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the length of the data vector is 260N, and the covariance matrix
C described in Section 3.4 is 260N x 260N. There are N + 1
parameters: N describing the halo mass M, associated with
each galaxy bin, and one additional parameter ¢, that encodes
random errors in the galaxy redshifts, which is assumed to be
the same for all mass bins. For each mass bin i and estimated
f}y“, we compute the weighted mean redshift (z); of all the

measurements that entered fiLy“ using the same weights
(Equation (7)). As justified by Figure 8(e), we linearly
interpolate between snapshots to produce a grid of synthetic
€9 that is matched to (z); and varies over M;. We then
linearly interpolate over this grid to the target log M, ;. Finally
we convolve the resulting model along the 7 direction using a
Gaussian kernel with dispersion o,. We compute a standard
Gaussian likelihood £ from the difference between the data and
model vectors and the covariance matrix C. We take broad
uniform priors on logM, /M spanning 10.7-12.9 and the
Gaussian prior on o, described in Section 3.2. The posteriors
are then sampled using emcee.

We also infer halo masses from the projected cross-correlation
function w};y“. Motivated by maximizing the robustness of this
analysis, we further eliminate the innermost bin with 7, < 1 B!
cMpc where feedback is expected to have the strongest impact.
This reduces the data vector size to 19N; it is stgaightforward to
compute its associated covariance matrix from C.

5.2. Results: Full Sample

Figure 6 shows the results of fitting &= as measured on the full
foreground galaxy sample, undifferentiated by mass, to a
thresholded halo sample. Visually the model provides an excellent
fit both to the observed 2D structure (compare panels (a) and (b))
and the projected absorption profile (panel (c)). Some systematic
differences are apparent beyond r,~ 10 ™' cMpc, but these
measurements are highly correlated and, as we will show, the
differences are not significant. We find log M™" /M, =
11.54 + 0.09 and 0,=65+17 km s~' (see comer plot in
Appendix A). Note that the o, posterior is narrower than and
shifted from the center of the prior, indicating that the galaxy—Lya
clustering favors redshift errors at the lower end of our range of
estimates based on comparing to nebular redshifts (Section 3.2). As
a metric of fit quality, we note that at the MAP parameters,
X2 = 255 for a data vector of size 260, indicating that the errors are
well described by our covariance matrix.

We also performed a fit to the projected w,”" alone. The

resulting halo mass estimate log M™" /M, = 11.49 + 0.13 is
slightly lower but still consistent with that obtained from the
2D &9, The uncertainty in log M increases in this case, as
expected, by about 50%, and the posterior of o, matches the
prior, since all sensitivity to redshift errors was destroyed by
the projection.

Lya

5.3. Results: Mass-dependent Galaxy—Lyo Clustering

We now split the foreground galaxies into four bins of stellar
mass, listed in Table 2. The bins have the same stellar mass
ranges as those used in Section 2, except that the last dividing
point is lower by 0.1 dex. We made this slight adjustment
because we found that a usefully precise measurement required
the highest-mass bin to be slightly wider, owing to the smaller
galaxy sample available for the Ly« analysis.

Measurements of &< and w¥® are shown in Figure 10 for
each stellar mass bin. Visually, we see more extended
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Figure 10. Panels (a—d): the galaxy—Lya correlation function measured in four bins of M. Color and dashed contours show the measured £, while solid contours

show the fitted models. Panel (e): the projected galaxy—Lya correlation function
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. Colored data points correspond to the stellar mass bins indicated in the legend

and are horizontally offset for clarity. Colored lines (heavily overlapping) show the corresponding model for each bin.

Table 2

Halo Mass Constraints from Galaxy—Lya Clustering
Bin log M, log M,
number log My range  (log My) (2) (2D fit) (1D fit)
1 <9.4 9.21 251 11757917 11.82+918
2 9.4-9.8 9.61 248  118670% 1174703
3 9.8-10.1 9.93 245  11.8670% 12.025941
4 >10.1 1036 245 11807913 12.07+9%
Note. Masses are expressed in units of M. 2D and 1D fits are to £ and

w;y @, respectively.

absorption around galaxies in the two more massive bins
(panels (c) and (d)) than in the lower-mass bins (panels (a) and
(b)), which is reflected in —w,, being generally higher (panel (e))
in the higher-mass bins at large r,,. However, the covariance in
€Y at large 1, makes it impossible to gauge the significance of
such differences “by eye.”

In fact, we infer statistically compatible halo masses in all
stellar mass bins, as listed in Table 2. We will discuss the
significance of this result in Section 6. The models again produce
an acceptable fit quality, as judged by >, in all cases. We found
that these mass estimates were not significantly changed by fitting
each stellar mass bin independently (thus removing interbin
covariances in & as well as decoupling o) or by fitting &~
over a reduced range of 7, and 7. Turning to the projected pry“,
we found again that 1D fits produced noisier but consistent M,
estimates, which are listed in the last column of Table 2. Corner
plots for both fits are shown in Appendix A.

6. Discussion

Our constraints on the SMHM relation at z=2.5 from both
galaxy—galaxy and galaxy—Ly« clustering are shown in Figure 11
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and compared to earlier work. We begin by considering our
galaxy—galaxy clustering results. We find moderate evidence of
M ,,-dependent galaxy clustering at 3.5¢0 significance: the slope of
the SMHM relation, based on a linear fit to the halo masses
derived in Section 2, is d log M,/d log My = 0.85 + 0.24. Both
the slope and normalization agree well with the variety of literature
results shown in the left panel of Figure 11 that are ultimately
derived (with the exception of the ASTRID curve) from analyses
of imaging surveys, primarily M,- and photometric redshift-
dependent measures of galaxy abundances and angular correlation
functions. Specifically, the average slope of the UniverseMachine
(Behroozi et al. 2019) relation over the M, range plotted in
Figure 11 is d log M;,/d log My = 0.58, which is representative of
the empirical curves plotted. This slope is consistent with our
galaxy—galaxy clustering—based slope at the 1o level. The
SMHM relation slope in the ASTRID simulation is steeper
(d logM,,/d log My = 0.73), closer to our galaxy—galaxy measure
but, as we will see, farther from our galaxy—Lya result.

Our measurements support an evolution in the SMHM
relation, since they agree much more closely with the
UniverseMachine relation at z = 2.5 than at z = 0. Furthermore,
the consistency (Figure 11) of the halo masses inferred for LATIS
galaxies, which consists of fairly UV-bright (r < 24.8) LBGs, and
for photometric samples suggests that LBG clustering is
representative of the full galaxy population at matched M,,.

Compared to earlier measures of galaxy two-point correla-
tion functions (§ and w,) at similar redshifts based on
spectroscopic samples, we find good agreement with bulk
estimates of the halos hosting similarly selected LBGs,
undifferentiated by stellar mass. Our threshold mass for the
LATIS sample as a whole, log M"™"/M, = 11.5679%, is
consistent at the <2c level with Trainor & Steidel (2012;
logM™h /M. = 11.7 4 0.1) and Bielby et al. (2013;
log M™™eh /M = 11.73 £ 0.07 and 11.57 £0.15 for their
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Figure 11. Left panel: the SMHM relation at z = 2.5, derived in this paper using galaxy—galaxy and galaxy—Lya clustering (symbols indicated in legend), is compared
to several literature results. The galaxy—Lya« points are slightly offset in log My for clarity. The Shuntov et al. (2022) results are based on M- and redshift-dependent
abundance and clustering measurements using the COSMOS2020 photometric catalog; we interpolate their redshift bins to z = 2.5. The Ishikawa et al. (2017) relation
is derived from the M,.-dependent angular correlation functions of u-band dropouts at z ~ 3 in CFHTLS imaging. The UniverseMachine (Behroozi et al. 2019) and
Moster et al. (2013) relations are based on self-consistent multiepoch modeling of the observed stellar mass function (Moster) along with galaxy clustering and other
inputs (Behroozi). We evaluate the analytic Moster et al. (2013) SMHM relation at z = 2.5, and we use the UniverseMachine DR1 tabulation of {log M;|My) at
z=2.53 and z = 0. The SMHM relation in the ASTRID simulation is shown, using the median M, given M, in the z = 2.5 snapshot. Right panel: the same results are
shown on an expanded scale with the Durkalec et al. (2018) SMHM relation at z ~ 3 derived from galaxy—galaxy clustering in VUDS. We plot the HOD parameter

Myin to represent the halo mass of their M, -thresholded subsamples.

Very Large Telescope (VLT)+Keck and VLT-only samples,
respectively). Compared to our initial estimate in Newman
et al. (2022), logM™" /M, = 11.8 £ 0.1, the improved
estimate in this paper is about 2¢ lower.’

Prior to this work, the only derivation of the z ~3 SMHM
relation from a spectroscopic survey was performed by
Durkalec et al. (2015, 2018) based on VUDS. Durkalec et al.
(2018) found a steep SMHM that would imply an extremely
high star formation efficiency in low-mass, high-redshift
galaxies. Although our sample does not reach their lowest-
mass bin, it is clear that our galaxy—galaxy and galaxy-Lyo
results are not consistent with Durkalec et al. (2018) in the
three overlapping mass bins.® Small differences in the sample
selection (e.g., limiting magnitude and mean redshift) are not a
plausible explanation for this difference. Although we cannot
determine the origin of the difference, we consider that the
consistency of our SMHM measures with each other and with
the other results in Figure 11 (left panel) strongly support a
more conventional SMHM relation.

Now we turn to the galaxy—Lya cross-correlation. We
modeled and fit both the full 2D £-* and a projected 1D
statistic pry“. Although the velocity structure of the Lyo
absorption provides no constraining power on the halo mass,
the 2D fits nonetheless give more precise constraints on M,
because they naturally weight the observed absorption as a
function of 7. The 1D fits, on the other hand, are insensitive to
our modeling of both redshift measurement errors and the

The main result of Newman et al. (2022), the low galaxy overdensity 6,y
within the regions of strongest large-scale Ly« absorption, is not very sensitive
to changes to M™" A forthcoming paper (A. B. Newman et al., 2023, in
preparation.) will revisit and expand upon the Newman et al. (2022) analysis
using the full LATIS maps.

8 The significance of the difference in log M, ranges from 1.4-2.0c per M,
bin, with the Durkalec M, always being lower. The average difference in
log M), is nonzero at a significance of ~30.
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velocity structure of the gas, and we further removed sight lines
within r, <1 h~" cMpc that are expected to be most sensitive
to feedback. Figure 11 shows that the masses derived from the
2D and 1D analyses are consistent. We do not detect a
significant M, dependence of the surrounding Ly« absor-
ption, but we find that this is only moderately surprising
given the uncertainties. Specifically we find slopes of
dlogM,/dlog My = 0.00 £ 0.16 and 0.22 4 0.22 for the 2D
and 1D fits, respectively. Compared to the UniverseMachine
SMHM relation, which is representative of the other models
plotted in Figure 11, the measured slopes are shallower with
significances of 3.50 and 1.6¢. Thus the SMHM slope from the
1D fits is consistent with standard models, whereas the 2D fits
give a notably shallow slope. The largest source of this flat
slope is moderate tension in the highest-M, bin between the
halo masses inferred from 2D galaxy—Lya clustering and
galaxy—galaxy clustering (as well as the plotted models). This
tension is much reduced in the 1D analysis, which could
indicate that the velocity structure of the HI around massive
galaxies in not correct in the simulations. However, the size of
the uncertainties prevents any firm conclusion.

Compared to earlier studies of the galaxy—Lya cross-
correlation, our results are considerably more precise and are
the first to estimate halo masses in multiple M, bins
quantitatively. For instance, our 1o uncertainty in log M is
0.09 dex compared to 0.2 and 0.6 dex in the Rakic et al. (2013)
and Kim & Croft (2008) studies, respectively. This is a statistical
error, which does not incorporate uncertainties in the estimation
of the halo-Lyc« cross-correlation from simulations. Rakic et al.
(2013) found that the inclusion of active galactic nucleus (AGN)
feedback in the OWLS simulations shifted their inferred halo
mass by 0.3 dex. They regarded this as a mild uncertainty since it
was comparable to their statistical errors, but it would be
substantially larger than ours. However, we expect the effect of
AGN feedback on our halo-Lya cross-correlation to be much
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smaller. First, our measurements focus on larger scales; second,
the AGN feedback implementation in OWLS was very strong.
This can be seen, for instance, by comparing its dramatic effect
on the star formation rate density (Schaye et al. 2010, Figure 18)
to the subtle effect in the more recent simulations ASTRID,
TNG, and SIMBA (Ni et al. 2023, Figure 4).

We clearly detect redshift-space distortions in the 2D &%
maps, with substantial compression in the 7 direction that we
attribute to large-scale gas infall onto overdensities. Such infall has
been previously observed around similar galaxy samples (Rudie
et al. 2012; Rakic et al. 2013; Tummuangpak et al. 2014; Bielby
et al. 2017; Chen et al. 2020). We found that the detailed shape of
€Y especially the pinching at small r,, is influenced by our
spectral processing steps, specifically MFR. By carefully matching
these steps in our synthesis of halo—Ly« cross-correlation models,
we match the observed shape closely. Although the observed
redshift-space distortions are not diagnostic of the halo mass and so
are not a focus of this paper, they support the precision of the
LATIS redshifts (0, =664 8 km s ' in our £ fits).

Altogether, we find a consistent picture in which our
M,-dependent galaxy—galaxy and galaxy—Lya correlation
function measurements are accurately modeled by careful
treament of cosmological simulations, leading to estimates of
the SMHM that are generally consistent with each other and
with canonical models largely based on photometric surveys.
This is significant for several reasons. First, future analyses of
the LATIS maps will rely on understanding the halo population
occupied by our galaxy sample. A prime example is Newman
et al. (2022), in which observed galaxy overdensities in
different large-scale environments, as traced using 3D Ly«
absorption maps, were compared to halo overdensities at
matched M;, and environment in simulations.

Second, comparing halo masses estimated from galaxy—
galaxy and galaxy-Ly« clustering provides a strong test of our
ability to measure and model subtle differences in Ly«
absorption. The most sensitive comparison is between the
two analyses of the full LATIS galaxy sample. Galaxy—galaxy
clustering led to a threshold mass of log M;,/M., = 11.5670:%%,
and galaxy—Lya clustering (2D) gave 11.54 4 0.09. However,
as discussed in Section 4.2, we expect small differences due to
the different cosmological parameters and subhalo finders
employed by the two simulations underlying these analyses.
Based on Figure 7, the mass-thresholded halo population with
log M{™™h /M = 11.54 in ASTRID has the same autocorrela-
tion function the halo population with log M™" /M. > 11.47
in MDPL2. Correcting for this known difference, we find that
the threshold masses differ by AlogM;, = 0.097)1}. Here we
have estimated the uncertainty assuming that errors in the
galaxy—galaxy and galaxy-Lyo results are uncorrelated; the
true error in AlogM, must be smaller. Thus we find
consistency at about the 0.1 dex level. This corresponds to
4% multiplicative changes in € and the &, measurements
that underlie it, suggesting that we are able to measure and
model Ly« absorption to a fairly high precision. Note for
typical wy*® ~ —0.1 at r,~4 h~' cMpc, 4% multiplicative
errors correspond to Adp = 0.004.

Third, we find that galaxy-Lya clustering gives similarly
precise constraints on halo occupation as galaxy—galaxy cluster-
ing. We initially suspected that this conclusion would be
somewhat particular to LATIS, since it is designed around deep
exposures required to measure the Ly« forest in galaxy spectra.
However, we found that increasing the random errors in O by a
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factor of +/2 when constructing our covariance matrix, effectively
halving the exposure time, would increase the uncertainty in
log M}, by only 10%. This modest increase indicates that intrinsic
Ly« correlations are the major part of the error budget, and a
wider, shallower survey would be more powerful for global
correlation analyses. This suggests that galaxy—Lya correlations
come “for free” and will be a powerful application of any future
large optical spectroscopic surveys of high-redshift galaxies.

7. Summary

We constrained the galaxy—halo connection at z=2.5
through measurements of both galaxy two-point correlation
functions and the cross-correlation between galaxies and
transverse Lya absorption, as detected in background galaxy
spectra. The measurements are based on ~3000 spectra
collected by the LATIS survey. We presented a new method
of measuring all auto- and cross-correlations among galaxies
binned according to stellar mass, and by analyzing mock
surveys within the MultiDark MDPL?2 simulation, we derived a
covariance matrix and estimated the typical halo mass
associated with each bin. We then measured the galaxy-Ly«
cross-correlation, both for the galaxy sample as a whole and in
bins of stellar mass. We generated a large sample of synthetic
Lya spectra in the ASTRID simulation, carefully matched to
the characteristics of LATIS spectra, and inferred halo masses
by comparing the simulated halo-Ly«a and observed galaxy—
Ly« cross-correlations, both in 2D and 1D.

We found that the constraints from the two methods are
consistent with one another and with standard SMHM relations
derived from photometric surveys. We did not find evidence of
an unusually steep SMHM relation (Durkalec et al. 2018) or of
differences between the simulated and observed galaxy-Lya
cross-correlation functions (Momose et al. 2021b). These results
will inform future work on the galaxy—IGM connection using the
LATIS survey data, and they tightly constrain systematic errors in
our measurements and modeling of the Ly« transmission
fluctuations. Our results also highlight galaxy—Lya clustering
as a tool whose power will increase with future large optical
spectroscopic surveys of the distant Universe.
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Appendix A
Corner Plots

Figures 12—14 demonstrate 1D and 2D marginalized poster-
iors for our models fit to galaxy—galaxy and galaxy-Lyc«
clustering data.
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Figure 12. Corner plot illustrating posteriors for our model fit to the stellar mass—dependent galaxy—galaxy clustering data in Figure 4. The four parameters correspond
to the halo mass log M),/ M, for LATIS galaxies in the stellar mass intervals indicated. Contours show the 1, 2, and 30 levels while fully marginalized posteriors are
shown at the top of each row.
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Figure 13. Corner plot illustrating posteriors for our fit to the 2D galaxy—Lya cross-correlation &= for the entire LATIS sample; data are shown in Figure 6.
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Figure 14. Corner plot illustrating posteriors for our fit to the 2D galaxy—Lyo cross-correlation €= in four bins of stellar mass. Similar to Figure 12, each parameter
describes the halo mass log M;,/M., for LATIS galaxies in the stellar mass intervals indicated.

Appendix B
Angular Variation of the TSR and SSR

The target sampling rate (TSR) and spectroscopic success
rate (SSR) vary within the LATIS survey footprint. Here we
describe a model of the angular dependence of these quantities.

B.1. TSR

We first consider the TSR. We built an initial model of the
area surveyed by each of the 12 LATIS footprints, based on the
IMACS field of view excluding masked regions surrounding
bright stars. Note that the field of view has an asymmetric
shape in the east—west direction due to a lateral shift of the
dispered spectra as described by Newman et al. (2020). We
note that in the D1 field, the CFHTLS imaging boundary sets
the northern edge. We created a model TSRy, that accounts
for variation of the TSR from footprint to footprint and in
regions of overlapping footprints. First, within the unmasked
and nonoverlapping portion of each footprint, we compute the
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TSR and assign this to TSRy, For this calculation, and
throughout this paper, we exclude galaxies that were observed
only as part of a “bright target” mask (see Newman et al. 2020)
intended for poor weather conditions, since these masks do not
cover the full survey area and were not uniformly observed.
Second, within each field, we calculated the average TSR
within regions where two footprints overlap. We considered
separately overlaps in the east—west and north—south directions,
since we attempted to reobserve objects in the east—west
overlap regions more frequently, partly to compensate for the
poorer image quality at the edge of the IMACS field (see
below). We found that the individual east-west or north—south
overlap regions within each field were consistent with having
the same TSR, and we therefore set TSR, to the mean to
reduce noise.

We then considered the probability of target selection as a
function of position relative to the footprint center, TSR .. In
computing this refined TSR, we weighted targets by the inverse
of TSRy, in order to quantify the residual TSR variation. We
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Figure 15. Top row: the variation of the TSR within each of the LATIS survey fields is indicated by the color bar. White points show the positions of targeted
galaxies. The white contour in the D4 field shows the subregion covered by near-infrared imaging that is used in this paper. Bottom row: the variation of the SSR, with
white points showing the position of galaxies with secure redshifts. Note the compressed color scale.

found that TSR, is primarily a function of vertical (i.e.,
north—south) position relative to the mask center, as shown in
Figure 16, such that the TSR is higher near the top and bottom
of a footprint than at the midline. This dependence arises from
the direction of dispersion (north—south) and the requirement
that spectra not overlap, which tends to sort targets into ranks.
We modeled TSR,,,.s« as a quadratic function of vertical mask
position. The final TSR model is then the product of TSR
and TSR .sk-

Figure 15 shows our model of the TSR within each field. The
median TSR is lower in COSMOS (0.28) than in D1 (0.37) and
D4 (0.39) because the parent sample is larger: we include both
Zphot- and ugr-selected galaxies in COSMOS and only the latter
in D1 and D4. For the purpose of this paper, only the relative
variation of the TSR within each field is relevant, but for other
applications, it may be important to recognize that the TSR
depends on magnitude and is significantly higher for galaxies
with r<24.4 (see Newman et al. 2020). The NMAD
(normalized median absolute deviation) of the TSR within
each field is 6%—10% of the median, so despite the structure
seen in the fgure, the overall target sampling is fairly uniform
within the LATIS fields.

In this paper, an additional criterion for a galaxy to be
included in our sample is the availability of adequately deep
near-infrared imaging. Such imaging in the D4 field is
shallower than in the other fields and does not cover the entire
LATIS area. We found that galaxies outside the white contour
in Figure 15 lack a near-infrared detection much more
frequently than in the rest of the D4 field, and we therefore
do not consider the region outside the contour in this paper.

18

B.2. SSR

We now consider the SSR, defined as the fraction of targeted
sources for which a high-confidence redshift was determined
(zqual =3 or 4). Low-confidence redshifts are not used in
this paper. The most significant spatial dependence of the SSR
was found to be the distance of a target from the footprint
center. This dependence arises because the size of images
produced by the IMACS f/2 camera increases significantly
with field radius, which reduces the signal-to-noise ratio of the
spectra. The right panel of Figure 16 shows the relative
variation of the SSR with this radial distance, defined to
average to unity. We use a quadratic fit to estimate SSR,sk-
Galaxies with increased exposure due to repeat observations
were not included in this calculation in order to isolate the
radial dependence of SSR from any spatial dependence of
exposure time, which will be considered in the next step.

We then consider large-scale variations SSRg,o, Which may
arise from different observing conditions when different
footprints are observed, or from the fact that some sources
that fall within two footprints receive a longer integration time.
When calculating SSRy,, we weight galaxies by the inverse of
SSR .5k 1n order to determine the residual spatial variations.
We calculate the weighted SSR within each footprint, first
considering only the nonoverlapping part, and find that
footprint-to-footprint variations in LATIS are small (mean of
0.79; standard deviation of 0.026). We next compared the
weighted SSR within overlapping and nonoverlapping regions,
and found that SSR differences were small (a few percent) and
within the expected Poisson fluctuations. Since the overlap
regions are small and the overall variation in SSR is weak, we
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Figure 16. Left: the variation of TSR,k With the decl. of a target relative to the mask center. Black points and solid line show the measurements, averaged over all
footprints, while the dashed line shows the quadratic fit used in our modeling. Right: the variation of SSR,,sx With radial distance of a target relative to the mask

center, along with a quadratic fit as in the left panel.

simply set SSRy,; Within overlap regions to the average value
of the two footprints.

The overall SSR is given by the product of SSR;.s and
SSR¢eoc and is shown in Figure 15. The ESR is the product of
the TSR and SSR.
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