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Measurement of inclusive J/ψ pair production cross section in pp collisions at
√
s = 13 TeV
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The production cross section of inclusive J/ψ pairs in pp collisions at a center-of-mass energy
√
s = 13 TeV

is measured with ALICE. The measurement is performed for J/ψ in the rapidity interval 2.5 < y < 4.0 and
for transverse momentum pT > 0. The production cross section of inclusive J/ψ pairs is reported to be 10.3 ±
2.3 (stat.) ± 1.3 (syst.) nb in this kinematic interval. The contribution from nonprompt J/ψ (i.e., originated
from beauty-hadron decays) to the inclusive sample is evaluated. The effective double-parton scattering cross
section is computed, neglecting the single-parton scattering contribution.
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I. INTRODUCTION

In the quantum chromodynamics (QCD) parton model [1],
hadrons are composed of elementary constituents, the partons.
Due to the composite nature of hadrons, multiple parton hard
scatterings can occur in a hadron-hadron collision. Thus, it
is possible to have two or more hard parton interactions si-
multaneously. Multiple parton interactions (MPI) have been
studied since the introduction of the parton model [2,3].
Further studies included the generalization of the QCD evolu-
tion equations into multiparton distribution and fragmentation
functions [4,5], and a discussion on the possible correlations
in the color and spin degrees of freedom [6]. Double-parton
scatterings (DPS) are the simplest case of MPI, and were
found to play the most important role in processes with final
states such as four jets, four leptons or n-jet +W/γ measure-
ments [7–15]. These studies were complemented by several
measurements in hadron collisions at center-of-mass energies
(
√
s) ranging from 63 GeV to 1.96 TeV [16–22].
At the CERN Large Hadron Collider (LHC) energies, the

probability to have multiple parton interactions increases: as
with the increase of collision energy, partons with smaller
momentum fraction x are probed with larger fluxes. Recent
measurements have shown the relevance of MPI at the LHC
[23–28], and have contributed to stimulate recent progress in
the theoretical understanding of MPI [29–33]. Nevertheless,
a quantitative estimate of the DPS impact on observables
remains challenging. Neglecting the parton correlations in the
proton, the DPS contribution to a final state A + B can be
evaluated as the product of the parton level cross sections (σ̂ )
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divided by an effective cross section (σeff ) [12,13,34]

σDPS
A,B = m

2

σ̂ A σ̂ B

σeff
, (1)

where the parameter m is a symmetry factor, m = 1 if A = B,
and 2 otherwise. The effective cross section is a phenomeno-
logical parameter related to the transverse overlap function
between the partons of the proton, and is thought to be uni-
versal. It was found to range between 2 and 25 mb [18,20,22–
25,27,35–42].

Double particle production is typically exploited to
study DPS. A nonexhaustive list of these studies are the
measurements of the production cross sections of dou-
ble quarkonium, i.e., J/ψ pairs [22,35,36,43–46], ϒ pairs
[47], or J/ψ + ϒ [37], electroweak boson plus quarkonium
[22,26,27,38,39,48], double charm production [23], charmed
hadrons plus quarkonium [23,27], electroweak boson plus
open charm [23,49], as well as measurements with jets in the
final state, multijets [16–18,50], γ + 3-jets [19–21], 2γ + 2-
jets [51], andW + 2-jets [25]. The recent observation of triple
J/ψ production proposes an additional channel to study dou-
ble and triple parton scatterings [52].

In the quarkonium sector, quarkonium-pair production is
a golden tool to probe the production mechanism of heavy
quarkonia [53–55]. The production mechanism of heavy
quarkonia is not fully understood after more than 40 years
of study, and considered a longstanding puzzle of QCD. The
color-singlet model (CSM), which assumes the formation of
an intermediate QQ state with the quantum numbers of the
final state, underestimates the production cross section at
high pT both at leading order (LO) and next-to-leading order
(NLO) [56–58]. The recent CSM next-to-next-to-leading-
order NNLO� calculations have reduced the discrepancies
[56,59]. Nonrelativistic QCD (NRQCD) calculations con-
sider both color-singlet (CS) and color-octet (CO) states of
the QQ pair [60], but fail to predict at the same time the
production cross section and polarization [61–65]. The se-
lection rules for pair production in the CS process of LO
NRQCD forbid the feed-down from cascade decays of excited
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charge-conjugate-even states, e.g., χc → J/ψ γ , whose con-
tribution is significant in single quarkonium production, and
makes the comparison of data to model calculations diffi-
cult. As a consequence, quarkonium-pair production provides
stringent tests of model calculations.

In this article we report the measurement of inclusive J/ψ
pair production cross section in pp collisions at

√
s = 13 TeV

at large rapidity (2.5 < y < 4.0) with ALICE. Inclusive J/ψ
results correspond to the sum two contributions: the prompt
contribution, originated from direct charm decays or decays
of higher-mass excited states; and the nonprompt contribution,
stemming from beauty decays. The results corroborate analo-
gous measurements performed in a similar rapidity interval
by LHCb [36]. They constitute a probe to study quarkonium
production mechanisms and the DPS contribution.

II. EXPERIMENTAL APPARATUS AND DATA SAMPLE

A description of the ALICE detector and its performances
can be found in Refs. [66,67]. At forward rapidity (2.5 <

y < 4.0) the production of quarkonium states is measured
in the muon spectrometer down to pT = 0 via their dimuon
decay channel. The muon spectrometer of ALICE consists of
a ten interaction length thick front absorber to filter muons,
five tracking stations of two planes of cathode pad chambers
each (MCH), a dipole magnet with a field integral of 3 Tm
surrounding the third tracking station, a 1.2 m thick iron wall
to absorb secondary hadrons escaping from the front absorber
and low momentum muons coming mainly from π and K de-
cays, and two trigger stations made of two planes of resistive
plate chambers each (MTR) [68]. The silicon pixel detector
(SPD) and scintillator arrays (V0) are also used in this analy-
sis. The V0 counters, two arrays of 32 scintillator tiles each,
cover 2.8 � η � 5.1 (V0A) and−3.7 � η � −1.7 (V0C) and
provide trigger information. The minimum bias (MB) trigger
requirement consists of a logical AND of a signal in V0A and
in V0C. The SPD, two cylindrical layers covering |η| � 2.0
and |η| � 1.4 for the inner and outer layers, respectively, is
dedicated to the vertex reconstruction and allows estimating
pile-up. The maximum interaction rate for the analyzed data
sample is 260 kHz, and the maximum pile-up probability is
about 5 × 10−3, negligible for this measurement.

The J/ψ pair analysis is performed using data from pp
collisions at

√
s = 13 TeV collected from 2016 to 2018. The

event sample was selected using the dimuon trigger condi-
tion, which is defined as the coincidence between the MB
requirement and two opposite-charge sign track segments in
the muon spectrometer trigger stations. Each track segment in
the trigger stations is required to have a transverse momentum,
evaluated online, larger than about 0.5 GeV/c. Only events
passing a selection criterion to remove beam-background col-
lisions contamination, based on the timing information from
the V0 arrays, are considered in the analysis.

When multiple primary vertices are reconstructed by the
SPD, the event is tagged as pile-up and removed from this
analysis. In order to avoid acceptance biases on the recon-
structed SPD tracklets, events with a displaced vertex with
respect to center of the SPD detector along the beam direc-
tion are discarded according to the requirement |vz| � 10 cm.

These selections allowed us to keep the pile-up below 0.3%
for the analyzed events, also for events with two muon pairs
with an invariant mass above 2 GeV/c2. Considering the
above selections, the total number of dimuon triggered events
in the sample sums up to 587.4 × 106 events and corre-
sponds to an integrated luminosity of 24.11 ± 0.01 (stat.) ±
0.80 (syst.) pb−1.

III. ANALYSIS

J/ψ candidates are built from muon pairs of opposite-
charge sign. Muons are identified by requiring that selected
tracks in the MCH have a matching track segment in MTR.
Only muon tracks within the detector acceptance are kept for
analysis. Tracks are required to be within −4.0 < ημ < −2.5,
and the radial distance from the beam axis at the end of
the front absorber, Rabs, is limited to 17.6 < Rabs < 89.5 cm
[69]. J/ψ pair candidates are reconstructed from all combina-
tions of double dimuon pairs (each dimuon consisting of an
opposite-charge sign muon pair) per event.

The production cross section of inclusive J/ψ pairs is
determined as

σ (J/ψ J/ψ ) = N

Lint × ε × B2(J/ψ → μ+μ−)
, (2)

where N is the signal estimate, ε is the acceptance-times-
efficiency correction, B(J/ψ → μ+μ−) = (5.961 ± 0.033)%
is the branching fraction of J/ψ → μ+μ− [70], and Lint is the
integrated luminosity.

The J/ψ pair signal is evaluated from a fit to the two-
dimensional invariant mass distribution. A two-step procedure
was chosen. The first step exploits the one-dimensional distri-
bution of all J/ψ candidates in the data sample analysed, to
obtain a good description of the J/ψ line shape from data. A
fit is performed with a superposition of J/ψ and ψ (2S) signal
functions and a background function. The J/ψ mass, width,
and normalization are left free in the procedure. Instead, the
ψ (2S) mass and width are bound to those of J/ψ as described
in Ref. [71]. The two-dimensional invariant mass distribution
of J/ψ pair candidates [m1(μ+

1 μ−
1 ), m2(μ+

2 μ−
2 )] is fit in the

second step via F (m1,m2):

F (m1,m2) = N × S1(m1) × S2(m2)

+RB1,S2 × B1(m1) × S2(m2)

+RS1,B2 × S1(m1) × B2(m2)

+RB1,B2 × B1(m1) × B2(m2), (3)

where N and R are the corresponding normalisation pa-
rameters. The ψ (2S) contribution is neglected in the two-
dimensional fit. The J/ψ pole mass and width determined
from the first step are fixed in the second step of the fit,
the rest of the fit parameters are left free. Different combi-
nations of functional forms are used to determine the raw
yield and its uncertainties. The signal S is modelled by a
Crystal Ball function including a Gaussian core and two asym-
metric power-law tails [72]. The power-law tail parameters
are obtained both from data or Monte Carlo and fixed in
the fits [69]. The background B contribution is described
by either the sum of two exponentials, an exponential of a
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FIG. 1. Projections of a fit to the two-dimensional invariant mass distribution for inclusive J/ψ pair candidates for (a) m1(μ+
1 μ−

1 ) and
(b) m2(μ+

2 μ−
2 ). The (black) markers show data. The (black) solid line represents the total fit function. The (blue and green) dashed-dotted

lines indicate the background contribution from a combination of a real J/ψ signal with a combinatorial candidate. The (yellow) dotted line
represents muon pairs from combinatorial background.

second order polynomial, or the ratio of a first-order to a
second-order polynomials. The mass distribution is fit in two
different mass intervals to test the results stability, i.e., [2.0,
4.5] and [2.2, 4.9]GeV/c2. As the candidates were assigned
randomly, the fit function is symmetric under exchange of
m1 and m2. The projections of one of the fits on m1(μ+

1 μ−
1 )

and m2(μ+
2 μ−

2 ) are shown in Fig. 1. The J/ψ pair signal and
statistical uncertainty are evaluated as the average of the val-
ues obtained in the twelve fit configurations. The systematic
uncertainty is given by their standard deviation. The raw yield
is N = 59.3 ± 13.5 (stat.) ± 4.4 (syst.).

The acceptance, reconstruction and selection efficiency is
evaluated assuming factorization of the corrections of the J/ψ
pair as

ε(J/ψ J/ψ ) = ε(J/ψ ) × ε(J/ψ ). (4)

The J/ψ ε, ε(J/ψ ), is computed from Monte Carlo simu-
lations as described in Ref. [69]. An iterative procedure is
used to generate input rapidity (y) and transverse momen-
tum (pT ) distributions from data. The J/ψ are decayed into
pairs of muons using EVTGEN [73] and PHOTOS [74]. A
GEANT3 [75] simulation is performed to transport the decay
muons through the apparatus including a realistic description
of the detector conditions during data taking. The validity
of the factorization approach for the efficiency calculation
was tested. The invariant mass distribution was compared
with the corresponding one after applying a two-dimensional
(y, pT ) acceptance-times-efficiency correction per J/ψ can-
didate. The shapes of the two-dimensional invariant mass
distribution, and their projections are not modified by the cor-
rection, confirming the validity of our assumption. In addition,
a toy Monte Carlo was developed to study the possible influ-
ence of angular correlations between the two J/ψ of the pair.
Two J/ψ were simulated per event, according to a (y, pT ) dis-
tribution extracted from single J/ψ measurements. To mimic
possible correlations among the J/ψ , their rapidity difference
was forced to follow either a triangular or a flat distribution.
The average pair efficiency was computed for both cases. The

resultant pair efficiency was found to be in agreement with the
calculation from the factorisation approach for both cases.

Various sources of systematic uncertainties on the J/ψ pair
production cross section are considered: (i) the signal extrac-
tion, (ii) the branching fraction uncertainty, (iii) the luminosity
normalization, and (iv) the acceptance-times-efficiency cor-
rection.

Details on the signal extraction procedure were given pre-
viously in this article. The systematic uncertainty on the signal
extraction, obtained as described above, amounts to 7.4%.
The branching fraction uncertainty is 0.6% for single J/ψ
[70], thus 1.1% for J/ψ pairs. The influence of the luminosity
normalisation factor is evaluated by computing the equivalent
number of minimum-bias events in the analysed dimuon sam-
ple with different methods as described in Ref. [76], which
amounts to 2.9%. The uncertainty on the minimum bias cross
section, evaluated in a van der Meer scan (1.6%), is also taken
into account in the calculation [77]. These two sources lead to
a 3.3% systematic uncertainty for the luminosity. The system-
atic uncertainty on the acceptance-times-efficiency correction
contains contributions from (i) the input pT and y distribu-
tions, (ii) the tracking efficiency in the MCH, (iii) the MTR
trigger efficiency, and (iv) the matching of the reconstructed
tracks in the MCH with the track segments in the MTR.

The influence of the simulated J/ψ pT and y distribu-
tions is tested by comparing the corrected yield obtained
via the iterative procedure, with the one obtained from an
efficiency-corrected invariant mass distribution. For this ex-
ercise, a two-dimensional ε(pT , y) correction is applied to
each J/ψ candidate in order to build the efficiency-corrected
invariant mass distribution, which was then fit to obtain the
corresponding corrected yield. A 0.5% uncertainty is assigned
to the MC input for J/ψ [69]. The systematic uncertainties on
the tracking efficiency in theMCH, theMTR trigger efficiency
and the matching between the MCH and MTR are evalu-
ated comparing single muon data and MC, as described in
Ref. [78]. The differences are then propagated to the dimuon
case, being 4%, 2%, and 1%, respectively, for the J/ψ [69].
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TABLE I. Sources of systematic uncertainty on the J/ψ pair
production cross section measurement.

Source Uncertainty (%)

Signal extraction 7.4
Acceptance-times-efficiency 9.2
B(J/ψ → μ+μ−) 1.1
Luminosity 3.3

Total 12.3

This results in a 4.6% acceptance-times-efficiency uncertainty
for J/ψ , and is propagated to a 9.2% uncertainty for J/ψ
pairs. The analysis requirement that all selected tracks in the
MCH should match track segments in the MTR removes any
possible dependence on which pair of tracks activated the
trigger. Table I summarizes the systematic uncertainties on the
measurement of the J/ψ pair production cross section.

IV. RESULTS

The inclusive J/ψ pair production cross section in the
kinematic interval 2.5 < y < 4.0 and pT > 0 is measured to
be

σ (J/ψ J/ψ ) = 10.3 ± 2.3 (stat.) ± 1.3 (syst.) nb.

The ratio of the production cross section of the inclusive J/ψ
pair to that of the inclusive J/ψ is

σ (J/ψ J/ψ )

σ (J/ψ )
= (9.1 ± 2.0 (stat.) ± 1.3 (syst.)) × 10−4,

considering dσ (J/ψ )/dy = 7533.3 ± 26.7 (stat.) ±
491.6 (syst.) nb for pT > 0 and 2.5 < y < 4.0 [69], and
assuming the systematic uncertainties to be uncorrelated.
Likewise, the ratio

1

2

σ (J/ψ )2

σ (J/ψ J/ψ )
= 6.2 ± 1.4 (stat.) ± 1.1 (syst.) mb

can be calculated and interpreted as an effective cross section,
according to Eq. (1). This interpretation assumes that all J/ψ
pairs are produced via DPS processes. The relative contribu-
tion of SPS and DPS processes to J/ψ pair production is a
topic of debate and intense studies, see, e.g., Ref. [36]. In
addition, the understanding of this ratio gets challenged by the
contribution of both the prompt and nonprompt components
to the measured inclusive J/ψ cross section, where the non-
prompt contribution originates from beauty-hadron decays.

The contamination from beauty-hadron decays to the J/ψ
pair cross section is evaluated to assess the impact on the
measurement according to

σnonprompt(J/ψ J/ψ ) = σ total
bb

× α × B2(hb → J/ψ + X ).

(5)

The total beauty-hadron production cross section was mea-
sured to be

σ total
bb

= 502 ± 16 (stat.) ± 51 (syst.)+2
−3 (extr.) μb

in Ref. [79]. The branching ratio of a beauty hadron into
a J/ψ is B(hb → J/ψ + X ) = (1.16 ± 0.10)% [70], and the
acceptance correction factor α is estimated using PYTHIA 8.3
[80] simulations. Beauty hadrons are simulated according to
three different configurations and forced to decay into J/ψ .
The three configurations use the Monash 2013 tune for the
calculation [81]. Two of them also include a tuning of the
parameters to get a good agreement with the NLO calculation
by Mangano, Nason, and Ridolfi for the bb single and dou-
ble differential distributions [82]. The difference between the
latter two is that one of them adds the ATLAS tune settings
for multiple parton interactions [83]. The α factor is obtained
from the ratio of the J/ψ pair counts in the acceptance to
the number of all J/ψ pairs in the simulation. The value of
α = 0.044+0.005

−0.007 is determined as the average of the factors ob-
tained with all configurations, and the systematic uncertainty
is conservatively set to the full spread of the values. This gives
a nonprompt contribution of

σnonprompt(J/ψ J/ψ ) = 2.97 ± 0.09 (stat.) +0.68
−0.76 (syst.) nb,

and, correspondingly, the prompt J/ψ pair cross section is

σprompt (J/ψ J/ψ ) = σ (J/ψ J/ψ ) − σnonprompt(J/ψ J/ψ )

= 7.3 ± 1.7 (stat.)+1.9
−2.1 (syst.) nb.

Analogously, for the single J/ψ case, the computed extrapo-
lation factor to account for the number of J/ψ from beauty
decays in the acceptance is β = 0.121+0.001

−0.002. Thus, the non-
prompt contribution to the J/ψ production cross section is

σnonprompt(J/ψ ) = 2 × σ total
bb

× β × B(hb → J/ψ + X )

= 1.41 ± 0.04 (stat.) ± 0.19 (syst.)μb,

and the prompt component is evaluated to be

σprompt (J/ψ ) = σ (J/ψ ) − σnonprompt(J/ψ )

= 9.89 ± 0.32 (stat.)+1.47
−1.48 (syst.) μb.

Therefore, the ratios discussed earlier in this section can be
evaluated for the prompt case. The ratio of the prompt J/ψ
pair production cross section to that of J/ψ equals

σprompt (J/ψ J/ψ )

σprompt (J/ψ )
= (7.4 ± 1.7 (stat.) ± 2.2 (syst.)) × 10−4,

and the ratio related to the effective DPS cross section be-
comes

1

2

σprompt (J/ψ )2

σprompt (J/ψ J/ψ )
= 6.7 ± 1.6 (stat.) ± 2.7 (syst.) mb.

A differential measurement of the prompt J/ψ pair production
cross section and the corresponding ratios were previously
reported by the LHCb collaboration in a slightly differ-
ent kinematic interval, 2.0 < y < 4.5 and pT < 10GeV/c
[36,46]. The results presented here are in agreement with the
LHCb ones within uncertainties.

Despite the caveat caused by the calculation of this effec-
tive value considering both the SPS and DPS contributions
to the production cross section, this value is consistent with
the values obtained from quarkonium-pair production mea-
surements with σeff values ranging from 2.2 to 12.5 mb
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[22,35–37] and with the values obtained for quarkonium as-
sociated production at central rapidity (in the range 2.3–6.1
mb) [38,39,59]. It is smaller than the values obtained for
associated heavy-flavor production at large rapidity by LHCb
(ranging from 12.8 to 18.0 mb) [23,27], or those from jet or
electroweak associated production (whose values are between
12.0 and 21.3 mb) [18,20,24,25,40–42].

V. CONCLUSION

The production cross section of J/ψ pairs at large rapidity
in pp collisions at

√
s = 13 TeV was studied by ALICE. The

measurement exploits the full Run 2 data sample collected by
ALICE. The production cross section of inclusive J/ψ pairs
is reported to be 10.3 ± 2.3 (stat.) ± 1.3 (syst.) nb, for J/ψ
in the rapidity interval 2.5 < y < 4.0 and for pT > 0. The
effective double-parton scattering cross section is evaluated
neglecting the single-parton scattering contribution. The re-
sults are compatible with analogous measurements performed
by the LHCb collaboration in a similar kinematic interval
[36,46].

The Run 3 data taking, with the upgraded ALICE detector
and the larger accumulated luminosity [84], will allow us
to perform this measurement with increased precision and
separating the prompt and nonprompt contributions. This will
also enable studying the kinematics of these events and probe
model calculations.
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M. Kowalski ,107 V. Kozhuharov ,36 I. Králik ,59 A. Kravčáková ,37 L. Krcal ,32,38 M. Krivda ,100,59 F. Krizek ,86

K. Krizkova Gajdosova ,32 M. Kroesen ,94 M. Krüger ,63 D. M. Krupova ,35 E. Kryshen ,140 V. Kučera ,57
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