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VISIBILITY PHENOMENA IN HYPERCUBES

JAYADEV S. ATHREYA, CRISTIAN COBELI, ALEXANDRU ZAHARESCU

ABSTRACT. We study the set of visible lattice points in multidimensional hypercubes. The
problems we investigate mix together geometric, probabilistic and number theoretic tones.
For example, we prove that almost all self-visible triangles with vertices in the lattice
of points with integer coordinates in W = [0, N]d are almost equilateral having all sides
almost equal to vdN /+/6, and the sine of the typical angle between rays from the visual
spectra from the origin of W is, in the limit, equal to \/7/4, as d and N/d tend to infinity.
We also show that there exists an interesting number theoretic constant A4 x, which is
the limit probability of the chance that a K-polytope with vertices in the lattice W has
all vertices visible from each other.

1. INTRODUCTION

Various phenomena related to distances in high dimensional spaces have attracted at-
tention recently. For instance Gafni, Iosevich and Wyman [l1] continue the study of
the interesting connections with the unit distance problem in higher dimentions explored
in [13-16,19]. Problems linked to the distribution of distances between points in finite sets
placed in metric spaces (particular Euclidean spaces) have been investigated by various
authors from many different perspectives. A selection of such results, by no means com-
plete, includes the works of general theoretical interest of Bésel [3], Baileya, Borwein and
Crandall [2], Burgstaller and Pillichshammer [5], Dunbar [9], Mathai, Moschopoulos and
Pederzoli [18].

There are also many practical applications of these problems, in particular in high-
dimensional data analysis. For example, the article of Aggarwal, Hinneburg and Keim [1]
is related to data mining techniques, Li and Qiu [17] study probabilistic problems related
to wireless communication networks, Srinivasa and Haenggi [21] are interested in wireless
networks whose efficiency is strongly influenced by the nodal distances, while Bubeck and
Sellke [4] prove a universal law of robustness that explains the necessity of overparametriza-
tion in deep neural networks.

In the present paper we study a few aspects related to visible lattice points in high
dimensional hypercubes. Let C := [0, N]? C R? be the d dimensional real cube of side
length N, for some integers d, N > 1. Denote by W := C N Z? the set of (N + 1)¢ points
with integer coordinates in C. We denote by 0(v,w) the Euclidean distance between any
two points v = (vy,...,v4) and w = (wy,...,wg).

The smallest distance between two points in W is equal to 1, which is always met between
two neighbor points, while the largest is attained by the opposite end points of the longest
diagonals. Such points are v = (0,...,0) and w = (N,...,N) and the distance between
them is ?(v,w) = V/d- N2 = Nd'/2. Then, it is natural to normalize d(v,w) to obtain the
normalized Euclidean distance d4(v,w), for which all normalized distances between points
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in W will belong to the interval [0, 1]. Thus,

1 d 1/2
ad(’l)7w) = W <Z(wn - Un)2>
1

n—

and
d

1/2
2(v, w) = N2 4w, w) = <Z<wn - vn>2> .
n=1
Denote by 2 C W x W the set of pairs of points that are visible from each other, that is,
there are no other lattice points in VW between them on the straight line segment that joins
them. Then, by definition, €2 is the set of all pairs (v, w) € W x W such that

ged(vy —wy,y ... v —wg) = 1. (1.1)

We show that the normalized distance between almost any two points in W that are visible
from each other is as close to 1/4/6 ~ 0.40825 as one wishes, if the dimension d is sufficiently
large and N is large enough with respect to d.

Theorem 1. For any € > 0, there exists an integer C(g) > 3 such that for any integers
d> C(e) and N > C(g)d we have:
1
#8Q

As a consequence of Theorem 1 we see that almost all triangles with vertices visible from
each other are almost equilateral, almost all tetrahedrons with vertices visible from each
other are almost regular and so on.

In general, for any K > 2 let us denote by Qx the set of K-polytopes with the property
that any two of its vertices are visible from each other. Said differently, if we call self-visible

a K-polytope with the property that from any of its vertices one can see all the others
without any obstruction from any of the lattice points in WV, then

Qi = {P = (v1,...,vq) € WE . P is self-visible}.

Then, essentially, Theorem 1 can be restated in the following form, which is, at the same
time, a consequence and a more general form of it.

#{(U,w)eg : Dd(v,w)e[%—a,%—i—s]}zl—s. (1.2)

Corollary 1. Let K > 2 be a fized integer. Then, for any € > 0, there exists an integer
C(K,e) > 3, such that for any integers d > C(K,e) and N > C(K,e)d, the proportion of
polytopes P € Qg for which

da(w',w") € [1/v/6—2,1/V6 +¢]
for all distinct w',w"” € P is greater than 1 — ¢.

The next theorem answers the question of whether there is a limit probability that a
K-polytope in WX is self-visible.

Theorem 2. Let d > 2, N > 2 and 2 < K < 2% be integers. Then, the probability that a
K -polytope is self-visible is

#Q 1 K—1 dK 20 K2
= I (1-50) (-5 ) o (Fs) +o () 09

p prime

and the implied constants in the big O terms are absolute.
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The infinite product over all primes in (1.3) is convergent and defines an endless square

of constants
re= T 10 (1__>

p prime k=1
which increase with d and decrease with K. They comprise some remarkable numbers for
which Theorem 2 gives a probabilistic geometric interpretation. For instance, if K = 2,
then Ago = 1/¢(2) = 6/7% ~ 0.6079271 and Ago = ((d)~! for d > 2. If d =2 and K = 3,
then

6
A273 = _Q(QCFT — 1) ~ 0.196138,
T
where
Crr == (14— II(1 ! ~ 0.661317
T ¢(2) 45 pP-1)) "7
is the Feller-Tornier constant (see Feller and Tornier [10] and sequence A065493 from

OEIS [20]), which is related to the prime zeta function.

Let us note that if N = 0 then WX and Qg are reduced to a single point. If N = 1,
all the points in W are vertices. Then all points in W are self-visible, because there are
no intermediary points in the hypercube’s lattice which blind the view from one point to
another. Then, if N =1, i&vﬁ =1for2< K <29

We also remark that for any N > 1, if K > 2¢ then in (1.3) both non-error terms, the one
from the left side and the main term on the right side, are equal to zero. In this case (1.3)
holds true with no error terms.

Let ¥ denote the ray that starts at the origin 0 = (0,...,0) € W and passes through
v € W. Denote by W the set of pairs of rays (¥, w) with (v, w) € Q. The next result shows
that if d and N/d are sufficiently large then almost all angles between rays from the origin
towards points that are visible to each other have the sine almost equal to v/7/4.

Theorem 3. For any € > 0, there exists an integer C(g) > 3 such that for any integers
d>C(e) and N > C(g)d we have:

#.#{(ﬁ,w)e@ : sin (5,0) € [*4[ \f ]}21—5. (1.4)

Note that the statement in Theorem 3 does not depend on normalization, because the
angles are preserved regardless of any scaling.

For any two subsets .Z', .#" C W, let o(4', #") be the visual spectrum, which we
define to be the set of sines of all angles between distinct rays that start from the origin
towards the points in .#’ and .#", that is, denoting identically a point m and the ray from
the origin towards m,

oM, ") = {sin(m’,m") cwme ' w e wm#£ m”}. (1.5)
It #'"= 4" = 4, we write shortly o(.#) instead of o(.#,.#). The angles between rays
from the origin to points in VW cover a larger and larger set of possibilities as the dimension
increases and in the limit, as d — oo, there is a limit set of the spectrum o (%), which is the

interval [0,1]. On top of that, choosing elements of o(W) is a random variable, which, by
Theorem 3, has a limit probability density function f(t) that is discrete and concentrated
in a single point, and f(t) = 5(t — i) for 0 <t <1, where ¢ is the Dirac distribution.

Since most points in W are visible from each other the results in Theorems 1,3 and
Corollary 1 may prove useful to check particularities related to randomness of large set of
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data. A related result about points on hyperspheres appearred in a theoretical context in
the theory of neural network (see Bubeck and Sellke [1]).

In different contexts in nature, it happens and it is not uncommon for a property that
is proved to be valid for almost overall objects in a certain universe to be difficult or even
impossible to build or to indicate just a single instance that satisfy it. However, in the
context of the hypercube lattice W, we can extract some distinguished polytopes that offer
a cross-section view of its inner structure.

Let € = {co,¢1,...,¢4} to be the set of points whose coordinates are the rows of the
circular symmetric matrix

[0 1 - d-1 d ]
1 2 .. d 0
2 3 .- 0 1
My = (1.6)
d—1d -+ d—3 d—2
d 0 -+ d—2 d-1
and let ¢ := {go,...,gp—1} be the set of points whose components are the rows of the
matrix
[0 1! (p—2)"" (p—17"
1! 271 (p—1)~1 0
2-1 37! 0 1!
My = ) ) ) . (1.7)
(p=2)"" (p=D7" o =47 (p-3)7]
[(p—1)~! 0 (=37 (=27
Here p is prime, the classes of the representatives of the inverses in My are taken from
{1,...,p— 1} and for symmetry, by convention, we may set 0 to be ’the inverse’ of 0.

Theorem 4. Let d > 2 and p be prime. Then we have:

1. Any point in € U9 is visible from the origin. Any two points in & are visible from
each other. If d = p—1 and p is large enough any two points in € UG are visible from each
other.

2. The limit set of the normalized distances between points in € is the interval [0,1/2],
as d tends to infinity.

3. The limit set of the normalized distances between points in 4 consists of the single
point {1/3/6}, as p tends to infinity.

4. If d = p— 1, the limit set of the normalized distances between points in € and points
in 9 is also {1/v/6}, as p tends to infinity.

5. The limit of the spectrum o (%) is the interval [0,+/39/8], as d tends to infinity.

6. The limit of the spectrum o(4) consists of the single point {\/7/4}, as p tends to
nfinity.

7. If d = p — 1, the limit of the spectrum o(€,9) consists of the single point {\/7/4},
also, as p tends to infinity.

Note the decimal approximation of the size of the spectra in Theorem 4:

V7/4 =~ 0.661438, arcsin(v/7/4) ~ 0.72273 radians or ~ 41.40962°; and

V/39/8 ~ 0.78063, arcsin(v/39/8) ~ 0.89566 radians or ~ 51.31781°.

As one can see from Theorem 4, about a quarter of all distances d4(v, w) with v, w €
€ U9 are singular, being different from the other three quarters which in the limit are all
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equal to 1/4/6. However, in Subsection 2.4 we prove that if d = p — 1 then A,(% U¥), the
average of all normalized distances between points in 4 U ¥, is still the same 1//6, in the
limit as p — oo.

In Section 2.5 we complement the phenomena observed in Theorem 4 with yet another
polytope % whose vertices are visible from each other, even though they lie all almost
aligned on a straight line. This set wraps around the diameter of W being composed by
close neighbors of the equally spaced points on the longest diagonal of the cube. The limit set
of the normalized distances between the points in this example equals the full interval [0, 1],
if their number tends to infinity. The same goes for the limit of the spectrum o (%), which
is the interval [0,1], also. Taken together, merged into a geometric spindle shape, the
polytopes ¢,% and % combine their arithmetic and probabilistic properties keeping in
balance the spinning top intrinsic qualities of the still lattice hypercube W.

The paper is organized as follows. In Section 2 we present the special polytopes %, ¥
and 4, checking the visibility and the mutual distances between their vertices, which proves
Theorem 4. In Section 3 we turn to the visibility in the whole lattice and calulate the size
of ). In Section 4 we find the average of the distances between points in WV that are visible
from each other and in Section 5 we estimate the second moment about their mean. We use
these results in Section 6 to obtain effective results that in particular prove Theorems 1, 3
and Corollary 1. In Section 7 we discuss at large the problem of self-visible K-polytopes
and prove Theorem 2. We conclude in Section 8 with a possible good place to start. It
is a short heuristics that might be useful to adjust with the little peculiarities that appear
from higher dimensions. It is an intuitive touch on the matter, although it is done in a
continuous, where visibility has no meaning, unlike the discrete universe which we explore
beyond.

2. THREE DISTINGUISHED POLYTOPES. THEIR EDGES AND DIAGONALS.

Here we discuss three examples of polytopes with a number of vertices of order almost
equal in size with the dimension of the hypercube. The polytopes ¥ and ¢ whose vertices
are the rows of the matrices My and My introduced by (1.6) and (1.7) are as similar in
construction as they are very different in shape. The first has the distances between its
vertices well spread over a long interval, while the second has all the distances between the
vertices approximately equal, being as ‘equilateral’ as it could be, as d — oo.

2.1. Proof of Theorem 4 — visibility.

Notice first that by the definition of 4" and ¢ and that of visibility (1.1), all points in ¥ U¥
are visible from the origin.

2.1.1. Any two points belonging to either € or & are visible from each other. Let us sup-
posed = p — 1 and let v,w € W. Also, suppose that the coordinates of v are a permutation
of {0,1,...,d} and the coordinates of w are a circular rotation of the coordinates of v. Then,
if v and w were not visible from each other, then it would exist an integer b > 2 such that
the following congruences would hold:

vo—wp =0(mod b); v1 —w; =0(mod b); ...; vg —wg = 0(mod b). (2.1)
But since p is prime and vy, ...,vq are all distinct, as wy,...,wy also are, and since they
belong to the same set of numbers, {0,1,...,d}, which appear each in exactly two of the

congruences in (2.1), we find that

vg=v1 = =vg =1 (mod b),
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for some r € {0,1,...,b— 1}. But this is impossible, unless b = 1. Therefore, two points
that belong to one and the same set, be it either " or ¢ are visible from each other.

2.1.2. Any two points ¢ € € and g € G are visible from each other. Suppose d =p — 1 and
let ¢ € € and g € 4. Denote by g = ged(vy — w1, ...,v4 — wy) the expression that needs
to be checked in the condition (1.1). Since g is invariant under the same circular rotation
applied to both ¢ € ¥ and g € ¥, we may assume that

g=(@0, 1741 ..., (p—1-h)"YL(p-n)"YLp+r1-n)" . .. (p-1)"1);

(2.2)
c=(hh+1,..., p—1, 0, 1, ., h—1),

for some h € {0,1,...,p — 1}. As usual, the coordinates are taken as their representatives
modulo p in the interval [0,p —1]. Since 17! = 1 (mod p) and (p—1)"! = p—1(mod p), the
difference between the second components of ¢ and g is (h+ 1) — 17! = h and the difference
between the last components is (h — 1) — (p — 1)™! = h — p. Because p is prime, these
differences are relatively prime, so that ¢ and g are visible from each other unless h = 0.

Suppose now that A = 0 in (2.2). Then, if ¢ is not visible from g, there exists a prime
number 2 < ¢ < p such that ¢ | (n —n~!) for 1 < n < p—1. Let us notice that for any
0<r<p-1

#{1§n§p—1 : |n—n71‘ :r} <4.

This is because n —n~! = 47 (mod p) is equivalent to n? Frn — 1 = 0 (mod p), congruence
that has at most two solutions for each sign. Even more precise, if r # 0, if the congruence
! = 7 (mod p) has solution @ then it has solution —a~!, also. These solutions are
always distinct unless a = —a~! (mod p), which happens only if p = 1 (mod 4), in which

case a = (’%1)!. If » = 0, there are exactly three values of n € {0,1,...,p — 1} for which

1

n—n

= r (mod p), namely 0,1,p — 1. In conclusion, putting together these observations,
while counting separately in the cases p = 2, p = 1 (mod 4) and p = 3 (mod 4), we obtain
in all cases the same number of distinct absolute values of differences

#{‘n—rf” :1§n§p—1}z“ﬂ+1. (2.3)

n—mn-_

Then, since
{‘n—n_l‘ :1<n<p-1}c{0,1,...,p—1}

and by our assumption a prime ¢ divides all differences n — n~!, it follows that ¢ has to be
either 2 or 3.

If ¢ = 2, the equality (2.3) says that the number of pairs (n,n~!), 1 < n < p—1 of the same
parity is |p/4]+1. But this is not in agreement with Lehmer’s conjecture [12, Problem F12],
which is proved also for shorter general arithmetic progressions [8, Theorem 1]). A particular
case of that result shows that if I, J C {1,...,p — 1} are arithmetic progressions of ratios
dl,dQ Z 1, then

#{(a,b) eI xJ : ab=1(mod p)} = # +0 (pl/Qlong) . (2.4)

Then, if d; = dy = 2, counting the pairs (n,n~!) with either both even or both odd
components, we see that their total number is p/2+ O (p1/2 log? p), which contradicts (2.3).
Likewise, in the remaining case ¢ = 3, with d; = dy = 3, counting the pairs (n,n~!) whose
components both give the same remainder 0, 1 or 2 when dividing by 3, we find that their
total number is p/3 + O (pl/ 2 ]og? p), which is also different from (2.3). In conclusion, ¢
and g are visible from each other, which concludes the proof of the first part of Theorem 4.
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2.2. Proof of Theorem 4 — the distances.

2.2.1. Distances between points of €. Remark that the same rotation applied to the coordi-
nates of two points, does not change the distance between them, which, in particular, shows
that we have

0(ck, ;) =0(co, ¢1—k), forany 0 < k <1 <d. (2.5)
This means that the range of values of all distances between any two points in % is covered
by the distances between ¢g and each of ¢q,...,cg. A straightforward calculation shows that

in closed form these are:

(=4
—
]
o
<«
)
SN—
I
—~
—
S
|
—_
~—
)
[\
-+
[\
—
S8
|
SN—
[\)
—
~
[\

1
(co,c3) = ((d—2) 3243 (d—2)2)"” (2.6)

2(e0:c0) = (0~ (4~ 1) - +d-(d— (d~ D).

Not all of these numbers are distinct, because of the symmetry of the parabola: x — f(z),
where f(z) = (d— (z—1))-22+2-(d— (z—1))?> = (d+ Da(d + 1 —z), for x € [0,d + 1].
The maximum of f(x) is attained for z = (d + 1)/2 and it is equal to (d + 1)3/4. Also,
f(z) = f(d+ 1 —z) and the values of f(z) on the integers between 0 and d + 1 cover
quite uniformly the interval [0, (d+ 1)3/4] as d becomes sufficiently large. Precisely, for any
y € [0,1/2] and any € > 0, there are ¢, ¢” € € such that y —e < 04(¢, ") < y+e. We
summarize in the following proposition these remarks on the polytope €.

Proposition 2.2.1. Let € = {co,c¢1,...,¢q} be the set of points whose coordinates are the
rows of matriz (1.6). Then, the set of normalized distances between any two points in € is

equal to
'D(Cg) — { \/(d+ 1)55((1 +1-— x) 0<a< \\EJ } (2.7)

d3/2 - 2
and the set D(€) is dense in the interval [0,1/2] as d tends to infinity.

2.2.2. Distances between points of 4. Let p be a prime number and N = d = p — 1. The
polytope ¢4 = {go,...,gp—1} is formally close to €. The components of the points are the
same, except that the numbers are inverted modulo p. The classes of the representatives of
the inverses are taken from {1,...,p—1} and by convention the inverse of an integer divisible
by p, which does not exist, is always replaced by 0. Let us remark that the influence of just
a single component in the first point, while the others are obtained by circular rotations as
in ¢, has small and even negligible influence as p — oo, on the mutual distances between
the points in 4. This is why we could keep, for balance, in ¢4 the components zero, even if
zero has no inverse modulo p.

The main motivation for choosing ¢ is the random spread of the inverses. Various ways
to measure the randomness of inverses, triggered by [12, Problem F12], have been studied
in [6-8]. In [23] the focus is on the values of polynomials and rational functions mod p and
the results there might be also used to build other polytopes with similar characteristics.

Lemma 2.1. Ifp is prime and 1 < h < p — 1, we have

3
> @+ =2 =5+ 0 (p108%p). (2.8)
z€F,\{0,p—h}
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Here the inverses are calculated in [F, and the absolute value calculates the distance
between two natural numbers in {0,1,...,p — 1}, the corresponding representatives of the
residue classes mod p of the inverses.

For h = 1, the estimate (2.8) is a particular case of [23, Corollary 1.3], which is proved
using Weil’s bounds [22] for exponential sums with rational functions. For h > 2 the
estimate (2.8) can be proved in a similar manner.

Taking the square root and dividing by p*/2, we find by Lemma 2.1, that the normalized
distance between any two points g’, g” € ¢ is

(g, g") = % <1 40 (10573”)) , (2.9)

which proves part 3 of Theorem 4.

2.2.3. Distances between ¢ € € and g € 4. It suffices to find the distance between ¢ and g
n (2.2). For this we have to estimate the sums

p—h—1 p—1

2%(g,¢) = Z {(n—i—h)—n_l‘z—i— Z {(n—l—h—p)—n_l{Q:E’h—i—E”, (2.10)
n=0 n=p—nh

where ¥} and X} are the first and the second sum in (2.10), respectively. To calculate 3},
let L > 1 be fixed, denote u = (p — h)/L, v = p/L and split the rectangle [0,p — h] x [0, p]
into L? rectangles T} ; := [ju, (j + 1)u) x [kv, (k + 1v)). Then

L-1L-1

ZZZZ Z (n—{—h—nil)Q.

J=0 k=0 (n,n=1)€T;

Here the size of the summand can be kept under control, so that we can replace it by its
value on the lower left corner of T} ;. Thus, on using (2.4) with I x J = T}, we have

L-1L-1

=3 (ju+h—kv+O(p/L))? <%’ +0 (p1/2 log2p)> .

7=0 k=0

Now we factor the terms that do not depend on j, k£ and expand the square
wo L—-1L-1
¥ = (? +0 (p1/2 10g2p>> Z Z g(j, k,u,v,p, L) (2.11)
j=0 k=0

where
g(j, k,u,v,p, L) =j*u® + h* + k>0 4 2juh — 2jkuv — 2hkv
+O0(p*/ L% + O(p(ju +h+ kv)/L).

Adding together the terms separately over k and j, the sum of powers being denoted
by Sp(M)=1"+4---+ M", and then collecting together the error terms, the double sum
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from (2.11) becomes

L—-1L-1
Z Z g(]a k‘,u,v,p, L) :Lu2S2(L - 1) + L2h2 + L’UQSQ(L — 1)
7=0 k=0

+ 2LuhS (L — 1) — 2uvS3(L — 1) — 2LhvS; (L — 1)
+O@?) +0 (p(LuSl(L) +hL2 + LuSy(L)) /L)

:L‘;UQ L2 4 ? 4 L3uh — # — IPuh+ 0 (L) .
Next we insert this into (2.11), replace u,v by their definition and reduce the terms:
¥, = (% + O(\/ﬁlogzp)> (M + L*h? — # —L*h(v—u)+0 (pQL)>
= (p —h+ O(LQ\/Elong)> <p2 i (g — ) — p(p2— h) +0 (p2/L)> (2.12)
_ (- h)(p° ‘6i‘ 2h° — hp) +O(*/L) +0 <L2p5/2 10g2p) ‘

To estimate X, we make the change of variables m = p—n. Note that the representative
in the interval [0,p — 1] of the inverse of m is m™! = p —n~!. Then

p—1 h

Sh= > |mth-p)—n )P =3 |m+p—h) —m .

n=p—nh m=1
Apart from the end limits of summation, this is exactly E;f 5. Therefore we have
=%, +00). (2.13)
On combining the estimate (2.12) with (2.13) and inserting the results into (2.10), we obtain

(p — h)(p? + 2h* — hp) + h(2p® + 2h? — 3hp)
6

02(9, ¢) = +0 (p3/L + L2p5/2 log? p)

3
= % +0 (p3/L + LQpE’/2 log2p) .
(2.14)

Balancing the error terms, we find the optimal L that we have fixed at the beginning,

namely L = Lpl/ 6 log72/ 3 pJ. Thus we have proved the following result.

Proposition 2.2.2. Letd > 2 and let p be prime such that d = p—1. Let € = {cp,¢1,...,¢q}
be the set of points whose coordinates are the rows of matriz My from (1.6) and let 4 =
{80,91,-..,84} be the set of points whose coordinates are the rows of matriz My from (1.7).
Then, as p tends to infinity, the limit set of the normalized distances between any two points
¢ €€ and g €9 is the single point {1/+/6} and

1

04(g,¢) = N <p‘1/6 log®/® p) : (2.15)

Proposition 2.2.2 proves part 4 of Theorem 4.
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2.3. Proof of Theorem 4 — the spectra.

From the origin, which we denote by 0, the normalized distances toward points in € or ¢
are equal

d(d+1)(2d + 1)
6

1/2 1
04(0,05,) =04(0,¢p,) = ( > d=3? = % +O0(1/d), (2.16)

for 0 < h < d, if p = d+1. The distances between points in % are given by Proposition 2.2.1.
Since the set of distances between points in 4 are in the limit, as d — oo, dense in the
interval [0,1/2], the limit of the spectrum (%) is also a continuous interval. The end
points of the limit o(%) come from the limit angles of the isosceles triangles with vertices
in 0 having two edges equal to 1/v/3 + O(1/d), according to (2.16), while the third edge is
the shortest and the longest distance between points in o (%), respectively. By (2.7), the
acutest triangle has its third edge equal to O(1/d), while the triangle with the largest angle
at 0 has its third edge equal to 1/2 + O(1/d). Then a straightforward calculation gives the
end points of the limit spectrum 0 and /39/8.

If d = p — 1, the mutual distances between points either from ¢ or from ¥ U ¥ are all
equal to 1/v/6 + O (p*1/6 log?/? p), by relation (2.9) and Proposition 2.2.2, respectively.
Then, the limit spectra o(¥) and (¢ U¥)) are equal and discrete, containing exactly one
point. According to (2.16), the limit point is the sine of the acutest angle of the isosceles
triangle with two edges equal to 1/v/3 and the third equal to 1/4/6. Since this is equal
to \/7/4, these concludes the proof of the remaining parts of Theorem 4.

2.4. The average distance between points in ¥ U Y.

Suppose d = p — 1. The cardinality of € U¥ is 4p® and the average of the squares of
distances between its points is A4 U¥) = T/(4p?), where T is the following sum

T= > D+ D ) +2 ) (). (2.17)

(¢/,¢)eCxE (¢/,0")€¥ <9 (c.9)€€ %Y
We denote by Ty, T, T3 the sums on the right side of (2.17). By (2.6), the first sum is

= 22 (p—h) - (ph(p — 1)) = 2p(pSa(p — 1) + S3(p — 1)) = %5 +0(p'). (218

By (2.9) and (2.15) the last two sums in (2.17) together are

p—1 5
T+ 15 = GZh ( 5 +0 ( 17/610g2/3p>> = % +0 (p29/610g2/3p> ) (2.19)
h=1
Now we can find the normalized distances between points in 4 U % which is defined by

A(CUD) = JACUD)/p*>. (2.20)
Thus, on inserting (2.19) and (2.18) into (2.17), we find that (2.20) becomes
(1 PP 29/61 . 2/3 V2 —3/2

A(CUY) = <4_1)2<E+5+0(p log p> D

_ % L0 <p—1/6 log?/3 )

(2.21)
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2.5. A polytope stretched out along the longest diagonal of W.

On the same theme, we construct a polytope Z = {by,...,bs} that is a cousin of ¥ and
4. The polytope Z streches along the diagonal [(O, ...,0); (d,... ,d)], it has all vertices
visible from each other and the normalized distances between them are dense in [0, 1], as
the dimension d tends to infinity. All components of by, are set to be equal to h, except the
(h — 1)-th and (h + 1)-th, which are equal to h — 1 and h + 1, respectively. Thus

0-th h-th d-th
bp= (h, h, ..., h, h—1, h, h+1, h, ..., h),

for h =0,1,...,d, with the convention that —1 =d and d + 1 = 0.

If d =3 or d > 5 the points of A are visible from one another. For points that are not
too close this follows because most components of any point are equal, while the neighbors
of just one component are the neighbor integers of the rank of the point. For points that
are near each other it can also be checked one by one that they are visible from each other.

The distances between the points of £ are:

(2.22)

|k —Jl

04(b;,b;) = d~*2\/d[k — j]> + O(1) =

for 1 < j,k,< d. As a consequence, (2.23) implies that the closure of the set of distances
between points in & equals the full interval [0, 1], as d tends to infinity.

Notice that all points in 2 are visible from the origin, because (2.22) assures that con-
dition (1.1) is verified.

The distances from the origin to points in % are

+0(1/d), (2.23)

04(0,by) = % +0(1/d), for 1 < h <d. (2.24)

Since the limit set of the mutual distances between points in % is the full interval [0, 1],
on combining (2.23) and (2.24), we see that there is a limit of the spectrum o (%), which is
also a closed interval. Its smallest end point comes from the triangle with vertices 0, by_o
and by_1, and its largest from the triangle with vertices 0, by and by_1. Then the angle at 0
of the first triangle tends to zero, and that of the second triangle tends to 7/2, as d — oo.
As a consequence, the limit of the spectrum o (%) is the interval [0, 1], as d tends to infinity.

3. THE NUMBER OF PAIRS IN {)

Let (v,w) €  and suppose v = (v1,...,v4) and w = (wy,...,wy). Then v and w are
visible from each other. This means that ged(vy — wy,...,vg —wy) = 1. We can rewrite
this condition by bringing Mdbius summation into play. Thus, we have

1 if (v,w) € Q,

(®) = (3.1)
1§§§3N 8 0 if (v,w) ¢ Q.

blv1 —w1

blvg—wa
We start by finding an estimate for the cardinality of €2, which is the object of the following
lemma.

Lemma 3.1. There exists an absolute constant Cy > 0, such that for all d > 2 and all
N > 3d, we have
CoN3log N ifd =2,
< (3.2)
CodN?d-1 if d > 3.

N2d
Fﬁ‘aa
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Proof. By the definition and the counting formula (3.1), by changing the order of summa-
tion, we have

RSN VTS 35 SID MINTUES STUID SERSIED SR!

veW wew veW weW b|(vi—w1) b=1 0<vi,w1 <N 0<vg,wg<N
(v,w)eQ blvi —w1 blvg—wgq
bl(va—wa)

Since the variables run independently, the summation over v and w can be grouped as a
product as follows

#inﬂ(@( > 1)( > 1)- (3.3)

b=1 0<v1,wi1<N 0<vg,wg<N
b|v17w1 b|vd7wd
Next, we estimate the inner sums that are equal to each other for all j € {1,...,d}.

Dropping the subscripts, we see that each of them is equal to

H := Z 1= Z #{(v,w) : 0 <wv,w < N,v=r(modbd),w=r(modbd)}

0<v,w<N 0<r<b—1
blv—w

= Z (#{OgagN:aET(modb)})Q.

0<r<b—1

The cardinality of the inner set is equal to LN;”J +1= % +61(b,r, N), with |0(b,r, N)| < 1.
Then

H= Y QN;’”JH)Q: > JZ—;JF@Q(b,r,N).%):NTQJra(b,N)N,

0<r<b—1 0<r<b—1

for some real numbers for which |62(b,r, N)| < 3 and |6(b, N)| < 3. On inserting this
estimate in (3.3), it yields

N . N N2d d d N2 d—k .

#Q=> pb)H* = pu(b) —r +0 > <k> (T) BN ). (3.4)
b=1 =

b=1 k=1

Here, the main term is

N N2d o 0 L ot [ u N2d Nd+1

Denoting the error term in (3.4) by E; and changing the order of summation we find that

N d _ d
By =0 <Z 3 (Z) N;d_;k 3’“N’“> -0 <Z 3k N2d—Fk (Z) Td—k(N)> , (3.6)
k=1

b=1 k=1

where T,(N):=1"+.-- 4+ N~ ". Then Ty x(N) = N, if k = d, T;_x(N) = log N, if
k=d—1and Ty_j(N)=0(1)if 1 <k < d— 2. Then

d—2
[E1] = 0 (3'N"1) + 0 (3'N*dlog N) + O (de kzl 3EN <Z>> SN

The lemma follows by inserting the estimates (3.5) and (3.7) into (3.4).
U
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4. THE AVERAGE DISTANCE BETWEEN POINTS VISIBLE FROM EACH OTHER

The average of the square of distances between points visible from each other is

szs(d N #Q Z (4‘1)

(v,w)eR

By (3.1), changing the order summation this is

Ayis(d,N) = QZM Z Z (v, w).

vEW  weW (4.2)
b\(vlmwl)
bl (va—wa)
We rewrite (4.2) as
d
Avis(d, N) = Z )Y > (wi—w)? 4t (wa—wa)?) =) Hj,
b=1 vEW  weWw =1 (4.3)
bI(Ul...wl)
b|(vg—wq)
where
e ) 2 o
b=1 vEW  weW (4.4)
bl (v1—w1)
bl (vg—wq)

By changing the order of summation to isolate the part that does not depend on the j
variables, H; can be rewritten as

Hj:#bi:;u(bK > (wj—vj)2>ﬁ< b 1)

0<vj,w;<N k=1 *0<vp,wp<N
bl(vj—wj) k#5 bl(vg—wy,)
. (4.5)
QZM <—+0( )> Yoo (wy—vy)
0<v;j,w; <N
bl(vj—wy)

In the interior sum from (4.5) we group the terms with v; and w; in the same residue classes
mod b as follows:

b—1
2 _ . N2
E (wj —v;)” = E (wj —vj)
0<vj,w; <N r=0 0<vj,w;j<N
bl(vj—wjy) vj=w;j=r(mod b)

0 el

b

= Z (r+mb) — (r+ nb))2 (4.6)
r=0 m=0 n=0
el il Nl
= b2 Z

[e=]

r=0 m= n=0
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With M = LNbfrJ, the sums over m and n are equal to

ii(m—nﬁz?iimQ—Qiimn

m=0n—0 m=0n—0 =0 11—=0
—9 (%M‘* + O(M3)> i GM‘* + O(M3)> (4.7)
= (éM4 + O(M3)> .

Combining (4.7) into (4.6) we find that

N*
> (wj—v)’ = =+ O(V?).
Ogvj,ijN 6b (48)
bl(vj—wy)

On inserting this estimate in (4.5), we obtain
d—1 N4 5
’ — +O(N — 4+ 0O(N

o i 10 (1 co(2)) (49)

6-#0 & bl
N2d+2 [ 1 NG dN b \F
=549 (@”(W) > () (%) )

Here the interior sums are

S () o) e

b—1 O (£) if d > 3.

Introducing this estimate in (4.9) and the result in (4.3) we summarize in the next lemma
the estimate obtained for A,;s(d, N).

Lemma 4.1. We have

dN2d+2 . o
Ayi(d, N) = § D (1ro(55%)) a2 (4.10)
Soe 1L+O(R)  ifd=s3.

Taking into account the size of the cardinality of 2 evaluated in Lemma 3.1 into (4.10),
it yields the following simple estimate for A;s(d, N).

Lemma 4.2. There exists an absolute constant C1 > 0, such that for all d > 2 and all
N > 3d, we have

dN? ClNIOgN ’ifd = 2,
Apis(d,N) — | < (4.11)
6 CLd2N ifd > 3.
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5. THE SECOND MOMENT ABOUT THE MEAN

The second moment about the mean A,;s(d, N) is the average of the squares of the differ-
ences between the expected and the true distance between the pairs of points from W that
are visible from each other, that is,

My s (d, N) #Q SN v w) — Avis(d. )| (5.1)

veW wew
(v,w)eN

Replacing the coprimality condition by means of the characteristic function (3.1) and chang-
ing the order of summation, we have

My i (d, N) #QZ’U SN PPw,w) — Avis(d. N

veW wew
bl (v1—w1)

bl (vg—wq)

Next, by expanding the square it yields

M2 is(d, N) = Qz,u Z Z 04(v,w)

veWw wew

bl (v1—w1)
bl(vg—wq)
N
2AUiS(d7N 2
BT Do)y Y Vvw)
b=1 veW wew
bl(v1 7wn) (5.2)
bl(vg—wq)
N
ms ZM Z Z
b=1 veW wew
b|(1)1:w1)
bl(vg—wq)
s = A2 (d )
_#Q 'UZS V1S bl .

Here we have denoted by Y,;s the multiple sum over v and w from the first row of rela-
tion (5.2) and have taken into account the fact that the term from the second row is equal

—2A2, (d,N), while the term from the third row is equal to A2, (d, N). Next, changing
the order of summation, we split ¥,;s into d? similar sums H .k

N d d d
Spis =y pub) >, Y Z =) (wr =) =YD Hy,

b=1 veW wew j=1 :1 j=1k=1 (5.3)

b\(vl_fwl)

bl(va—wa)

where
Ha=You) Y Y (v =)

b=1 vEW  weWw (5.4)

bl (v1—w1)

bl (vg—wq)
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Now fix j # k. In each H;j the summand depends only on four of the 2d variables

Vlyee, Vg, W, ..., Wy, SO that
3 1>.
<0§U37ws§N (55)

_ Y . N2 2
Hj,k—Zu(b)< Y () <wk—vk>)
b=1 1
i bl (vs —ws)

:&

0<v;j,w; <N 0<vg, wEp <N
bl(vj—w;)  bl(vg—wy)

» »®
ORI

Since the products count the number of terms in some arithmetic progressions and are
equal, we derive that

N N2 d—2 ) )
Hj,= ;u(b) (T - O(N)> > > (wy—v)(wp —vy) (5.6)

0<vj,w; <N 0<vg,wi <N
bl(vj—w;)  bl(vpg—wy)

By relation (4.8), we find that the interior sums are

8

N
Z Z (wj_vj)2(wk_vk)2:W-ﬁ-o(]\ﬂ/b). .
OS'UJ',’LUJ'SN OS’l}k,’wkSN ( ° )
bl(vj—w;)  bl(vk—wg)

On combining (5.7) and (5.6), it follows that
N d—2
> N2 NS 7

S o)’

(5.8)

Following the reasoning from (4.9) and the relation that follows, we obtain the following

estimate
N2d+4 1 N . o
36C(d) <1+O<Ofg\f )) ifd=2
H]’k - N2d+4 d . (59)
36¢(d) (1+0(%)) if d > 3.
If j = k, adapting the same steps after relation (5.4) we obtain the upper bound
Hj;=O(N*) for 1 <j<d. (5.10)

Then on inserting (5.10) and (5.9) into (5.3), yields

d2N2d+4 1 d
S = Gz (140 (7)) (511)

On combining (5.11), (5.2), Lemma 3.1 and Lemma 4.2, we obtain the following result.

Lemma 5.1. There exists an absolute constant Cy > 0, such that for all d > 2 and all
N > 3d, we have

Ma,vis(d, N) < Co(dN* + d*N?). (5.12)
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6. EFFECTIVE RESULTS AND THE PROOFS OF THEOREMS 1, 3 AND COROLLARY 1

We scale the bound for 9y 4is(d, N) from Lemma 5.1 by d?N*, in order to have all
spacings between points measured by the normalized distance situated in the interval [0, 1].
Note first that for any d > 2 and any N > 3d, we have

mQ,vis(da N) < 02 <l d) )

d2N4 d' N

Then, on combining the above inequalities with Lemma 4.2, there is an absolute constant

C3 > 0 such that
1 d
# Z <ade——> SC?’(TLN)’ (6.1)

Now, for any parameters a,7 > 0, imposing supplementary conditions on the summation,
we find the following lower bounds of the left-side term of the inequality (6.1):

o X (iew ) =gs ¥ (e g)

(6.2)
1 1
2 #Q Z 272
(v,w)eN
Di(v,w)fazﬁ
Then, on combining (6.1) and (6.2), we find that
—#Q (v,w) €Q : |05(v,w) >l oo (lyd (6.3)
#Q d\v, W =T = d"N
Now, since
02(1)11;)—1' (v, w) — '(D v, w 4—L>>1 (v, w) — '
R I VeI V6 = VBl Vel

by sharpening the restriction in the definition of the set on the left side of (6.3), the set
remains with fewer elements, so that with a = v/6, we derive that

ot {wen:

In particular, this proves Theorem 1.

2a(v, w) — %‘ > %} < 6C3T? (é - %) : (6.4)

More generally, we consider the set Qg of K-polytopes P = {ws,...,wxg} C W the
property that any of its two vertices are visible from each other. Then Corollary 1 follows
from the following more general statements.

Theorem 5. There exists an effectively computable absolute constant Cy > 0 such that for
any integers d > 2, N > 3d, K > 2 and any real T > 0, we have

1 1 1 s o (1 d
_—. Qr — > V< OUTPKA [ =+ = ).
0k #{{wh ,wir} C Qk 19%1;?%}( Vi(Wy,, wy,) \/6‘ = T} < Cy <d + N
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Corollary 2. Letn € (0,1/4) be fized. Then, there exists an effectively computable absolute
constant Cs > 0 such that for any integers d > 2, N > d?, 2 < K < d"/?=2" we have

o1 ;
V6 dr 6 dn Zl_d_;f
foralll<m#n<K

D my n e
#%# {wla"'awK}CQK : d(w w)
K

For the proof of Theorem 3 one can follow the path from Sections 4 and 5 with one
component v = 0 fixed in the involved summations. One finds that almost all normalized
distances between the origin and the components of points in  are close to 1/ V3.

On the other hand, we know that, according to Theorem 1, almost all normalized dis-
tances between v and w with (v, w) € Q are almost always almost equal to 1/y/6. Therefore,
almost all triangles with vertices 0, v, w with (v, w) € Q are almost isosceles having the
normalized edges almost equal to 1/v/3,1/v/3,1/v/6 and Theorem 3 follows immediately.

7. THE PROBABILITY THAT A K-POLYTOPE IS SELF-VISIBLE

Let K > 2 be a fixed integer. The set of self-visible K-polytopes with vertices in the
lattice W is

Qr ={P ¢ WHE . @' v” visible from each other, for all v',v” € P}. (7.1)

Our object here is to see if there is a tendency of the probabilities that a K-polytope is
self-visible as N gets large. We show that if d and K are kept fixed, the limit of the ratios

. Qk
Prob(d,N,K) = ]\}1_1)1100 %
does exist.

If K = 2, then Q coincides with 2, but the Mobius summation method used in the
proof of Lemma 3.1 to estimate #£2s is not suitable for larger K, because of the size of the
multitude of new terms introduced. We need to have a better control on the large divisors,
so we will proceed accordingly.

Denote a generic polytope by P = {v1,...,vx} and the coordinates of its vertices by
v; = (vj1,...,vjq) for 1 < j < K. Note that, for each positive integer m, we have the
following inequality

WZ
#{(vj,vr) €EW? ¢ v # v, m|ged(vj1 — Uty Vi — Vka) } < #:n—d’ (7.2)

because, say, vj 1, ...,v;q are free and then each of vy 1, ..., v} 4 belongs to the corresponding
shifted arithmetic progression of ratio m. Also, if m > N, the left side of (7.2) equals zero,
since there are no pairs to count.

Fix M > 0, a parameter to be chosen later, and sum the inequalities (7.2) for all m > M.
Then the size of the resulted sum is

#W? #W?
= Z ma :O<Md—1>'

As a consequence, any such subsum is also < #W?2/M9~!. In particular, the sum over all
positive integers m that have at least one prime factor larger than M. This holds for each
pair (v;,vy), and there are K (K —1)/2 such pairs with 1 < j < k < K. As a consequence,
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it follows that
q|ged(vj1 — V155 V5d — Vkd)
+# ('vl,...,vK)eWK . for some prime ¢ > M, <
forsome 1 <j< k<K

K24 Wk

e (7.3)

In other words, with the exception of at most O (Kjﬁk\f() K-tuples (vy,...,vk), for all

the other polytopes P = (v1,...,vg) € WX the condition P € Qy is equivalent to the
condition that P € Qg (M), where
ged(B,vj1 — Vg 1y-..50jd — Vg,q) = 1

(B.0; ! ) } (7.4)

— K .
QK(M).—{(’Ul,...,’UK)GW : forall1<j<hk<K

where B is the primorial number

B := H p.

p prime
p<M

Therefore, the probability that a polytope P € WX has all vertices visible from each other

1S
#Qx  #Qx (M) L0 (KQ#WK> .

= 7.5
#WK #WK Md-1 ( )
By the Prime Number Theorem, we know that B = e(1+e(1)M
choose M of size log N to assure that B < N.

Next, we split the interval [0, N| in subintervals of size B. Accordingly, the cube [0, N]¢
is split in boxes of side length B. The number of these boxes is

, so that we will eventually

N ¢ Nd AN
The number of boxes = (E + 0(1)> = 5a +0 (W) . (7.6)

Observe, by the definition, that Qx (M) has the same number of elements in each such box.
Denote this number by H(B), that is,

H(B) :==#{(v1,...,v5) € Qg(M) : 0<v;; <Bforall 1<j<K,1<1<d}. (7.7)

Then, by (7.6) and (7.7), as each vy,...,vx runs over each box, it follows that

o - ) (3040 (V) XIE) (o (HBYY

Since H(B) < B and since #WH = (N + 1) = N9 (1 4 O(dK/N)), it follows that

#Qr (M H(B dK B H(B dK B
#I)ZEK ) _ B(dK) (1 +0 <—N >> = B(dK) +0 <—N > : (7.9)
On combining (7.8) and (7.5), it yields
Q H(B dK B K?
IWII(( = B(dK) +0 (T) +0 (W) : (7.10)

Now, for each prime p | B, consider the analogue of the set Qg (M) defined by (7.4). Its
cardinality is analogous to H(B) and is given by
ged(p,vj1 — Vs -5 Vjd — Uga) = 1
H(p) :=#< (v1,...,vx) eWE: forall1<j<k<K, . (7.11)
0<wvj;<p-—1lforall1<;j<K,1<1<d
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Note that each (v1,...,vx) € WX that contributes to H(B) produces, via reduction mod-
ulo p, a K-tuple that contributes to H(p), and this holds for each prime divisor p of B.
Conversely, by the Chinese Remainder Theorem, each collection of K-tuples, with one K-
tuple for each prime divisor of B, produces a unique K-tuple that is counted in H(B). In

conclusion,
II 2w = ] EW®
p prime p prime
p|B p<M
which combined with (7.10) implies
#Q H(p) dKB K?
K = 11 s +O\ ) +0 30 )- (7.12)
Tpu
Next, let us observe that since each of the coordinates vj1,...,v;4 and vg1,..., V%4
belongs to {0,1,...,p—1}, the difference v;; —v 1 cannot be divisible by p unless v;1 = vy 1,
and similarly for all differences vj2 — vg2,...,v;4 — vi,q. As a consequence, the condition
ged(p, vj1 — Vg1, .-, Vjd—Vka) = 1 from the definition of H(p) given by (7.11) is equivalent
to the condition that the d-tuples (vj1,...,vjq) and (v 1,...,vxq) are distinct. In other
words
viZzuv,forl <j#k<K,
H(p) = K,
() #{(’01, UK) €W Ogvﬂ§p—1f0ralll§j§Kand1§l§d}

Here, there are exactly p¢ choices for v;. Then, for each fixed vy, the only restriction on vs
is to not coincide with vy, so that there are p? — 1 choices for vo. With v; and vy fixed,
the only restrictions on vs are vs # v; and v3 # s, so that there are p? — 2 choices for vs.
And so on, up to v, for which there are p? — (K — 1) choices. In conclusion

H(p) = p* <pd—1> (pd—(K—l))-
On combining this with (7.12) we see that

B I () (-5 o (4) o).

P prime
p<M

The finite product over primes in (7.13) can be replaced with the completed product over
all primes, with a change in the error term that is swallowed inside the last error term.

Indeed, if we denote
1 K-1
Aaxc(M)i= |1 (1_1?)“(1_ pe >

p prime
p>M

an infinite product that converges if d > 2, then

ogAax (M) = 3 3 1og<1__> D o(%).

p prime 1<k<K-—1 p prime 1<k<K-—1
p>M p>M

This implies
k K? K? K?
|log Ag i (M < Z Z E>:O< Z F>:O<Z W>:O<—Md1>'

p prll\r/lne 1<k<K-1 p pri]\r/[ne m>M
p> p>
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a1 = o (0 5)) =10 (1),

Therefore, if we denote by Ag g the complete infinite product,

Mar= ] <1_]%>...<1_Kpd1>, (7.14)

p prime

It follows that

which is constant for any fixed d and K, we have

1 K-1\  Agx K?
H (1_ﬁ>...<1_ . >_Ad,K(M)_Ad7K+O<Md_1>, (7.15)

p prime
p<M

where the implied constant in the big O estimate is absolute, because Ago = ¢ (d)~t for
d > 2 and, for any fixed d, the sequence {Ag x }k>2 is decreasing.
Then, inserting (7.15) and (7.14) in (7.13), we arrive at the following result

#Q) 1 K—-1 dKB K?
v = 11 <1_E>'”<l_ e >+O<T>+O<W)'

p prime

We now take B to be the largest primorial that is < /N, which means that M ~ (log N)/2.
Then,

#Q 1 K—-1 dK 202
e = I () (-5 ) o () o (). oo

p prime

and the constants implied in the big O terms are absolute. This concludes the proof of
Theorem 2.

8. PROBABILISTIC INTUITION

In this section, we show how to interpret the constant 1/4/6 in Theorem 1 via probabilistic
intuition. Similar arguments can give intuition for some of the other particular constants
we obtain in this paper. We recall

) d 1/2 L e o2 1/2
— 2 _ n n
0u(w.) = gz ( S =) - (aZ (% - %) ) ’
n=1 n=1
As N — oo, if we select v uniformly at random from W (or, indeed, the subset of integer
vectors visible from the origin in W), the normalized vector v/N becomes equidistributed
in the hypercube [0,1]¢. That is,
Z (5,0/]\[ — m,

veWw

where m is the standard Lebesgue measure on [0, 1]%, and the convergence is in the weak*-
sense as N — oo. The same result is true with W replaced by the subset of primi-
tive vectors in W. Thus, to try and get intuition about the d — oo behavior of our
normalized distance 04(v,w), we can consider the following probabilistic analogue. Let
X = (Xy,...Xy),Y = (Y1,...,Yy) be independent random vectors chosen according to
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Lebesgue measure on the hypercube [0,1]4. Thus Xi,..., X4 and Y7,...Yy are indepen-
dent, identically distributed (i.i.d.) uniform [0, 1] random variables, and also indpendent
from each other. We define

Thus

L 1/2
XY)= (= X, —Y,)?
04(X,Y) d;( )
1 d
a?l(an):EZ(Xn_Yn)Q
n=1

is the sample mean of d independent random variables of the form (U — V)2, where U
and V are independent uniform [0, 1] random variables. By the strong law of large numbers,
as d — oo, this converges with probability 1 to the mean

BE((U-V)?) = /01 /Ol(u —v)%dudv = 1/6.

That is, as d — oo, with probability 1,

SO

2(X,Y) — 1/6,

2(X,Y) — 1/V6.

To be clear, this does not give a direct proof of Theorem 1, since there are tricky issues with
the interchange of limits. Similar arguments can yield intuition for the other constants in
our results.
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