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Abstract—In this article, we presented a multimodal
approach to monitor older adults’ activities of daily living
(ADLs) using the combination of a wearable device and
a companion robot. A dynamic Bayesian network (DBN)
model was developed for activity recognition, which fuses
different data, including location, object, sound event, body
action, and time. The walking action is detected as the tran-
sition between consecutive activities, which helps capture
the inception of activities and save energy on the wearable
device. Three tests were conducted to evaluate the proposed
approach. First, multiple daily activities were simulated and
evaluated the approach based on a public ADL dataset. Sec-
ond, the proposed approach was tested based on an offline
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dataset collected in our smart home testbed, which contains images, sound events, motion, and time data. Third, the
proposed approach was tested in real time and a web-based interface was developed, which helps caregivers better
monitor the ADLs of older adults and provide further assistance. In the offline test and the real-time test, the results
show that the system achieved 91% and 93% activity detection ratio, respectively, which significantly outperformed
the baseline periodic sampling methods. In addition, the camera and microphone sensor trigger times were reduced
from 1537 to 140 and 78, leading to energy reduction of 36.0% and 37.6% on the wearable device, respectively.

Index Terms— Activity monitoring, elderly care, multimodality, wearable computing.

[. INTRODUCTION

HE older adult population around the world is contin-
Tuously increasing [1]. How to take care of these older
adults poses a great challenge. First, old ages are usually
associated with many health problems, including physical
health deterioration, cognition decline, mental health issues,
and so on. Second, aging in place is preferred by a majority
of the older adults, as they feel independent and safe in their
own homes [2], [3]. The activities of daily living (ADLs) is an
important indicator of older adults’ well-being [4] and widely
used by caregivers in health assessment. ADL monitoring also
allows caregivers to provide timely assistance when emergency
occurs.

Research in ADL monitoring has been attracting growing
interest [5]. Technologies, such as smart homes and the
Internet of Things (IoTs) [6], [7], have been widely used in
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ADL monitoring for elderly care. Cameras, microphones, and
passive infrared motion (PIR) sensors were deployed in home
environments to monitor ADLs [8]. However, maintaining an
infrastructure with many sensors in a home is costly and not
practical for many people. In addition, the privacy concern
associated with visual sensors, which directly observe and
capture user movements, makes people reluctant to accept
them, especially for older adults.

On the other hand, mobile or wearable devices, such as
smart phones or smart watches, are used by many people
in their daily life and can be used to collect data related to
ADLs [9]. For example, smart phones are usually equipped
with sensors, such as cameras, microphones, and accelerom-
eters, which can capture multimodal data for daily activity
recognition [10]. Smart watches can also collect such data for
activity recognition, in addition to vital sign data, such as heart
rate and blood oxygen level [11]. However, the computation
capacity and energy consumption are major concerns for
wearables when they have to process large amount of visual
and audio data using complicated algorithms, such as deep
neural networks. Therefore, it is desirable for wearable devices
to collaborate with a more powerful computing resource to
accomplish the recognition task. As companion robots can play
a major role in elderly care by offering many functions, such
as companionship, entertainment, medication reminder, daily
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Concept of MAMS using a companion robot and a wearable

life management, and emergency response, we decide to pair
the wearable with a robot for collaborative ADL monitoring.
The monitoring result can be used by the robot to provide
timely intervention to close the loop.

In this article, we mainly focus on the monitoring part of
this loop. A multimodal ADL monitoring system (MAMS)
was proposed by pairing a wearable device and a companion
robot. As shown in Fig. 1, a wearable monitoring unit (WMU)
collaborates with a companion robot to collect multimodal data
and recognize an older adult’s daily activities in real time.
Image, audio and motion data are collected by the WMU
upon request by the robot. Since the wearable camera only
collects the images of the surrounding environment and is only
activated when needed, it is less intrusive and more acceptable
by older adults in their homes [12]. With the multimodal data,
the robot recognizes the corresponding activities by running
deep learning algorithms. Meanwhile, the detected activities
are logged in a database for further analysis and review by
the caregivers and family members.

The contributions of this article are threefold. First, a new
dynamic Bayesian network (DBN) model is developed for
human activity recognition, which leverages the sequential
constraints of ADLs exhibited in the history data of daily life,
the activity-location correlation, and the sound associated with
the ADL in indoor environments. This multimodal data fusion
method ensures the accuracy of ADL recognition. Second,
to achieve precise activity segmentation, which facilitates
the DBN model in accurately recognizing activities, walking
action detection was employed to identify the end of current
ADL and the inception of the subsequent ADL. Additionally,
it allows the camera and microphone sensors to be activated
only when needed instead of periodical sampling, facilitat-
ing data collection for activity recognition while conserving
battery power on the wearable device. Third, we created a
publicly accessible dataset,! which consists of image, sound,
and motion data collected in our smart home testbed and
can be used by the research community working on ADL
recognition.

The rest of this article is organized as follows. Section II
introduces the related work. Section III presents the overall
design of the MAMS. Section IV explains the method and

1 https://ascclabopensource.github.io

algorithm for energy-efficient and multimodal activity mon-
itoring. Experiments and evaluation results are presented in
Section V. Section VI discusses the privacy and scalability
issues. Section VII concludes this article and discusses the
future work.

[I. RELATED WORK
This section surveys the related work in human daily activity
recognition, which consists of environmental sensor-based
monitoring and wearable sensor-based monitoring. The work
regarding energy consumption in wearable sensor-based mon-
itoring was also reviewed.

A. Environmental Sensor-Based ADLs Monitoring

Environmental sensors, such as visual sensors, acoustic sen-
sors, and infrared motion sensors, have been used in activity
monitoring [13]. Raghav and Chaudhary [14] proposed a fall
detection method based on RGB images from surveillance
cameras. The authors adopted a deep learning method to
recognize a falling person in the images. Eldib et al. [15]
developed an ADL monitoring system using low-resolution
visual sensors. By deploying ten cameras at different loca-
tions in a home, the system could detect 13 daily activities,
including eating and cooking. However, one major drawback
of video-based ADL monitoring in elderly care is privacy con-
cern [16]. Although depth sensors could be used to alleviate
the concern [17], they lack detailed visual information critical
to activity recognition. Another issue associated with visual
sensors is their limited camera view, which requires multiple
cameras to cover the areas of interest.

Acoustic sensors were also used in home environments
to detect the daily activities that generate unique sounds.
Kim et al. [18] developed a deep learning model for
sound-based activity recognition. Their system used a recorder
to collect sound data and detect normal activities along with
emergency events, such as explosion, glass breaking, and so
on. Sim et al. [19] adopted a microphone to collect acoustic
data and recognize the corresponding activities. The proposed
method could recognize the sounds, such as eating and drink-
ing, with an accuracy of 83.2%. Khan et al. [20] implemented
a fall detection system based on sound, which employed two
microphones to collect the sound data and recognized the
fall sound and nonfall sound using an unsupervised learning
method. Due to the limited sensitivity of the microphones and
the noise of the environment, audio-based activity monitoring
may not work well for the activities that do not generate
sufficiently loud sound or when the sound source is far
away from the microphones. Although microphones still cause
privacy concerns, the devices are more acceptable to people
compared to visual sensors [19].

Other sensors were also utilized. In the CASAS project [21],
[22], multiple types of sensors, including infrared motion sen-
sors and door switch sensors, were deployed in several apart-
ments to monitor human daily activities. Ghayvat et al. [23]
built an activity monitoring system by leveraging distributed
sensors, including PIR sensors, electrical object sensor, and
other environmental sensors. However, it is expensive and
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Fig. 2. Overall design of the MAMS.

inconvenient to deploy and maintain many distributed sensors
in home environments.

B. Wearable Sensor-Based ADLs Monitoring

Wearable sensors have been used to recognize human activ-
ities in recent years [9], [10]. For example, an accelerometer
was used for the detection of falls in [24] and detection of
walking and sitting in [25]. Similarly, a wearable camera
was used to detect daily activities, such as cooking and
washing hands in home environments [26], [27], which cap-
tured the wearer’s surroundings through a first-person view.
Weiss et al. [28] created an activity monitoring system using
a smart phone and a smart watch. By combining motion data
from both of them, the system could achieve a high accuracy
in activity recognition. However, only a very limited number
of activities could be recognized as motion data only are not
sufficient to detect many other daily activities, such as reading,
watching TV, and so on. Usually single modality-based activity
monitoring has low accuracy due to the limited data available.
It is generally true that multimodality-based ADL monitoring
can achieve better performance and reduce the chance of
misclassification [29]. Sun et al. [30] integrated a powerful
CPU, a camera, an accelerometer, and an audio processor
for dietary monitoring and physical activity monitoring. How-
ever, without considering the energy consumption issue, their
devices continuously collected data.

Wearable motion sensors can be used to detect transitional
activities that are useful to monitor consecutive daily activ-
ities [31], [32]. As motion data have small data size and
involve less computational complexity, the data can be used to
recognize the onset of more complicated activities. For exam-
ple, Saha et al. [32] utilized the smartphone accelerometer
data to recognize the transition activities, including “sit to
stand,” “stand-walk,” and “walk-stand.” Okour [33] detected
transitional activities based on accelerometer data, which helps
recognize different daily activities.

C. Energy Consumption in Wearable-Based Monitoring

Continuous ADL monitoring leads to significant power
consumption and reduced battery life of wearable devices.

Diyan et al. [34] proposed a duty cycle-based event detection
model, in which the authors chose a set of binary motion
sensors deployed in a home environment to detect unex-
pected events. The simulation results showed that the proposed
scheme achieved an accuracy of 96.12%, while reducing
the energy consumption. However, some events were missed
and the selected monitoring sensors consumed a significant
amount of battery power, which affected the overall system
performance. Possas et al. [35] designed a reinforcement
learning-based method to reduce energy consumption of wear-
able devices by trading off two sensing modalities: vision
and motion, as they have different energy consumption and
activity recognition accuracy. However, the authors did not
study how to handle the short duration activities in daily life.
Starliper et al. [36] proposed an activity-aware method to
select relevant sensors to reduce the power consumption. This
article optimized the sensor set for different types of activities.
Then, the proposed method dynamically triggers a selected
set of relevant sensors based on the activity the user is doing.
The results showed that the proposed method could reduce the
power consumption through activity clustering. However, their
dataset is small and includes only four activities. As there are
many types of activities in daily life, it is difficult to get the
target sensor set for each activity in daily life.

Motion sensors can also help reduce the power consumption
in ADL monitoring. In our previous work [37], an accelerom-
eter was used to collect motion data continuously and detect
potential falls. Upon detection, a wearable camera is triggered
to capture image data, which are sent to a robot for fall
verification. In this work, we aimed to detect various types of
ADLs by leveraging multimodal data including image, audio,
and motion data. Particularly, by detecting the transitional
walking actions that occur between different activities and
leveraging the prediction based on the history of daily activity,
the recognition accuracy is improved and energy consumption
on the wearable device is reduced.

Ill. OVERVIEW OF MAMS

The MAMS consists of a WMU, a companion robot called
ASCCBot, and a healthcare management system. The overall
design of the MAMS is shown in Fig. 2.
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Fig. 3. Prototype of the ASCC companion robot [38].

A. Companion Robot

The custom-designed ASCCBot [38] is the core of the
proposed system, which receives data from the WMU and
runs the ADL recognition algorithms. As shown in Fig. 3,
the robot features a table-top design and runs the neural
network models to detect daily activities. The ASCCBot
consists of three parts: a head, a body, and a power base.
The head contains a mirophone array, an RGB-D camera,
and a touch screen display, which is connected to a NanoPi
M3 minicomputer running Android OS, while the robot body
houses the electronics, which includes a Jetson NX embedded
computer running Ubuntu OS. Equipped with natural language
processing capabilities, the robot has conversational skills,
such as getting weather information, telling jokes, and playing
music. It has the ability to communicate with the healthcare
center if the older adult needs help. In the MAMS, the robot
sends commands to the WMU for data collection and runs the
neural network models and the DBN algorithm to recognize
the activities based on the data received from the WMU.

B. Wearable Monitoring Unit

As shown in Fig. 4, the WMU has three parts: a main
control board, a power module, and a housing. The main
control board is built around a Raspberry Pi Zero computer
by integrating with a microphone, a bone conduction trans-
ducer as a speaker, a Raspberry Pi camera, and a three-axis
accelerometer. The WiFi module on the board supports the
data transmission between the WMU and the robot.

Through our test, the results showed that when the motion
sensor is on to capture data, the average amount of cur-
rent draw of the circuit is about 255 mA. When the data
are transmitted to the robot, the current draw is 380 mA.
We incorporated a 2500-mAh lithium-ion polymer battery
for the WMU, providing a battery life of approximately
9.55 h. When the device consistently collects data using all
the sensors, including motion, camera, and audio sensors,
and transmits them to the robot, the battery lasts for 6.58 h.
Therefore, it is important to reduce the times of collecting and
transmitting visual and audio data. Additionally, a wireless
charging module is used, which consists of a receiver coil
in the WMU and a transmitter coil outside of the WMU.
It takes around 2 h to fully charge the battery as tested. All
the sensors and battery are put into a 3-D printed housing, and

Transmitter
(Oulsidi the case)
Q Receiver

Li-po Battery

Camera

+ @ Class D Amplifier
Bone Conduction =
Transducer

(@) (d)

Fig. 4. Design of the WMU. (a) Design of the circuit. (b) Inside. (c) Front.
(d) Back.

a strong mounting magnet is used for attaching the WMU on
the cloth. In the MAMS, the WMU collects image and audio
data based on the commands received from the robot while it
continuously collects the motion data to detect the transitional
walking actions. The speaker on the WMU allows the older
adults to hear what the robots wants to say, such as medication
reminders.

C. Healthcare Management Center

The healthcare management center logs the daily activity
data. Caregivers or family members can review and analyze the
ADL data of older adults with authorized access. Meanwhile,
the caregivers can offer advice to the older adults to improve
their behavioral well-being. When emergency situations occur,
such as when a fall is detected, alarms are sent to the caregivers
and family members for further help through mobile apps, such
as Telegram [39].

D. Working Principle

The overall working principle of the MAMS is shown in
Fig. 2. A DBN model is developed to integrate the multi-
modal sensor data, including location, object, sound event, and
motion, while leveraging the sequential constraint, time, and
duration learned from the user’s history ADL data. As the
WMU has limited computational power and battery capacity,
the robot and WMU collaborate with each other to accom-
plish the recognition task. Based on the real-time recognition
result, the robot makes decisions on what sensor modalities to
use and sends the commands to the WMU. The WMU, upon
the request, collects the corresponding sensor data regarding
the user and the surrounding environment.

Due to the small data size and low computational cost,
the motion sensor runs continuously on the WMU, which
helps detect transitional activities like walking. On the other
hand, the audio and image data have much larger data sizes
and the computation is much more complicated and power
hungry. Therefore, the audio and image data are captured and
transmitted only upon the request of the robot.
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IV. METHODOLOGY

In this section, the theoretical framework of this research
was explained in detail. First the proposed DBN model of ADL
recognition was presented. Second, the detection of walking
actions was described, which serves as the transition between
activities. Third, the different neural network models were dis-
cussed, which are used to recognize locations, objects, sound
events, and basic body actions for the DBN model. Fourth,
the measures for power saving were introduced. Finally, the
real-time monitoring system was presented.

A. Dynamic Bayesian Network

In human’s daily life, ADLs are highly correlated with the
time and the locational contexts, which means particular ADLs
usually occur at certain times of the day and particular places
in a home. The ADLs also create different types of sound and
generate different types of body motion. Such knowledge can
be captured by one slice of the DBN model shown in Fig. 5.
A; denotes the activity at time ¢, L, denotes the location, O,
denotes the object, S, denotes the sound event, B, denotes
the basic body action, T; denotes the time and the activity
duration, and P denotes the transition probability from A; to
Ag1. According to Bayes rule, the probability of the predicted
activity can be updated by observing the evidences, including
locations, objects, sound events, body actions, and time labels,
which are collected by the WMU. The time label and the
duration of the activity can be achieved based on T;. As the
evidence data L;, Oy, S;, By, and T; are dependent on activity
Ay, but independent of each other, we have

P(Ly, O1, 81, Bi, Ti|Ay) - P(A)

P(A{|L;, O, 84, By, Ty)=
(At|Li, Or. Sy, Be. T)) P(L;, O, S/, B, T1)

(D

Here, we have the following.
1) P(A¢| L, Oy, St, By, Tt): The posterior probability.
2) P(L;, Oy, Si, B;, T; | A;): The likelihood function.
3) P(A;): The prior probability of A;.
4) P(L;, Oy, Sy, B;, T;): The prior probability of predictor.
Respecting to the independent conditions, we have

P(L:, Oy, St, B, T(|Ar)
= P(L:i|Ar) - P(O|Ay) - P(Si|Ay) - P(B:]Ar) - P(T:|Ay).
2
Furthermore, the ADLs also exhibit certain sequential pat-
terns for a particular user. This feature can be utilized to

improve the accuracy of ADL recognition, which is repre-
sented by the connection between the two slices in the DBN

Dining room
Activity

Bathroom
Activity

Location: Dining room||Location: Livingroom
Object: Cup Object: Book

Body Action: Sitting Body Action: Sitting
Sound: Drinking Sound: Quiet

Time Label: Night Time Lable: Night
Duration: 10 mins Duration: 30 mins

Location: Bathroom
Object: Toilet

Body Action: Standing
Sound: Washing-hand
Time Lable: Night
Duration: 1 min

Fig. 6. Example of activities in the DBN.

model, as shown in Fig. 5. In this model, the sequences of the
activities of daily life form a Markov chain, in which the next
activity only depends on the previous one [40], [41]. The
hidden states are the daily activities, and the observations
include locations, nearby objects, sound events, and body
actions recognized by the neural network models, as well as
time label and duration, as shown in Fig. 6. The DBN has
three sets of parameters: the initial probability distribution, the
transition distribution, and the emission probabilities. These
distributions are learned from the history labeled activity data
by adopting the forward and backward algorithm. For a given
sequence of observations, the probability of each activity can
be calculated using the forward procedure. Among them, the
one with the highest probability is the recognized activity.

B. Segmentation of Activities

In the proposed DBN model, it is very critical to correctly
segment the different ADLs, i.e., to detect the end of the
current ADL and the beginning of the next ADL. In home
environments, different ADLs occur at different locations,
which means that the transition between two ADLs is typically
a walking action. Therefore, detecting the walking action
allows us to segment different ADLs. In our proposed method,
the motion sensor remains continuously active to detect walk-
ing action, which allows the camera and microphone to
be triggered, such as at the beginning of the next activity.
Fig. 7(a) shows an example. At the beginning, the user sat
in the living room reading. Then, he moved to the dining
room, where he walked, stood, prepared food, cleaned table,
sat, drank water, and had some rest. During one activity,
there are still some long walks that could trigger the camera
and microphone to collect data. After being recognized by
the DBN model, if the recognized activity is the same as
the previous one, they are treated as one activity. As only
long walks are recognized based on the convolutional neural
network (CNN) model described in Section IV-C, the short
walks that last less than 2 s are ignored by the model. For
example, in the kitchen, walking between the refrigerator
and the stoves is ignored. Fig. 7(b) shows the motion data
collected by the WMU during standing, sitting, and walking,
respectively.
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Fig. 8. CNN structure of the location recognition model.

C. Recognition Models for Location, Object, Sound
Event, and Body Action

In this section, how to design CNN models to recognize the
location, object, sound event, and body action was presented.

1) Location Recognition Model: As shown in Fig. 8, the pre-
trained Xception [42] model was adopted as the base model to
train a neural network for location recognition. The Xception
can achieve a top-five validation accuracy of 0.945 and classify
1000 different categories. Then, the final dense layer with a
softmax activation function is used to generate the probability
distribution of the different locations, which include bathroom,
bedroom, kitchen, living rooms, hallway, and door area.

2) Object Recognition Model: YOLO [43] was employed to
detect the objects in an image. YOLO is a real-time object
detection method based on CNN, and it can detect multiple
objects simultaneously and can generate the probabilities for
each object in the image. The pretrained model can detect
common objects, such as books, TV, laptops, and food items,
which is easy to use and meets our object recognition require-
ment.

3) Sound Event Recognition Model: CNN was used for
sound event recognition. The Mel-frequency cepstral coeffi-
cient (MFCC) [44] is used as the sound feature. The duration
of the sound sample is set to 1 s. The sample rate is 32 000 Hz.
The window size of the fast Fourier transform is set to
2048 and the step size is 1024. The number of the Mel band
is set to 64. For each sound sample, the generated feature
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Fig. 9. CNN structure of the sound event recognition model.
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Fig. 10. CNN structure of the body action recognition model.

shape is 64 x 32. The CNN network was built, as shown
in Fig. 9, which has three convolutional layers (kernel size:
3 x 3 and dimension: 64, 128, and 256) and two dense layers
(dimension: 256 and 6). Each convolutional layer is followed
by a maxpooling layer (kernel size: 2 x 2). Different numbers
of layers and dimensions of the layers were tried and finally
chose the abovementioned CNN structure, which has the least
parameters and the best performance. The output of each
convolutional layer is processed by a batch normalization and
a rectified linear unit (ReLLU) activation function.

4) Body Action Recognition Model: As shown in Fig. 10,
a CNN model was built for walking action recognition. The
model extracts features from one sample with 2 s of acceler-
ation data [45]. It contains two convolutional layers and two
dense layers. The convolutional layers have a kernel size of
2 x 2, and the dimensions are 16 and 32, respectively. The
dense layers are used to learn features from the combined
features of the previous layer. During the training, the Adam
algorithm [46] was used for optimization and dropout for
overfitting prevention.

D. Measures for Power Saving

As the WMU runs on battery power, it is very important
to reduce its power consumption during ADL monitoring.
The WMU has a Raspberry Pi Zero as the main processor,
which has very limited computational power. In order to
test its performance, the CNN models were converted into
the Tensor Lite models and deployed them on the WMU.
However, it costs an extra 240 mA of current draw to run
the models, which is too much, considering that there are four
CNN models to run. On the other hand, it only takes 2.225 s
and an extra 222.5-mA current draw to send all the data to the
robot for recognition. A similar scenario occurs in sound event
recognition. Hence, it is more energy efficient for the WMU
to collect data and send them to the robot for processing. The
robot is capable of data analysis, including recognizing the
activities by running the DBN model, recognizing locations,
objects, sound events, and body actions, generating the sam-
pling requests, and running the real-time monitoring system.

As mentioned in Section II-C, continuous ADL monitoring
takes a significant amount of energy. Some approaches adopt
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processing ‘, Data Received Locati .
Data DNN ocation Body Actions
Received Recognition Location Samples Body Action | Samples
Data-Transfer Event | Event | Model Bathroom 332 Sitting 260
d-Transfer - Server Data [__Location-Model ] Bedroom 364 Jumping 260
gelee:cmn Recognized | Body Action-Model | Kitchen 1207 Standing 260
Data [__sound Model | Living room | 1375 Walking 260
Data I -
E::Zired Eocppnized [ omecrmossr ) Hallway 280 Togging 260
DEN-Based Door Area 430 Laying 260
Activity Noticafication
Recognition SocketIO Event
&
WMU Sensor Selection Data TABLE Il
Companion Robot DATASET OF SOUND EVENT
. . . . Index | Event Samples Index | Event Samples
Fig. 11. Workflow of the real-time communication. 0 Opening_Closing Door | 99 6 Drinking 118
1 Eating 114 7 Flushing Toiet 87
2 Keyboard 114 8 Microwave 116
3 Pouring Water 125 9 Environment 200
. . L. 4 Brushing Tooth 123 10 Watching TV 129
duty cycle methods to periodically collect data for activity 5 Vacuum 130 I Washing Hands | 103

recognition. However, selecting the duty cycle threshold poses
a challenge. A small cycle consumes more energy, while a
large cycle may result in missing activities. In our study,
we propose to keep the motion sensor on, which is used to
identify walking actions as transitional motions between two
activities. The walking actions can trigger both the camera
and microphone to collect data. In this way, the camera and
microphone trigger times can be reduced and more activities
can be detected compared to the periodic sampling methods.

E. Real-Time ADLs Monitoring

From Fig. 2, we can see that in the system, the WMU
collects and sends data to the robot for activity recognition.
The data and the corresponding results are logged in the
database. As shown in Fig. 11, an event server was designed
for the real-time communication between the WMU and the
robot based on SocketlO [47]. The WMU client module
keeps the connection with the event server and listens to the
sensor selection event (command) to turn on the corresponding
sensors and collect and send data to the data receiver module
on the robot. The event server publishes the data received
event to the DNN recognition module for data analysis. After
finishing the recognition tasks, the DNN recognition module
notifies the event server to publish the data recognized event.
Then, the DBN model generates the activity result and pushes
the sensor selection result to the event server. Finally, the event
server pushes the sensor selection event to the WMU for data
collection.

V. EXPERIMENTAL EVALUATION

In this section, we first demonstrate the performance of the
CNN models for location recognition, sound event recognition,
and body action recognition; then, three test scenarios were
proposed to evaluate the proposed DBN approach for ADLs
monitoring based on a public ADL dataset, an offline dataset,
and a real-time test, respectively. Finally, the user interface of
the real-time ADL monitoring system was demonstrated.

A. Evaluation of Individual Recognition Modules

1) Test Setup: The three proposed CNN models and YOLO
V3 [43] were implemented for location, sound event, motion,
and object recognition on a PC with a 16-core Intel 19 CPU

and an Nvidia Geforce RTX 3070 GPU. The models work with
Python 3.7 and Tensorflow 2.8.0. For the location recognition
and body action recognition model, as shown in Table I, the
dataset contains six locations and six body actions. For sound
event recognition, as listed in Table II, a total of 12 events
are considered. One subject wore the WMU to collect data
ten times in our lab. Location images were collected by
entering different rooms to capture diverse data. For sound
data, the prerecorded audio was utilized to simulate sound
events, segmenting the audio data into 1-s intervals for training
and evaluation purposes. For motion data, we followed the
actions outlined in Table I and continuously collected data for
10 min, subsequently dividing the data into 2-s segments for
each action. During model training, the dataset was partitioned
into training, testing, and validation sets using a ratio of 3:1:1.
For the location recognition model, the Adam optimizer was
utilized, with the epoch set to 10, batch size to 128, and
learning rate to 0.001. For the motion recognition model, the
Adam optimizer was utilized, with the epoch set to 700, the
batch size to 128, and learning rate to 0.0001. For the sound
event recognition model, the stochastic gradient descent (SGD)
optimizer was utilized, with the epoch set to 70, the batch size
to 128, and learning rate to 0.01.

2) Results and Analysis: Following K-fold cross-validation
with k set to 5, the proposed recognition models were
evaluated. The location recognition model achieved an over-
all accuracy of 97.39%. The confusion matrix is shown in
Table III. The precision, recall, and F1 score are 0.9841,
0.9794, and 0.9793, respectively. The bedroom location some-
times is recognized as a hallway or a door, since the wall
of the bedroom is similar to the wall of the hall, the door
area, and the living room. Similarly, the overall accuracy of
body action recognition is 95.23% and the confusion matrix
is shown in Table IV. The precision, recall, and F1 score
are 0.9533, 0.9536, and 0.9535, respectively. Particularly, the
walking action can be recognized with high accuracy, which is
important to detect the next activities. Furthermore, the overall
accuracy of sound event recognition is 91.56%, and Table V
shows the confusion matrix. The precision, recall, and F1
score are 0.9120, 0.9332, and 0.9225, respectively. Generally,
the model can detect with high accuracy all the events,
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TABLE IlI
CONFUSION MATRIX OF LOCATION RECOGNITION
Predicted Classes
Bathroom | Bedroom [ Kitchen | Living Room [ Hallway [ Door Area

% [ Bathroom 0.00 0.00 0.00 0.00 0.00
Z [ Bedroom 0.01 0.02 0.03 0.00 0.00
O | Kitchen 0.00 0.00 0.00 0.00 0.00
Ei

~

Living Room | 0.00 0.00 0.03 0.00 0.00
Hallway 0.00 0.00 0.00
Door Area 0.00 0.00 0.00 | 0.00

TABLE IV

CONFUSION MATRIX OF BODY ACTION RECOGNITION

Predicted Classes

Jogging | Jumping [ Laying [ Sitting | Standing [ Walking
% | Jogging 0.00 0.00 0.00 0.00 0.00
% [ Jumping | 0.07 0.00 0.00 0.00 0.00
O | Laying 0.00 0.00 0.00 0.00
= Sitting 0.00 0.00 0.04 0.03
& [ Standing | 0.00 0.00 0.00
Walking | 0.00 0.00 0.00

Laptop(0.97)

TV(0.85) -

‘ Sl

B

=
Table(0.98) ||

Livingroom(Book) Kitchen(Table & Cup)

Fig. 12. Samples of object recognition result.

including watching TV, vacuuming, drinking, and environment
(background sound), which is helpful to distinguish the similar
activities occurring at the same location. Fig. 12 shows the
object recognition results using YOLO and OpenCV. We can
see that the objects, such as laptop, TV, and book, can be
detected accurately, which gives more information to recognize
different activities that occur at the same location. For object
recognition, a confidence threshold of 90% is applied, and we
focus on the results exceeding this threshold.

B. Performance for ADL Monitoring

1) Test Setup: To evaluate the proposed approach, first,
the experiments were conducted based on the data from
the smart home CASAS project [48] to learn the transition
probabilities of the DBN. Milan is selected, which contains
14 activities performed over a span of three months in a smart
home, where sensors are deployed at different locations. The
activities are shown in Table VI. As some activities’ minimum
duration is within 0.2 min, it is hard to detect with a periodic
method. Second, as shown in Fig. 13, a subject worn the
WMU and created an offline dataset which includes image,
sound and motion data in our ASCC smart home testbed, by

J—— i

Bathroom

Door_Area Insidv/a) Door_Area(Outside)
< SN

Kitchen(Vacuum)

Fig. 14. Samples of locations and activities from offline dataset.

following the activity routine of the date 12/11/2009 from
Milan dataset. Then, the proposed system was evaluated on
the offline dataset. Fig. 14 presents some sample scenes of
the routine from the offline dataset. Finally, a real-time test
was conducted by wearing the WMU and following the daily
pattern. The maximum activity duration is limited to 5 min to
shorten the test time. Additionally, a website was designed to
display the detected activities and the corresponding locations,
objects, sound events, and body actions information.

2) Simulation Results and Analysis: First, the CASAS
dataset history data were split into a training set and a test
set with the ratio 3:1 to evaluate the performance of the
DBN model, and the model could predict the next activities
accurately with an accuracy of 92.8%. Furthermore, the prob-
ability distribution of the four relevant activities was listed
in Fig. 15. Particularly, several activities that occur at the
same location usually have higher probabilities compared with
others when the system detects that location. For example, as a
person usually does the Desk_Activity and Read activity in the
living room with a sitting action, the system detects these two
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TABLE V
CONFUSION MATRIX OF SOUND EVENT RECOGNITION

Predicted Classes

Opening | Eating Keyboard | Pouring Brushing | Vacuum Drinking | Flushing | Microwave| Environment| Watching | Washing
Closing Water Tooth Toiet TV Hands
Door
Opening 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.1T
Closing Door
Eating 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
Keyboard 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
., | Pouring Water 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00
& | Brushing Tooth 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00
= [ Vacuum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 Drinking 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ca:) Flushing Toiet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
Microwave 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Environment 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Watching TV 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Washing Hands 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00
@ Miss Recognition From Offline ® Hit From Groud Truth Miss From Groud Truth
TABLE VI ig
ACTIVITY INDEX AND DURATION FROM THE MILAN DATASET p— -
Activity Index | Min | Mean Max
Bed-to-Toilet 1 0.5 0.9 6.2
Morning_Meds 2 0.2 1.0 4.4 10 .
Watch_ TV 3 2.1 34.3 154.3
Kitchen_Activity 4 0.2 12.3 107.2 - - - N . N . O - oo
Chores(Vacuum Cleaning) 5 2.4 26.3 74.7 — ol o e o o - e
Leave_Home 6 0.2 19.7 154.2 - - -
Read 7 1.5 23.8 123.0 5 -
Guest_Bathroom 8 0.2 2.1 16.1 - PRES————S - o a» oo o oo e o
Master_Bathroom 9 0.2 49 45.1 o o P —— O
Desk Activity 10 0.5 10.8 52.8 o
Eve_Meds 11 0.2 0.5 2.1
Meditate 12 1.5 6.4 14.9 0
Dining_Rm_Activity 13 | 235 | 122 | 367 09:00:00 12:00:00 15:00: 18: 21:00:00
Master_Bedroom_Activity 14 0.2 18.6 85.2 (a)
Note: The Duration is with minute @ Miss Recognition From Offline @ Hit From Groud Truth © Miss From Groud Truth
15
— Guest_Bathroom — Kitchen_Activity — Desk_Activity — Read — -
0 °
L ] - - . . . . - - oo
-— -— e ® e .
L] . - -
5
- ——— - -e o amm - ® eoeo—— - -
. - o —— SEm—— a——— —
-
0o
09:00:00 12:00: 1 1 21:00:00

15:40:00 1 C ) 1

Fig. 15. Probability distribution of
15:30:39-16:13:47.

four activities during

activities with high probabilities at the beginning of the Read
activity. Meanwhile, the system uses the object information to
further confirm the Read activity since a book is recognized
in the scene. After that, as the duration of Read activity
increases, the probability decreases. On the other hand, the
probabilities of other activities that may occur there increase,
such as Kitchen activity and Guest_Bathroom activity. When
the system detects the walking action and recognizes the
corresponding new locations, objects, and sound events, the
new activity is recognized as Kifchen activity with a high
probability by the DBN.

3) Offline Evaluation Results and Analysis: Based on the
offline dataset, two scenarios were compared: 1) using two

(b)

Fig. 16. Distribution of activities during one day. (a) Activities distribution
based on vision and motion data. (b) Activities distribution based on
vision, sound, and motion data.

types of data: vision and motion data and 2) using three
types of data: vision, motion, and sound data. From Fig. 16a,
we can see the activity distribution over a span of one
day when using the vision and motion data. According to
the accuracy definition in [34], the activity detection ratio
is 85.1%, with the system successfully identifying 40 out
of 47 activities. For the seven missing activities (shown as
yellow dots), the misdetection of the walking action leads
to three missed activities, including Leave_Home (10:53:06),
Master_Bedroom (13:56:52), and Desk_Activity (14:35:32).
For example, in the Leave_Home (10:53:06) activity, the user
walked quickly to open the door, walked to the trash can, and
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then returned to the home without stop, which makes it hard to
detect the end of the walking, while the location information
was not available as the camera was not triggered. On the
other hand, due to the lack of the sound event information,
the other four activities are missed. For example, the system
misclassified the three activities, including Kifchen activity
(20:36:42), Guest_Bathroom (20:38:44), and Guest_Bathroom
(20:49:02) as Chores (Vacuum Cleaning) activity between the
time of 20:36:42 and 20:49:47. There are two reasons: first,
the DBN predicted the Chores (Vacuum Cleaning) activity
with a high probability as the user usually does the chores
everyday; second, it needs more information to distinguish
similar activities. In this case, the Kifchen activity and the
Vacuum Cleaning activity can occur in the kitchen. The
Guest_Bathroom activity and the Vacuum Cleaning could both
happen in the bathroom. Meanwhile, the human motion is
similar as the user can sit, walk, and stand, which made it
hard to distinguish the activities only relying on vision and
motion data. On the other hand, if the images are blurred,
sound information is helpful to confirm the activities. For
example, at 20:50:19, the Desk_Activity was recognized as
Watching_TV due to the blurred images captured by the WMU,
which calls for sound information for correct recognition.
Fig. 16(b) shows that with the help of sound event, several
similar activities were correctly distinguished. Compared with
the activities labeled with the purple circles in Fig. 16(a),
the Kitchen activity (20:36:42), Guest_Bathroom (20:38:44),
and Watching_TV (20:50:19) were recognized correctly in
Fig. 16(b). Furthermore, there are less blue dots, which means
with the help of sound event, the system could recognize
the activities more accurately. It could detect 43 out of
47 activities. However, if the activities have a short duration or
the walking motion is not detected, the proposed system would
miss the activities. Additionally, some incorrect recognition
results occur at the beginning of a new activity as the small
blue dots shown in Fig. 16(a) and (b), but they could be
corrected quickly.

4) Evaluation of Real-Time ADL Monitoring: Fig. 17 shows
the results of a real-time test, which achieve good performance
and only miss three activities, including two short activities,
i.e., the Leave Home and the Master Bedroom activity. The
Read activity was recognized as Watching TV. This is because
the camera images do not contain the book but the TV
instead. As the sound event is Environment, it cannot be
used to distinguish the Watching TV and the Read activities
in the living room. In real-time testing, the detection ratio
remains comparable to that of offline testing, owing to the
dynamic environmental shifts. At times, real-time testing even
demonstrates better performance, as shown in Table VII.

Figs. 18 and 19 show the ADL monitoring system website,
which records the historical ADLs and displays the activities
and the corresponding locations, sound events, body actions,
and objects based on the date the user selects. Users can
view the location source images by clicking the hyperlink.
This website can help caregivers to better understand the daily
activities of the older adults.

5) Evaluation of Energy Consumption: To evaluate the
energy consumption, we compared the results from the

®Miss Recognition From Real-time @ Hit From Groud Truth Miss From Groud Truth
15

10 -

14:40:00 15:00:00 15:20:00 15:40:00

Fig. 17. Distribution of activities in a real-time test.

TABLE VII
RESULTS BETWEEN PERIODIC METHODS
AND THE PROPOSED METHOD

Method Detection Ratio | Trigger Times | Battery Life (h)
0.5 Mins(Period) 89% 1537 7.02
1 Mins(Period) 85% 805 8.35
2 Mins(Period) 70% 412 9.06
3 Mins(Period) 68% 277 9.30
Proposed_vision+motion 85% 276 9.30
Proposed_vision+motion+sound 91% 140 9.55
Proposed_real_time_test 93% 78 9.66

workflow

Activities

Dats

Fig. 18. Web page showing activities during the day of 09/25.

ADL Monitoring

© B N W A U A N ® ©

05:30 05:45 06 PM 06:15 06:30 06:45 07 PM

Fig. 19.
09/25.

Web page showing the activity distribution during the day of

proposed method with those from a baseline periodic method,
in which the sensors are periodically turned on to collect data.
The trigger times are used as the measure of energy cost
since it is directly related to the power consumption on the
wearable device. Based on the measurements, it costs extra
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0.45 W and 1.79 s to send the image and motion data to
the robot. When combined with audio data, it takes 2.225 s.
As shown in Table VII, when the period increases, the trigger
time decreases, but the detection ratio decreases as well. With
the help of the transition motion information, the proposed
method triggered 140 times and achieved a detection ratio
of 91%, which reduced the sensor trigger times by 90.9%
compared with the 0.5-min periodic triggering method. During
real-time testing, there is a 94.9% reduction in sensor trigger
times. When considering about the overall battery life, it saves
36.0%.

We also compared the proposed method with the methods
in two other papers. Diyan et al. [34] utilized environmen-
tal sensors to monitor human daily activities, achieving a
high activity recognition accuracy of 96.12%. However, their
approach comes with a higher cost, and the energy consump-
tion depends on the number of sensors deployed. On the
other hand, Sun et al. [30] developed a wearable device
utilizing a periodic data collection method with a 2-s interval
for activity recognition. It is energy-consuming. Using their
method, the device’s battery can last only 3 h when tested in
on our scenario. Our method incorporates context information
related to walking actions and employs a multimodal approach
for monitoring daily activities. This approach is designed to
conserve energy while delivering robust performance.

VI. DISCUSSION
A. Privacy
Older adults are sensitive to their privacy [16]. Therefore,
it is very important to consider privacy protection in the system
design. In the proposed monitoring system, three types of data
are used.

1) The motion data collected by the accelerometer are
generally not considered to be sensitive.

2) The audio data collected by the microphone are more
acceptable to the older adults compared to the surveil-
lance camera, as evidenced by the wide adoption of
smart speakers like Amazon Echo in many homes.
In addition, we activate the microphone only when
needed, therefore avoiding continuous sound data col-
lection.

3) The image data collected by the camera are from a
first-person perspective and only capture the surrounding
environment. Similar to the microphone, it is only acti-
vated occasionally, which further mitigates the privacy
concern.

In addition, data security can enhance privacy protec-
tion [49]. In our system, the raw data are stored locally on
the robot, and the access is restricted to authorized caregivers.
When high level data are accessed by healthcare professionals
and family members through the Internet, security features,
such as encryption and password, are used to provide addi-
tional protection.

B. Scalability

This article evaluates the system in a laboratory environ-
ment, adhering to a specific daily routine. For real-world

deployment, it is imperative to gather a large dataset to
thoroughly evaluate and enhance the system’s performance.
To accommodate new environments, the system, equipped
with stored daily life data, can involve caregivers or family
members in labeling unknown activities. Subsequently, the
model can be retrained to adapt to these new environments.
In addition, we are currently working with a professor in
the College of Human Sciences and Education who has an
apartment available for us to test the system in a realistic home
environment.

VIl. CONCLUSION AND FUTURE WORK

In this article, a multimodal approach was designed to
monitor older adults’ ADLs through the collaboration of
a wearable device and a companion robot. First, a DBN
model was developed for activity recognition, which fuses
different data, including location, object, sound event, motion,
and time. Second, the walking action is detected as the
transition between consecutive activities, which helps capture
the beginning of the next activity and save energy on the
wearable device. To test the proposed system, three scenarios
were used to evaluate the proposed DBN approach for ADLs
monitoring: the public ADL dataset, offline dataset, and real-
time test. A real-time monitoring system was developed to help
caregivers better understand the daily life of older adults and
provide further assistance. The results show that, compared
to baseline methods, our method has better accuracy by
detecting 43 out of 47 activities in the offline test and 44 out
of 47 activities in the real-time test. The sound and object
information is useful to distinguish the similar activities that
occur at the same locations. Furthermore, by treating the
walking actions as the transition motion, the proposed method
significantly reduced the sensor trigger times compared with
the 0.5-min periodic triggering method. The overall battery life
was increased by 36.0% and 37.6% in the offline and real-time
test, respectively. However, the proposed system still has some
limitations. In the future work, we will improve the system in
the following ways: 1) developing activity recognition models
that would run on the WMU and studying the tradeoff among
energy consumption, recognition accuracy, and time cost in
collaborative monitoring; 2) investigating the significance of
each data modality and enhancing the system’s performance;
3) leveraging the microphones and cameras on the robot for
data collection in addition to the WMU sensors; 4) developing
robot intervention capabilities to close the loop for the robot
to assist older adults when there are behavioral anomalies; and
5) evaluating the proposed algorithms and system in real life
environments.
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