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Abstract—In this paper, we developed an activities of daily 
living (ADLs) monitoring system using a smart watch and a robot 
for elderly care. In order to balance the activity recognition 
accuracy, privacy concerns, robot resource cost and power 
consumption on the watch during monitoring, we proposed a Deep 
Q Learning model to solve a sensor selection problem. Based on 
the above four criteria, the robot runs the Deep Q Learning 
algorithm to decide whether to activate the robot sensors or the 
watch sensors for data collection. First, we presented the overview 
of the ADL monitoring system. Second, we developed the Deep Q 
Learning algorithm by considering the transition motions as part 
of the environment states. Third, we created a smart watch 
application for data collection and communication between the 
robot and the watch. Finally, the proposed model was trained and 
evaluated based on both offline data and real time data collected 
in our smart home testbed. The results showed that the proposed 
method could recognize ADLs with high accuracy while saving 
about 14.6% energy compared with the baseline periodic methods. 

Keywords— elderly care, activity monitoring, companion robot, 
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I. MOTIVATION 
In recent years, activities of daily living (ADLs) monitoring 

plays an important role in elderly care [1]. Through activity 
monitoring, we can understand the daily routines of older adults, 
which could reveal their general well-being and health 
condition, making it possible to take preventive actions in a 
timely manner. Ambient sensors such as video cameras, acoustic 
sensors, and passive infrared motion sensors have been 
employed for activity monitoring [2]. However, activity 
monitoring based on these ambient sensors may not work well 
if the resident is out of the sensing range of the sensors. In 
addition, some environmental sensors, especially cameras, may 
cause significant privacy concerns when used inappropriately 
[3]. 

Companion robots are coming to people’s homes and they 
can be adopted for ADL monitoring [4]. These robots are 
typically equipped with capabilities such as chatting, playing 
music, medication reminder, etc. They usually collect data from 
the onboard cameras and microphones. However, there are 
issues with robot-based monitoring, such as privacy concerns 
caused by onboard cameras and limited sensing range of the 
sensors. Therefore the robot needs additional information that 

helps recognize the user’s ADLs. Motion data offers rich 
information regarding human body movements and serves as a 
reliable indicator of the start and end of daily activities. 
However, this kind of information is hard to get from robot 
sensors. On the other hand, wearable sensors [5] can collect 
motion data of the wearers and their surroundings, which could 
provide useful information for ADL monitoring [6]. Integrating 
a wearable device and a robot for ADL monitoring presents an 
opportunity for the robot to make informed decisions utilizing 
data from the wearable and its own sensors. 

In this paper, we aim to build a collaborative activity 
monitoring system (CAMS) using a smart watch and a 
companion robot. The system’s objective is to accurately detect 
a broader spectrum of activities to provide caregivers with 
comprehensive information. Meanwhile, it must operate with 
reduced battery consumption on the smart watch and reduced 
robot resource usage to ensure uninterrupted service. It should 
also respect users’ privacy preferences which may evolve over 
time and depend on the ongoing activities and locations. 
Therefore the system need strike a balance between activity 
recognition accuracy, robot resource utilization, watch power 
consumption, and user privacy preferences throughout the 
monitoring process, which is a challenging problem and has not 
been addressed in the literature yet. 

The major contributions of this paper are as follows: First, 
we built a collaborative ADL monitoring system that combines 
a smart watch and a companion robot. We developed an Android 
application on the watch to collect data and send to the robot 
based on the robot’s commands. Second, to balance activity 
recognition accuracy, privacy preference, robot resource 
utilization and power consumption on watch, we developed a 
Deep Q Learning model which enables the robot to learn optimal 
sensor selection strategies. Third, in order to train and evaluate 
the proposed model, we designed an offline framework to 
simulate the scenarios in which the users conduct daily activities 
and interact with the robot and watch. Additionally, we 
conducted a real time test in our lab environment to evaluate the 
system. 

The rest of this paper is organized as follows: Section II 
introduces the related work. Section III describes the overall 
design of the CAMS and presents the method of collaborative 
activity monitoring, followed by the proposed Deep Q Learning 
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based sensor selection method. Section IV presents the 
experimental setup and evaluation results. Section V concludes 
the paper and discusses the future work. 

II. RELATED WORK 
A significant amount of research has been conducted in the 

field of daily activity monitoring using various technologies 
such as environmental sensors, robots and wearable devices. 
Environmental sensors, such as cameras, microphones, and 
passive infrared motion (PIR) sensors, are embedded into homes 
to collect data related to a person’s activity. For example, Hall 
et al. Reference [7] designed a video-based activity monitoring 
system in which they deployed 3 cameras in each house to 
collect data and recognize the individuals’ daily activities. 
Companion robots are entering our daily lives [8]. Garrett et al. 
[9] proposed a mobile robot-based system for ADL monitoring. 
Wearable sensing and computing is also a promising way to 
monitor human activities in daily life [10]. Sun et al. [11] 
developed dietary monitoring and physical activity monitoring 
based on a wearable device. 

Using cameras or microphones in the environment or robot 
cameras to monitor daily activities raises privacy concerns. 
Wang et al. [12] conducted a survey which shows older adults 
expressed greater concern about privacy and were reluctant to 
disclose personal information. In [13], the authors proposed a 
fall prediction method utilizing skeleton features from a Kinect 
to respect user privacy. Nevertheless, it’s worth noting that due 
to the limited sensing range, if the targets are out of the camera’s 
field of view, no data can be captured. On the other hand, 
wearable sensors can be used for ADL monitoring, but they pose 
a different challenge due to their limited power supply, which is 
crucial for wearable-based ADL monitoring [14]. To save 
energy, a commonly employed method for energy-efficient data 
collection is periodic sampling [11]. However, using a long 
period for periodic sampling can save energy but may result in 
missing short-duration activities. How to choose the optimal 
periodic time is a challenge. Recently, reinforcement learning 
(RL) has been used for energy management in wearable devices, 
focusing on sensor access control and transmit power control 
[15]. In this paper, we proposed a Deep Q Learning method that 
incorporates transition motion into the states to achieve a 
balance between energy efficiency and performance in ADL 
monitoring. 

III. METHODOLOGY 

A. Overview of the CAMS 
The proposed CAMS design is shown in Fig. 1 while the 

hardware setup is shown in Fig. 2. This setup is an upgrade from 
our previous design [16] with a smart watch as the Wearable 
Monitoring Unit (WMU). There are 3 components in the 
CAMS: a companion robot, a smart watch and a healthcare 
management center. The robot is built in our lab and has an Intel 
Realsense RGB-D camera and four microphones on the head, 
which collect data in the environment for activity recognition. 
Moreover, the mobile base allows the robot to move around and 
find the user. The Rainbuvvy watch consists of an 
accelerometer, a microphone and two cameras and a quad-core 
CPU with 4GB RAM and 64GB ROM. It runs Android 9.0 and 
supports customized applications. As shown in Fig. 1, the robot 

runs an RL-based sensor selection algorithm to activate 
pertinent sensors for data collection and activity recognition. 
Depending on the selection decision, the system either activates 
the robot’s sensors or transmits commands to trigger the watch 
sensors. Due to the constrained computing resources on the 
watch, data processing is conducted on the robot. The identified 
activities are recorded in the database, providing caregivers with 
data for additional analysis.  

 
Fig. 1. The overall design of the CAMS. 

 
Fig. 2. The prototype of the watch and ASCC companion robot on a mobile 
base [17]. 

In human daily life, motion data is generated by individuals 
performing various activities such as sitting, standing and 
walking. By detecting these transition motions, the starting and 
ending of the corresponding activities can be identified, 
consequently these activities can be recognized using data 
collected from the most relevant sensors. Therefore, the motion 
sensor runs constantly to capture the motion information. Along 
with other contextual information such as current activity, robot 
resource cost and watch battery level, the agent can make 
decisions to turn on sensors using the Deep Q Learning method. 

B. Activity Recognition using Dynamic Bayesian Network 
In human’s daily life, different activities occur at different 

locations and generate distinct sounds and body movements. As 
shown in Fig 3, the evidence data including location Lt, object 
Ot, sound event St and body action Bt are dependent on activity 
At, based on Bayes rule we have, 

 P(At | Lt, Ot, St, Bt)	∝ P(Lt, Ot, St, Bt | At) · P(At)  (1) 

As Lt, Ot, St and Bt are independent of each other, we have: 

 P(Lt, Ot, St, Bt |At) = P(Lt | At) · P(Ot | At) · P(St | At) 

 · P(Bt |At)  (2) 



In this study, we analyzed the dataset and counted the 
duration of each activity, and then combined the time label with 
the activity to generate the activity prior knowledge for updating 
the probability of At. 

 
Fig. 3. The graphical representation of Dynamic Bayesian Network model for 
activity recognition. 

 
Fig. 4. The architecture of the Deep Q Learning-based sensor selection 
algorithm 

C. Reinforcement Learning for Sensor Selection 
As shown in Fig. 4, we considered the sensor selection 

problem as a Markov decision process problem, where the next 
state only depends on the current state which includes the 
transition motion, current activity, location, resources capacity 
level on robot and battery level on the watch. The states will be 
changed by taking actions such as turning on the watch sensors. 
The agent’s goal is to develop an optimal policy that maximizes 
its long-term accumulated reward. We defined the state, action, 
reward and policy learning as follows: 

1) Goal: 
• Maximize the activity detection ratio 

• Minimize energy consumption on the watch 

• Minimize the privacy concerns 

• Minimize the robot resource cost  

2) State: 
• Transition Motion 

• Current Location 

• Current Activity 

• Smart Watch Battery Level  

• Robot Resource Capacity Level  

3) Action: 
• Robot Mic Sensor: Turn on the microphone on the robot  

• Robot Cam Sensor: Turn on the camera on the robot 

• Robot Mic Cam Sensor: Turn on the camera and 
microphone on the robot 

• Watch Mic Sensor: Turn on the microphone on the Smart 
Watch 

• Watch Cam Sensor: Turn on the camera on the Smart 
Watch 

• Watch Mic Cam Sensor: Turn on the camera and 
microphone on the Smart Watch 

• Robot Mic watch Cam Sensor: Turn on the microphone 
on the Robot and the camera on the Smart Watch 

• Do Nothing 
For the state, firstly, we involve the transition motion 

information to indicate the transition between two activities. 
Transition motions including Sit to Sit, Sit to Lie, Sit to Stand, 
Stand to Sit, Stand to Stand, Stand to Walk, Walk to Walk, Walk 
to Stand are considered. Secondly, the current activities and 
locations can be used to alleviate privacy concerns. Finally the 
watch battery level and robot resource capacity level are 
considered to minimize the times of activating the watch sensors 
and robot sensors. The actions indicate how the agent activates 
sensors in different states. 

4) Reward 
A reward is the feedback from the environment. We aim to 

trade off the accuracy of activity recognition, energy cost on the 
watch, privacy concerns and robot resource cost. The activity 
recognition accuracy depends on activity types and the collected 
sensor data. The energy consumption on the watch mainly 
depends on the times that the sensors are activated. We also take 
into account the resource cost on the robot, as triggering the 
robot sensors increases the robot’s work load. For privacy 
concerns, the robot needs to respect the user’s privacy 
preferences when using the robot to capture data. To take 
advantage of the information provided by transition motions, we 
incorporated an additional factor called ‘extra reward’ when 
detecting new activities after identifying transition motions. In 
summary, the proposed algorithm aims to maximize rewards by 
detecting more activities, consuming less energy on the watch 
and resources on the robot, and alleviating privacy concerns. 
The reward formula is shown in Fig. 5. 

 
Fig. 5. Pseudo Code for Reward Formula. 

5) Value-based Policy Learning 
The goal of an RL agent is to learn an optimal policy π(a|s), 

which represents how the agent chooses actions a by observing 



the states s of environment so as to achieve maximum rewards. 
In this paper, we adopt a value-based method, Deep Q Learning, 
which combines Q-learning with deep learning for policy 
optimization [18]. Fig. 4 shows the proposed Deep Q Learning 
model and Fig. 6 shows a two-layer neural network for value-
function optimization. Here, Q(st, at; w) = Q(st, at; w) + α · [R(st, 
at)+ γ · maxQ(st+1, at+1; w) − Q(st, at; w)], where Q(st,at; w) is 
the neural network with the input states st and output actions at, 
w is the weights of the neural network, α is the learning rate, R(st, 
at) is the reward obtained in the state transition from st to st+1. To 
train the DQN, we adopt a replay buffer to store the (st, at, rt, 
st+1) experience so as to reuse the individual tuples. Further 
more, we use a learning network and a target network to improve 
the stability of the algorithm as st and st+1 are highly correlated. 
The learning network can be updated frequently, while the target 
network is allowed to synchronize the learning network after 
several steps. Thus, we define the MSE loss function as loss = 
1/2 · (rt + α · (maxQtarget(st+1, at+1) − Qlearning(st, at))2. 
Finally, we choose the action with the maximum reward under 
the specific state as the optimized solution a∗ = argmaxQ(st, at; 
w). Also the ϵ−greedy strategy is used to balance the exploration 
and exploitation for choosing actions. 

 
Fig. 6. Deep neural network model for value function learning. 

 
Fig. 7. The samples of locations and activities from offline dataset:robot view 
(left), watch view (right). 

IV. EXPERIMENTAL EVALUATION  

A. Evaluation of Location, Motion Action and Sound Event 
Recognition 
1) Test setup: Three CNN models for location, motion 

action and sound event recognition were implemented on a 
computer with a 16-core Intel i9 CPU, an Nvidia Geforce RTX 
3070 GPU, Python 3.7 and Tensorflow 2.8.0. YOLOv3 [19] 
was deployed for object recognition. The dataset for training 
the location and motion action recognition models contains six 
locations including: bathroom, bedroom, kitchen, living room, 
hallway and door area and six motion actions including sitting, 
jumping, standing, walking, jogging, laying, and each sample 
contains 2 seconds of motion data. There are 12 sound event 
classes including opening closing door, eating, keyboard, 
pouring water, brushing tooth, vacuum, drinking, flushing toiet, 
microwave, environment, watching tv, washing hands, and each 

sample contains 1 second of audio data. Fig. 7 shows the 
location samples from robot’s view and watch’s view 
respectively. 
2) Results and Analysis: The location recognition from the 

robot and watch images has high recognition accuracy of 96%. 
From the results, the ‘kitchen’ could be mis-recognized as a 
door, since the door area (inside) is similar to the kitchen area. 
Similarly, due to the similarity of the walls in the bedroom and 
hallway, the system sometimes mis-recognizes the ‘Bedroom’ 
as the hallway. The motion recognition model has an accuracy 
of 94%, walking, sitting, standing actions could be recognized 
correctly which could be used to detect transition between two 
activities. Finally, the sound recognition model has an accuracy 
of 94%. ‘Door open closed’ has low recognition accuracy due 
to the sound quality. It could be recognized as ‘Keyboard’ or 
‘Eating’ sound sometimes. Fig. 8 shows the confusion matrix 
of the location recognition. 

 
Fig. 8. The confusion matrix of location recognition. Robot view(Left), watch 
view(Right). 

B. Energy Consumption Measurement 
The Android OS offers the power management API, which 

can be used to estimate the energy consumption of the watch in 
different modes. We designed experiments to put the watch in 
four different modes for 10 minutes each: 1) Normal Mode: the 
watch runs the App only. 2) Idle Mode: the sensor is on, but not 
triggered. 3) Capture Mode: the sensor is triggered to capture 
data locally. 4) Capture Send Mode: the sensor is triggered to 
capture data locally and send data to the robot. Regarding the 
camera’s energy cost, during the test, it captured and sent 770 
images to the robot while consuming 5% of the battery capacity. 
This implies that each image consumes 0.0065% of the watch 
battery energy with a capacity of 2946 mAh, i.e. 0.19 mAh. The 
motion sensor incurs low computational cost, facilitating the 
collection of motion data from users. For the microphone energy 
cost, it captures 243 clips while consuming 2% of the battery 
capacity, each clip consumes 0.0082% of the watch battery 
energy. 

C. RL Model Performance Evaluation 
1)  Test setup: The proposed DQN algorithm was trained 

and evaluated in the offline environment we simulated in our 
lab testbed, using a total of 14 corresponding activities 
including Bed to Toilet, Chores (Vacuum Cleaning), Desk 
Activity, Dining Rm Activity, Evening Meds, Guest Bathroom, 
Kitchen Activity, Leave Home, Master  Bathroom, Meditate, 



Watch TV, Read, Morning Meds, Master Bedroom Activity. 
We compare two different methods for evaluation purpose. 

a) Periodic: The sensors are triggered periodically with 
time intervals of 0.25 min, 0.5 min, 1 min, 2 mins and 3 mins. 

b) RL-Based: The sensors are triggered based on the 
output of the RL-based algorithm. 
2) Results and Analysis: We assigned weights of 0.05, 0.33, 

0.47 and 0.15 to accuracy, energy cost, privacy concerns and 
robot resource utilization, respectively, which implies that we 
prioritize energy consumption and privacy issues, as the image 
recognition results from both watch and robot data are already 
satisfactory. Fig. 9 shows the accumulated rewards. We can see 
after 17 episodes the model converged well. As shown in Fig. 
10, the robot sensor trigger time, watch sensor trigger time and 
privacy violation occurring time also converged. The converged 
trigger time of the watch sensor is less than the trigger time of 
the robot, which means the agent learnt the strategy to utilize the 
robot more than the watch to monitor activities to save energy.  

 
Fig. 9. Accumulated rewards(X-axis: episodes, Y-axis: rewards). 

 
Fig. 10. Robot Sensor Trigger Times, watch Sensor Trigger Times and Privacy 
Violation Occurring Times(X-axis: episodes, Y-axis: trigger times). 

 
As shown in Table. I, for the periodic method, we used the 

smart watch to collect data for ADL monitoring. The 0.25 
minute periodic method could achieve 43/47(91%) detection 
ratio, but it consumed significant energy on the sensors. 
Meanwhile, we can increase the period to decrease the trigger 
time, but the detection ratio also decreases. During the real time 
test, with the help of the transition motion state, the algorithm 
turned on the camera and the microphone on the watch 96 and 
14 times, respectively, and turned on the camera and the 
microphone on the robot 92 and 175 times, respectively. The 
proposed method can collaborate with the robot to achieve a 
detection ratio of 91% and activate the watch sensors fewer 
times (96) compared to a period of 0.25 minute with 2917 trigger 
times, which leads to saving of 14.6% of energy on the watch 
while maintaining the same level of detection accuracy.  

From Fig. 11, we can see that the model is able to distinguish 
between transition motions that indicate a new activity and those 
that don’t. Transition motions including ‘stand to sit’, ‘sit to 
stand’, ‘stand to walk’, ‘walk to stand’, ‘walk to sit’ and ‘sit to 
walk’ indicate a new activity, which could trigger the actions 
including ‘Robot audio vision’. and ‘Robot audio watch vision’ 
to capture more data to recognize the new activities accurately. 

To alleviate privacy concerns, action ‘Robot audio watch vision’ 
instead of ‘Robot audio vision’ would be chosen in the location 
with privacy concerns such as ‘Bathroom’. Transition motions 
without changes like ‘walk to walk’, ‘sit to sit’ and ‘stand to 
stand’ usually mean the user is doing the same activity and the 
action 2 ‘Do nothing’ is triggered by the algorithm. It is also 
interesting to see that other actions like ‘watch audio’, ‘watch 
vision’ and ‘Robot audio’ are not triggered frequently, as actions 
‘Robot audio vision’ and ‘Robot audio watch vision’ dominate 
the selections due to the energy consumption, activity 
recognition accuracy and privacy concerns. From Table I, 
compared to the periodic method using a single robot, the 
proposed method can reduce the privacy violation times. As 
turning on the robot camera causes privacy concern in the 
bedroom and the bathroom, the algorithm does not trigger the 
actions ‘Robot vision’ and ‘Robot audio vision’ frequently. This 
also shows that the model is able to learn the context of different 
activities and use it to make better predictions.  

TABLE I.  THE RESULTS BETWEEN THE RANDOMLY PERIODIC METHOD 
AND THE PROPOSED METHOD 

Method Detection 
Ratio Trigger Times 

0.25 Mins (Period) 91% Watch Cam Mic: 2917; 
Privacy Violation Times:327 

0.5 Mins (Period) 89% Watch Cam Mic: 1530; 
Privacy Violation Times:163 

1 Min (Period) 85% Watch Cam Mic: 811; 
Privacy Violation Times:82 

2 Mins (Period) 70% Watch Cam Mic: 306; 
Privacy Violation Times:40 

3 Mins (Period) 68% Watch Cam Mic: 271; 
Privacy Violation Times:27 

Proposed(Offline) 89% 

Watch Cam:125, 
Watch Mic:64, 
Robot Cam:221,  
Robot Mic:281, 

Privacy Violation Times:0 

Proposed(Real 
time) 91% 

Watch Cam:96, 
Watch Mic:14, 
Robot Cam:92,  
Robot Mic:175, 

Privacy Violation Times:0 
 

 
Fig. 11. The detailed distribution of activities, RL model actions, motion from 
08:51:58 to 08:54:31. 

In addition, the robot possesses the capacity of dynamically 
accommodating the user’s preferences through iterative 



interaction and learning. As depicted in Figure 12 (Solid lines), 
the initial model designated the bathroom and bedroom as 
private areas. However, by the fourth day, the user’s preference 
changed, disallowing the robot from taking photos in the living 
room. Notably, this adjustment led to an increase in privacy 
violation occurrences, totaling 45 instances. Nonetheless, the 
robot learned and refined its model over subsequent days, 
evident from the declining trend in privacy violations starting on 
day 5. Meanwhile, these adjustments impact the activation 
patterns of both wearable and robot sensors. Another example is 
shown in Fig. 12 (Dashed lines). Without learning, the robot 
cannot adapt to user’s new preference which increases the 
privacy violation times. 

 
Fig. 12. The robot adapts to user's preference. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a collaborative ADL monitoring 

system using a smart watch and a companion robot. To balance 
the recognition accuracy, privacy concerns, robot resource 
utilization and watch battery life, a Deep Q Learning based 
algorithm was developed for sensor selection. The robot makes 
decisions based on the Deep Q Learning  model to turn on the 
relevant sensors on the robot and the watch. Specifically, the 
watch motion sensor remains on in order to capture the transition 
motion which is part of the states of the environment in the 
sensor selection model. The results show that the proposed 
method could achieve activity detection ratio of 89% while 
triggering the watch camera 125 times and the watch 
microphone 64 times during the offline test. The real time 
evaluation shows that the activity detection ratio is 91%, which 
saves 14.6% of energy compared with the periodic method with 
0.25-minute sampling period in the offline test. For the future 
work, we will continue improving the system and involve more 
states and actions in more complicated scenarios.  
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