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Abstract

Motivated by the study of the growth rate of the number of geodesics in flat surfaces with
bounded lengths, we study generalizations of such problems for K3 surfaces. In one gener-
alization, we give a result regarding the upper bound on the asymptotics of the number of
classes of irreducible special Lagrangians in K3 surfaces with bounded period integrals. In
another generalization, we give the exact leading term in the asymptotics of the number of
Mukai vectors of semistable coherent sheaves on algebraic K3 surfaces with bounded central
charges, with respect to generic Bridgeland stability conditions.
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1 Introduction

1.1 Motivation and problems

For a Riemann surface, a holomorphic 1-form � (also called an Abelian differential) with
finitely many zeros endows the surface a flat metric given by g = 1

2��, with conical
singularities at the zeros of �, where the cone angles are integer multiples of 2π . The
Abelian differential also gives an area form ω = i

2� ∧ �. Such flat surfaces have nontrivial
but restricted holonomy that the parallel transport of a vector along a small closed path around
a conical singularity turns the vector by exactly the cone angle. Studying flat surfaces reveals
many interesting mathematical phenomena as reviewed in [26]. We are interested in studying
generalizations of problems on flat surfaces to other settings.

Having a metric, it is natural to study closed geodesics and saddle connections, which
are geodesic segments connecting pairs of conical points. A geodesics can be described as
a curve on which Im(eiφ�) restricts to zero, for some angle φ. Indeed, in a local coordinate
chart away from the zeros of �, we can express � as � = dz, then straight lines of angle φ are
the loci where Im(eiφz) = 0. For a flat surface (S,�) with area normalized to one, one of the
interesting problems is to understand the growth rate, as R → ∞, of the counting function
NS,�(R) of the number of saddle connections, or the number of maximal cylinders filled with
closed geodesics, of length at most R. This has been intensively studied. Masur [16] showed
the existence of quadratic upper and lower bounds for NS,�(R) for all flat surfaces, and
Eskin–Masur [8], building on work of Veech [24], showed the exact quadratic asymptotics
for almost all flat surfaces with respect to the natural Masur–Smillie–Veech measure on the
space of quadratic differentials. More recently, Eskin–Mirazkahani–Mohammadi [9] showed
a Cesàro-type quadratic asymptotic for every flat surface.

One example of generalization of geodesics on flat surfaces is to consider special
Lagrangian submanifolds in Calabi-Yau manifolds. A Calabi-Yau manifold of complex
dimension n is a complex Kähler manifold that admits a nowhere vanishing holomorphic
top form (i.e. n-form). By [25], a compact Calabi–Yau manifold admits a Ricci-flat Kähler
metric. While this is not an exact higher dimensional generalization of flat surfaces, it pro-
vides a class of examples in a similar spirit since the Ricci-flat metric also has nontrivial
but restricted holonomy. In this paper, we specifically look at K3 surfaces. A K3 surface is
a compact complex surface that admits a nowhere vanishing holomorphic 2-form � and is
simply connected. By [19], all K3 surfaces are Kähler, so they are Calabi-Yau.

Given a Calabi-Yau manifold X of real dimension 2n with a Ricci-flat Kähler form ω, this
symplectic form ω is used to define Lagrangian submanifolds, which are real n dimensional
submanifolds on which ω restricts to 0. (On a Riemann surface, any curve is a Lagrangian.)
The holomorphic top form � is used in addition to define special Lagrangian submanifolds
similar to how it is used to define geodesics on Riemann surfaces. A Lagrangian submanifold
L is special of phase φ if Im(eiφ�)|L = 0. Analogous to the counting function of geodesics
on a flat surface, here we can consider a lattice theoretic counting function of irreducible
special Lagrangian (sLag) classes with bounded period integral

SLω,�(R) = #
{
γ ∈ Hn(X , Z) : ∃ irreducible sLag L s.t. [L]Pd = γ, |γ.�| ≤ R

}
, (1.1)

where [L]Pd denotes the Poincare dual of the homology class of L , and γ.� denotes the
intersection pairing which is the period integral

∫
L

�. In this paper, we focus on K3 surfaces
where n = 2.
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Let X be a K3 surface with a Ricci-flat metric g. There is a 2-sphere family (X , Jt ), t ∈ S2,
known as the twistor family, of K3 surfaces that are all compatible with the metric g. Their
associated Kähler forms ωt , and the real and imaginary parts of their (normalized) nowhere
vanishing holomorphic 2-forms �t , all lie in a positive definite 3-plane P ⊂ H2(X , R).
The counting function of interest for special Lagrangian classes in this twistor family S2(P)

formulation is

SL P (R) = #
{
γ ∈ H2(X , Z) : ∃ωt ∈ S2(P), L irreducible sLag

w.r.t. (ωt ,�t ), [L]Pd = γ, |γ.�t | ≤ R
}

. (1.2)

As pointed out in [11], the Riemann surface analogue of the twistor sphere is a circle in
a cylinder, for which rotating along a circle does not change the metric nor the complex
structure. The difference for a K3 surface is that the complex structure changes as we vary
along the twistor sphere. The work of [11, 14] study the count of special Lagrangian tori in
K3 surfaces in this twistor formulation, and [14] also explains the relevance to physics. Very
briefly, special Lagrangians in K3 correspond to BPS states via compactifying M-theory on
K3, and their count is relevant to understanding the Bekenstein–Hawking entropy of simple
black holes via counting microstates [22].

Another generalization of geodesics that we can consider are semistable coherent sheaves,
which correspond to Lagrangian submanifolds via homological mirror symmetry (HMS).
The HMS conjecture was first formulated by [13] to fully capture the phenomenon of mirror
symmetry, which is a nontrivial duality between complex geometry and symplectic geometry,
as an equivalence of triangulated categories. For a mirror pair of Calabi-Yau manifolds
(X , ωX , JX ) and (Y , ωY , JY ), it predicts the following equivalences

Dπ Fuk(X , ωX ) ∼= DbCoh(Y , JY ) and DbCoh(X , ωX ) ∼= Dπ Fuk(Y , JY ), (1.3)

where Dπ Fuk is the split-closed derived Fukaya category and DbCoh is the bounded derived
category of coherent sheaves. For K3 surfaces, HMS is proved in the case of Greene-Plesser
mirrors by [21].

The Fukaya category depends on the symplectic structure but not on the complex struc-
ture, and its objects are Lagrangian submanifolds (other objects that might not be geometric
are added in the derived category). As we mentioned in the above, if in addition we consider
a complex structure and a holomorphic top form, we can define special Lagrangian submani-
folds that are the stable objects. On the other hand, the category of coherent sheaves depends
on the complex structure but not on the symplectic structure. If in addition we consider the
symplectic structure, we can define stable coherent sheaves. For example, for a vector bun-
dle E on a complex curve, its slope is defined to be μ(E) := deg E/rkE , and E is stable
(semistable) if every subbundle F satisfies μ(F) < μ(E) (μ(F) ≤ μ(E)). These consider-
ations are behind Bridgeland’s definition of stability conditions building on Douglas’ work
[5, 6] on �-stability for D-branes.

The space of Bridgeland stability condition Stab(D) is defined [3] on a triangulated cat-
egory D, e.g. the derived category of coherent sheaves D = DbCoh(X) for a Calabi–Yau
manifold X . When X is an algebraic K3 surface and D = DbCoh(X), Bridgeland [4]
gives a detailed description of one connected component of Stab(D). Denote by K (D) its
Grothendieck group consisting of objects in D up to some equivalence relations given by
the triangulated structure. For an element E ∈ K (D), its Mukai vector v(E) is a cohomol-
ogy class element in H∗(X , Z) (see Eq. (2.16) for a more precise definition). The set of
Mukai vectors are in bijection with the numerical Grothendieck group N (D), which is the
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Table 1 Analogy with flat surfaces

Flat surfaces Calabi–Yau manifolds Triangulated categories

Abelian differentials Holomorphic top forms Stability conditions

Geodesics Special Lagrangians Semistable objects

Lengths Period integrals Central charges

Table 2 Correspondence between mirror pairs of K3 surfaces (X , Y )

K3 surface X K3 surface Y

Symplectic form ωX , which defines Lagrangian Holomorphic 2-form �Y , which gives D
bCoh(Y , �Y )

Holomorphic 2-form �X , which defines special
Lagrangian

Symplectic form ωY , which gives σω ∈ Stab(Db(Y ))

∫
− �X Zσω (−) = (exp(ω), −)Muk

quotient K (D)/ ker χ(−,−), where χ is the Euler pairing. The space of Bridgeland stabil-
ity conditions Stab(D) consists of all pairs σ = (Zσ , Pσ ), where Zσ : N (D) → C is a
group homomorphism called the central charge and Pσ (φ) is a full additive subcategory of
D consisting of σ -semistable objects of phase φ for each φ ∈ R (together with a few axioms
that these need to satisfy). In this setting, the counting function of interest is the number of
σ -semistable Mukai vectors with bounded central charge

Nσ (R) = #{γ ∈ N (D) : |Zσ (γ )| ≤ R and ∃ σ -semistable object E with v(E) = γ }.
(1.4)

We summarize in Table 1 the analogies between geodesics and saddle connections on flat
Riemann surfaces, special Lagrangians in Calabi–Yau manifolds, and semistable objects in
triangulated categories. We summarize in Table 2 the correspondence between a mirror pair
of K3 surfaces.

1.2 Results

We begin by stating our result on the growth rate of of the number of semistable classes
Nσ (R) as introduced in Eq. (1.4). In general, [3] showed that Stab(D) is a complex manifold,
with a left action by the group of triangulated autoequivalences Aut(D). There is a subset
U (D) ⊂ Stab(D) known as the geometric stability conditions (see Definition 2.1), and denote
by Stab†(D) the connected component of Stab(D) that contains U (D). For D := DbCoh(X)

being the the derived category of coherent sheaves on an algebraic K3 surface, [4] showed
that there is some autoequivalence of D that maps Stab(D)† into the closure of a subset U (D).
Therefore, for almost every σ ∈ Stab†(D), we can find a representative σ ′ ∈ U (D) such that
Nσ (R) = Nσ ′(R). Furthermore, there is a subset V (D) ⊂ U (D) that is the set of geometric
stability conditions of phase 1 (more precisely defined in Eq. (2.25)). It is shown in [4] that
for any σ ′ ∈ U (D), Zσ ′ can be obtained from Zσ , for some σ ∈ V (D), via a GL+(2, R)

action. More precisely, there is a g ∈ GL+(2, R) such that Zσ ′ = Zσ g, where g acts by
multiplication to the image of Zσ in C ∼= R2. Any element of GL+(2, R) = R+ × SL(2, R)

is a composition of three different types of elements:
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• g ∈ R+,
• g ∈ SO(2, R), i.e. in the rotational part of SL(2, R), and

• g =
(

1 κ

0 λ

)
is a shear by κ + iλ.

For a geometric stability of phase 1, its central charge is of the form Zσ = exp(B + iω),
where B, ω are real divisor classes and ω is ample.

Theorem 1.1 Let X be a complex algebraic K3 surface. Then for almost every σ ∈
Stab†(Db(X)),

Nσ (R) = C(σ ) · Rρ+2 + o(Rρ+2),

where ρ is the Picard rank of X, and C(σ ) is a constant depending on σ . For σ ∈ V (D),

C(σ ) =
2π (ρ+2)/2

(ρ + 2)
(
ρ
2 + 1)(ω2)(ρ+2)/2

√
|DiscNS(X)|

.

For σ ′ ∈ U (D), Zσ ′ = Zσ g for some σ ∈ V (D) and g ∈ GL+(2, R). There are three cases

• g ∈ R+, then C(σ ′) = C(σ )

gρ+2 .

• g is in the rotation part of SL(2, R), then C(σ ′) = C(σ ).

• g is a shear by κ + iλ, λ > 0, then

C(σ ′) =
πρ/2

∫ 2π

0

(
cos2 θ +

1

λ2
(sin θ − κ cos θ)2

)ρ/2

dθ

(ρ + 2)

(

ρ
2 + 1

)
λ(ω2)(ρ+2)/2

√
|DiscNS(X)|

.

One can see that the coefficient C(σ ) of the leading term does not depend on B. As stated
in the theorem, this formula applies to “almost every”, or generic, stability condition, which
make up the complement of a measure zero set (more precisely, see Definition 3.1 and the
paragraph below that).

Now we turn to the counting function SLω,�(R) of special Lagrangian classes as intro-
duced in Eq. (1.1) (with n = 2 for K3 surfaces). Denote by Lag(X , ω) := H2(X , Z)∩[ω]⊥ ⊂
H2(X , Z) be the lattice of consisting of cohomology classes of Lagrangian submanifolds
(see the paragraph containing Eq. (2.33) for more explanation). We have the following result.

Theorem 1.2 Assuming Lag(X , ω) has signature (2, 19), then

SLω,�(R) ≤ C(ω,�)R21 + o(R21)

where

C(ω,�) =
2π21/2

21
( 21
2 )K

21/2
�

√
|DiscLag(X , ω)|

.

Note that Lag(X , ω) has signature (2, 19) if ω is a rational Kähler class, so the statement
holds in particular for polarized K3 surfaces.

In the twistor formulation as introduced in Eq. (1.2), we have the following result.

Theorem 1.3 Let P be a positive definite 3-plane in H2(X , R) parametrizing a twistor family

{(X , ωt ,�t )}t∈S2(P). Then

SL P (R) ≤ C · R22 + o(R22)

where C is a constant independent of the choice of the twistor family S2(P).
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2 Background

2.1 Lattice terminology

A lattice L is a finitely generated free Z-module, together with a nondegenerate symmetric
bilinear form (−,−) : L×L → Z. With respect to a basis on the Z-module, the bilinear form
can be represented by a matrix. The signature (n+, n−) of L is the number n+ of positive
and the number n− of negative eigenvalues of that matrix. The signature is independent of
the choice of basis.

2.2 K3 surfaces

A K3 surface is a compact complex surface X that admits a nowhere vanishing holomorphic
2-form and is simply connected. Denote the complex structure of X by J , and let �J be
a nowhere vanishing holomorphic 2-form, whose choice is unique up to scaling. In some
occasions in this paper, we would like to only consider algebraic K3 surfaces, which coincides
with the subset of all complex analytic K3 surfaces that are projective.

2.2.1 K3 lattice

All K3 surfaces are diffeormorphic, so they have the same cohomology groups, which are
H0(X , Z) ∼= H4(X , Z) ∼= Z, H1(X , Z) ∼= H3(X , Z) = 0, and H2(X , Z) ∼= Z22. Because
H2(X , Z) is free, the intersection pairing,

(−.−) : H2(X , Z) × H2(X , Z) → Z, (2.1)

given by the cup product is a nondegenerate symmetric bilinear form. We will always use
a.b or (a.b) to denote intersection pairing.

A K3 lattice is H2(X , Z) together with the intersection pairing above. For any K3 sur-
face, there is a choice of basis for H2(X , Z) with respect to which the intersection pairing
corresponds to a block matrix of the form

� := U⊕3 ⊕ (−E8)
⊕2, (2.2)

where U represents Z2 ∼= Z〈e〉 ⊕ Z〈 f 〉 with the bilinear form given by e2 = f 2 = 0 and
e. f = 1. So U is called the hyperbolic plane, and it has signature (1, 1). The E8 lattice is
positive definite, so altogether � has signature (3, 19). An isometry

ϕ : H2(X , Z) → � (2.3)

induced by choosing a basis is called a marking of X .

2.2.2 Weight-two Hodge structure and the period domain

The intersection pairing on H2(X , Z) extends complex linearly to the intersection pairing
on H2(X , C) = H2(X , Z) ⊗Z C that is the same as

(−.−) : H2(X , C) ⊗ H2(X , C) → C, a.b =
∫

X

a ∧ b. (2.4)
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The isometry ϕ : H2(X , Z) → � extends to

ϕC := ϕ ⊗ C : H2(X , C) → �C := � ⊗Z C. (2.5)

Because K3 surfaces are Kähler [19], we have the following weight-two Hodge decom-
position

H2(X , C) = H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X). (2.6)

This decomposition is determined by the complex line H2,0(X) ∼= C[�J ]. This is because
H0,2(X) is complex conjugate to H2,0(X), and H1,1(X) is orthogonal to H2,0(X)⊕H0,2(X).
We have h2,0(X) = h0,2(X) = 1 and h1,1(X) = 20.

Two K3 surfaces, X1 and X2, are said to be Hodge isometric if there is an isomor-
phism φ : H2(X1, Z) → H2(X2, Z) such that φ preserves the intersection form and
(φ ⊗ C)(H2,0(X1)) = H2,0(X2), hence preserving the weight-two Hodge structure. Torelli
theorem for K3 surfaces says that X1 and X2, are isomorphic as complex manifolds if and
only if they are Hodge isometric. This is proved by [17] in the algebraic case and by [2] in
the non-algebraic case, and see [12, Chapter 2] for an exposition.

Note that �J satisfies �J .�J = 0 and �J .�J > 0. We call the following set the period
domain,

�(�C) := {[�] ∈ P(�C) : �.� = 0, �.� > 0}
= {[�] ∈ P(�C) : K� = (Re�)2 = (Im�)2 > 0, (Re�).(Im�) = 0}. (2.7)

The map X �→ [ϕC(H2,0(X))] ∈ �(�C) is called the period mapping, and it takes a (2, 0)-
form � to its marking ϕC(�) ∈ �C, which corresponds to the line [ϕC(�)] ∈ P(�C). This
map is surjective but not injective on the moduli space of marked K3 surfaces [12, Chapter
6].

2.2.3 Néron–Severi lattice

For compact Kähler manifolds, the image of the first Chern class map c1 : Pic(X) →
H2(X , C) is known as the Néron–Severi group, NS(X), i.e. numerical classes of line bundles
classified by the first Chern class. By Lefschetz theorem on (1, 1)-classes, this image is equal
to

H1,1(X , Z) := H1,1(X) ∩ Image
(
H2(X , Z) → H2(X , C)

)
. (2.8)

The kernel of this map is H1(X , OX ), which is 0 for K3 surfaces, so this map is injective.
Hence for K3 surfaces, the c1 map gives the identification

Pic(X) = NS(X) = H1,1(X , Z). (2.9)

Because H1,1(X) has dimension 20, we get that the Picard rank, ρ(X) := rk(Pic(X)), is in
the range 0 ≤ ρ(X) ≤ 20. For projective K3 surfaces, 1 ≤ ρ(X) ≤ 20.

Hodge index theorem says that for a compact Kähler surface, the intersection pairing

H2(X , R) × H2(X , R) → R, a.b �→
∫

X

a ∧ b (2.10)

restricted to H1,1(X , R) has signature (1, h1,1(X) − 1). One can also define an intersection
pairing

Pic(X) × Pic(X) → Z, L.L ′ =
∫

X

c1(L) ∧ c1(L ′). (2.11)
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A line bundle L ∈ Pic(X) is called numerically trivial if L.L ′ = 0 for all line bundles L ′.
For complex projective surfaces, a line bundle is numerically trivial if and only if c1(L) = 0.
So for projective K3 surfaces, since the kernel of c1 is trivial, only the trivial bundle is
numerically trivial. Hence for projective K3 surfaces, the intersection pairing (2.11) on the
Néron-Severi group is nondegenerate and has signature (1, ρ(X) − 1).

2.2.4 Twistor family

Let (X , J ) be a K3 surface, by [25], any Kähler class in H1,1(X , R) ⊂ H2(X , R) ∼= �R has
a unique representative ω whose associated metric g(·, ·) = ωJ (·, J ·) is Ricci-flat, i.e. with
vanishing Ricci curvature.

Denote by � a nowhere vanishing holomorphic 2-form. Note that Re� and Im� are
orthogonal to ω because � ∈ H2,0(X), � ∈ H0,2(X), and H2,0(X)⊕ H0,2(X) is orthogonal
to H1,1(X). Also, as in Eq. (2.7), (Re�)2 = (Im�)2 > 0 and Re�.Im� = 0. So

P := Span{Re�, Im�,ω} ⊂ H2(X , R) ∼= �R (2.12)

is a positive-definite 3-plane in �R
∼= R3,19. If we assume the normalization dvol := 1

2�∧�

and
∫

X
dvol = 1, then this is equivalent to K� = (Re�)2 = (Im�)2 = 1. If furthermore

the Kähler class [ω] we have satisfies
∫

X
ω2 = 1, then {Re�, Im�,ω} ⊂ S2(P) form an

orthonormal basis for P .
The Ricci-flatness means that the holonomy group of g is in SU(2). Because SU(2) is

isomorphic to the group Sp(1)of unitary quaternions, g is a hyperkähler metric. Consequently,
X admits a two-sphere S2 family, known as the twistor family, of complex structures that are
compatible with g and we now describe them. Denote by ωJ and �J the forms on (X , J ),
and assume they are normalized as above. Let ωK = Re(�J ) and ωI = Im(�J ). Let I be the
complex structure on X that is compatible with (g, ωI ), i.e. ωI (·, ·) = g(I ·, ·). Similarly, let
K be the complex structure compatible with (g, ωK ). With respect to I , �I = ωJ + iωK is a
holomorphic 2-form. Similarly, with respect to K , �K = ωI + iωJ is a holomorphic 2-form.
The complex structures I , J , K satisfies the quaternionic commutation relation I 2 = J 2 =
K 2 = I · J · K = −1. Then, any complex structure Jt , t = (x, y, z), in the following two
sphere

{Jt = x I + y J + zK | x2 + y2 + z2 = 1} = S2 (2.13)

is compatible with the metric g, i.e. g(·, ·) = g(Jt ·, Jt ·). For each t ∈ S2, denote by ωt the
associated Kähler form given by ωt (·, ·) = g(Jt ·, ·), and denote by �t a normalized nowhere
vanishing holomorphic 2-form with respect to Jt (there is a S1-worth of compatible choices
for such �t ). Then {ωt , Re�t , Im�t } ⊂ S2(P), for P in Eq. (2.12) and P is known as the
twistor plane.

Conversely, given any positive definite 3-plane P ⊂ H2(X , R), there is an associated
twistor family on X .

2.3 Coherent sheaves

In this section, we assume X is projective. Denote by D := DbCoh(X) the bounded derived
category of coherent sheaves on X .
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2.3.1 Mukai lattice

Denote by K (D) the Grothendieck group, which admits an Euler pairing

χ(E, F) :=
∑

j

(−1) j dim Hom j
D

(E, F). (2.14)

Serre duality implies that the Euler pairing is symmetric: χ(E, F) = χ(F, E).
The Mukai vector is a map

v : K (D) → H∗(X , Z) = H0(X , Z) ⊕ H2(X , Z) ⊕ H4(X , Z) (2.15)

given by

v(E) := ch(E)
√

td(X) = (rk(E), c1(E), χ(E) − rk(E)). (2.16)

The Hirzebruch-Riemann-Roch formula implies

χ(E, F) = −〈v(E), v(F)〉, (2.17)

where

〈−,−〉 : H∗(X , Z) × H∗(X , Z) → Z,

〈(r1, D1, s1), (r2, D2, s2)〉 = D1.D2 − r1.s2 − r2.s1
(2.18)

is the Mukai pairing. Notation-wise, we will always use (−.−) to denote the intersection
pairing and 〈−,−〉 to denote the Mukai pairing. Note that the Mukai pairing on H∗(X , Z)

restricted to H2(X , Z) is the same as the intersection pairing.
We call H∗(X , Z), equipped with the Mukai pairing, the Mukai lattice. According to

(2.17), the Mukai vector given by (2.16) is a map

v : (K (D),−χ(−,−)) −→ (H∗(X , Z), 〈−,−〉). (2.19)

The Mukai lattice is an extension of the K3 lattice on H2(X , Z) so that H0(X , Z)⊕H4(X , Z)

isometric to a hyperbolic plane. Hence, the Mukai lattice is isometric to

�Muk = U ⊕ � = U⊕4 ⊕ (−E8)
⊕2, (2.20)

which has signature (4, 20).
The numerical Grothendieck group is defined to be the quotient

N (D) = K (D)/ ker χ(−,−). (2.21)

By this definition, the Mukai pairing on N (D) is nondegenerate. When dimC(X) = 2, it is
known that the Chern character map, and so the Mukai vector map v, descends to a map on
N (D), and this map is injective. So it identifies N (D) with its image

(N (D),−χ(−,−)) ∼=
(
H0(X , Z) ⊕ NS(X) ⊕ H4(X , Z), 〈−,−〉

)
⊂ (H∗(X , Z), 〈−,−〉).

(2.22)

The numerical Grothendieck group with the Mukai pairing is a lattice with signature
(2, ρ(X)), where ρ(X) = rk(NS(X)) is the Picard rank.
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2.3.2 Stability conditions

The space of locally finite numerical Bridgeland stability conditions, Stab(D), on D :=
DbCoh(X) consists of all pairs σ = (Z , P), where

• Z : N (D) → C is a group homomorphism called the central charge, and
• P := {P(φ)}φ∈R is a collection of full additive subcategories of D, one for each φ ∈ R

(objects in P(φ) are called the σ -semistable objects of phase φ),

such that:

(1) if 0 �= E ∈ P(φ), then Z(E) ∈ R>0 · eiπφ ;
(2) P(φ + 1) = P(φ)[1];
(3) if φ1 > φ2 and E j ∈ P(φ j ), then Hom(E1, E2) = 0;
(4) (Harder-Narasimhan filtration) for each 0 �= E ∈ D, there exists a collection of triangles

0 E0 E1 E2 · · · Ek−1 E

B1 B2 Bk

with B j ∈ P(φ j ) and φ1 > φ2 > · · · > φk ;
(5) (support property) there is a constant C > 0 and a norm ‖ · ‖ on N (D) ⊗Z R such that

for any semistable object E , we have ‖E‖ ≤ C |Z(E)|.

Note that the support property implies the set {Z(E)} of central charges of σ -semistable
objects are discrete in C and has no accumulation point. Indeed, otherwise there would be a
sequence of classes [En] ∈ N (D) supporting σ -semistable objects such that limn→∞ |Z(En)|
is finite. Together with lim supn→∞ ‖[En]‖ = ∞, this contradicts with the support property.

There is a left action on Stab(D) by the group of triangulated autoequivalences Aut(D) of

D, and there is a right action on Stab(D) by ˜GL+(2; R) (the universal cover of GL+(2, R))
which descends to a GL+(2, R) action on Z : N (D) → (C ∼= R2) by post-composition. Note
that by the Gram-Schmidt procedure, GL+(2, R) deformation retracts onto SO(2, R) ∼= S1,
so π1

(
GL+(2, R)

) ∼= Z, with the generator of the fundamental group acting by e2π i .
The non-degeneracy of the Mukai pairing gives an identification

Hom(N (D), C) ∼= N (D)C := N (D) ⊗ C, Z �→ ϕ, Z(v) = 〈ϕ, v〉. (2.23)

Bridgeland [3] showed that Stab(D) has the structure of a complex manifold, and the forgetful
map,

π : Stab(D) → Hom(N (D), C) ∼= N (D)C, σ = (Z , P) �→ Z , (2.24)

gives a local isomorphism.
Of special interest is the subset U (D) ⊂ Stab(X) of geometric stability conditions.

Definition 2.1 A geometric stability condition is a σ ∈ Stab(X) for which all skyscraper
sheaves, Ox where x ∈ X , are σ -stable and of the same phase.

Note that U (D) is connected, due to [4, Proposition 11.2 and the discussion after Corollary
11.3]. Let Stab†(D) be the connected component of Stab(D) that contains U (D). Bridgeland
[4] showed that there is some autoequivalence of D that maps Stab†(D) into the closure of
U (D) ⊂ Stab†(D).
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Furthermore, [4] showed that for any σ ∈ U (D), there is a unique g̃ ∈ ˜GL+(2, R) such
that σ · g̃ ∈ V (D), where

V (D) = {σ ∈ U (D) | π(σ) ∈ Q(X), Ox isσ -stable of phase 1 ∀x ∈ X}, (2.25)

where Q(X) ⊂ N (D) ⊗ C is the set of vectors whose real and imaginary part spans positive
2-planes in N (D) ⊗ R. It is worth mentioning that Q(X) is closely related to the period
domain associated to N (D), and can be identified with

Q(X) = {ϕ = exp(B + iω) | B + iω ∈ NS ⊗ C, ω2 > 0} ⊂ N (D)C. (2.26)

Note that

ϕ = exp(B + iω) =
(

1, B,
B2 − ω2

2

)
+ i

(
0, ω, B.ω

)
. (2.27)

Bridgeland [4] also showed that the forgetful map π is injective when restricted to V (D).
The image of

π |V (D) : V (D)
∼−→ L(D) (2.28)

is

L(D) = {ϕ ∈ K(X) | 〈ϕ, δ〉 /∈ R≤0 for all δ ∈ �+(N (D))} ⊂ K(X), (2.29)

where

K(X) := {ϕ = exp(B + iω) ∈ Q(X) | ω ∈ Amp(X)} ⊂ Q(X) (2.30)

and

�+(N (D)) = {δ = (r , D, s) ∈ N (D) | 〈δ, δ〉 = −2, r > 0}. (2.31)

So the forgetful map identifies stability conditions σ = (Z , P) ∈ V (D) with its image
ϕ = exp(B + iω) ∈ L(D) for some B, ω ∈ NS(X)R with ω ∈ Amp(X). By (2.23), this
ϕ = exp(B + iω) is identified with the central charge homomorphism

Z(v) = 〈Re(ϕ), v〉 + i〈Im(ϕ), v〉 =
〈(

1, B,
B2 − ω2

2

)
, v

〉
+ i

〈
(0, ω, B.ω), v

〉
.

(2.32)

2.4 Special Lagrangian classes

Given a Kähler class in H1,1(X , R), it is uniquely represented by a Ricci-flat Kähler form
ω. Below, we use the same notation ω to denote either the Kähler form or the Kähler class,
depending on the context. For a Lagrangian submanifold L in (X , ω), let [L]Pd ∈ H2(X , Z)

be the Poincare dual of the homology class of L , then we have the intersection pairing
[L]Pd .ω =

∫
L

ω|L = 0. Conversely, by ([23], Corollary 2.4), if γ ∈ H2(X , Z) such that
γ.ω = 0, then it represents an immersed Lagrangian submanifold. Hence γ ∈ H2(X , Z)

represents an immersed Lagrangian submanifold if and only if γ belongs to

Lag(X , ω) := H2(X , Z) ∩ ω⊥ ⊂ H2(X , Z). (2.33)

We call Lag(X , ω), with the intersection pairing, the Lagrangian class lattice.
In addition to the Kähler form ω, if we also take a nonvanishing holomorphic 2-form �

on X into account, then we can define special Lagrangian (sLag) submanifolds of phase φ,
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which are Lagrangian submanifolds L such that ι∗� = eiφdvol|L , where φ is a constant and
dvol is the volume form induced by the Kähler metric determined by ω. Define the set of
irreducible special Lagrangian classes with respect to ω,� to be

SLag(X , ω,�) = {γ ∈ H2(X , Z) : ∃ irreducible sLag L with [L]Pd = γ }. (2.34)

Using the hyperkähler rotation and standard facts about holomorphic curves, one has the
following lemma.

Lemma 2.2 (Lai–Lin–Schaffler, [15, Lemma 2.2])

SLag(X , ω,�) ⊂ {γ ∈ Lag(X , ω) : γ 2 ≥ −2}.

Note that notation-wise for us SLag(X , ω,�) consists of only the classes represented by spe-
cial Lagrangians that are irreducible. The same notation in [15] does not require irreducibility,
but the above lemma is indeed about irreducible Lagrangians.

Remark 2.3 By [15, Proposition 3.3], given a lattice �′ � � ∼= H2(X , Z), there exists a
Kähler K3 surface (X , ω) such that Lag(X , ω) ∼= �′ if and only if �′ is proper, saturated,
and such that (�′)⊥ ⊆ � contains a vector with positive self-intersection. Hence in general
we don’t have control on the signature of Lag(X , ω); also, the lattice could be degenerate.

Remark 2.4 In this remark, we briefly describe the numerical Grothendieck group of the
derived Fukaya category of X , which is expected to correspond to N (D(Y )) if X and Y

are mirror K3s. See [20] for a more detailed exposition. Denote by Fuk(X) the Fukaya
category of X , whose objects are unobstructed immersed Lagrangian submanifolds. It is an

A∞-category that is linear over the Novikov field F over C given by F :=
{ ∞∑

j=0
a j q

λ j | a j ∈

C, λ j ∈ R, lim
j→∞

λ j = +∞
}
. Denote by F := F(X) the triangulated category given by

the split-closures of the category of twisted complexes on the Fukaya category. Let K (F)

be the Grothendieck group, then there is a composition of the Chern character map and the
open-closed map

K (F)
ch−→ H H0(F)

OC−→ H2(X , F). (2.35)

Shklyanov [18] introduced Mukai pairing for dg categories and proved that the Mukai pairing
on H H0(F) satisfies

〈ch(E), ch(F)〉 = −χ(E, F). (2.36)

An object in K (F) needs not be geometric, but when it is, i.e. when it can be represented by
a unobstructed immersed Lagrangian submanifold, [20, Lemma 5.13] shows that (2.35) is
the map [L] �→ [L]Pd ∈ Lag(X , ω) ⊂ H2(X , Z). When L1, L2 are immersed Lagrangian
submanifolds, their Euler pairing is the Euler characteristics of the Floer cohomology, and
we see that the Mukai pairing coincides with the intersection pairing on H2(X , Z)

〈ch(L1), ch(L2)〉 = −χ(L1, L2) = −χ(H F∗(L1, L2)) = [L1].[L2]. (2.37)

Let N (F) := K (F)/ ker χ(−,−) be the numerical Grothendieck group, then the map
K (F) → H2(X , F) descends to an injective map N (F) → H2(X , F). If X and Y are
mirror K3 surfaces, then the expectation is that

N (F(X)) = N (D(Y )), (2.38)
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so then N (F(X)) would have signature (2, ρ) where ρ = rk(Pic(Y )). It is not known
whether N (F(X)) can be identified with Lag(X , ω), see [20, Remark 7.6] for more detailed
discussions.

3 Counting semistable Mukai vectors

In this section we explain Theorem 1.1. Let X be a complex algebraic K 3 surface, denote by
D := DbCoh(X) be the bounded derived category of coherent sheaves on X , and denote by
N (D) the numerical Grothendieck group, which we view as the signature (2, ρ(X)) Mukai
lattice H∗(X , Z) via the identification given by Eq. (2.22). To proceed, please refer to the
notations introduced in Sect. 2.3.2. Fix a Bridgeland stability condition σ ∈ Stab†(D) with
central charge Zσ : N (D) → C. We are interested in the following counting function of
semistable classes with bounded charges

Nσ (R) = #{v ∈ N (D) : |Zσ (v)| ≤ R and ∃ σ -semistable object E with [E] = v}, (3.1)

where [E] is the image of E under the Mukai map in Eq. (2.19). Because by [4], there is some
autoequivalence of D that maps Stab†(D) into the closure of U (D), we will just do the count
for geometric stability conditions. As mentioned in Sect. 2.3.2, for any stability condition

σ ∈ U (D), there is a unique g̃ ∈ ˜GL+(2, R) such that σ · g̃ ∈ V (D), which corresponds to
π(σ · g̃) ∈ L(D) via the isomorphism π |V (D). So for each element π(σ) ∈ π(U (D)), there
is a unique g = π(g̃) ∈ GL+(2, R) such that π(σ) · g ∈ L(D). So in this section, we will
first look into Nσ (R) for σ ∈ V (D) and then consider other stability conditions in U (D)

obtained via ˜GL+(2, R) action.
Given a Mukai vector v, by [4] there is a locally finite set of walls (which are real codimen-

sion one submanifolds) in Stab†(D) such that so long as σ varies within a chamber, the set
of σ -semistable objects with class v does not change. Following [1], we make the following
definition.

Definition 3.1 A stability condition is generic with respect to v if it does not lie on a wall.

Almost every point σ ∈ Stab†(D) is generic with respect to all Mukai vectors. Indeed, each
Mukai vector gives a locally finite set of walls, and there are countably many Mukai vectors,
so locally the union of all walls is a measure zero set in Stab†(D). The following useful
theorem characterizes Mukai vectors of semistable objects.

Theorem 3.2 (Bayer–Macrì, [1, Theorem 2.15]) Let v = mv0 be a Mukai vector with v0

primitive and m > 0, and let σ ∈ Stab†(D) be a generic stability condition with respect to

v, then v supports a semistable object if and only if v2
0 ≥ −2.

For a σ ∈ Stab†(D) that is generic with respect to all Mukai vectors, Theorem 3.2 immediately
gives that

Nσ (R) = #{v ∈ N (D) : v = mv0, m ∈ Z+, v0 primitive, v2
0 ≥ −2, |Zσ (v)| ≤ R}. (3.2)

Note that there is no v ∈ N (D) with v2 = −1 because the Mukai lattice is even, so

Nσ (R) =
(
#{v ∈ N (D) : v2 ≥ 0, |Zσ (v)| ≤ R}

)

+
(
#{v ∈ N (D) : v = mv0, m ∈ Z+, v2

0 = −2, |Zσ (v)| ≤ R}
)
. (3.3)

In the equation above, we didn’t explicitly specify that v0 is primitive, but it is, since any v0

such that v2
0 = −2 is primitive.
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Let us first discuss the second term in Eq. (3.3). There is actually an upper bound on
how large m can be. Due to the support property in the definition of locally finite numerical
Bridgeland stability conditions introduced in Sect. 2.3.2, the systole introduced in [10], which
is defined as

sys(σ ) := min{|Zσ (v(E))| : E is aσ -semistable object}, (3.4)

is attained and is a positive number, see [10, Remark 2.5]. Consequently, if v = mv0 and
|Zσ (v)| < R, then we must have m < R

sys(σ )
since |Zσ (v)| = m|Zσ (v0)| and |Zσ (v0)| ≥

sys(σ ). So the second term in Eq. (3.3) is bounded by

#{v ∈ N (D) : v = mv0, m ∈ Z+, v2
0 = −2, |Zσ (v)| ≤ R}

<
R

sys(σ )
· #{v ∈ N (D) : v2 = −2, |Zσ (v)| ≤ R}

= o(Rρ+2)

. (3.5)

The last line of the above equation is due to the fact that #{v ∈ N (D) : v2 = −2, |Zσ (v)| ≤
R} is of order Rρ as explained in Lemma 3.3 below. So when multiplied with R

sys(σ )
, overall

we have o(Rρ+2).

Lemma 3.3 The count #{v ∈ N (D) : v2 = −2, |Zσ (v)| ≤ R} is of order Rρ .

Proof This is a consequence of the main theorem of [7, Theorem 1.2], and let us explain that
we are indeed in the correct setting to this theorem. For v = (r , D = (D1, . . . , Dρ), s) ∈
H0(X , Z)⊕NS(X)⊕ H4(X , Z), we have F(v) = v2 = D2 −2rs is an integral polynomial.
So we are looking at the asymptotics as R → ∞ of the number of integer points in the
affine homogeneous variety V = {x ∈ Cρ+2 : F(x) = −2} and such that the positive
semidefinite norm given by |Zσ (x)|2 is less than R2. Note that F is a quadratic form of
signature (2, ρ). (This is exactly the setting of [7, Example 1.5], which start out with F being
a quadratic form of an arbitrary signature and then go on to analyze a more specialized case
where the signature of F is different from ours.) The variety V is a symmetric space of the
form SO(2, ρ − 1)\SO(2, ρ). Denote by H = SO(2, ρ − 1). By the main theorem of [7], if
vol(H(Z)\H(R)) < ∞, then #{v ∈ V (Z) : |Zσ (v)|2 < R2} is of order Rρ ; otherwise, it is
of order Rρ log R. So, in either case, this count is of order o(Rρ+1). For our H , we in fact
have vol(H(Z)\H(R)) < ∞ due to the fundamental theorem of Borel and Harish-Chandra.

��

Below we will discuss the first term in Eq. (3.3). We will use Lemma 3.4 below, which is
a classical result.

Lemma 3.4 (Gauss Circle Problem) Let ϒ(1) be a closed subset of Rn with a piecewise

smooth boundary of measure zero. Let ϒ(R) = {Rx | x ∈ ϒ(1)} be the R-dilate of ϒ(1).

Let Nϒ (R) = #{ϒ(R) ∩ Zn} be the number of lattice points inside ϒ(R). Then

lim
R→∞

Nϒ (R)

Rn
= Vol(ϒ(1)).

We see that the first term in Eq. (3.3) is the count of the number of lattice points in the set

ϒσ (R) = {v ∈ N (D)R
∼= Rρ+2, v2 ≥ 0, |Zσ (v)|2 ≤ R2}.

Because |Zσ (v)|2 is a positive semidefinite quadratic form, ϒσ (1) is a closed set with piece-
wise smooth boundary of measure zero. Using Lemma 3.4 with ϒ = ϒσ and n = ρ + 2, we
get that limR→∞

Nϒσ (R)

Rρ+2 = Vol(ϒσ (1)).
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Putting the two terms of Eq. (3.3) together, we have

Nσ (R) = C(σ )Rρ+2 + o(Rρ+2), (3.6)

where

C(σ ) = Vol(ϒσ (1)) = Vol{v ∈ N (D)R : v2 ≥ 0, |Zσ (v)|2 ≤ 1}. (3.7)

Geometric stability conditions of phase 1

For σ ∈ V (D) a geometric stability condition of phase 1, Zσ (v) is given by Eq. (2.32),
so according to Eq. (3.7), the leading term of Nσ (R) is equal to C(σ )Rρ+2, where

C(σ ) = Vol
({

v ∈ N (D)R : v2 ≥ 0, 〈Re(ϕ), v〉2 + 〈Im(ϕ), v〉2 ≤ 1
})

(3.8)

and

ϕ = exp(B + iω) =
(

1, B,
B2 − ω2

2

)
+ i(0, ω, B.ω) ∈ N (D)C. (3.9)

We certainly have Re(ϕ), Im(ϕ) ∈ N (D)R, so we can write any v ∈ N (D)R as

v = α1Re(ϕ) + α2Im(ϕ) + β, (3.10)

where α1, α2 ∈ R and β ∈ 〈Re(ϕ), Im(ϕ)〉⊥N (D)R .
Recall that {Re(ϕ), Im(ϕ)} ⊆ N (D)R forms an orthogonal basis of a positive definite

2-plane, hence 〈Re(ϕ), Im(ϕ)〉⊥N (D)R is of signature (0, ρ). Let {w1, . . . , wρ} be a basis of
〈Re(ϕ), Im(ϕ)〉⊥N (D)R such that

〈
wi , w j

〉
= −δi j . Then we can write β as

β = β1w1 + · · · + βρwρ for β j ∈ R. (3.11)

Then

v2 ≥ 0 ⇐⇒ ω2(α2
1 + α2

2) ≥ β2
1 + · · · + β2

ρ, (3.12)

and

〈Re(ϕ), v〉2 + 〈Im(ϕ), v〉2 ≤ 1 ⇐⇒
1

(ω2)2
≥ α2

1 + α2
2 . (3.13)

To compute the volume of {α1, α2, β1, . . . , βρ} satisfying Eqs. (3.12) and (3.13), we
introduce a coordinate r such that α2

1 + α2
2 = r2, then

0 ≤ r ≤
1

ω2
and β2

1 + · · · + β2
ρ ≤ ω2r2. (3.14)

Hence the volume with respect to {α1, α2, β1, . . . , βρ} is:

2π

∫ 1
ω2

0
r · VolBρ(r

√
ω2)dr

= 2π

∫ 1
ω2

0
r ·

πρ/2(ω2)ρ/2rρ


(
ρ
2 + 1)

dr

=
2π (ρ+2)/2

(ρ + 2)
(
ρ
2 + 1)(ω2)(ρ+4)/2

.

(3.15)

In order to get the volume in Eq. (3.8), we need to analyze the effect of the change-of-basis
from the standard basis e = (e1, . . . , eρ+2) of H0(X , Z) ⊕ N S(X) ⊕ H4(X , Z) to the basis
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f = ( f1, . . . , fρ+2) where f1 = Re(ϕ), f2 = Im(ϕ), and f j = w j−2 for j = 3, . . . , ρ + 2.
Denote by A the change of basis matrix, i.e. Ae = f. Then

〈fi , f j 〉 = 〈
∑

k

aikek,
∑

�

a j�e�〉 =
∑

k,�

aika j�〈ek, e�〉, i.e. A[〈ei , e j 〉]AT = [〈 fi , f j 〉],

where [〈ei , e j 〉] and [〈 fi , f j 〉] denote the Gram matrices for e and f, respectively. So then

(det A)2 =
det[〈 fi , f j 〉]
det[〈ei , e j 〉]

.

Since det[〈 fi , f j 〉] = (ω2)2 and det[〈ei , e j 〉] = DiscNS(X), we get that the determinant of
the change of basis matrix is

det(A) =
ω2

√
|Disc(NS(X))|

. (3.16)

Hence the final result is

C(σ ) =
2π (ρ+2)/2

(ρ + 2)
(
ρ
2 + 1)(ω2)(ρ+2)/2

√
|DiscNS(X)|

. (3.17)

We see that the leading coefficient depends on the following geometric data

• rank and discriminant of NS(X) = 〈�〉⊥H2(X ,Z) , and
• ω2 (the “B-field" B does not matter).

Geometric stability conditions of any phase

For a geometric stability condition σ ∈ U (D) of phase other than 1, we know there is
a unique g ∈ GL+(2, R) such that Zσ · g = Zσ ′ ∈ L(D) for some σ ′ ∈ V (D). Note
that GL+(2, R) ∼= R+ × SL(2, R). If g ∈ R+, it is simply a scaling Zσ ′ = gZσ , so
Nσ ′(R) = Nσ (R/g), and so C(σ ′) = C(σ )/gρ+2. If g belongs to the rotation part of
SL(2, R) doesn’t change the norm |Zσ ′ | = |Zσ |, so Nσ ′(R) = Nσ (R). So the only thing

left to consider a shear by κ + iλ with λ > 0, which is represented by the matrix

(
1 κ

0 λ

)
so

Zσ ′ = ReZσ + i(κReZσ + λImZσ ). Then Eq. (3.7) in this context is

C(σ ) = Vol{v ∈ N (D)R, v2 ≥ 0, 〈Re(ϕ), v〉2 + (〈Re(ϕ), v〉κ + 〈Im(ϕ), v〉λ)2 ≤ 1}.
(3.18)

The computation is very similar to what we did above in the phase 1 case. In exactly the
same way, we write v = α1Re(ϕ) + α2Im(ϕ) + β, where β = β1w1 + · · · + βρwρ as in
Eq. (3.11). So the determinant of the change of basis matrix for {Reϕ, Imϕ,w1, . . . , wρ} is

again ω2
√

|Disc(NS(X))| . Then the v2 ≥ 0 condition is the same as in Eq. (3.12), and Eq. (3.13)
in this context is

〈Re(ϕ), v〉2 + (〈Re(ϕ), v〉κ + 〈Im(ϕ), v〉λ)2 ≤ 1 ⇔ α2
1 + (κα1 + λα2)

2 ≥
(

1

ω2

)2

.

(3.19)

Again, we can compute C(σ ) given in Eq. (3.18) by computing the volume of
{α1, α2, β1, . . . , βρ} satisfying Eqs. (3.12) and (3.19), and then multiply by the determi-
nant of the change of basis matrix for {Re(ϕ), Im(ϕ),w1, . . . wρ}. To compute the volume of

123



Geometriae Dedicata           (2023) 217:89 Page 17 of 21    89 

{α1, α2, β1, . . . , βρ} satisfying the two conditions, we change to polar coordinates by letting

α1 = r cos θ, κα1 + λα2 = r sin θ. (3.20)

Then 0 ≤ r ≤ 1
ω2 and

β2
1 + · · · + β2

ρ ≤ ω2(α2
1 + α2

2) = r2ω2
(

cos2 θ +
1

λ2
(sin θ − κ cos θ)2

)
. (3.21)

From Eq. (3.20), we see that the Jacobian determinant for the change of variable between
(α1, α2) and (r , θ) is

∣∣∣∣
∂(α1, α2)

∂(r , θ)

∣∣∣∣ = det

[
cos θ −r sin θ

1
λ
(sin θ − κ cos θ) r

λ
(cos θ + κ sin θ)

]
=

r

λ
. (3.22)

So the volume with respect to {α1, α2, β1, . . . , βρ} is:

∫ 1
ω2

0

∫ 2π

0

∣∣∣∣
∂(α1, α2)

∂(r , θ)

∣∣∣∣ VolBρ

(
r

√
ω2

(
cos2 θ +

1

λ2 (sin θ − κ cos θ)2

))
dθdr

=
∫ 1

ω2

0

∫ 2π

0

r

λ

πρ/2(ω2)ρ/2rρ



(

ρ
2 + 1

)
(

cos2 θ +
1

λ2
(sin θ − κ cos θ)2

)ρ/2

dθdr

=
πρ/2(ω2)ρ/2

λ

(

ρ
2 + 1

)
∫ 1

ω2

0
rρ+1dr

∫ 2π

0

(
cos2 θ +

1

λ2
(sin θ − κ cos θ)2

)ρ/2

dθ

=
πρ/2

(ρ + 2)

(

ρ
2 + 1

)
λ(ω2)(ρ+4)/2

∫ 2π

0

(
cos2 θ +

1

λ2
(sin θ − κ cos θ)2

)ρ/2

dθ.

(3.23)

Then multiplying by ω2
√

|Disc(NS(X))| gives

C(σ ) =
πρ/2

∫ 2π

0

(
cos2 θ +

1

λ2
(sin θ − κ cos θ)2

)ρ/2

dθ

(ρ + 2)

(

ρ
2 + 1

)
λ(ω2)(ρ+2)/2

√
|DiscNS(X)|

. (3.24)

One can see that for κ = 0, λ = 1, this matches the phase 1 case. Again we see that this
leading coefficient does not depend on the B-field just like the phase 1 case.

4 Counting special Lagrangian classes

In this section, we explain Theorems 1.2 and 1.3. First, we consider

SLω,�(R) = # {γ ∈ SLag(X , ω,�) : |γ.�| ≤ R} ⊂ H2(X , Z). (4.1)

By Lemma 2.2,

SLω,�(R) ≤ #
{
γ ∈ Lag(X , ω) : γ 2 ≥ −2, |γ.�| ≤ R

}
. (4.2)

Since γ 2 is an indeffinite quadratic form and |γ.�|2 is a positive semidefinite quadratic form,
we can use Lemma 4.1 below to conclude that

SLω,�(R) = C(ω,�)Rρ+2 + o(Rρ+2). (4.3)
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where

C(ω,�) = Vol{γ ∈ Lag(X , ω)R : γ 2 ≥ 0, (γ.�)2 = (γ.Re�)2 + (γ.Im�)2 ≤ 1}.
(4.4)

Note that even though Re� and Im� are orthogonal to ω, they might not be in Lag(X , ω)R.
This is because Lag(X , ω) ⊂ H2(X , Z) consists of integral vectors orthogonal to ω, which
might not generate the space that Re� and Im� live in. If we work with the case where
(X , ω) is such that Lag(X , ω) has full rank, i.e. with signature (2, 19), then Re� and Im�

are both in Lag(X , ω)R. In this case the calculation is exactly the same as the calculation we
did in Sect. 3 for the geometric stability conditions of phase 1, the only difference being that
we replace ρ in that calculation by 19 here, and replace ω2 there by K� = (Re�)2 = (Im�)2

here. We get

C(ω,�) =
2π21/2

21
( 21
2 )K

21/2
�

√
|DiscLag(X , ω)|

. (4.5)

This case where Lag(X , ω) having signature (2, 19) can be achieved when ω is rational, i.e.
in H2(X , Q); in particular, it can be achieved for polarized K3 surfaces (X , ω).

Lemma 4.1 Suppose P is a positive semidefinite quadratic form and Q is any quadratic

form. Then for

NP,Q(R) = #{x ∈ Zn : P(x) ≤ R2, Q(x) ≥ −c},

where c is a positive constant, we have

NP,Q(R) = CP,Q Rn + o(Rn),

where

CP,Q = Vol{x ∈ Rn : P(x) ≤ 1, Q(x) ≥ 0}.

Proof Let

ϒP,Q(R) = {x ∈ Rn | P(x) ≤ R2, Q(x) ≥ 0}.

Using Lemma 3.4 with ϒ = ϒP,Q , we get that

lim
R→∞

#{x ∈ Zn ∩ ϒP,Q(R)}
Rn

= Vol(ϒP,Q(1))

Now consider the remaining points Zn ∩ ϒc
P,Q(R), where

ϒc
P,Q(R) := {x ∈ Rn : P(x) ≤ R2, Q(x) ∈ [−c, 0)}.

Note that

ϒc
P,Q(R) = R · ϒ̃c

P,Q(R), where ϒ̃c
P,Q(R) =

{
x ∈ Rn : P(x) ≤ 1, Q(x) ∈

[
−

c

R2 , 0
]}

.

Whenever R > R0 for some fixed R0, we have ϒc
P,Q(R) ⊂ R · ϒ̃c

P,Q(R0), so

lim
R→∞

#{x ∈ ϒc
P,Q(R) ∩ Zn}

Rn
≤ Vol(ϒ̃c

P,Q(R0)).

Because the boundary {x ∈ Rn | P(x) ≤ 1, Q(x) = 0}has measure zero, the Vol(ϒ̃c
P,Q(R0))

can be made arbitrarily small by taking R0 to be arbitrarily large. So the number of remaining
points #{x ∈ ϒc

P,Q(R) ∩ Zn} = o(Rn). ��
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Now let us consider the twistor plane

P := 〈ω, Re�, Im�〉 ⊂ H2(X , R), (4.6)

where ω, Re�, Im� are normalized so they form an orthonormal basis of P as introduced
in Sect. 2.2.4. The twistor plane defines a seminorm ‖ · ‖P on H2(X , Z), which is for γ ∈
H2(X , Z),

||γ ||P := sup
u∈P,u2=1

γ.u. (4.7)

Since H2(X , R) = P ⊕ P⊥, for any γ ∈ H2(X , Z), we can write γ = γP ⊕ γP⊥ . Then
‖γ ‖P is the norm of the projection γP of γ onto the 3-plane P .

For a fixed P , instead of fixing an ω like we did in the count of SLω,�(R), here we
incorporate all ωt ∈ S2(P) by considering

SL P (R) = #
{
γ ∈ H2(X , Z) : ∃ωt ∈ S2(P), γ ∈ SLag(X , ωt ,�t ), and |γ.�t | ≤ R

}
.

(4.8)

Note that |γ.�t | is the length of the projection of γ to the positive 2-plane spanned by
orthonormal vectors {Re�t , Im�t }. So if there is a t such that γ.ωt = 0, i.e. γ is a Lagrangian
with respect to ωt , then

|γ.�t | = ‖γ ‖P . (4.9)

The characterization given by Lemma 2.2 for γ ∈ SLag(X , ωt ,�t ) implies that

SL P (R) ≤ #
{
γ ∈ H2(X , Z) : γ 2 ≥ −2, ∃ωt ∈ S2(P) s.t. γ.ωt = 0, and ||γ ||P ≤ R

}

= #{γ ∈ H2(X , Z) : γ 2 ≥ −2, ||γ ||P ≤ R}.
(4.10)

The last equality is due to the fact that for any γ ∈ H2(X , Z), it is always in the Lagrangian
class for some ωt , i.e. γ.ωt = 0 since we can always project γ onto P and then choose ωt to
be orthogonal to that.

We can then use Lemma 4.1, since ‖γ ‖2
P is positive semidefinite, to conclude that the

leading term of #{γ ∈ H2(X , Z) : γ 2 ≥ −2, ‖γ ‖2
P ≤ R2} is given by the leading term

of the counting function #{γ ∈ H2(X , Z) : γ 2 ≥ 0, ‖γ ‖2
P ≤ R2}. Then using Lemma 4.2

below, and combining with Eq. (4.10), we can conclude that

SL P (R) ≤ C · R22 + o(R22), (4.11)

where C is a constant independent of the choice of P ⊂ �R.

Lemma 4.2 Let Q be a signature (m, n) quadratic form on Rd , with d = m + n. Given

v ∈ Rd and an m-dimensional subspace P ⊂ Rd that is positive definite (i.e. for all nonzero

u ∈ P, we have Q(u, u) > 0)), define

‖v‖P = max{Q(v, u) : u ∈ P, Q(u, u) = 1}.

Then the asymptotics of the counting function

NP (R) = #{v ∈ Zd : Q(v, v) ≥ 0, ‖v‖P ≤ R}

is given by

NP (R) = cP Rd + o(Rd),
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where the constant

cP = Vol{v ∈ Rd : Q(v, v) ≥ 0, ‖v‖P ≤ 1}

is independent of the choice of m-dimensional positive definite subspace P.

Proof Because P is positive definite, the set

ϒP (R) := {v ∈ Rd : Q(v, v) ≥ 0, ‖v‖P ≤ R} = {Rv : v ∈ ϒP (1)} = R · ϒP (1)

is a R-dilate of ϒP (1). Using Lemma 3.4 with ϒ = ϒP and n = d , we get that NP (R)

= cP Rd + o(Rd), where cP = Vol(ϒP (1)).
Now we show that cP is independent of the choice of P . Let P denote the collection

of m-dimensional positive definite subspaces P . Our claim will follow from the fact that
G = SO(Q) acts transitively on P . Note that if P ∈ P , g P is also in P since g preserves
Q. This is due to Sylvester’s law of inertia.

Next note that

‖v‖g P = max{Q(v, u) : u ∈ g P, Q(u, u) = 1}
= max{Q(v, gu) : u ∈ P, Q(u, u) = 1}
= max{Q(g−1v, u) : u ∈ P, Q(u, u) = 1}
= ‖g−1v‖P .

Therefore,

{v ∈ Rd : Q(v, v) ≥ 0, ‖v‖g P ≤ 1}
= {v ∈ Rd : Q(v, v) ≥ 0, ‖g−1v‖P ≤ 1}
= {gw ∈ Rd : Q(gw, gw) ≥ 0, ‖w‖P ≤ 1}
= {gw ∈ Rd : Q(w,w) ≥ 0, ‖w‖P ≤ 1}
= g{w ∈ Rd : Q(w,w) ≥ 0, ‖w‖P ≤ 1},

and so cg P = cP , since the action of G = SO(Q) preserves Lebesgue measure on Rd . ��
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