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COUNTING PAIRS OF SADDLE CONNECTIONS

J. S. ATHREYA, S. FAIRCHILD, AND H. MASUR

Abstract. We show that for almost every translation surface the number of pairs of saddle connections

with bounded virtual area has asymptotic growth like cR2 where the constant c depends only on the area

and the connected component of the stratum. The proof techniques combine classical results for counting

saddle connections with the crucial result that the Siegel-Veech transform is in L2. In order to capture

information about pairs of saddle connections, we consider pairs with bounded virtual area since the set of

such pairs can be approximated by a fibered set which is equivariant under geodesic flow. In the case of

lattice surfaces, small virtual area is equivalent to counting parallel pairs of saddle connections, which also

have a quadratic growth of cR2 where c depends in this case on the given lattice surface.

1. Introduction

A translation surface (X,Ë) is a pair consisting of a compact Riemann surface X and Ë, a non-zero
holomorphic one-form. For succinctness we denote a translation surface by Ë where the underlying Riemann
surface is understood. A saddle connection on Ë is a geodesic in the flat metric determined by Ë connecting
two zeros of Ë with no zeros in its interior. Let SCË be the set of saddle connections on Ë. For ³ * SCË,
the associated holonomy vector is given by

z³ =

∫

³

Ë * C.

Let

ΛË = {z³ : ³ * SCË}
denote the set of holonomy vectors of saddle connections on Ë. This is a countable discrete subset of the
plane C. The length 3(³) of a saddle connection ³ is

3(³) = |z³ |.
For R > 0, let ΛË(R) = ΛË + B(0, R) be the collection of holonomy vectors of saddle connections with
length at most R. We are interested in the distribution of pairs of saddle connections, in particular the
growth rate of the following counting function, the count of pairs of bounded virtual area. Fix A > 0, and
define

NA(Ë,R) = #{(z, w) * ΛË(R)
2 : |z 'w| f A, |w| f |z|},

where for z = x+ iy, w = u+ iv, the signed area of the parallelogram spanned by the column vectors in R2

associated to z and w is denoted by det(z|w) = xv 2 yu, and the area is denoted by

|z ' w| = | det(z|w)| = |xv 2 yu| = |Im(z̄w)|.
The moduli space Ωg of compact genus g area 1 translation surfaces (where (X1, Ë1) > (X2, Ë2) if there is a
biholomorphism f : X1 ³ X2 with f7Ë2 = Ë1) is stratified by integer partitions of 2g2 2 (fixing the orders
of the zeros of Ë). The area of a surface Ë is given by

Area(Ë) =
i

2

∫

X

Ë ' Ë̄.

These strata have at most 3 connected components [KZ03], and each connected component H carries a
natural Lebesgue probability measure µ = µH [Mas82, Vee82]. We fix H to be a connected component
of a stratum. Our main result is an almost sure asymptotic growth result for the set of pairs of saddle
connections with bounded virtual area.
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Theorem 1.1. There is a constant cA = cA(µ) such that for µ-almost every Ë * H

lim
R³>

NA(Ë,R)

R2
= cA.

1.1. History and prior results. The study of counting problems for saddle connections is very active,
and connected to many different areas of mathematics, from low-dimensional dynamical systems to alge-
braic geometry. Motivated by problems in counting special trajectories for billiards in rational polygons,
Masur [Mas90] proved that the counting function

N(Ë,R) = #ΛË(R)

has quadratic upper and lower bounds for all Ë, that is, there are 0 < c1 = c1(Ë) < c2 = c2(Ë) so that for
all R,

(1.1) c1R
2 f N(Ë,R) f c2R

2.

Subsequently, Veech [Vee98] showed there is a constant c = c(H) such that

lim
R³>

∫

H

∣∣∣∣
N(Ë,R)

R2
2 c

∣∣∣∣ dµ(Ë) = 0,

an L1-quadratic asymptotic result. Inspired by Veech’s approach, Eskin-Masur [EM01] adapted ideas from
homogeneous dynamics (specifically, the work of Eskin-Margulis-Mozes [EMM95, EMM98] on quantitative
versions of Oppenheim’s conjecture) and an ergodic theorem of Nevo [Nev17] to improve this to a pointwise
asymptotic result, showing that for µ-almost every Ë * H,

lim
R³>

N(Ë,R)

R2
= c.

More recently, Nevo-Rühr-Weiss [NRW20], using error term estimates in Nevo’s ergodic theorem coming
from mixing properties of the Teichmüller geodesic flow, showed that there is an ³ < 2 such that for almost
every Ë * H,

N(Ë,R) = cR2 + o(R³).

Our approach uses ideas from all of these results: we will, using ideas similar to Eskin-Masur [EM01], set
up our counting problem as an integral over a piece of an SL(2,R)-orbit on H, and then apply the ergodic
theorem of Nevo [Nev17]. To implement our strategy, we will need upper bounds in the spirit of [Mas90],
and approximation ideas carefully implemented in [NRW20].

1.2. The Siegel-Veech transform. A crucial ingredient in the work of Veech [Vee98] is the Siegel-Veech
transform. Let Bc(X) be the space of bounded measurable functions with compact support on a space X .

For f * Bc(C), we define a function f̂ on H by

f̂(Ë) =
∑

z*ΛË

f(z).

For example, if f = 1B(0,R) is the indicator function of B(0, R),

f̂(Ë) = N(Ë,R).

A beautiful result of Veech [Vee98] is the Siegel-Veech formula, which states that there is a c = cSV so that

for f * Bc(R), f̂ * L1(H, µ) and ∫

H
f̂dµ = c

∫

C

f(z)dz.

In fact a crucial ingredient in Eskin-Masur’s asymptotic result is that f̂ * L1+³ for some ³ > 0. We will

need similar results for a generalized Siegel-Veech transform. Given h * Bc(C
2), we define a function ĥ on

H by

ĥ(Ë) =
∑

z1,z2*ΛË

h(z1, z2).

For example, if h = 1DA(R) is the indicator function of the set

DA(R) = {(z, w) * C
2 : |w| f |z| f R, |z ' w| f A},
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then

ĥ(Ë) = NA(Ë,R).

In our proof of Theorem 1.1, we rely on a result of Athreya-Cheung-Masur [ACM19] which shows that

h * L1+³ for h * Bc(C
2) (which is equivalent to showing that for f * Bc(C), f̂ * L2+³(H)).

1.2.1. Notation. Since the functions we are taking transforms of will be sometimes quite complicated to
write down, we introduce the following notation given bounded compactly supported functions f * Bc(C)
or h * Bc(C

2) we write

f̂(Ë) = fSV(Ë) and ĥ(Ë) = hSV(Ë).

1.3. The SL(2,R)-action on strata. There is an action of the group SL(2,R) on strata. A translation
surface Ë gives an atlas of charts from X\{Ë21(0)} to C whose transition maps are translations: the atlas
around a point p0 is given by

z(p) =

∫ p

p0

Ë.

In these coordinates, Ë = dz. Equivalently, such an atlas of charts determines a pair (X,Ë). The group
GL+(2,R) acts by R-linear-postcomposition with charts, and the group SL(2,R) preserves the set of surfaces
with area 1. The measure µH constructed by Masur and Veech is ergodic and invariant under the SL(2,R)-
action, and is locally given by Lebesgue measure in appropriate coordinates on H. Note that the assignment

Ë 7³ ΛË

is SL(2,R)-equivariant, that is

ΛgË = gΛË.

1.4. Strategy of proof. We now outline the strategy of proof of Theorem 1.1. First, we recall the strategy
of Eskin-Masur for understanding the counting function N(Ë,R): they construct a function f * Bc(C)
(essentially the indicator function of a trapezoid), which satisfies

1

2Ã

∫ 2Ã

0

f(gtr»z) d» j e22t1
A( et

2
,et)(z),

where the matrices

(1.2) gt =

(
et 0
0 e2t

)
r» =

(
cos » 2 sin »
sin » cos »

)

act R-linearly on C, and for 0 < R1 < R2,

A(R1, R2) = {z * C : R1 < |z| < R2}.

Putting et = R, and adding the above expression over all z * ΛË, we obtain

1

R2
(N(Ë,R)2N(Ë,R/2)) j 1

2Ã

∫ 2Ã

0

f̂(gtr»Ë) d».

This reduces the counting problem to a problem of understanding the sequence of integrals

1

2Ã

∫ 2Ã

0

f̂(gtr»Ë) d».

Nevo’s ergodic theorem (Theorem 2.1) deals precisely with integrals of this form, but with some compactness
and smoothness assumptions on the integrand. Theorem 2.1 gives that almost surely the the integrals

converge to
∫
f̂dµ. The Siegel-Veech formula is then applied to say that this last integral is c

∫
C
f(z)dz.
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1.4.1. Pairs. In our case we will construct as the main part of the proof, a function hA * Bc(C
2) so that

(1.3)
1

2Ã

∫ 2Ã

0

hA(gtr»(z, w)) j
e22t

Ã
1DA(et/2,et)(z, w),

where for R1 < R2,

DA(R1, R2) = {(z, w) * C
2 : |z ' w| f A, |w| f |z|, R1 f |z| f R2}

and the action of SL(2,R) on C2 is the diagonal R-linear action; that is,
(
a b
c d

)
·
(
x+ iy
u+ iv

)
=

(
(ax+ by) + i(cx+ dy)
(au+ bv) + i(cu+ dv)

)
.

Adding (1.3) over all (z, w) * Λ2
Ë, we will prove

(1.4) lim
R³>

(
1

ÃR2
N7
A(Ë,R)2

1

2Ã

∫ 2Ã

0

ĥA(glog(R)r»Ë) d»

)
= 0,

where

N7
A(Ë,R) = NA(Ë,R)2NA(Ë,R/2).

Once again we will need to show that the limit of the circle averages

lim
t³>

1

2Ã

∫ 2Ã

0

ĥA(gtr»Ë) d»

exists. To do that we again will implement Nevo’s theorem (Theorem 2.1) along with careful analysis of
the boundary of the support of hA. We will also rely on [ACM19, Theorems 1.2 and 3.4] which shows that
there is a » > 0 such that

ĥ * L1+»(H, µ),
and provides a version of the Siegel-Veech formula which works for functions defined on C2.

1.5. Lattice surfaces. Given a surface Ë, we define its Veech group SL(Ë) to be its stabilizer under the
SL(2,R) action. A class of surfaces where counting problems are well-understood are lattice surfaces,
surfaces Ë whose stabilizer Γ = SL(Ë) under the SL(2,R)-action is a lattice. These are also known as
Veech surfaces. While lattice surfaces are rare, in the sense they form a set of measure 0 in each stratum,
they are a dense set in each stratum. See [SW10] and the references within for more details.

1.5.1. Counting and orbits. Veech [Vee98] showed that in this setting the set of holonomy vectors ΛË is a
finite union of orbits of the Veech group. That is, there is a finite collection of complex numbers z1, z2, . . . zm
such that

(1.5) ΛË =

m⋃

i=1

Γzi.

Using this, and techniques from homogeneous dynamics, he proved, for each i, there is a ci so that

# (Γzi +B(0, R)) > ciR
2,

and thus overall quadratic asymptotics for N(Ë,R).

1.5.2. No small triangles. Subsequently, Smillie-Weiss [SW10] gave many equivalent characterizations of
lattice surfaces. In particular, they showed that (X,Ë) is a lattice surface if and only if it satisfies the no
small virtual triangles (NSVT) condition: there is an A0 > 0 so that for any non-parallel z, w * ΛË,

|z ' w| > A0.

So for A < A0, the problem of understanding NA(Ë,R) becomes the problem of counting parallel pairs of
vectors in ΛË.
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1.5.3. Counting parallel pairs. We write

N0(Ë,R) = #{(z, w) : |z ' w| = 0, |z| f |w| f R}.

Theorem 1.2. Let Ë be a lattice surface. There is a constant c = c(Ë) such that

lim
R³>

N0(Ë,R)

R2
= c.

We prove this result in §6, and show how to compute c using the decomposition of ΛË into orbits of
SL(X,Ë), the structure of the cusps of the Fuchsian group Γ = SL(X,Ë), and Veech’s counting results.
We note that a generic (in the sense of Masur-Smillie-Veech-almost every) surface has no pairs of parallel
holonomy vectors, as the existence of such a pair is a closed and positive codimension condition.

1.6. Organization of the paper. In §2, we state Nevo’s ergodic theorem and a version of a Siegel-Veech
type formula from [ACM19], which we use to prove convergence of circle averages of Siegel–Veech transforms
for continuous functions. In §3, we construct our function hA and show it has our desired properties, state
our main technical result Theorem 3.1, Proposition 3.2 about almost sure quadratic upper bounds, and
Proposition 3.3 about convergence of circle averages for hA, all of which are used to prove Theorem 1.1. In
§4 we give sufficient conditions to prove Theorem 3.1. In §5, we prove Proposition 3.2 and a lemma necessary
for Proposition 3.3, along with a key modification to prove Proposition 5.1, which show the conditions from
§4 indeed hold. Finally, in §6 we prove our results on lattice surfaces.

Acknowledgements. We thank the Mathematical Sciences Research Institute (MSRI) where a large
portion of this work was done in the Fall 2019 program on Holomorphic Differentials in Mathematics and
Physics. We thank the Fields Institute where we had preliminary discussions in Fall 2018 during the
program on Teichmüller Theory and its Connections to Geometry, Topology and Dynamics. We thank
David Aulicino, Claire Burrin, Max Goering, Yair Minsky, and John Smillie for useful discussions. J.S.A.
was partially supported by NSF CAREER grant DMS 1559860 and NSF DMS 2003528. S.F. was partially
supported by the Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 445466444.

2. Nevo’s ergodic theorem and Siegel-Veech measures

We state the results of [Nev17] and [ACM19] needed to precisely move between circle averages and counting
asymptotics. We then combine these results to show convergence of averaging operators of Siegel-Veech
transforms.

2.1. Averaging operators. Suppose SL(2,R) acts on a space X (here our spaces will be C, C2, and
connected components of strata H, all with the natural R-linear actions). Given a function h on X , and
p * X , we define

(Ath) (p) =
1

2Ã

∫ 2Ã

0

h(gtr»p) d».

Note that for f * Bc(C) or h * Bc(C
2), we can interchange sum and integral to obtain

(Atf̂)(Ë) = (̂Atf)(Ë) and (Atĥ)(Ë) = (̂Ath)(Ë).

A key tool is Nevo’s ergodic theorem for the operators At acting on H.

Theorem 2.1. [Nev17, Theorem 1.1] Suppose µ is an ergodic SL(2,R)-invariant probability measure on
H. Assume f * L1+»(H, µ) for some » > 0, and that f is K-finite, that is, if f»(Ë) = f(r»Ë), the span
of the functions {f» : » * [0, 2Ã)} is finite-dimensional. Let · * Cc(R) be a continuous non-negative bump
function with compact support and of unit integral. Then for µ-almost every Ë * H,

lim
t³>

∫ >

2>
·(t2 s)(Asf)(Ë)ds =

∫

H
fdµ.
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2.2. Siegel-Veech measures. We will apply Nevo’s theorem to the Siegel-Veech transforms of functions

defined on C2. By [ACM19, Theorem 3.4], for any f * Bc(C), for some » > 0, f̂ * L2+2»(H, µ). Then, for
any h * Bc(C

2), ĥ * L1+»(H, µ), since we can dominate

ĥ(Ë) =
∑

v1,v2*ΛË

h(v1, v2)

by (f̂)2 where f = ‖h‖>ÇH , where H denotes the union of the projections of the support of h via the
coordinate projection maps. By the invariance of µ, and the integrability condition,

h 72³
∫

H
ĥ(Ë)dÇ(Ë)

is an SL(2,R)-invariant linear functional on Cc(C
2). Therefore, there is an SL(2,R)-invariant measure

m = m(µ) (a Siegel-Veech measure) on C2 so that
∫

H
ĥ(Ë)dµ(Ë) =

∫

C2

h dm

By the monotone convergence theorem, we can extend the class of h for all h * BSCc (C2), which are those
h * Bc(C

2) which are either upper or lower semi-continuous. In particular BSCc will include characteristic
functions of the compact closed sets defined in Section 3. To describe the possible SL(2,R)-invariant
measures on C2, we need to understand SL(2,R)-orbits on C2. For t * R, let

Dt = {(z, w) * C
2 : | det(z|w) = t},

and notice we can identify D1 with SL(2,R). For t 6= 0, Dt is an SL(2,R)-orbit. D0 decomposes further.
For s * P1(R), let

Ls = {(z, sz) : z * C\{0}},
with

L> = {(0, w) : w * C\{0}}.
Dt and Ls are the non-trivial SL(2,R) orbits on C2, and each carries a unique (up to scaling) SL(2,R)-
invariant measure. These are the (non-atomic) ergodic invariant measures for SL(2,R) action on C2. On
Dt, the measure is Haar measure (which we denote ») on SL(2,R), and on Ls it is Lebesgue on C. Thus,
associated to any SL(2,R) invariant measure m on C2 we have measures ¿ = ¿(m) and Ã = Ã(m) so that
we have [ACM19, Theorem 1.2]

(2.1)

∫

C2

h dm =

∫

R\{0}

(∫

SL(2,R)

h(tz, w)d»(z, w)

)
d¿(t) +

∫

P1(R)

(∫

C

h(z, sz)dz

)
dÃ(s).

2.3. Convergence of averaging operators for continuous functions.

Proposition 2.2. Suppose × * Cc(C
2). Then for µ-almost every Ë * H, the circle averages of ×̂ converge

lim
Ç³>

AÇ ×̂(Ë) =

∫

H
×̂ dµ =

∫

C2

×dm.

Proof. By [ACM19, Theorem 3.4], ×̂ * L1+»(H, µ) for some » > 0. We want to construct K-finite functions
which sufficiently approximate ×̂, which we do by constructing a family of K-finite functions which are
dense in the continuous functions.

Define H = B(0, l×) × B(0, l×), the product of closed balls with radius chosen so that × f ‖×‖> 1H . We

will also consider also the slightly larger set H1 = B(0, l× + 1)
2
. Notice that H,H1 are rotation invariant

subsets of C2 under the diagonal action r»(v, w) = (r»v, r»w).

Consider the following family of functions in C(H) defined by F = {fm1,n1,m2,n2
: mi, ni * Z} where for

z = r1e
i»1 , w = r2e

i»2 ,
fm1,n1,m2,n2

(z, w) = rm1

1 rm2

2 ein1»1ein2»2 .

We consider a subalgebra A of C(H) given by the C-linear span of F * {1}, where 1 is the constant unit
function on H . Then by definition, A is closed under addition and multiplication by complex scalars.
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Moreover F is closed under multiplication and complex conjugation, so A is an algebra. Except for zero,
the elements of F separate points, and the inclusion of 1 guarantees separation of all points. Lastly, to see
that Siegel-Veech transforms of elements of A are K-finite, note that for any fm1,n1,m2,n2

* F ,

(fm1,n2,m2,n2
ç r»)(z, w) = rm1

1 rm2

2 ein1(»1+»)ein2(»2+») = e(n1+n2)i»fm1,n1,m2,n2
(z, w).

By linearity, f̂ ç r» = e(n1+n2)i» f̂ , so the C-linear span of {f̂» : » * [0, 2Ã)} is exactly the C-linear span of f̂ .

Hence extending by linearity again for each f * A, both f and f̂ areK-finite. Thus by the Stone-Weierstrass
Theorem, K-finite functions are dense in the uniform topology in C(H).

Thus we can choose a sequence of K-finite functions (fn)n*N which converge uniformly to ×. Since the
convergence is uniform, Im(fn) converges uniformly to zero, and Re(fn) converges uniformly to ×. So
replacing fn with Re(fn), we will assume that each fn is real valued. When necessary we will extend
the functions fn on H to functions on C by considering them as a product with 1H which still gives a
semi-continuous K-finite function on C2 with compact support.

Fix · * C>
c (R) a positive mollifier, with ·(t) g 0,

∫ >

2>
·(t) dt = 1,

and support of · in [21, 1]. For f * C>
0 (C2), and (z, w) * C2, denote the convolution by

(· 7 f)(z, w) :=
∫ >

2>
·(t)f(g2t(z, w))dt.

We will use the notation ·³(t) = ³21·(t/³) which has the property that the support of ·³ is in [2³, ³] and
lim
³³0

·³(t) = ·(t)

where · is the Dirac delta distribution. We claim ·³ 7 × converges uniformly to × on C2 as ³ ³ 0. To see
this, for any ë > 0 choose ³0 so that whenever ³ f ³0, since the support of ·³ is contained in [2³, ³], by
uniform continuity of × on H , whenever |t| < ³,

|×(g2t(z, w)) 2 ×(z, w)| < ë.

Thus for any (z, w) * C,

|(·³ 7 ×)(z, w)2 ×(z, w)| f
∫ ³

2³
·³(t)|×(g2t(z, w)2 ×(z, w)| dt < ë.

We will also use the fact that there is some ³0 so that for ³ < ³0, for any (z, w) * H , g2³(z, w) * H1, so

(2.2) 1H f ·³0 7 1H1
.

By Theorem 2.1, for each fn and almost every Ë,

lim
Ç³>

AÇ (·̂ 7 fn)(Ë) = lim
Ç³>

∫ >

2>
·(t)

(
AÇ2tf̂n

)
(Ë)dt

= lim
Ç³>

∫ >

2>
·(Ç 2 s)

(
Asf̂n

)
(Ë)ds

=

∫

H
f̂n dµ =

∫

C2

fn dm,

where m is the Siegel-Veech measure as in Equation 2.1.

Let ë > 0. Choose H slightly larger if necessary so all Ë have a saddle connection in B(0, l×), so

1 f 1̂H(Ë) <>.
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Since 1H * BSCc (C2), 1̂H * L1+»(µ) so
∫

H
1̂H dµ = m(H) <>.

By uniform convergence, choose N so that for all n g N and a corresponding sequence ³n, for all (z, w) * H ,

(2.3) |fn(z, w)2 ×(z, w)| < ë and |(·³n 7 ×)(z, w)2 ×(z, w)| < ë.

Since the support of fn and × are contained in H , summing over ΛË2 for any Ë2 * H gives the pointwise
bounds

(2.4) |f̂n(Ë2)2 ×̂(Ë2)| < ë1̂H(Ë
2) and |(·³n 7 ×)SV (Ë2)2 ×̂(Ë2)| < ë1̂H(Ë

2).

Now fix n large. Since 1H1
is K-finite, we apply Theorem 2.1. So for almost every Ë * H choose T = T (Ë)

large enough so that for all Ç g T ,

(2.5)
∣∣AÇ (·³n 7 1H1

)SV (Ë)2m(H1)
∣∣ < ë.

Choose Ç g T for T = T (·³0 , Ë) so that again by Theorem 2.1

(2.6) AÇ 1̂H(Ë) f AÇ (·³n 7 1H1
)SV (Ë) f m(H1) + ë.

For almost every Ë, and Ç g T (Ë), we apply Equation (2.4) for each Ë2 = gÇr»Ë, and then by Equation (2.6)

|AÇ ( ̂·³n 7 fn)(Ë)2AÇ (·³n 7 ×)SV (Ë)| f ëAÇ (·³n 7 1H1
)SV (Ë)(2.7)

< ë [ë+m(H1)] .

Equation 2.4 says for each Ë2 = gtr»Ë, we obtain

|AÇ (·³n 7 ×)SV (Ë)2AÇ ×̂(Ë)| f AÇ |(·³n 7 ×)SV (Ë)2 ×̂(Ë)|(2.8)

f ëAÇ (1̂H)(Ë)

f ë[ë+m(H1)].

Next again applying Theorem 2.1, for a.e. Ë choose T = T (Ë) large enough so that for all Ç g T ,

(2.9)

∣∣∣∣AÇ (·³n 7 fn)SV (Ë)2
∫

C2

fn dm

∣∣∣∣ < ë.

Next we can again use Equation 2.3 and since all of the functions have support in H1 to see that

(2.10)

∣∣∣∣
∫

C2

fn dm2
∫

C2

×dm

∣∣∣∣ f ëm(H1).

By the triangle inequality combined with Equations (2.7), (2.8), (2.9), (2.10) we conclude that for almost
every Ë and each n, there is T = T (×, Ë) so that for all Ç g T ,

(2.11)

∣∣∣∣AÇ ×̂(Ë)2
∫

C2

×dm

∣∣∣∣ f 2ë[ë+m(H1)] + ë+ ëm(H1).

Since m(H) and m(H1) are fixed constants we conclude for almost every Ë,

(2.12) lim
Ç³>

AÇ ×̂(Ë) =

∫

C2

×dm.

�

3. Approximation function and properties

In this section, we construct the function hA satisfying (1.3).
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3.1. Fibered sets. Fix A > 0. Given z * C, define the approximating parallelogram

RA(z) = {w * C : |w ' z| f A, | Imw| f | Im z|}
which we will use to approximate the desired set

DA(z) = {w * C : |w ' z| f A, |w| f |z|}.

Figure 1. The sets RA(z) and DA(z). RA(z) is the shaded parallelogram, and DA(z) is
the region inside the red circle bounded by the two parallel red lines. This is the picture
for x > A/y, and there is a corresponding figure for x < A/y.

· ·

·· ·
z = x + iy

· ·

·· x + A
y

+ iyx 2
A
y

+ iy

2x 2
A
y

2 iy 2x + A
y

2 iy

Given S ¢ C, we define the fibered parallelogram and desired set by

RA(S) = {(z, w) * C
2 : z * S,w * RA(z)} and DA(S) = {(z, w) * C

2 : z * S,w * DA(z)}.

Note that for z = x + iy, RA(z) is a parallelogram with vertices x ± A
y ± iy (see Figure 1). From this

observation, we have gt-equivariance of RA: for t * R,

gt(RA(z)) = RA(gtz),

so for S ¢ C,
gt(RA(S)) = RA(gtS).

We will be particularly interested in two families of fibered sets. First, define the trapezoid T by

T =

{
z = x+ iy * C :

1

2
f y f 1, |x| f y

}

We set hA = 1RA(T ) to be the indicator function of the fibered set RA(T ). Next, for R2 > R1 > 0 set

B(R1) = B(0, R1) = {z * C : |z| < R1}
A(R1, R2) = B(R2)\B(R1) = {z * C : R1 < |z| < R2}

We define

DA(R) = DA(B(R))

DA(R1, R2) = DA(A(R1, R2)).

We have NA(Ë,R) = (1DA(R))
SV(Ë) and N7

A(Ë,R) = (1DA(R/2,R))
SV(Ë).

Our main goal is to prove

Theorem 3.1.

(3.1)
∣∣∣N7

A(Ë, e
t)2 Ãe2t

(
AtĥA

)
(Ë)
∣∣∣ = o(e2t).



10 J. S. ATHREYA, S. FAIRCHILD, AND H. MASUR

In order to obtain Theorem 3.1, we will need to use quadratic upper bounds to control error terms.

Proposition 3.2. Given A > 0, for a.e. (X,Ë) there exists C and T > 0 such that for all t > T ,

N7
A(Ë, e

t) f Ce2t.

We will also need the following

Proposition 3.3. For almost every Ë,

lim
t³>

(AtĥA)(Ë) =

∫

H
ĥA dµ.

To prove this proposition, we make use of the following lemma proved in Section 5.

Lemma 3.4. For all ë there exists a function gë * Cc(C
2) and T g 0 so that for all Ç g T , and µ-a.e. Ë,

(3.2)
∣∣∣AÇ (ĝë 2 ĥA)(Ë)

∣∣∣ < ë and

∣∣∣∣
∫

H
ĝë 2 ĥA dµ

∣∣∣∣ < ë.

Proof of Proposition 3.3. Let ë > 0. Choose a function gë * Cc(C
2) and a constant T so that for all Ç g T ,

Equation 3.2 holds. Also choosing T = T (ë) larger if necessary so that by Proposition 2.2,
∣∣∣∣AÇ ĝë(Ë)2

∫

H
ĝë dµ

∣∣∣∣ < ë.

Thus by the triangle inequality
∣∣∣∣AÇ ĥA(Ë)2

∫

H
ĥA dµ

∣∣∣∣ f
∣∣∣AÇ ĥA(Ë)2AÇ ĝë(Ë)

∣∣∣+
∣∣∣∣AÇ ĝë(Ë)2

∫

H
ĝë dµ

∣∣∣∣+
∣∣∣∣
∫

H
ĝë 2 ĥA dµ

∣∣∣∣ < 3ë.

�

We conclude this section by proving Theorem 1.1 assuming Theorem 3.1 and Proposition 3.2.

Proof of Theorem 1.1. Combining Theorem 3.1 and Theorem 3.3 we have, that for µ-almost every Ë * H

(3.3) lim
t³>

N7
A(Ë, e

t)

Ãe2t
= c0

where

c0 =

∫

R\{0}

(∫

SL(2,R)

hA(tz, w)d»(z, w)

)
d¿(t) +

∫

P1(R)

(∫

C

hA(z, sz)dx

)
dÃ(s).

Notice that c0 only depends on A and (H, µ).
To extend to NA(Ë, e

t) we use a geometric series argument along with the dominated convergence theorem

giving upper bounds via Proposition 3.2. Specifically for each fixed j setting s = et

2j and using Equation 3.3,
we have pointwise convergence

lim
t³>

N7
A(Ë,

et

2j )

e2t
= lim

s³>
N7
A(Ë, e

s)

22je2s
=
Ãc0
22j

.

We also have a dominating integrable function

N7
A(Ë,

et

2j )

e2t
f cT 2

22j
,

where we are without loss of generality assuming T > 1 is the constant from Proposition 3.2. Namely for
each j whenever et > T 2j, Proposition 3.2 gives an upper bound of C222j < cT 2222j . If et f T 2j, using
quadratic upper bounds from Equation 1.1,

N7
A(Ë,

et

2j )

e2t
f N(Ë, e

t

2j )
2

e2t
f c2

e2t

24j
f c2

T 2

22j
.



COUNTING PAIRS OF SADDLE CONNECTIONS 11

Figure 2. For z * A

(√
cosh(2t)

2 , et
)
, |Θt(z)| = 2 arctan(e22t).

e2t

2
+ et

2
i

e
2t + e

t
i−e

2t + e
t
i

−

e2t

2
+ et

2
i

Therefore by the dominated convergence theorem and the fact that for each fixed t, the tail of the telescoping
series gives

lim
j³>

NA

(
Ë,

et

2j+1

)
= 0,

so

lim
t³>

NA(Ë, e
t)

e2t
= lim

t³>

>∑

j=0

N7
A(Ë,

et

2j )

e2t
=

>∑

j=0

Ãc0
22j

=
4

3
Ãc0.

�

4. Counting and Errors

In this section we derive estimates that are necessary for the proof of Theorem 3.1. Note that (see Figure 2)
the trapezoid g2tT has vertices

±e
2t

2
+ i

et

2
, ±e2t + iet.

Given z, w * C, define

Θt(z) = {» * [0, 2Ã) : gtr»z * T }
Θt(z, w) = {» * [0, 2Ã) : gtr»(z, w) * RA(T )}.

For f = 1T and h = 1RA(T ), we have

|Θt(z)| = 2Ã(Atf)(z)

|Θt(z, w)| = 2Ã(AthA)(z, w)

Lemma 4.1. For t > 0 and (z, w) * C2,

At(hA(z, w)) f At(f(z)) f
arctan(e22t)

Ã
.

Proof. The first inequality follows from the fact that hA(z, w) = f(z)1RA(z)(w). By our computation of the
endpoints,

g2tT ¢
{
rei» * C : » *

[Ã
2
2 arctan(e22t),

Ã

2
+ arctan(e22t)

]}
.

Since r»z = ei»z, we have

(AthA)(z, w) f (Atf)(z) =
1

2Ã
|Θt(z)| f

arctan(e22t)

Ã
.

�

Our next lemma captures the fact that for (z, w) in a set that is only slightly smaller than DA(e
t/2, et)

(AthA)(z, w) captures a fixed contribution of order e22t.
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Lemma 4.2. For t > 0 if

(4.1) (z, w) * DA

(√
cosh(2t)

2
, et

)
and |w| f |z|:

1 + e24t

then

(4.2) (AthA)(z, w) =
arctan(e22t)

Ã
.

Moreover, for all (z, w) such that (AthA)(z, w) > 0,

(4.3) |w| f
√
1 + (8A+ 16A2)e24t|z|.

Proof. To show (4.2), we must show

|Θt(z, w)| = 2 arctan(e22t).

Note that (see Figure 2)

z * A

(√
cosh(2t)

2
, et

)
=ó |Θt(z)| = 2 arctan(e22t).

We now consider the second component. For any »,

|r»z ' r»w| = |z ' w| f A.

For » * Θ(z), we need to verify r»w * RA(r»z). That is, we need to check that

| Im(r»w)| f | Im(r»z)|

Since |w| f |z|:
1+e24t

,

| Im(r»w)| f
|z|:

1 + e24t
.

We claim that for any » * Θt(z),

Im(r»z) g
|z|:

1 + e24t
.

Indeed, Im(r»z) is minimized over » * Θt(z) when » = »0 so that r»0z is on (either) non-horizontal edge of
the trapezoid, that is

r»0z = |z|ei(Ã/22arctan(e22t)),

Note that for p = u+ iv on either such edge, |u| = e22tv, so

|p| =
√
1 + e24t Im(p).

Thus

Im(r»z) g Im
(
|z|ei(Ã/22arctan(e22t))

)
=

|z|:
1 + e24t

as desired. To show (4.3), consider » so that gtr»(z, w) * RA(T ). So r»z = x + iy * g2tT . Thus

et/2 f |z| = |r»z| f
√
2 cosh(2t), |x|/y f e22t, and et

2 f y f et. Since r»w * RA(z),
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|w| = |r»w| f

√(
|x|+ A

y

)2

+ y2

=

√
|z|2 + 2

A|x|
y

+
A2

y2

f
√
|z|2 + 2Ae22t + 4A2e22t

= |z|
√(

1 +
(2A+ 4A2)e22t

|z|2
)

f |z|
√
(1 + 4(2A+ 4A2)e24t),

where in the last line we are using that

|z| > et/2 =ó |z|22 f 4e22t.

�

4.1. Proving Theorem 3.1. To prove Theorem 3.1 we break the left-hand side of 3.1 into several terms.
First note we have

∣∣∣N7
A(Ë, e

t)2 Ãe2t
(
AtĥA

)
(Ë)
∣∣∣ =

∣∣∣∣∣∣
∑

(z,w)*Λ2
Ë

(
1DA(et/2,et)(z, w)2 Ãe2t (AthA) (z, w)

)
∣∣∣∣∣∣

(4.4)

=
∣∣∣
(
1DA(et/2,et) 2 Ãe2tAthA

)SV
(Ë)
∣∣∣ .

We break (4.4) into several pieces: a main term discussed in (§4.2) and four error terms in (§4.3). We will
show in §5 how to control the error terms. Note that for any h * Bc(C

2), S ¢ C2, we can write

∑

(z,w)*ΛË+S
h(z, w) =

∑

(z,w)*ΛË

h(z, w)1S(z, w)

= (h · 1S)SV(Ë),

4.2. Main term. Let

Mt =

{
(z, w) * DA

(√
cosh(2t)

2
, et

)
: |w| < |z|(1 + e24t)21/2

}
.

That is Mt is the collection of pairs satisfying (4.1). Our main term will be

mt(Ë) =
∑

(z,w)*Λ2
Ë+Mt

(
1DA(et/2,et)(z, w)2 Ãe2t(AthA)(z, w)

)
(4.5)

=
(
1Mt

·
(
1DA(et/2,et) 2 Ãe2tAthA

))SV
(Ë)

=
(
1Mt

2 Ãe2t(AthA) · 1Mt

)SV
(Ë)

where the last line follows from the fact that Mt ¢ DA(e
t/2, et).

4.3. Error terms.
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4.3.1. Error term 1: Bottom of trapezoid. We define

E1
t = DA

(
et/2,

√
cosh(2t)

2

)
.

In particular, for (z, w) * E1
t r»z hits only the bottom of the trapezoid g2tT , and the arc Θt(z) is not the

full possible arc of width 2 arctan(e22t). Note that the smallest possible length of a vector in g2tT is et/2,
and for z = |z|ei× with

et/2 < |z| <
√

cosh(2t)

2
=

√
e2t + e22t

4

Θt(z) = (arcsin(et/2|z|)2 ×, Ã 2 arcsin(et/2|z|)2 ×),

so

|Θt(z)| = Ã 2 2 arcsin(et/2|z|) = 2 arccos(et/2|z|).

We define

e1t (Ë) =
∑

(z,w)*Λ2
Ë+E1

t

((
1DA(et/2,et)(z, w)2 Ãe2t(AthA)(z, w)

))
(4.6)

=
(
1E1

t
·
(
1DA(et/2,et) 2 Ãe2tAthA

))SV
(Ë)

=
(
1E1

t
2 Ãe2t(AthA) · 1E1

t

)SV
(Ë)

where the last line follows from the fact that E1
t ¢ DA(e

t/2, et).

4.3.2. Error term 2: |w| > |z|(1 + e24t)21/2. Our second error term consists of pairs (z, w) for which

|Θt(z)| = 2 arctan(e22t) but |w| > |z|(1 + e24t)21/2,

so (4.1) is not satisfied. That is,

E2
t =

{
(z, w) * DA

(√
cosh(2t)

2
, et

)
: |w| > |z|(1 + e24t)21/2

}
,

and we define the counting function

e2t (Ë) =
∑

(z,w)*Λ2
Ë+E2

t

(
1DA(et/2,et)(z, w)2 Ãe2t(AthA)(z, w)

)
(4.7)

=
(
1E2

t
·
(
1DA(et/2,et) 2 Ãe2tAthA

))SV
(Ë)

4.3.3. Error term 3: The top of the trapezoid. Our third error term is based on the set

E3
t = {(z, w) * C

2 : (AthA)(z, w) > 0, |z| > et},

that is, where z is in the top of the trapezoid, and (z, w) /* DA(e
t/2, et). We set
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e3t (Ë) =
∑

(z,w)*Λ2
Ë+E3

t

(
1DA(et/2,et)(z, w)2 Ãe2t(AthA)(z, w)

)
(4.8)

=
(
1E3

t
·
(
1DA(et/2,et) 2 Ãe2tAthA

))SV
(Ë)

= 2
(
1E3

t
· Ãe2tAthA

)SV
(Ë)

where the last line follows from the fact that E3
t is disjoint from DA(e

t/2, et).

4.3.4. Error term 4: |w| > |z|. Our fourth and final error term is based on the set where the averaging
operator is positive, but (z, w) /* DA(e

t/2, et). We define

E4
t = {(z, w) * C

2 : (AthA)(z, w) > 0, et/2 f |z| f et, |w| > |z|},

e4t (Ë) =
∑

(z,w)*ΛË+E4
t

(
1DA(et/2,et)(z, w)2 Ãe2t(AthA)(z, w)

)
(4.9)

=
(
1E4

t
·
(
1DA(et/2,et) 2 Ãe2tAthA

))SV
(Ë)

= 2
(
1E4

t
· Ãe2tAthA

)SV
(Ë)

where the last line follows from the fact that E4
t is disjoint from DA(e

t/2, et).

4.3.5. Decomposition. By construction

DA(e
t/2, et) * {(z, w) : (AthA)(z, w) > 0} =Mt *

4⋃

i=1

Eit ,

and the sets Mt and E
i
t are pairwise disjoint. Therefore

∣∣∣N7
A(Ë, e

t)2 Ãe2t
(
AtĥA

)
(Ë)
∣∣∣ =

∣∣∣∣∣∣
∑

(z,w)*Λ2
Ë

(
1DA(et/2,et)(z, w)2 Ãe2t (AthA) (z, w)

)
∣∣∣∣∣∣

(4.10)

=
∣∣∣
(
1DA(et/2,et) 2 Ãe2tAthA

)SV
(Ë)
∣∣∣

=

∣∣∣∣∣mt(Ë) +

4∑

i=1

eit(Ë)

∣∣∣∣∣ .

5. Upper bounds

5.1. Almost sure bounds. We now show our key almost sure quadratic upper bound for pairs of sad-
dle connections with bounded virtual area (Proposition 3.2), then show how to modify the proof to give
Proposition 5.1, which controls the main and error terms defined in the previous section.

Proposition 5.1. For almost every Ë,

(5.1) |mt(Ë)| = o(e2t)

and for i = 1, 2, 3, 4

(5.2) |eit(Ë)| = o(e2t)
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5.1.1. Proving Theorem 3.1. To prove Theorem 3.1, we combine (4.10) and Prop 5.1 to get

∣∣∣N7
A(Ë, e

t)2 Ãe2t
(
AtĥA

)
(Ë)
∣∣∣ =

∣∣∣∣∣mt(Ë) +

4∑

i=1

eit(Ë)

∣∣∣∣∣(5.3)

f |mt(Ë)|+
4∑

i=1

|eit(Ë)|

= o(e2t).

5.1.2. Proving the estimate (5.1). For (z, w) *Mt, we have, by Lemma 4.2:

(
1DA(et/2,et) 2 (AthA)

)
(z, w) = 12 Ãe2t · arctan(e

22t)

Ã

= 12 1 + e2t · O(e26t)

= O(e24t)

Combining this with Proposition 3.2, we have

|mt(Ë)| f O(e24t) ·N7
A(Ë, e

t)(5.4)

= O(e24t)O(e2t)

= O(e22t) = o(e2t).

5.2. Notation. In the remainder of the section we prove Propositions 3.2 and 5.1. We adopt the following
notation:

Systoles. If ³ is a saddle connection on Ë, we write 3(³) for the length of ³, i.e.,

3(³) = |z³ |, where z³ =

∫

³

Ë is the holonomy vector of ³.

We write 3(Ë) = 3(³0) for the length of the shortest saddle connection ³0(Ë) on Ë, and 3̃(Ë) = 3(³1) for the
length of the shortest saddle connection ³1(Ë) not homologous to the shortest saddle connection ³0(Ë). We
define

C = {Ë * H : ³0(Ë) bounds a cylinder}
and

BCë = {Ë * H : ³0(Ë) bounds a cylinder of width f ë}.
Note that

BC =
⋃

ë>0

BCë.

Scales. Fix 0 < Ã < 1. Let

sÃ(Ë) =
log 3(Ë)

log Ã
, s̃(Ë) =

log 3̃(Ë)

log Ã

Angles. On a base surface Ë we refer to a holonomy vector z of a saddle connection ³ without subscripts. On
the surface gtr»Ë the image holonomy vector gtr»z will be denoted z»,t. If z = |z|ei×, we define »z = Ã/22×
to be the angle so that r»zz is vertical, that is r»z = |z|i.
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Delaunay triangulations. Following [MS91, §4], we define a Delaunay triangulation of a translation surface
Ë * H. Consider the Voronoi decomposition of the translation surface with respect to the flat metric: each
zero of Ë determines a cell given by points which are closer to it than to any other zero, and have a unique
shortest geodesic connecting the two. The dual decomposition is the Delaunay decomposition of the surface,
and any triangulation given by a further dissection of this is a Delaunay triangulation of Ë.

Let N = N(H) be the maximum number of edges in a Delaunay triangulation by saddle connections of any
Ë * H. This N is finite, since there are a bounded number of vertices since they are at the zeroes of Ë.
Given any pair of zeroes the saddle connections joining them are in different homotopy classes. There are a
bounded number of arcs joining two points when the arcs are in different homotopy classes and they do not
intersect. Thus we have a uniformly bounded number of edges. For the rest of this section, we fix · < 1

2N .

The set. Define
PA(Ë, e

t) = Λ2
Ë +DA(e

t/2, et),

so |PA(Ë, et)| = N7
A(Ë, e

t).

Partitioning the circle. For each t > 0 partition [0, 2Ã) into +e2t+ intervals I(»i) of radius Ã
+e2t+ centered

at points »i for i = 1, . . . , +e2t+. We will look at counting on the finite set of surfaces {Ëi = gtr»iË} and
then prove Lemma 5.6 to observe that in each of these intervals centered at »i lengths change by at most a
multiplicative constant which will be absorbed in our estimates.

Ratios. For each i, define
j = j(i) = +sÃ(Ëi)2 s̃Ã(Ëi)+ ,

so

Ãj+1 <
3(Ëi)

3̃(Ëi)
f Ãj .

5.2.1. Measure bounds. Next we state a result originally due to Masur-Smillie [MS91], estimating the mea-
sure of the set of surfaces with two non-homologous short saddle connections.

Lemma 5.2. [MS91, Equation 7] For all ë, » > 0, the Masur-Smillie-Veech measure of the set V1(ë, ») ¢ H
of Ë which have a saddle connection of length at most ë, and a non-homologous saddle connection with
length at most » is O(ë2»2).

5.2.2. Counting lemmas. Finally we state a counting lemma which is summarized from [ACM19, §3.6.2 and
3.6.3].

Lemma 5.3. Fix Ë * H with shortest saddle connection ³ and second shortest saddle connection ³2. If
either ³ does not bound a cylinder, or ³ bounds a cylinder of width at least ë0 then

N(Ë, ë0)
2 = O(|3(³2)|22N ).

5.3. Counting bounds with systoles. The following is a slight modification of [EM01, Theorem 5.1].

Lemma 5.4. For any L0 > 0 and · > 0 there exists C = C(·, L0) such that for any L < L0 and any
surface (X,Ë) in the stratum

(5.5) N(Ë,L) f C

(
L

3(Ë)

)1+·

Proof. Fix L0 > 0, · > 0, let L < L0, and let Ë * H. [EM01, Theorem 5.1] states that there is a
» = »(H) > 0 and C2 = C(·,H) so that for L < »,

N(Ë,L) f C2
(

L

3(Ë)

)1+·

.

Thus, if L0 < » we are done. We now consider the case L0 > ». Divide [0, 2Ã) into equally sized intervals

Ji of radius
»2

4L2
0

and let Çi be the center of Ji. Note that there are O(L
2
0) such intervals. For any z * ΛË(L)

choose Çi with angle »z * Ji. We rotate z to almost vertical via r2Çi
, and then shrink r2Çi

z to have length
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less than » by applying gtr2Çi
where et = 2L0

» . The largest possible imaginary component for r2Çi
z is

bounded above by |z| < L < L0, so

Im(z2Çi,t) =
»

2L0
Im(r2Çi

z) f »

2
.

After rotating by 2Çi, r2Çi
z must lie in B(0, L) with angle with the vertical in

(
2 »2

4L2
0

, »
2

4L2
0

)
, so the real

component of r2Çi
z must satisfy

Re(z2Çi,t) =
2L0

»
Re(r2Çi

z) f 2L0

»
Im(r2Çi

z) tan

(
»2

4L2
0

)
f 2L2

0

»

»2

4L2
0

=
»

2
,

where we used tan(x) < x for 0 < x < 1
4 . Thus

|gtr2Çi
z| f ».

Moreover, for each i the systoles satisfy

3(Ë) f 3(gtrÇi
Ë) · 2L0

»
.

So

N(Ë,L) =

O(L2
0)∑

i=1

C2
(

L

3(gtr2Çi
Ë)

)1+·

f O(L2
0)

(
2L0

»

)1+·

C

(
L

3(Ë)

)1+·

.

Combining the terms O(L2
0)
(
2L0

»

)1+·
C2, we get a constant C = C(·, L0) as desired.

�

5.4. Integral bounds and counting in thin part of the stratum. Choose · < 1/2N . Given ë, let

Hë = {Ë * H : 3(Ë) f ë}
denote the ë-thin part of the stratum. Fix L0 > 0. For Ë * Hë let

ËL0,ë(Ë) = ÇSVB(0,L0)2
(Ë)ÇHë

(Ë).

ËL0,ë(Ë) counts the number of pairs of saddle connections of length at most L0 if Ë * Hë, and if Ë /* Hë,
ËL0,ë(Ë) = 0. For ease of notation we write Ë = ËL0,ë.

Lemma 5.5. ∫

H
Ëdµ = O(ë

1
N

22·),

where the implied bound depends on L0.

Proof. We define three families of sets exhausting the thin part of the stratum, in terms of the length of
the shortest and second shortest non-homologous saddle conenctions. Recall we have fixed 0 < Ã < 1. For
0 < j < N , let F (j) be the set of Ë with a shortest saddle connection ³0(Ë) with length between Ãj+1 and

Ãj and a non-homologous saddle connection of length at most Ã
j

2N . That is

(5.6) F (j) =

{
Ë * H : +sÃ(Ë)+ = j, s̃Ã(Ë) <

j

2N

}
.

By Lemma 5.2,

µ (F (j)) = O
(
Ã2j+2 j

2N

)
= O

(
Ã2jÃ

j
N

)
.

We now apply Lemma 5.4 which says for each Ë * F (j) we have Ë(Ë) = O(Ã2j(2+2·)). This gives
∫

F (j)

Ëdµ = O(Ãj(
1
N

22·)).
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Next, let ë0 := 8ÃĉA. Define G(j) to be the set of Ë where the shortest saddle connection ³0(Ë) has length

between Ãj+1 and Ãj , the shortest non-homologous saddle connection ³1(Ë) has length at least Ã
j

2N , and
³0(Ë) either does not bound a cylinder or bounds a cylinder of width at least ë0 := 8ÃĉA. That is,

G(j) =

{
Ë /* BCë0 : +sÃ(Ë)+ = j, s̃Ã(Ë) >

j

2N

}

By Lemma 5.3, for each Ë * G(j) we have Ë(Ë) = O
((
Ãj/2N

)22N
)
= O(Ã2j). We also have by Lemma 5.2

that µ(G(j)) = O(Ã2j) giving ∫

G(j)

Ëdµ = O(Ãj).

Finally let H(j) be the set of Ë where the shortest saddle connection ³0(Ë) has length between Ãj+1 and
Ãj and bounds a cylinder of width at most ë0,

H(j) = {Ë * BCë0 : +sÃ(Ë)+ = j}.
Then again if Ë * H(j) Ë(Ë) = O(Ã2j(2+2·)) and now

µ(H(j)) = O(Ã3j),

where the the implied constant depends on ë0. This gives∫

H(j)

Ëdµ = O(Ãj(122·)).

Finally choose j0 so that Ãj0+1 f ë < Ãj0 . Thus

Hë ¢
⋃

jgj0
F (j) *G(j) *H(j)

and so
∫

Hë

Ëdµ = O

û
ý∑

jgj0
Ãj + Ãj(1/N22·) + Ãj(122·)

þ
ø = O

(
Ãj0(1/N22·)

)
= O

(
ë1/N22·

)
.

�

5.5. Reducing to finitely many surfaces. This next lemma shows that within a fixed range of angles
for » and times for t, |gtr»z| cannot change too much, which allows us to reduce to our finite collection of
surfaces.

Lemma 5.6. Given t > 0, »0 * [0, 2Ã), define

It(»0) =
(
»0 2 Ãe22t, »0 + Ãe22t

)
.

Then for any t > 0, any z * C, » * I(»0), and s * (t, t+ log 2) we have

1

8Ã
f |gsr»z|

|gtr»0z|
f 8Ã.

Proof. First write
gsr»z = gsr»2»0g2t(gtr»0z).

We need to control the operator norm of gsrËg2t where |Ë| = |» 2 »0| f Ãe22t. We note that gsrËg2t =
gsrËg2sgs2t. Note that ‖gs2t‖op f 2, and

gsrËg2s =

(
cosË 2e2s sinË

e22s sinË cosË

)
.

The operator norm of a matrix A is the square root of the largest eigenvalue of ATA. In this case

(gsrËg2s)
T (gsrËg2s) =

(
cos2 Ë + e24s sin2 Ë 2 sin(2Ë) sinh(2s)
2 sin(2Ë) sinh(2s) cos2 Ë + e4s sin2(Ë)

)
.
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For a determinant 1 matrix M , with | tr(M)| > 2 the largest eigenvalue »+(M) is given by

»+(M) =
tr(M)

2
+

√(
tr(M)

2

)2

2 1.

Applying this to M = (gsrËg2s)T (gsrËg2s), we have

tr(M)

2
= cos2 Ë + cosh(4s) sin2 Ë = 1 + (cosh(4s)2 1) sin2 Ë = 1+ 2 sinh2(2s) sin2 Ë,

so
»+(B) = 1 + 2 sinh2(2s) sin2 Ë +

:
2 sinh(2s) sinË.

Since |Ë| < Ãe22t, | sinË| < Ãe22t, and sinh(2s) < 2e2t, so

»+(M) f 1 + 2Ã2e24te4t +
:
22e2tÃe22t

f 1 + 8Ã2 + 2
:
2Ã.

Therefore,

‖gsrËg2s‖op =
√
»+(M) f

√
1 + 8Ã2 + 2

:
2Ã f 4Ã,

and so
‖gsrËg2t‖op f ‖gsrËg2s‖op‖gs2t‖op f 8Ã.

�

5.6. Geodesic flow length bounds for pairs. In this section we collect bounds that hold under certain
assumptions for pairs of holonomy vectors. Note that, by (4.3), if AthA(z, w) > 0, then

|w| f
√
1 + cAe24t|z|,

where cA = (8A+ 16A2). We define the large set

LA(e
t) =

{
(z, w) :

et

2
f |z| f

√
2 cosh(2t), |w ' z| f A, |w| f

√
1 + cAe24t|z|

}
,

which satisfies, for 1 f i f 4,

Eit ¦ LA(e
t) and PA(Ë, e

t) ¦ LA(e
t) + Λ2

Ë.

Recall that for z * C, »z = Ã/22 arg(z) is the angle so that r»zz is vertical.

Lemma 5.7. There exists ĉA so that for all (z, w) * LA(e
t)

1

2
f |gtr»zz| f

:
2,

and
|gtr»zw| f ĉA.

Proof. By definition r»zz = |z|i. Since
et

2
f |z| f et

√
1 + e24t,

we have
|gtr»zz| = |e2t|z|i| = e2t|z|,

so
1

2
f |gtr»zz| f

√
1 + e24t f

:
2.

By Lemma 4.2, |w| f |z|
:
1 + cAe24t, so the vertical component of r»zw is at most |z|

:
1 + cAe24t, so

Im(gtr»zw) f |gtr»zz|
√
1 + cAe24t.

Since |z 'w| f A, |Re(gtr»zw)| · |gtr»zz| f A. Hence

|gtr»zw| f | Im(gtr»zw)| + |Re(gtr»zw)| f |gtr»zz|
√
1 + cAe24t +

A

|gtr»zz|
f

:
2
:
1 + cA + 2A.
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where we now define ĉA =
:
2
:
1 + cA + 2A. �

5.7. Proof of Proposition 3.2.

Proof. We partition the circle into et intervals centered at angles »i. We will break up the set of »i into
three subsets depending on the lengths of shortest and second shortest saddle connections of gtr»iË. In the

case of F (j, j
2N ) for j large we will use Nevo’s ergodic theorem (Theorem 2.1) to show that the number

of »i is small. We again will use Lemma 5.4 to count pairs of saddle connections for this small set of »i.
In the case of G(j, j

2N ) as we count pairs exactly as before using Lemma 5.3 and then use some standard
quadratic estimates to count the number of possible such »i. The case of H(j, ë0) will be handled similarly.

Case I. Following the notation from Section 5.2, for each j define

N I
j = #

{
i * {1, . . . , e2t} : gtr»iË * F

(
j,

j

2N

)}
.

We first bound N I
j using Theorem 2.1. Similar to our definition of the set F

(
j, j

2N

)
define E

(
j, j

2N

)
to

be the set of Ë with a saddle connection of length between 8ÃÃj+1 and 8ÃÃj , and a nonhomologous saddle

connection of length at most 8ÃÃ
j

2N . Again by Lemma 5.2,

µ

(
E

(
j,

j

2N

))
= O

(
Ã2j+2 j

2N

)
= O

(
Ã2jÃ

j
N

)
.

Let h be the characteristic function of E
(
j, j

2N

)
. The function h isK-finite since E

(
j, j

2N

)
is invariant under

rotations. Choose · * C>
0 (R) be such that ·(t) = 1 on [2 log(2), 0] and

∫
·(t)dt = 2. By Theorem 2.1,

there is some t0 large enough so that for t > t0∫ >

2>
·(t2 s)(Ash)(Ë)ds f 3

∫

H
hdµ = O

(
Ã2jÃ

j
N

)
.

Switching the order of integration

(5.7)
e2t∑

i=1

∫

I(»i)

∫ t+log(2)

t

h(gsr»Ë) ds d» =

∫ t+log(2)

t

(Ash)(Ë)ds f
∫ >

2>
·(t2 s)(Ash)(Ë)ds = O

(
Ã2jÃ

j
N

)
.

Now if there is some i * {1, . . . , e2t} so that gtr»i(X,Ë) * F
(
j, j

2N

)
, so i contributes to N I

j , then Lemma 5.6

guarantees that gsr»Ë * E(j, j
2N ) whenever

(», s) * I(»i)× [t, t+ log(2)].

Since for each i contributing to N I
j we have a full annulus of integration, (5.7) gives an upper bound

N I
j

2Ã

e2t
· [t+ log(2)2 t] = O

(
Ã2jÃ

j
N

)
.

Hence

N I
j = O

(
e2tÃ2jÃ

j
N

)
.

Now suppose we are given (z, w) * LA(e
t). Choose i so that »z * I(»i). Lemma 5.7 and Lemma 5.6 show

that |gtr»iz| f 8Ã and |gtr»iw| f 8ÃĉA. Apply Lemma 5.4 with L0 = 8ÃĉA. Thus for each j and i, if

gtr»iË * F
(
j, j

2N

)
, then

#
{
(z, w) * LA(e

t) + Λ2
Ë : »z * I(»i)

}
f N(gtr»iË,L0)

2 = O

((
1

|gtr»izi|

)2(1+·)
)

= O
(
Ã2j(2+2·)

)
.

The number of possible i is given by N I
j , so for t large enough and any j

#

{
(z, w) * LA(e

t) + Λ2
Ë : # i so that »z * I(»i), gtr»i(X,Ë) * F

(
j,

j

2N

)}
f N I

jO
(
Ã2j(2+2·)

)

= O
(
e2tÃj(

1
N

22·)
)
.
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Summing over all possible j, since 1
N 2 2· > 0 and Ã < 1,

#

{
(z, w) * LA(e

t) + Λ2
Ë : # i, and j(i) so that »z * I(»i), gtr»i(X,Ë) * F

(
j,

j

2N

)}

= O

û
ýe2t

>∑

j=1

Ãj(
1
N

22·)

þ
ø = O(e2t).(5.8)

Case II. Define

N II
j = #

{
i * {1, . . . , e2t} : gtr»iË * G

(
j,

j

2N

)}
.

For any holonomy vector z, define

N II
j (z) = #

{
i : gtr»iË * G

(
j,

j

2N

)
and Ãj+1 < |gtr»iz| f Ãj

}
.

Specifically, the holonomy vector z which becomes short after rotating and flowing satisfies |r»iz| = |z| and
|r»iz|

et|gtr»iz|
etÃj+1 f |z| f |r»iz|

et|gtr»iz|
etÃj .

Notice |r»iz| f et|gtr»iz|, so we can choose k g j so that

Ãk+1et f |z| f Ãket.

The horizontal component Re(r»iz) satisfies

etRe(r»iz) f |gtr»iz| f Ãj .

So if Çi = arg(z)2 Ã/2 is the angle which makes rÇi
z vertical, then

(5.9) | sin(Çi 2 »i)| =
|Re(r»iz)|

|r»iz|
f Ãj

et
· 1

Ãk+1et
= e22tÃj2k21.

By symmetry,

|{» * [0, 2Ã) : | sin(Çi 2 »)| f e22tÃj2k21}| = 4|{» * [Çi, Ã/2 + Çi) : | sin(Çi 2 »)| f e22tÃj2k21}|.
Then when |Çi 2 »| f Ã

2 we have | sin(Çi 2 »)| > 2
3 |Çi 2 »|. Since the »i are spread evenly over [0, 2Ã), we

can estimate

N II
j (z) = e2t

∣∣{» * [0, 2Ã) : | sin(Çi 2 »)| f e22tÃj2k21
}∣∣

2Ã
f 4e2t

2Ã

∣∣∣∣
{
» : |Çi 2 »| f 3

2
e22tÃj2k21

}∣∣∣∣
= O(e2t · e22tÃj2k) = O(Ãj2k).

Using quadratic growth from [Mas90], the number of possible z with length at most Ãket is O(Ã2ke2t).
Since k g j,

N II
j f O

û
ý∑

kgj
Ã2ke2t · Ãj2k

þ
ø f O(Ã2je2t).

For each i in N II
j , by Lemma 5.3, the number of pairs of saddle connections of length at most 8ÃĉA is

O(Ã2j). Multiplying by N II
j , the number of pairs of length at most 8ÃĉA is

O(Ãje2t).

Then we have
(5.10)

#

{
(z, w) * PA(Ë, e

t) : #i, j(i) so that »z * I(»i), gtr»iË * G

(
j,

j

2N

)}
f O

û
ý

>∑

j=0

O(Ãje2t)

þ
ø = O(e2t)
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Case III.

N III
j = #{i * {1, . . . , e2t} : gtr»iË * H(ë0, j)}

To finish the proof we need to cover the last case from Lemma 5.3 concerning the set H(ë0, Ã
j). As we have

seen

µ(H(ë0, Ã
j)) = O

(
Ã3j
)
= O

(
Ã2j+ j

N

)
.

In this case we can use the estimate (5.8), and follow the exact method as in Case I to get a bound of O(e2t)
on the number of pairs.

This concludes the proof of Proposition 3.2, where we note T in the statement must be large enough to
apply Theorem 5.4 in both Case I and Case II. Moreover when applying Lemma 5.4 and Lemma 5.3, the
constant C depends on A. �

The next corollary is a small modification of Proposition 3.2 which bounds the number of pairs (z, w) *
LA(e

t) + Λ2
Ë where flowing in an appropriate direction lands is in the the ë̂-thin part

Corollary 5.8.

#
{
(z, w) * LA(e

t) + Λ2
Ë : # i, and j(i) so that »z * I(»i), gtr»iË * Hë̂

}
= O(ë̂

1
N

22·e2t).

Proof. We follow exactly the proof of Proposition 3.2 where we have the additional assumption now that
Ãj f ë̂. This comes into effect in Equations (5.8) and (5.10) and in Case III when we restrict Ãj < ë̂ which

limits the set of possible j to j g log(ë̂)
log(Ã) . So then the geometric series when altering Equation (5.8) yields

O

û
üýe2t

>∑

j= log ë̂
log Ã

Ãj(
1
N

22·)

þ
ÿø = O(ë̂

1
N

22·e2t)

and similarly for Equation (5.10) and Case III. �

5.8. Subquadratic decay in the thick part of the stratum. As a complement to Corollary 5.8, we
want to understand decay of pairs of saddle connections in the thick part of the stratum, that is the set
of surfaces where the systole has length at least ë. To this end we will prove the following lemma which
gives measure bounds for pairs of saddle connections near the boundary of RA(T ). Given L, ë̂, ë2 > 0,
and L2 * { 1

2 , 1} define Ω(ë̂, ë2, L, L2) to be the set of surfaces Ë such that Ë is ë̂-thick, and there are

(z, w) * Λ2
Ë +B(0, L)2 where at least one of the following holds:

(1) 12 ë2 f | Imw|
| Im z| f 1 + ë2

(2) (12 ë2)A f |z ' w| f (1 + ë2)A
(3) | Im(z)2 L2| < ë2

(4) (12 ë2) Im z f |Re z| f (1 + ë2) Im z.

Lemma 5.9. Let D be the complex dimension of the stratum. For each L, there exists C so that for all
ë̂, ë2

µ (Ω(ë̂, ë2, L, L2)) f C

(
ë2

ë̂2+2D

)
.

Proof. Using the Delaunay triangulation [MS91, §4] for each Ë we take a basis {³i}Di=1 for H1(X,Σ,Z) of
saddle connections, where the lengths are all bounded below by ë̂. Here Σ is the set of zeroes of Ë. Let
zi = xi + iyi =

∫
³i
Ë be the holonomy vectors of the basis. The assumption of thickness says |zi| g ë̂. It

follows from [MS91, §4] that the lengths are also bounded above by 1
ë̂ . Since the thick part of the stratum

is compact we can cover it by finitely many coordinates maps via the map

· 7³
(∫

³1

·, . . .

∫

³D

·

)
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which gives local coordinates on H in a neighborhood of Ë. For the remainder of the proof we will work in a
single chart and to simplify notation we will use (z1, . . . , zD) as the coordinate charts. Our measure µ arises
from Lebesgue measure in these period coordinates. Since there are a bounded number of possible Delaunay
triangulations that cover the stratum it is enough to bound the measure for each Delaunay triangulation.
In [ACM19, §2] it was shown that Delaunay triangulations are efficient. By this we mean that up to a fixed
multiplicative constant, the length of any saddle connection is bounded below by the length of a homologous
path of edges in the triangulation joining the same endpoints. It follows that since |z|, |w| f L, we can

write the holonomies z, w in this basis as
∑D

i=1 nizi and
∑D

i=1mizi respectively with coefficients ni,mi * Z

that are O
(
1
ë̂

)
, where the implied bound depends on L. We wish to compute the Lebesgue measure of the

subset of CD where we have one of the relations.

For the first where we have a relation between | Im z| and | Imw| the assumption that the ratio of the
imaginary parts of the holonomy z, w are within ë2 of each other gives for some mi, ni, zi∣∣∣∣∣

∑D
i=1 niyi∑D
i=1miyi

2 1

∣∣∣∣∣ < ë2

which by the bound on mi, ni and yi implies

(5.11)

∣∣∣∣∣
D∑

i=1

(ni 2mi)yi

∣∣∣∣∣ = O

(
ë2

ë̂2

)
.

For each fixed D-tuple of integers ni 2 mi the set of (z1, . . . , zD) which satisfy Equation 5.11 forms a

neighborhood of width O( ë
2

ë̂2 ) around the R2D21 hyperplane formed by the linear condition on the imaginary

parts of zi = xi+iyi. So the Lebesgue measure in CD within this fixed chart is O( ë
2

ë̂2 ). Since |ni2mi| = O(1ë̂ )

there are O( 1
ë̂D

) integer tuples when taking the differences and so the total measure is O( ë2

ë̂2+D ). This gives
a bound for the measure of the set of Ë satisfying the first statement in the definition of Ω(ë̂, ë2, L, L2).

For the second we have∣∣∣∣∣

(
D∑

i=1

nixi

)(
D∑

i=1

miyi

)
2
(

D∑

i=1

mixi

)(
D∑

i=1

niyi

)
2A

∣∣∣∣∣ < ë2.

For fixedD tuples (n1, . . . , nD) and (m1, . . . ,mD) the set of possible zi = xi+iyi lives in the ë2 neighborhood
of a hyperplane determined by the determinant condition, and thus for fixed A has Lebesgue measure O(ë2).
In this case there are O( 1

ë̂2D ) such tuples and so the result follows.

The proof of the measure bound for Ë satisfying the third and fourth statements are similar. Write z =∑
nizi. The third assumption is ∣∣∣∣∣

D∑

i=1

niyi 2 L2

∣∣∣∣∣ < ë2.

The measure of the set of z that satisfy this inequality for some ni is O(
ë2

ë̂D
), which implies the desired

bound since ë̂ < 1. The proof of the last is similar.

�

5.9. Proof of Proposition 5.1. In this section we will apply Lemma 5.9 and Corollary 5.8 to prove
Proposition 5.1.

Proof of Proposition 5.1. Let ë22 > 0. Choose ë̂ so that ë22 = ë̂
1
N

22·. Let L =
:
8ÃĉA, and choose ë2 small

enough so that

ë2

ë̂2+2D

(
L

ë̂

)1+·

< ë22.

Choose T0 large enough so that whenever t g T0, Corollary 5.8 holds. Corollary 5.8 shows that the number
of pairs (without restrictions to be in Ejt ) such that after rotating and flowing land us in the ë̂-thin part
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(where the shortest curve has length at most Ãj < ë̂) is O(ë22e2t). Since we have the desired bounds in the
thin part, we now only need to consider the thick part of the stratum, so we suppose |gtr»izi| > ë̂.

Bounds on z in trapezoid. Suppose » * I(»i) satisfies r»z * g2tT , where we first choose t large enough
so

tan(Ãe22t) f 6Ãe22t.

Notice that »z , the angle which makes r»z vertical has r»zz, r»z * g2tT , so |» 2 »z| f e22t. Then for any
»2 * I(»i), since |» 2 »2| f 2Ãe22t, we have

(5.12) |»2 2 »z | f 2Ãe22t + e22t f 3Ãe22t.

Notice Im(r»2z) f |r»zz|, so we now want a lower bound for Im(r»2z). Indeed since

|Re(r»2z)| = Im(r»2z) tan(|»z 2 »2|) f Im(r»2z) tan(3Ãe
22t) f Im(r»2z)6Ãe

22t,

this implies

Im(r»2z)
2(1 + 36Ã2e24t) g Im(r»2z)

2 +Re(r»2z)
2 g |z|2 = | Im(r»zz)|2.

Thus for any »2 * I(»i),

(5.13)
| Im(r»zz)|:
1 + 36Ã2e24t

f Im(r»2z) f | Im(r»zz)|

Bounds on w. We claim the imaginary parts of r»zw and r»2w don’t differ too much. To do this we will
use polar coordinates, so set

r»zw = |w|eiËz and r»2w = |w|eiË2

.

Recall by Equation (5.12), |Ë2 2Ëz | = |»z 2 »2| f 3Ãe22t. Then since circumference |Ë2 2Ëz| is bigger than
the length of a chord on the unit circle,

3Ãe22t g |»2 2 »z | = |Ë2 2 Ëz | g |eiË2 2 eiËz | g | sin(Ë2)2 sin(Ëz)|.

Dividing by sin(Ëz), we have

(5.14)

∣∣∣∣
sin(Ë2)

sin(Ëz)
2 1

∣∣∣∣ f
3Ãe22t

| sin(Ëz)|
.

Error term E1
t . Choose T1 g T0 large enough so that for t g T1,

max

{(
1

2
2 1

2
:
1 + 36Ã2e24t

)
,

(:
1 + e24t

2
2 1

2

)}
f ë2.

Combining Equation (5.13) with the fact that

et

2
f Im(r»zz) = |z| f et

2

√
1 + e24t,

1

2
:
1 + 36Ã2e24t

f Im(gtr»2z) f
:
1 + e24t

2
.

By our choice of T1,
1
2 2 ë2 f Im(gtr»2z) f 1

2 + ë2. Thus the resulting surface by Lemma 5.6 satisfies

gtr»2(X,Ë) * Ω

(
ë̂:
8Ã
, ë2, L,

1

2

)
.
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Error term E2
t . Choose T2 g T0 large enough so that for t g T2,

max

ù
ú
û

:
1 + 36Ã2e24t

(
1 + 3Ãe22t

( :
1+e24t

124Ae22t

))
2 1

12
(
12 3Ãe22t

( :
1+e24t

124Ae22t

))
124Ae22t
:
1+e24t

ü
ý
þ f ë2.

Since |z| = Im(r»zz),

| Im(r»zz)|
1:

1 + e24t
f |w| f | Im(r»zz)|.

The determinant condition guarantees small angle. That is if Ë is the angle of r»zw from the vertical, then

|Re(r»zw)|
|w| = | sin(Ë)| f A

|w| · |z| f
A
:
1 + e24t

|z|2 f 4Ae22t

:
1 + e24t

.

Thus
| Im(r»zz)|:
1 + e24t

f |Re(r»zw)| + | Im(r»zw)| f | Im(r»zw)| +
4Ae22t

:
1 + e24t

| Im(r»zz)|,

which yields

(5.15)
| Im(r»zw)|
Im(r»zz)

g 1:
1 + e24t

2 4Ae22t

:
1 + e24t

=
12 4Ae22t

:
1 + e24t

.

In the other direction we have the easier inequality that

(5.16)
| Im(r»zw)|
Im(r»zz)

f |w|
|z| f 1.

Thus by our assumption on |w|, Equation (5.14) and Equation (5.15),

(5.17)

∣∣∣∣
Im(r»2w)

Im(r»zw)
2 1

∣∣∣∣ f 3Ãe22t |w|
| Im(r»zw)|

f 3Ãe22t Im(r»zz)

| Im(r»zw)|
f 3Ãe22t

( :
1 + e24t

12 4Ae22t

)
.

In the first direction we combine (5.17), (5.13), and (5.16) to obtain

| Im(r»2w)|
Im(r»2z)

f
√
1 + 36Ã2e24t

(
1 + 3Ãe22t

( :
1 + e24t

12 4Ae22t

))
f 1 + ë2.

In the other direction, combine (5.17), (5.13), and (5.15) to obtain

| Im(r»2w)|
Im(r»2z)

g
(
12 3Ãe22t

( :
1 + e24t

12 4Ae22t

))
12 4Ae22t

:
1 + e24t

g 12 ë2.

Thus by Lemma 5.6, and noting that flowing by gt does not change the ratio of imaginary parts,

gtr»2Ë * Ω

(
ë̂:
8Ã
, ë2, L, 1

)
.

Error term E3
t . Choose T3 g T0 large enough so that for t g T3,

max

{(
12 1:

1 + 36Ã2e24t

)
,
(√

1 + e24t 2 1
)}

f ë2.

For any »2 * I(»i), combining 5.13 with the fact that in this case

et f Im(r»zz) = |z| f et
√
1 + e24t,

we have
1:

1 + 36Ã2e24t
f Im(gtr»2z) f

√
1 + e24t.

By our choice of T3, 12 ë2 f Im(gtr»2z) f 1 + ë2. Thus the resulting surface by Lemma 5.6 satisfies

gtr»2Ë * Ω

(
ë̂:
8Ã
, ë2, L, 1

)
.
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Error term E4
t . Choose T4 g T0 large enough so that for t g T4,

max

ù
üüú
üüû

:
1 + cAe24t

:
1 + 36Ã2e24t

(
1 + 3Ãe22t

( :
1+cAe24t

124Ae22t
:

1+cAe24t

))
2 1

12 (1 2 4Ae22t
:
1 + cAe24t)

(
12 3Ãe22t

( :
1+cAe24t

124Ae22t
:

1+cAe24t

))

ü
üüý
üüþ

f ë2.

Since |z| = Im(r»zz),

| Im(r»zz)| f |w| f | Im(r»zz)|
√
1 + cAe24t.

The determinant condition guarantees small angle. That is if Ë is the angle of r»zw from the vertical, then

|Re(r»zw)|
|w| = | sin(Ë)| f A

|w| · |z| f
A

|z|2 f 4Ae22t.

Thus

| Im(r»zz)| f |w| f |Re(r»zw)| + | Im(r»zw)| f | Im(r»zw)| + 4Ae22t| Im(r»zz)|
√
1 + cAe24t,

which yields

(5.18)
| Im(r»zw)|
Im(r»zz)

g 12 4Ae22t
√
1 + cAe24t.

In the other direction we have the easier inequality that

(5.19)
| Im(r»zw)|
Im(r»zz)

f |w|
|z| f

√
1 + cAe24t.

Thus by our assumption on |w|, Equation (5.14) and Equation (5.18),
∣∣∣∣
Im(r»2w)

Im(r»zw)
2 1

∣∣∣∣ f 3Ãe22t |w|
| Im(r»zw)|

f 3Ãe22t Im(r»zz)

| Im(r»zw)|
√
1 + cAe24t(5.20)

f 3Ãe22t

( :
1 + cAe24t

12 4Ae22t
:
1 + cAe24t

)
.

Now in the first direction we combine Equations (5.13),(5.20) and (5.19) to obtain

| Im(r»2w)|
Im(r»2z)

f
√
1 + cAe24t

√
1 + 36Ã2e24t

(
1 + 3Ãe22t

( :
1 + cAe24t

12 4Ae22t
:
1 + cAe24t

))
f 1 + ë2.

In the other direction, combine Equations (5.20)(5.13), and (5.18) to obtain

| Im(r»2w)|
Im(r»2z)

g (12 4Ae22t
√
1 + cAe24t)

(
12 3Ãe22t

( :
1 + cAe24t

12 4Ae22t
:
1 + cAe24t

))
g 12 ë2.

Thus by Lemma 5.6, and noting that flowing by gt does not change the ratio of imaginary parts,

gtr»2Ë * Ω

(
ë̂:
8Ã
, ë2, L, L2

)
.

Combining cases. We conclude by Lemma 5.9, that

µ

(
Ω

(
ë̂:
8Ã
, ë2, L, L2

))
= O

(
ë2

ë̂2+2D

)
.

Using the relative homology coordinates given by the Delaunay triangulation we can identify Ω
(

ë̂:
8Ã
, ë2, L, L2

)

with a domain in CD.

Let h be the characteristic function of the compact set Ω
(

ë̂:
8Ã
, ë2, L, L2

)
. Choose a small neighborhood of

Ω
(

ë̂:
8Ã
, ë2, L, L2

)
and a continuous g * C>

0 (CD) such that h f g, and

∫

H
gdµ = O

(
ë2

ë̂2+2D

)
.
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We can consider a family of functions F as in the proof of Proposition 2.2 in this case defined on CD. Let Ç

be a radially symmetric continuous function of compact support which is identically 1 on Ω
(

ë̂:
8Ã
, ë2, L, L2

)
.

and consider the family F̄={Çf : f * F}. This is a K-finite compactly supported family and so there is
f̄ * F̄ uniformly close to g. Since we only need upper bounds, we can choose g larger if necessary so that
we can choose a smoothing function · with

∫ >

2>
·(u)du = 1

and support close enough to 0 so that h f (· 7 f̄). By Theorem 2.1,

lim
t³>

∫ >

2>
·(t2 s)(Asf̄)(Ë)ds =

∫

H
f̄dµ = O

(
ë2

ë̂2+2D

)
.

which for t large enough gives

Ath(Ë) = O

(
ë2

ë̂2+2D

)
.

Then as in Equation (5.7), by Lemma 5.6, for t sufficiently large

#
{
I(»i) : #» * I(»i) so that r»z * g2tT for z * Ekt

}
= O

(
ë2

ë̂2+2D
e2t
)
.

Moreover by Lemma 5.4 for each I(»i) the number of possible z * Ekt is O
([

L
ë̂

]1+·)
. Thus by our choice

of ë2, as desired

|Ekt | = O

(
ë2

ë̂2+2D
e2t
[
L

ë̂

]1+·)
= O(ë22e2t).

�

Proof of Lemma 3.4. For any ë2 consider the set U of points (z, w) such that 1/4 f Im(z) f 2, |Re(z)| f
Im(z) + 1, and |w| f 3

√
1 + (8A+ 16A2) (c. f. Equation 4.3), and at least one of

(1) A(12 ë2) f |z ' w| f (1 + ë2)A
(2) (12 ë2) Im z f | Imw| f (1 + ë2) Im z
(3) (12 ë2) Im z f |Re z| f (1 + ë2) Im z
(4) (12 ë2) f | Im(z)| f 1 + ë2

(5) (12 2 ë2) f | Im(z)| f 1
2 + ë2

holds.

The set U describes a neighborhood of "RA(T ). Choose g = g(ë2) continuous such that

(1) g(z, w) f 1 and is supported in RA(T ) * U
(2) g(z, w) = 1 for (z, w) * RA(T )

Let Ç = Ç(ë2) continuous, supported on U , such that Ç f 1, and Ç = g on U \ RA(T ). (The point is that
Ç = 1 on "RA(T )). Then

g 2 hA f Ç.

By Proposition 2.2,

lim
Ç³>

(AÇ Ç̂)(Ë)ds =

∫

H
Ç̂dµ =

∫

Hë̂

Ç̂dµ+

∫

H\Hë̂

Ç̂dµ,

where Hë̂ is the ë̂-thin part. By Lemma 5.5 the first term on the right is

O
(
ë̂

1
N

22·
)
.
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By Lemma 5.4, each Ë in the ë̂ thick part has O
(

1
ë̂2+2·

)
pairs of saddle connections of bounded length. This

together with Lemma 5.9 says the second term is

O

(
ë2

ë̂4+2D+2·

)
.

These two inequalities imply that for Ç large enough,

AÇ (ĝ 2 ĥA)(Ë) = O(ë̂
1
N

22·) +O

(
ë2

ë̂4+2D+2·

)
.

Recall we fixed · so that 1
N > 2·. Then given ë, choose ë̂ so the first term is at most ë/2. Then choose ë2

so the second term is also at most ë/2. The first conclusion of the Lemma follows. The second conclusion
follows directly from Lemma 5.9 and Lemma 5.5.

�

6. Parallel saddle connections on lattice surfaces

In this section, we will prove Theorem 1.2. Let Ë be a lattice surface. We recall first further details of
Veech’s result on the decomposition of ΛË into finitely many orbits of the Fuchsian group Γ = SL(Ë) acting
R-linearly on C.

6.1. Cusps and orbits. We denote the finite collection of cusps of Γ by [Γ1], [Γ2], . . . [Γn], where each
[Γi] is a distinct conjugacy class of a parabolic subgroup of Γ. To each [Γi] we can choose a direction in
R * {>} stabilized by a representative of [Γi], and in this direction, there will be a finite set of parallel
saddle connections ³i,1, . . . , ³i,mi

with

3(³i,1) g 3(³i,2) . . . g 3(³i,mi
).

Let

zi,j =

∫

³i,j

Ë, ri,k =
zi,1
zi,k

.

Note that for a fixed i, the zi,j are parallel, so the ri,k =
zi,1
zi,k

=
3(³i,1)
3(³i,k)

are real numbers greater than 1 for

k g 1. By [Vee98, Theorem 16.1], there is a ci,k such that

#(Γ · zi,k +B(0, R)) > ci,kR
2.

Note that since

#(Γ · zi,k +B(0, R)) = #(Γ · zi,1 +B(0, Rri,k)),

we have

ci,k = ci,1r
2
i,k.

Therefore, for j < k,

#(Γ · (zi,k, zi,j) +B(0, R)2) = #(Γ · zi,j +B(0, R)) > ci,1r
2
i,jR

2.

6.2. Completing the proof. To complete the proof of Theorem 1.2, we put these together to obtain

N0(Ë,R) =

n∑

i=1

mj21∑

j=1

j21∑

k=1

#(Γ · (zi,k, zi,j) +B(0, R)2) >
n∑

i=1

mj21∑

j=1

j21∑

k=1

ci,1r
2
i,jR

2.

This proves Theorem 1.2, with

c =

n∑

i=1

mj21∑

j=1

j21∑

k=1

ci,1r
2
i,j =

n∑

i=1

ci,1

mj21∑

j=1

(j 2 1)r2i,j .

�
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