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Abstract—In this paper, we developed an activities of daily
living (ADLs) monitoring system using a smart watch and a robot
for elderly care. In order to balance the activity recognition
accuracy, privacy concerns, robot resource cost and power
consumption on the watch during monitoring, we proposed a Deep
Q Learning model to solve a sensor selection problem. Based on
the above four criteria, the robot runs the Deep Q Learning
algorithm to decide whether to activate the robot sensors or the
watch sensors for data collection. First, we presented the overview
of the ADL monitoring system. Second, we developed the Deep Q
Learning algorithm by considering the transition motions as part
of the environment states. Third, we created a smart watch
application for data collection and communication between the
robot and the watch. Finally, the proposed model was trained and
evaluated based on both offline data and real time data collected
in our smart home testbed. The results showed that the proposed
method could recognize ADLs with high accuracy while saving
about 14.6% energy compared with the baseline periodic methods.
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I.  MOTIVATION

In recent years, activities of daily living (ADLs) monitoring
plays an important role in elderly care [1]. Through activity
monitoring, we can understand the daily routines of older adults,
which could reveal their general well-being and health
condition, making it possible to take preventive actions in a
timely manner. Ambient sensors such as video cameras, acoustic
sensors, and passive infrared motion sensors have been
employed for activity monitoring [2]. However, activity
monitoring based on these ambient sensors may not work well
if the resident is out of the sensing range of the sensors. In
addition, some environmental sensors, especially cameras, may
cause significant privacy concerns when used inappropriately

[3].

Companion robots are coming to people’s homes and they
can be adopted for ADL monitoring [4]. These robots are
typically equipped with capabilities such as chatting, playing
music, medication reminder, etc. They usually collect data from
the onboard cameras and microphones. However, there are
issues with robot-based monitoring, such as privacy concerns
caused by onboard cameras and limited sensing range of the
sensors. Therefore the robot needs additional information that
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helps recognize the user’s ADLs. Motion data offers rich
information regarding human body movements and serves as a
reliable indicator of the start and end of daily activities.
However, this kind of information is hard to get from robot
sensors. On the other hand, wearable sensors [5] can collect
motion data of the wearers and their surroundings, which could
provide useful information for ADL monitoring [6]. Integrating
a wearable device and a robot for ADL monitoring presents an
opportunity for the robot to make informed decisions utilizing
data from the wearable and its own sensors.

In this paper, we aim to build a collaborative activity
monitoring system (CAMS) using a smart watch and a
companion robot. The system’s objective is to accurately detect
a broader spectrum of activities to provide caregivers with
comprehensive information. Meanwhile, it must operate with
reduced battery consumption on the smart watch and reduced
robot resource usage to ensure uninterrupted service. It should
also respect users’ privacy preferences which may evolve over
time and depend on the ongoing activities and locations.
Therefore the system need strike a balance between activity
recognition accuracy, robot resource utilization, watch power
consumption, and user privacy preferences throughout the
monitoring process, which is a challenging problem and has not
been addressed in the literature yet.

The major contributions of this paper are as follows: First,
we built a collaborative ADL monitoring system that combines
a smart watch and a companion robot. We developed an Android
application on the watch to collect data and send to the robot
based on the robot’s commands. Second, to balance activity
recognition accuracy, privacy preference, robot resource
utilization and power consumption on watch, we developed a
Deep Q Learning model which enables the robot to learn optimal
sensor selection strategies. Third, in order to train and evaluate
the proposed model, we designed an offline framework to
simulate the scenarios in which the users conduct daily activities
and interact with the robot and watch. Additionally, we
conducted a real time test in our lab environment to evaluate the
system.

The rest of this paper is organized as follows: Section II
introduces the related work. Section III describes the overall
design of the CAMS and presents the method of collaborative
activity monitoring, followed by the proposed Deep Q Learning



based sensor selection method. Section IV presents the
experimental setup and evaluation results. Section V concludes
the paper and discusses the future work.

II. RELATED WORK

A significant amount of research has been conducted in the
field of daily activity monitoring using various technologies
such as environmental sensors, robots and wearable devices.
Environmental sensors, such as cameras, microphones, and
passive infrared motion (PIR) sensors, are embedded into homes
to collect data related to a person’s activity. For example, Hall
et al. Reference [7] designed a video-based activity monitoring
system in which they deployed 3 cameras in each house to
collect data and recognize the individuals’ daily activities.
Companion robots are entering our daily lives [8]. Garrett et al.
[9] proposed a mobile robot-based system for ADL monitoring.
Wearable sensing and computing is also a promising way to
monitor human activities in daily life [10]. Sun et al. [11]
developed dietary monitoring and physical activity monitoring
based on a wearable device.

Using cameras or microphones in the environment or robot
cameras to monitor daily activities raises privacy concerns.
Wang et al. [12] conducted a survey which shows older adults
expressed greater concern about privacy and were reluctant to
disclose personal information. In [13], the authors proposed a
fall prediction method utilizing skeleton features from a Kinect
to respect user privacy. Nevertheless, it’s worth noting that due
to the limited sensing range, if the targets are out of the camera’s
field of view, no data can be captured. On the other hand,
wearable sensors can be used for ADL monitoring, but they pose
a different challenge due to their limited power supply, which is
crucial for wearable-based ADL monitoring [14]. To save
energy, a commonly employed method for energy-efficient data
collection is periodic sampling [11]. However, using a long
period for periodic sampling can save energy but may result in
missing short-duration activities. How to choose the optimal
periodic time is a challenge. Recently, reinforcement learning
(RL) has been used for energy management in wearable devices,
focusing on sensor access control and transmit power control
[15]. In this paper, we proposed a Deep Q Learning method that
incorporates transition motion into the states to achieve a
balance between energy efficiency and performance in ADL
monitoring.

1. METHODOLOGY

A. Overview of the CAMS

The proposed CAMS design is shown in Fig. 1 while the
hardware setup is shown in Fig. 2. This setup is an upgrade from
our previous design [16] with a smart watch as the Wearable
Monitoring Unit (WMU). There are 3 components in the
CAMS: a companion robot, a smart watch and a healthcare
management center. The robot is built in our lab and has an Intel
Realsense RGB-D camera and four microphones on the head,
which collect data in the environment for activity recognition.
Moreover, the mobile base allows the robot to move around and
find the wuser. The Rainbuvvy watch consists of an
accelerometer, a microphone and two cameras and a quad-core
CPU with 4GB RAM and 64GB ROM. It runs Android 9.0 and
supports customized applications. As shown in Fig. 1, the robot

runs an RL-based sensor selection algorithm to activate
pertinent sensors for data collection and activity recognition.
Depending on the selection decision, the system either activates
the robot’s sensors or transmits commands to trigger the watch
sensors. Due to the constrained computing resources on the
watch, data processing is conducted on the robot. The identified
activities are recorded in the database, providing caregivers with
data for additional analysis.
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Fig. 1. The overall design of the CAMS.
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Fig. 2. The prototype of the watch and ASCC companion robot on a mobile
base [17].

In human daily life, motion data is generated by individuals
performing various activities such as sitting, standing and
walking. By detecting these transition motions, the starting and
ending of the corresponding activities can be identified,
consequently these activities can be recognized using data
collected from the most relevant sensors. Therefore, the motion
sensor runs constantly to capture the motion information. Along
with other contextual information such as current activity, robot
resource cost and watch battery level, the agent can make
decisions to turn on sensors using the Deep Q Learning method.

B. Activity Recognition using Dynamic Bayesian Network

In human’s daily life, different activities occur at different
locations and generate distinct sounds and body movements. As
shown in Fig 3, the evidence data including location L., object
O, sound event Si and body action Bt are dependent on activity
A, based on Bayes rule we have,

P(4:| Ly, O, Sy, By) acP(Ls, Oy, S, Be| Ay) - P(4y) (1)
As L, Oy, St and Bt are independent of each other, we have:
P(Lt, Ot, St, B: |At) = P(Lt | Az) P(Oz | At) : P(St | Az)

" P(B:|4y) 2)



In this study, we analyzed the dataset and counted the
duration of each activity, and then combined the time label with
the activity to generate the activity prior knowledge for updating
the probability of A..
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Fig. 3. The graphical representation of Dynamic Bayesian Network model for
activity recognition.
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Fig. 4. The architecture of the Deep Q Learning-based sensor selection
algorithm
C. Reinforcement Learning for Sensor Selection

As shown in Fig. 4, we considered the sensor selection
problem as a Markov decision process problem, where the next
state only depends on the current state which includes the
transition motion, current activity, location, resources capacity
level on robot and battery level on the watch. The states will be
changed by taking actions such as turning on the watch sensors.
The agent’s goal is to develop an optimal policy that maximizes
its long-term accumulated reward. We defined the state, action,
reward and policy learning as follows:

1) Goal:
e Maximize the activity detection ratio

e Minimize energy consumption on the watch
e Minimize the privacy concerns
e Minimize the robot resource cost

2) State:
e Transition Motion

e Current Location

e Current Activity

e Smart Watch Battery Level

e Robot Resource Capacity Level

3) Action:
e Robot Mic Sensor: Turn on the microphone on the robot

e Robot Cam Sensor: Turn on the camera on the robot

e Robot Mic Cam Sensor: Turn on the camera and
microphone on the robot

e Watch Mic Sensor: Turn on the microphone on the Smart
Watch

e Watch Cam Sensor: Turn on the camera on the Smart
Watch

e Watch Mic Cam Sensor: Turn on the camera and
microphone on the Smart Watch

e Robot Mic watch Cam Sensor: Turn on the microphone
on the Robot and the camera on the Smart Watch

e Do Nothing

For the state, firstly, we involve the transition motion
information to indicate the transition between two activities.
Transition motions including Sit to Sit, Sit to Lie, Sit to Stand,
Stand to Sit, Stand to Stand, Stand to Walk, Walk to Walk, Walk
to Stand are considered. Secondly, the current activities and
locations can be used to alleviate privacy concerns. Finally the
watch battery level and robot resource capacity level are
considered to minimize the times of activating the watch sensors
and robot sensors. The actions indicate how the agent activates
sensors in different states.

4) Reward

A reward is the feedback from the environment. We aim to
trade off the accuracy of activity recognition, energy cost on the
watch, privacy concerns and robot resource cost. The activity
recognition accuracy depends on activity types and the collected
sensor data. The energy consumption on the watch mainly
depends on the times that the sensors are activated. We also take
into account the resource cost on the robot, as triggering the
robot sensors increases the robot’s work load. For privacy
concerns, the robot needs to respect the user’s privacy
preferences when using the robot to capture data. To take
advantage of the information provided by transition motions, we
incorporated an additional factor called ‘extra reward’ when
detecting new activities after identifying transition motions. In
summary, the proposed algorithm aims to maximize rewards by
detecting more activities, consuming less energy on the watch
and resources on the robot, and alleviating privacy concerns.
The reward formula is shown in Fig. 5.

# energy_cost: energy cost for data collection using the watch sensors

# resource_cost: resource cost for data collection using the Robot sensors

# activity detected: 1: if activity is recognized, 0: otherwise

# privacy_occur: 1: if privacy violation occurs, 0: otherwise

# w_energy: the weight of energy cost

# w_accuracy: the weight of accuracy

# w_privacy: the weight of privacy concern

# w_resource_cost: the weight of robot resource cost

# extra_r: the extra reward when new activity is detected

1. initialization;

2. reward = -(energy_cost -w_energy)
+ activity_detected -w_accuracy — privacy_occur - w_privacy
- resource_cost -w_resource_cost;

3. if new activity detected then
4. reward = reward + extra_r
5. end if

Fig. 5. Pseudo Code for Reward Formula.

5) Value-based Policy Learning
The goal of an RL agent is to learn an optimal policy z(als),
which represents how the agent chooses actions a by observing



the states s of environment so as to achieve maximum rewards.
In this paper, we adopt a value-based method, Deep Q Learning,
which combines Q-learning with deep learning for policy
optimization [18]. Fig. 4 shows the proposed Deep Q Learning
model and Fig. 6 shows a two-layer neural network for value-
function optimization. Here, O(sy, a;, w) = Q(sy, ay w) + o - [R(sq,
a)+ y - maxQ(si+1, arr1; w) — O(sy, ar w)], where Q(s,ar, w) is
the neural network with the input states s: and output actions a,
w is the weights of the neural network, « is the learning rate, R(s;,
ay) is the reward obtained in the state transition from s; to s:+:. To
train the DQN, we adopt a replay buffer to store the (s, a;, 7,
si+1) experience so as to reuse the individual tuples. Further
more, we use a learning network and a target network to improve
the stability of the algorithm as s: and s:+; are highly correlated.
The learning network can be updated frequently, while the target
network is allowed to synchronize the learning network after
several steps. Thus, we define the MSE loss function as loss =
172 - (rn + a - (maxQtarget(si+1, av1) — Qlearning(s, a))’.
Finally, we choose the action with the maximum reward under
the specific state as the optimized solution a * = argmaxQ(s:, a:;
w). Also the e—greedy strategy is used to balance the exploration
and exploitation for choosing actions.
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Fig. 6. Deep neural network model for value function learning.
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Fig. 7. The samples of locations and activities from offline dataset:robot view
(left), watch view (right).

IV. EXPERIMENTAL EVALUATION

A. Evaluation of Location, Motion Action and Sound Event
Recognition

1) Test setup: Three CNN models for location, motion
action and sound event recognition were implemented on a
computer with a 16-core Intel 19 CPU, an Nvidia Geforce RTX
3070 GPU, Python 3.7 and Tensorflow 2.8.0. YOLOvV3 [19]
was deployed for object recognition. The dataset for training
the location and motion action recognition models contains six
locations including: bathroom, bedroom, kitchen, living room,
hallway and door area and six motion actions including sitting,
Jjumping, standing, walking, jogging, laying, and each sample
contains 2 seconds of motion data. There are 12 sound event
classes including opening closing door, eating, keyboard,
pouring water, brushing tooth, vacuum, drinking, flushing toiet,
microwave, environment, watching tv, washing hands, and each

sample contains 1 second of audio data. Fig. 7 shows the
location samples from robot’s view and watch’s view
respectively.

2)  Results and Analysis: The location recognition from the
robot and watch images has high recognition accuracy of 96%.
From the results, the ‘kitchen’ could be mis-recognized as a
door, since the door area (inside) is similar to the kitchen area.
Similarly, due to the similarity of the walls in the bedroom and
hallway, the system sometimes mis-recognizes the ‘Bedroom’
as the hallway. The motion recognition model has an accuracy
of 94%, walking, sitting, standing actions could be recognized
correctly which could be used to detect transition between two
activities. Finally, the sound recognition model has an accuracy
0f 94%. ‘Door open closed’ has low recognition accuracy due
to the sound quality. It could be recognized as ‘Keyboard’ or
‘Eating’ sound sometimes. Fig. 8 shows the confusion matrix
of the location recognition.
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Fig. 8. The confusion matrix of location recognition. Robot view(Left), watch
view(Right).

B. Energy Consumption Measurement

The Android OS offers the power management API, which
can be used to estimate the energy consumption of the watch in
different modes. We designed experiments to put the watch in
four different modes for 10 minutes each: 1) Normal Mode: the
watch runs the App only. 2) Idle Mode: the sensor is on, but not
triggered. 3) Capture Mode: the sensor is triggered to capture
data locally. 4) Capture Send Mode: the sensor is triggered to
capture data locally and send data to the robot. Regarding the
camera’s energy cost, during the test, it captured and sent 770
images to the robot while consuming 5% of the battery capacity.
This implies that each image consumes 0.0065% of the watch
battery energy with a capacity of 2946 mAh, i.e. 0.19 mAh. The
motion sensor incurs low computational cost, facilitating the
collection of motion data from users. For the microphone energy
cost, it captures 243 clips while consuming 2% of the battery
capacity, each clip consumes 0.0082% of the watch battery
energy.

C. RL Model Performance Evaluation

1) Test setup: The proposed DQN algorithm was trained
and evaluated in the offline environment we simulated in our
lab testbed, using a total of 14 corresponding activities
including Bed to Toilet, Chores (Vacuum Cleaning), Desk
Activity, Dining Rm Activity, Evening Meds, Guest Bathroom,
Kitchen Activity, Leave Home, Master Bathroom, Meditate,



Watch TV, Read, Morning Meds, Master Bedroom Activity.
We compare two different methods for evaluation purpose.
a) Periodic: The sensors are triggered periodically with
time intervals of 0.25 min, 0.5 min, 1 min, 2 mins and 3 mins.
b) RL-Based: The sensors are triggered based on the
output of the RL-based algorithm.

2)  Results and Analysis: We assigned weights of 0.05, 0.33,
0.47 and 0.15 to accuracy, energy cost, privacy concerns and
robot resource utilization, respectively, which implies that we
prioritize energy consumption and privacy issues, as the image
recognition results from both watch and robot data are already
satisfactory. Fig. 9 shows the accumulated rewards. We can see
after 17 episodes the model converged well. As shown in Fig.
10, the robot sensor trigger time, watch sensor trigger time and
privacy violation occurring time also converged. The converged
trigger time of the watch sensor is less than the trigger time of
the robot, which means the agent learnt the strategy to utilize the

robot more than the watch to monitor activities to save energy.
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Fig. 9. Accumulated rewards(X-axis: episodes, Y-axis: rewards).
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Fig. 10. Robot Sensor Trigger Times, watch Sensor Trigger Times and Privacy
Violation Occurring Times(X-axis: episodes, Y-axis: trigger times).

As shown in Table. I, for the periodic method, we used the
smart watch to collect data for ADL monitoring. The 0.25
minute periodic method could achieve 43/47(91%) detection
ratio, but it consumed significant energy on the sensors.
Meanwhile, we can increase the period to decrease the trigger
time, but the detection ratio also decreases. During the real time
test, with the help of the transition motion state, the algorithm
turned on the camera and the microphone on the watch 96 and
14 times, respectively, and turned on the camera and the
microphone on the robot 92 and 175 times, respectively. The
proposed method can collaborate with the robot to achieve a
detection ratio of 91% and activate the watch sensors fewer
times (96) compared to a period of 0.25 minute with 2917 trigger
times, which leads to saving of 14.6% of energy on the watch
while maintaining the same level of detection accuracy.

From Fig. 11, we can see that the model is able to distinguish
between transition motions that indicate a new activity and those
that don’t. Transition motions including ‘stand to sit’, ‘sit to
stand’, ‘stand to walk’, ‘walk to stand’, ‘walk to sit’ and ‘sit to
walk’ indicate a new activity, which could trigger the actions
including ‘Robot audio vision’. and ‘Robot audio watch vision’
to capture more data to recognize the new activities accurately.

To alleviate privacy concerns, action ‘Robot audio watch vision’
instead of ‘Robot audio vision’ would be chosen in the location
with privacy concerns such as ‘Bathroom’. Transition motions
without changes like ‘walk to walk’, ‘sit to sit” and ‘stand to
stand’ usually mean the user is doing the same activity and the
action 2 ‘Do nothing’ is triggered by the algorithm. It is also
interesting to see that other actions like ‘watch audio’, ‘watch
vision’ and ‘Robot audio’ are not triggered frequently, as actions
‘Robot audio vision’ and ‘Robot audio watch vision’ dominate
the selections due to the energy consumption, activity
recognition accuracy and privacy concerns. From Table I,
compared to the periodic method using a single robot, the
proposed method can reduce the privacy violation times. As
turning on the robot camera causes privacy concern in the
bedroom and the bathroom, the algorithm does not trigger the
actions ‘Robot vision” and ‘Robot audio vision’ frequently. This
also shows that the model is able to learn the context of different
activities and use it to make better predictions.

TABLE L. THE RESULTS BETWEEN THE RANDOMLY PERIODIC METHOD
AND THE PROPOSED METHOD
Detection . .
Method Ratio Trigger Times

Watch Cam Mic: 2917;
Privacy Violation Times:327
Watch Cam Mic: 1530;
Privacy Violation Times:163
Watch Cam Mic: 811;
Privacy Violation Times:82
Watch Cam Mic: 306;
Privacy Violation Times:40
Watch Cam Mic: 271;
Privacy Violation Times:27
Watch Cam:125,
Watch Mic:64,

Robot Cam:221,
Robot Mic:281,
Privacy Violation Times:0

0.25 Mins (Period) | 91%

0.5 Mins (Period) 89%

1 Min (Period) 85%

2 Mins (Period) 70%

3 Mins (Period) 68%

Proposed(Oftline) 89%

Watch Cam:96,

Watch Mic:14,
Proposed(Real 91% Robot Cam:92,
time)

Robot Mic:175,
Privacy Violation Times:0
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Fig. 11. The detailed distribution of activities, RL model actions, motion from
08:51:58 to 08:54:31.

In addition, the robot possesses the capacity of dynamically
accommodating the wuser’s preferences through iterative



interaction and learning. As depicted in Figure 12 (Solid lines),
the initial model designated the bathroom and bedroom as
private areas. However, by the fourth day, the user’s preference
changed, disallowing the robot from taking photos in the living
room. Notably, this adjustment led to an increase in privacy
violation occurrences, totaling 45 instances. Nonetheless, the
robot learned and refined its model over subsequent days,
evident from the declining trend in privacy violations starting on
day 5. Meanwhile, these adjustments impact the activation
patterns of both wearable and robot sensors. Another example is
shown in Fig. 12 (Dashed lines). Without learning, the robot
cannot adapt to user’s new preference which increases the
privacy violation times.
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Fig. 12. The robot adapts to user's preference.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a collaborative ADL monitoring
system using a smart watch and a companion robot. To balance
the recognition accuracy, privacy concerns, robot resource
utilization and watch battery life, a Deep Q Learning based
algorithm was developed for sensor selection. The robot makes
decisions based on the Deep Q Learning model to turn on the
relevant sensors on the robot and the watch. Specifically, the
watch motion sensor remains on in order to capture the transition
motion which is part of the states of the environment in the
sensor selection model. The results show that the proposed
method could achieve activity detection ratio of 89% while
triggering the watch camera 125 times and the watch
microphone 64 times during the offline test. The real time
evaluation shows that the activity detection ratio is 91%, which
saves 14.6% of energy compared with the periodic method with
0.25-minute sampling period in the offline test. For the future
work, we will continue improving the system and involve more
states and actions in more complicated scenarios.
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