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COUNTING PAIRS OF SADDLE CONNECTIONS

J. S. ATHREYA, S. FAIRCHILD, AND H. MASUR

ABSTRACT. We show that for almost every translation surface the number of pairs of saddle connections
with bounded virtual area has asymptotic growth like cR? where the constant ¢ depends only on the area
and the connected component of the stratum. The proof techniques combine classical results for counting
saddle connections with the crucial result that the Siegel-Veech transform is in L2. In order to capture
information about pairs of saddle connections, we consider pairs with bounded virtual area since the set of
such pairs can be approximated by a fibered set which is equivariant under geodesic flow. In the case of
lattice surfaces, small virtual area is equivalent to counting parallel pairs of saddle connections, which also
have a quadratic growth of cR? where ¢ depends in this case on the given lattice surface.

1. INTRODUCTION

A translation surface (X,w) is a pair consisting of a compact Riemann surface X and w, a non-zero
holomorphic one-form. For succinctness we denote a translation surface by w where the underlying Riemann
surface is understood. A saddle connection on w is a geodesic in the flat metric determined by w connecting
two zeros of w with no zeros in its interior. Let SC,, be the set of saddle connections on w. For v € SC,,
the associated holonomy vector is given by
Zy = / w e C.
¥

A, ={zy:7€8C,}
denote the set of holonomy vectors of saddle connections on w. This is a countable discrete subset of the
plane C. The length £(v) of a saddle connection 7 is

() = |2

For R > 0, let A,(R) = A, N B(0, R) be the collection of holonomy vectors of saddle connections with
length at most R. We are interested in the distribution of pairs of saddle connections, in particular the

growth rate of the following counting function, the count of pairs of bounded wvirtual area. Fix A > 0, and
define

Let

Na(w, R) = #{(z,w) € Au(R)* : [z Aw| < A, [w] <[]},

where for z = x + iy, w = u + iv, the signed area of the parallelogram spanned by the column vectors in R?
associated to z and w is denoted by det(z|w) = zv — yu, and the area is denoted by

|z Aw| = | det(z|w)| = |zv — yu| = |Im(Zw)].

The moduli space €, of compact genus g area 1 translation surfaces (where (X1,w1) ~ (X2, ws) if there is a
biholomorphism f : X; — X5 with f.ws = wy) is stratified by integer partitions of 2g — 2 (fixing the orders
of the zeros of w). The area of a surface w is given by

Area(w) = %/ wAQ.
p's

These strata have at most 3 connected components [KZ03], and each connected component H carries a
natural Lebesgue probability measure p = gy [Mas82, Vee82]. We fix H to be a connected component
of a stratum. Our main result is an almost sure asymptotic growth result for the set of pairs of saddle
connections with bounded virtual area.
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Theorem 1.1. There is a constant ca = co(u) such that for p-almost every w € H

N R
lim —AV9 (w, R)

= CA.
R—o0 R2 A

1.1. History and prior results. The study of counting problems for saddle connections is very active,
and connected to many different areas of mathematics, from low-dimensional dynamical systems to alge-
braic geometry. Motivated by problems in counting special trajectories for billiards in rational polygons,
Masur [Mas90] proved that the counting function

N(wa R) = #Aw(R)

has quadratic upper and lower bounds for all w, that is, there are 0 < ¢; = ¢1(w) < ¢2 = c2(w) so that for
all R,

(1.1) c1R*> < N(w, R) < coR%.
Subsequently, Veech [Vee98] showed there is a constant ¢ = ¢(H) such that
. N(w, R)
$$)H—7ﬁ—‘4dMW—Q

an L'-quadratic asymptotic result. Inspired by Veech’s approach, Eskin-Masur [EMO01] adapted ideas from
homogeneous dynamics (specifically, the work of Eskin-Margulis-Mozes [EMM95, EMM98] on quantitative
versions of Oppenheim’s conjecture) and an ergodic theorem of Nevo [Nev17] to improve this to a pointwise
asymptotic result, showing that for p-almost every w € H,

. N(w,R)
A TR €
More recently, Nevo-Rithr-Weiss [NRW20], using error term estimates in Nevo’s ergodic theorem coming
from mixing properties of the Teichmiiller geodesic flow, showed that there is an o < 2 such that for almost
every w € H,
N(w, R) = cR* + o(R®).

Our approach uses ideas from all of these results: we will, using ideas similar to Eskin-Masur [EMO01], set
up our counting problem as an integral over a piece of an SL(2,R)-orbit on H, and then apply the ergodic
theorem of Nevo [Nev17]. To implement our strategy, we will need upper bounds in the spirit of [Mas90],
and approximation ideas carefully implemented in [NRW20].

1.2. The Siegel-Veech transform. A crucial ingredient in the work of Veech [Vee98] is the Siegel- Veech
transform. Let B.(X) be the space of bounded measurable functions with compact support on a space X.
For f € B.(C), we define a function f on H by

flwy= 3 ()
z€A,
For example, if f = 1p(, g) is the indicator function of B(0, R),
f(w) = N(w,R).
A beautiful result of Veech [Vee98] is the Siegel- Veech formula, which states that there is a ¢ = cgy so that

for f € B,(R), f € L'(H, 1) and
/ fdu:c/f(z)dz.
H C

In fact a crucial ingredient in Eskin-Masur’s asymptotic result is that fe L'*8 for some 3 > 0. We will
need similar results for a generalized Siegel-Veech transform. Given h € B.(C?), we define a function T on
‘H by R
h(w) = Z h(z1, 22).
z1,22€A,

For example, if h = 1p ,(g) is the indicator function of the set

DA(R) = {(z,w) € C? : |w| < |z| < R, |z Aw| < A},
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then
h(w) = Na(w, R).

In our proof of Theorem 1.1, we rely on a result of Athreya-Cheung-Masur [ACM19] which shows that
h € L'*P for h € B.(C?) (which is equivalent to showing that for f € B.(C), f € L**A(H)).

1.2.1. Notation. Since the functions we are taking transforms of will be sometimes quite complicated to
write down, we introduce the following notation given bounded compactly supported functions f € B.(C)
or h € B.(C?) we write

fw) = V() and h(w) = b5V (w).

1.3. The SL(2,R)-action on strata. There is an action of the group SL(2,R) on strata. A translation
surface w gives an atlas of charts from X\{w™!(0)} to C whose transition maps are translations: the atlas

around a point pg is given by
P
z(p) = / w.
Po

In these coordinates, w = dz. Equivalently, such an atlas of charts determines a pair (X,w). The group
GLT(2,R) acts by R-linear-postcomposition with charts, and the group SL(2, R) preserves the set of surfaces
with area 1. The measure uy constructed by Masur and Veech is ergodic and invariant under the SL(2,R)-
action, and is locally given by Lebesgue measure in appropriate coordinates on H. Note that the assignment

wr A

is SL(2,R)-equivariant, that is

1.4. Strategy of proof. We now outline the strategy of proof of Theorem 1.1. First, we recall the strategy
of Eskin-Masur for understanding the counting function N(w, R): they construct a function f € B.(C)
(essentially the indicator function of a trapezoid), which satisfies

1 27 9
Py ; f(girez)df =~ e tlA(et 8t)(z),

where the matrices
et 0 cosf —sinf
(1.2) gt = <0 e_t> o= (sin6‘ cosd >
act R-linearly on C, and for 0 < R; < Ra,
A(Rl,Rz) = {Z cC:R; < |Z| < RQ}
Putting e = R, and adding the above expression over all z € A, we obtain
€ (N(w, R) — N(w, R/2)) ~ Lo Flgerow) do
R2 ) ) ~ o 0 giTe .
This reduces the counting problem to a problem of understanding the sequence of integrals
1 2m .
o f(gerow) do.
T Jo

Nevo’s ergodic theorem (Theorem 2.1) deals precisely with integrals of this form, but with some compactness
and smoothness assumptions on the integrand. Theorem 2.1 gives that almost surely the the integrals
converge to [ fdu. The Siegel-Veech formula is then applied to say that this last integral is ch f(z)dz.
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1.4.1. Pairs. In our case we will construct as the main part of the proof, a function h4 € B.(C?) so that
1 27 e—2t

(1.3) ha(gire(z,w)) =~ TlDA(et/det)(Z,w),

2 Jo
where for R; < Ra,

DA(R1, Ry) = {(z,w) € C%: |z Aw| < A, |w| < |2, Ry < |2| < Ry}
and the action of SL(2,R) on C? is the diagonal R-linear action; that is,

a b\ (z+iy\ _ ((az+by)+i(cx + dy)
c d u+iv)  \(au+bv)+i(cu+dv)/)’
Adding (1.3) over all (z,w) € A2, we will prove

o~

. 1 . 1 2
(1.4) Aim (WNA(‘U,R) - ﬂ/o hA(glog(R)Tew)d9) =0,

where

Nji(w,R) = Na(w, R) — Na(w, R/2).

Once again we will need to show that the limit of the circle averages

1 27 o
lim —/ ha(girew) df
0

t—o0 27T

exists. To do that we again will implement Nevo’s theorem (Theorem 2.1) along with careful analysis of
the boundary of the support of h4. We will also rely on [ACM19, Theorems 1.2 and 3.4] which shows that
there is a K > 0 such that

he LY (M, ),

and provides a version of the Siegel-Veech formula which works for functions defined on C2.

1.5. Lattice surfaces. Given a surface w, we define its Veech group SL(w) to be its stabilizer under the
SL(2,R) action. A class of surfaces where counting problems are well-understood are lattice surfaces,
surfaces w whose stabilizer I' = SL(w) under the SL(2,R)-action is a lattice. These are also known as
Veech surfaces. While lattice surfaces are rare, in the sense they form a set of measure 0 in each stratum,
they are a dense set in each stratum. See [SW10] and the references within for more details.

1.5.1. Counting and orbits. Veech [Vee98] showed that in this setting the set of holonomy vectors A, is a
finite union of orbits of the Veech group. That is, there is a finite collection of complex numbers z1, 23, . . . Zm
such that

(15) Aw = 6 1—‘21
=1

Using this, and techniques from homogeneous dynamics, he proved, for each i, there is a ¢; so that
# (I'z; N B(0,R)) ~ ¢; R?,

and thus overall quadratic asymptotics for N(w, R).

1.5.2. No small triangles. Subsequently, Smillie-Weiss [SW10] gave many equivalent characterizations of
lattice surfaces. In particular, they showed that (X, w) is a lattice surface if and only if it satisfies the no
small virtual triangles (NSVT) condition: there is an Ay > 0 so that for any non-parallel z, w € A,,,

|Z/\’LU| > Ap.

So for A < Ay, the problem of understanding N4(w, R) becomes the problem of counting parallel pairs of
vectors in A,,.
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1.5.3. Counting parallel pairs. We write
No(w, R) = #{(z,w) : |z Aw| =0, |z| < |w| < R}.
Theorem 1.2. Let w be a lattice surface. There is a constant ¢ = ¢(w) such that

. NQ(OJ,R) -
e

We prove this result in §6, and show how to compute ¢ using the decomposition of A, into orbits of
SL(X,w), the structure of the cusps of the Fuchsian group I' = SL(X,w), and Veech’s counting results.
We note that a generic (in the sense of Masur-Smillie-Veech-almost every) surface has no pairs of parallel
holonomy vectors, as the existence of such a pair is a closed and positive codimension condition.

1.6. Organization of the paper. In §2, we state Nevo’s ergodic theorem and a version of a Siegel-Veech
type formula from [ACM19], which we use to prove convergence of circle averages of Siegel-Veech transforms
for continuous functions. In §3, we construct our function h4 and show it has our desired properties, state
our main technical result Theorem 3.1, Proposition 3.2 about almost sure quadratic upper bounds, and
Proposition 3.3 about convergence of circle averages for h 4, all of which are used to prove Theorem 1.1. In
§4 we give sufficient conditions to prove Theorem 3.1. In §5, we prove Proposition 3.2 and a lemma necessary
for Proposition 3.3, along with a key modification to prove Proposition 5.1, which show the conditions from
§4 indeed hold. Finally, in §6 we prove our results on lattice surfaces.
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2. NEVO’S ERGODIC THEOREM AND SIEGEL-VEECH MEASURES

We state the results of [Nev17] and [ACM19] needed to precisely move between circle averages and counting
asymptotics. We then combine these results to show convergence of averaging operators of Siegel-Veech
transforms.

2.1. Averaging operators. Suppose SL(2,R) acts on a space X (here our spaces will be C, C?, and
connected components of strata #H, all with the natural R-linear actions). Given a function h on X, and
p € X, we define

27
(A:h) (p) = %/0 h(girep) db.

Note that for f € B.(C) or h € B.(C?), we can interchange sum and integral to obtain

—

(A (@) = (Acf)(w) and (Ach)(w) = (Ah)(w).

A key tool is Nevo’s ergodic theorem for the operators A; acting on H.

Theorem 2.1. [Nevl7, Theorem 1.1] Suppose u is an ergodic SL(2,R)-invariant probability measure on
H. Assume f € LYT%(H,pu) for some k > 0, and that f is K-finite, that is, if fo(w) = f(rew), the span
of the functions {fy : 6 € [0,27)} is finite-dimensional. Let n € C.(R) be a continuous non-negative bump
function with compact support and of unit integral. Then for p-almost every w € H,

im [ gt $)(Asf)(w)ds = | sin

t—oo |
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2.2. Siegel-Veech measures. We will apply Nevo’s theorem to the Siegel-VeeAch transforms of functions
defined on C2. By [ACM19, Theorem 3.4], for any f € B.(C), for some x > 0, f € L>72%(H, ). Then, for
any h € B.(C?), h € LY**(H, pu), since we can dominate

?L(w): Z h(v1,v2)

v1,v2€A,

by (J/“\)2 where f = ||h||cox#, where H denotes the union of the projections of the support of h via the
coordinate projection maps. By the invariance of u, and the integrability condition,

h— /H h(w)dr(w)

is an SL(2,R)-invariant linear functional on C.(C?). Therefore, there is an SL(2,R)-invariant measure
m = m(u) (a Siegel-Veech measure) on C? so that

[ yinte) = [ nam

By the monotone convergence theorem, we can extend the class of h for all h € BS¢(C?), which are those
h € B.(C?) which are either upper or lower semi-continuous. In particular BS¢ will include characteristic
functions of the compact closed sets defined in Section 3. To describe the possible SL(2,R)-invariant
measures on C2, we need to understand SL(2,R)-orbits on C2. For t € R, let

D; = {(z,w) € C*: | det(z|w) = t},

and notice we can identify Dy with SL(2,R). For t # 0, D; is an SL(2,R)-orbit. Dy decomposes further.
For s € P}(R), let

Ly ={(z,s2) : z € C\{0}},
with

Lo = {(0,w) : w e C\{0}}.
D; and L are the non-trivial SL(2,R) orbits on C?, and each carries a unique (up to scaling) SL(2,R)-
invariant measure. These are the (non-atomic) ergodic invariant measures for SL(2,R) action on C2. On
Dy, the measure is Haar measure (which we denote \) on SL(2,R), and on L, it is Lebesgue on C. Thus,

associated to any SL(2,R) invariant measure m on C? we have measures v = v(m) and p = p(m) so that
we have [ACM19, Theorem 1.2]

(2.1) /«: = ( /S o h(tz,w)dA(z,w)) du(t) + /P . < /«: h(z,sz)dz) dp(s).

2.3. Convergence of averaging operators for continuous functions.

Proposition 2.2. Suppose o € C.(C?). Then for u-almost every w € H, the circle averages of  converge
lim A,p(w) = / pdu = / pdm.
T—>00 H (CQ

Proof. By [ACM19, Theorem 3.4], $ € L1*%(H, i) for some x > 0. We want to construct K-finite functions
which sufficiently approximate @, which we do by constructing a family of K-finite functions which are
dense in the continuous functions.

Define H = B(0,1,) x B(0,1,), the product of closed balls with radius chosen so that ¢ < ||¢|| 1m. We

!
will also consider also the slightly larger set Hy = B(0,l, + 1) . Notice that H, H; are rotation invariant
subsets of C? under the diagonal action 7¢(v,w) = (rgv, rew).

Consider the following family of functions in C'(H) defined by F = {fimy n1,ma.ns : Mi, N € Z} where for
z= rlewl,w = 7“26”2,

fm1)n17m2)n2 (27 w) = TTI
We consider a subalgebra A of C(H) given by the C-linear span of F U {1}, where 1 is the constant unit

function on H. Then by definition, A is closed under addition and multiplication by complex scalars.

,r.;n2 ei’ﬂl 61 einzeg .
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Moreover F is closed under multiplication and complex conjugation, so A is an algebra. Except for zero,
the elements of F separate points, and the inclusion of 1 guarantees separation of all points. Lastly, to see
that Siegel-Veech transforms of elements of A are K-finite, note that for any fi, ny,mane € F,

(fmlﬂlz,mgﬂlz © T‘g)(z7 w) = r;nlrgl2 ezn1(01+9)ezn2(02+9) = e(n1+n2)i9fml7n1)m27n2 (27 w)'

By linearity, f/o-?g = e(m+n2)i £ o5 the C-linear span of {fg : 0 € [0,27)} is exactly the C-linear span of 7.
Hence extending by linearity again for each f € A, both f and f are K-finite. Thus by the Stone-Weierstrass
Theorem, K-finite functions are dense in the uniform topology in C(H).

Thus we can choose a sequence of K-finite functions (f,)neny which converge uniformly to ¢. Since the
convergence is uniform, Im(f,) converges uniformly to zero, and Re(f,) converges uniformly to . So
replacing f,, with Re(f,), we will assume that each f,, is real valued. When necessary we will extend
the functions f, on H to functions on C by considering them as a product with 1y which still gives a
semi-continuous K-finite function on C2? with compact support.

Fix n € C(R) a positive mollifier, with n(t) > 0,

/_O:On(t)dt —1,

and support of n in [—1,1]. For f € C§°(C?), and (2, w) € C?, denote the convolution by

(n* f)(z,w) = / O (g2 ) ).

— 00

We will use the notation () = y~'n(t/v) which has the property that the support of 7, is in [—7,7] and
Jim ny (t) = 6(1)

where § is the Dirac delta distribution. We claim 7, * ¢ converges uniformly to ¢ on C? as v — 0. To see
this, for any e > 0 choose 7o so that whenever v < 7o, since the support of 7, is contained in [—v,~], by
uniform continuity of ¢ on H, whenever || < 7,

|o(g-1(2,w)) — (2, w)| < e
Thus for any (z,w) € C,

v
() (z10) = ()] < [ @lo-ievw) = ol wlde <.
-
We will also use the fact that there is some g so that for v < 7o, for any (z,w) € H, g—(z,w) € Hy, so
(22) ]-H Sn’vo*lHl'

By Theorem 2.1, for each f,, and almost every w,

o0

Jim A= @) = tim [ o) (Ar-ida) ()
= lim _OO n(r —s) (Asﬁ) (w)ds

/fnd,u:/ fn dm,
H C2

where m is the Siegel-Veech measure as in Equation 2.1.

Let € > 0. Choose H slightly larger if necessary so all w have a saddle connection in B(0, 1), so

1<1g(w) < oo.
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Since 1 € BSC(C?), 15 € L' %(p) so
/ 1y dp=m(H) < co.
H
By uniform convergence, choose N so that for all n > N and a corresponding sequence v, for all (z,w) € H,
(2.3) |fn(z,w) — @(z,w)| < € and [(ny, * ¢)(z,w) — (2, w)| <e.

Since the support of f,, and ¢ are contained in H, summing over A, for any w’ € H gives the pointwise
bounds

(2.4) (@) = 3(&)] < elg(w') and |(n,, * ¢)5Y (W) — B()] < elp ().

Now fix n large. Since 1y, is K-finite, we apply Theorem 2.1. So for almost every w € H choose T = T'(w)
large enough so that for all 7 > T,

(2.5) ‘AT(U% s« 15, )°V (w) — m(Hl)‘ <e.
Choose 7 > T for T = T'(,,,w) so that again by Theorem 2.1

(2.6) ATI;\(w) < Ar(ny, #11,)%Y (W) < m(Hyp) + e

For almost every w, and 7 > T'(w), we apply Equation (2.4) for each w’ = g,;7pw, and then by Equation (2.6)

(2.7) Ar (1, % Fa) (@) = Ar (1, % 9)5Y ()] < €Ar (1, % 11,5 (w)
< ele+m(Hy).

Equation 2.4 says for each w’ = g;rgw, we obtain
(2.8) [Ar (M, * 0)°Y (@) = ArB(@)] < Ar| (1, % 9)% (W) = P(w)]

—~

AT(lH)(w)
[e +m(Hy)).

€
€

VARVA

Next again applying Theorem 2.1, for a.e. w choose T' = T'(w) large enough so that for all + > T

(2.9) ‘Af(n% s )%V (w) —/ fndm| <e.
c2
Next we can again use Equation 2.3 and since all of the functions have support in H; to see that
(2.10) fndm — wdm| < em(Hy).
c? c?

By the triangle inequality combined with Equations (2.7), (2.8), (2.9), (2.10) we conclude that for almost

every w and each n, there is T' = T'(¢,w) so that for all 7 > T,

A3~ [ odm
C2

(2.11) < 2ele+ m(Hy)] + € + em(Hy).

Since m(H) and m(H;) are fixed constants we conclude for almost every w,

(2.12) lim A, p(w) :/ wdm.
C2

T—00

3. APPROXIMATION FUNCTION AND PROPERTIES

In this section, we construct the function h 4 satisfying (1.3).



COUNTING PAIRS OF SADDLE CONNECTIONS 9

3.1. Fibered sets. Fix A > 0. Given z € C, define the approximating parallelogram
Ra(z)={weC:|lwnz| <A |Imw| <|Imz|}
which we will use to approximate the desired set

Da(z)={weC:|lwAzl <A |w <z}

FIGURE 1. The sets Ra(z) and Da(z). Ra(z) is the shaded parallelogram, and D4 (z) is
the region inside the red circle bounded by the two parallel red lines. This is the picture
for x > A/y, and there is a corresponding figure for x < A/y.

Given S C C, we define the fibered parallelogram and desired set by
Ra(S) = {(z,w) € C*: 2 € S,w € Ra(2)} and DA(S) = {(z,w) € C?: z € S,w € Da(2)}.

Note that for z = x + iy, Ra(z) is a parallelogram with vertices x =+ % + iy (see Figure 1). From this
observation, we have g;-equivariance of R4: for t € R,

9:(Ra(2)) = Ra(g:2),
so for S C C,
9¢(Ra(S)) = Ra(g:5).
We will be particularly interested in two families of fibered sets. First, define the trapezoid T by

Tz{zzx—kiye(c:%gygl, |:z:|§y}

We set ha = 1, (1) to be the indicator function of the fibered set RA(T). Next, for Re > Ry > 0 set

B(R1) =B(0,R1) ={2€ C:|z| < Ri}

A(R1,R2) = B(R2)\B(R1) ={z € C: Ry < |z| < Rz}
We define
Da(R) = Da(B(R))
Da(R1,R2) = Da(A(R1, R2)).

We have Na(w,R) = (1p,(r))%Y (w) and Nj(w, R) = (1p,(r/2,r)>" (w).
Our main goal is to prove
Theorem 3.1.
(3.1) Ni(w,e') — me? (Atla) (w)} = o(e?).
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In order to obtain Theorem 3.1, we will need to use quadratic upper bounds to control error terms.

Proposition 3.2. Given A >0, for a.e. (X,w) there exists C and T > 0 such that for all t > T,
Ni(w,e) < Ce*.
We will also need the following

Proposition 3.3. For almost every w,

lim (Agha)(w) = / hadp.
H

t—o00

To prove this proposition, we make use of the following lemma proved in Section 5.

Lemma 3.4. For all e there exists a function g. € C.(C?) and T >0 so that for all T > T, and u-a.e. w,

(3.2) |43 ~ Pa)w)| < ¢ and ‘/@—ﬁ;du‘<e.
H

Proof of Proposition 3.3. Let € > 0. Choose a function g. € C.(C?) and a constant T so that for all 7 > T,
Equation 3.2 holds. Also choosing T' = T'(¢) larger if necessary so that by Proposition 2.2,

ATg\E(w)—/ Je dp| <e.
H

Thus by the triangle inequality

]Affmw)—/ zadu] < \Aﬂ(w)—A@(w)\+]ATg:<w>—/ @du\+]/ g:—fadu\ <3
H H H

We conclude this section by proving Theorem 1.1 assuming Theorem 3.1 and Proposition 3.2.

Proof of Theorem 1.1. Combining Theorem 3.1 and Theorem 3.3 we have, that for y-almost every w € ‘H

* t
(3.3) lim Niw,e)

t—oo et

co = /R\{O} </SL(27R) hA(tz,w)d)\(z,w)> dv(t) + /IPI(R) (/C ha(z, sz)dw) dp(s).

Notice that ¢y only depends on A and (H, u).

:CO

where

To extend to N4 (w, e') we use a geometric series argument along with the dominated convergence theorem

giving upper bounds via Proposition 3.2. Specifically for each fixed j setting s = ;—; and using Equation 3.3,
we have pointwise convergence
Ni(w, ;—j) .. Ni(w,e®)  mco

2t s—oo 227 e2s 922j

t—o0 e

We also have a dominating integrable function

Ni(w, &) _ cI?
where we are without loss of generality assuming 7" > 1 is the constant from Proposition 3.2. Namely for
each j whenever e’ > T2/, Proposition 3.2 gives an upper bound of €272/ < ¢T?2727, If ¢! < T2, using
quadratic upper bounds from Equation 1.1,

Ni(w, &) - N(w, &)? e3t T2

< Co—— < Co—5=.
e?t — e2t — 24_] — 22_]




COUNTING PAIRS OF SADDLE CONNECTIONS 11

FIGURE 2. For z € A < %(zt),et) |©:(2)] = 2arctan(e=2t).

—e +eti et 4 eti

Therefore by the dominated convergence theorem and the fact that for each fixed ¢, the tail of the telescoping
series gives

. e’
3, Na (w’ 2—+> -0

t 0 * et 0
. Na(w,e") . Ni(w, 5) mey 4
hm 5 = l1im — 5 = =
t—00 e2t t—00 £ e2t ¢

j=0 Jj=0

SO

4. COUNTING AND ERRORS

In this section we derive estimates that are necessary for the proof of Theorem 3.1. Note that (see Figure 2)

the trapezoid g_;7 has vertices
et et ¢ "
+— +i—, Fe " +ie.
2 2
Given z,w € C, define

Oi(2)={0€[0,2m) : gr9z € T}
Oi(z,w) ={0 € [0,27) : gsro(z,w) € Ra(T)}.
For f =17 and h = 1p, (1), we have

|0:(2)] = 2m(Aef)(2)
|O:(z, w)| =27 (Atha)(z, w)

Lemma 4.1. Fort >0 and (z,w) € C2,

Aha(e,w) < A1 (2)) < ),

™

Proof. The first inequality follows from the fact that ha(z,w) = f(2)1g, ) (w). By our computation of the
endpoints,

9T C {Tew €cC:6¢ g — arctan(e™2"), g + arctan(e*”)} } :

0

Since rgz = ez, we have
)

arctan(e—2!
(Acha)(z. ) < (Af)(2) = 5-104(2)] < T

O

Our next lemma captures the fact that for (z,w) in a set that is only slightly smaller than D(et/2,et)
(Asha)(z,w) captures a fixed contribution of order e =2t
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Lemma 4.2. Fort >0 if

cosh(2t) , |z]
4.1 D _— d < —
( ) (Z,’LU)G A< 2 7€> an |’LU|_ m

then

(42 (Acha) ) = T,
Moreover, for all (z,w) such that (Atha)(z,w) > 0,

(4.3) |w| < \/1+ (84 + 16A2)e—4|z|.

Proof. To show (4.2), we must show
|©¢(z,w)| = 2arctan(e2").

Note that (see Figure 2)

h(2t
z€ A ( %,e’) — |0:(2)| = 2arctan(e ).
We now consider the second component. For any 6,
[roz Argw| = |z Aw| < A.
For 6 € ©(z), we need to verify rgw € Ra(rgz). That is, we need to check that
[ Tm(rew)| < | Im(rgz)|

Since |w| < —=L

Vite 1’
2|
[ Im(rew)| < ="
We claim that for any 6 € ©,(2),
Im(rgz) > 2

Indeed, Im(rpz) is minimized over § € ©,(z) when 6 = 0y so that rg,z is on (either) non-horizontal edge of
the trapezoid, that is

i(ﬂ'/Zfarctan(efzt))

T,z = |zle ,

Note that for p = u + v on either such edge, |u| = e~?'v, so

Ip| = V' 1+ e *Im(p).
Thus

Im(7rsz) > Im ( Py ei(w/27arctan(872t))) — L
(o) 2t {4 Ve

as desired. To show (4.3), consider 6 so that g;rg(z,w) € Ra(T). So rez = x + iy € g—T. Thus
el /2 < |z| = |rgz| < \/2cosh(2t), |z|/y < e™?, and % <y <e'. Since rpw € Ra(z),
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A 2
|w|=|mw|s\/ <|:c|+5) Ly
2

< V7|2 + 24672t 4 4422t

2 2t
|Z|\/ N 2A+|4é Je- )

< 2|V(1 +4(2A + 4A2)e—4t),

where in the last line we are using that
2] > e'/2 = |2| 72 < e .

O

4.1. Proving Theorem 3.1. To prove Theorem 3.1 we break the left-hand side of 3.1 into several terms.
First note we have

(4.4) Ni(w,e) — me? (Atf/L;) (w)‘ Z (1p (et j2,ey(2,0) — me™ (Arha) (2,w))

(z,w)EAZ
SV
= ‘ (]'DA(et/27et) — 7T62tAthA) (w)‘ .

We break (4.4) into several pieces: a main term discussed in (§4.2) and four error terms in (§4.3). We will
show in §5 how to control the error terms. Note that for any h € B.(C?),S C C?, we can write

Z h(z,w) = Z h(z,w)lg(z,w)

(z,w)EALNS (z,w)EA,,
= (h-15)*V(w),

4.2. Main term. Let

M = {(va) €Dy < %,a) w| < |z|(1 +€4t)1/2}.

That is M, is the collection of pairs satisfying (4.1). Our main term will be

(4.5) me(w) = Z (et j2,et) (2, 0) — me* (Arha) (2, w))

(z,w)eAZNM;
= (1Mt . (1DA(et/21et) — 7T62tAthA))SV (w)
= (1Mt — 7T62t(AthA) . 1]%5)8\/ (w)

where the last line follows from the fact that M; C D4 (e!/2, ).

4.3. Error terms.
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4.3.1. Error term 1: Bottom of trapezoid. We define

1 )

In particular, for (z,w) € E} rez hits only the bottom of the trapezoid g_;7T, and the arc ©:(z) is not the
full possible arc of width 2 arctan(e~2!). Note that the smallest possible length of a vector in g_;T is e'/2,

and for z = |z|e!¥ with
h(2t 2t —2t
et/2<|z|<\/cos2( )_\/e —Ze

O4(z) = (arcsin(e’/2|z|) — ¢, ™ — arcsin(e’ /2|z]) — ),

|94(2)| = m — 2arcsin(e’ /2|z|) = 2arccos(e’/2|z]).
We define
(4.6) et = Y ((Apaerszen(zw) — me (Asha)(z,w)))

(z,w)EAZNE}

ot SV
= (1Et1 . (1DA(et/21et) — e AthA)) (w)
SV
= (1Et1 - 7T€2t(AthA) . 1Et1) (w)

where the last line follows from the fact that E} C D4(ef/2,e?).

4.3.2. Error term 2: |w| > |z|(1 4+ e~*)~1/2. Our second error term consists of pairs (z,w) for which
10,(2)| = 2arctan(e™2*) but |w| > |z|(1 + e~ 4)71/2,

so (4.1) is not satisfied. That is,

E? = {(z,w) €Dy ( %,e’) :w| > z|(1 +e_4t)_1/2},

and we define the counting function

(4.7) e2(w) = Z (1, (et 2,0ty (2, w) — T (Ayha) (2, w))

(z,w)EAZNE?

ot SV
= (]-E? . (]_DA(et/Q)et) — Te AthA)) (w)

4.3.3. Error term 3: The top of the trapezoid. Our third error term is based on the set
E} = {(z,w) € C*: (Asha)(z,w) >0, |z] > €'},

that is, where z is in the top of the trapezoid, and (z,w) ¢ Da(e'/2,e'). We set
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(4.8) 6? (w) = Z (]‘DA (et/2,et) (z,w) — me?! (Atha)(z, ’LU))

(z,w)EAZNE}

o SV
= (]'E? . (lDA(et/Q)et) —Te AthA)) (w)
SV
=— (lE;a ~7re2tAthA) (w)

where the last line follows from the fact that E} is disjoint from D4(e!/2, e?).

4.3.4. Error term 4: |w| > |z|. Our fourth and final error term is based on the set where the averaging
operator is positive, but (z,w) & Da(e'/2,e'). We define

Ef ={(z,w) € C?: (Atha)(z,w) > 0,e'/2 < |z| < €', |w| > |2|},

(4.9) ef(w) = Z (1p (et 2,0t (2, w) — T (Ayha) (2, w))
(z,w)EALNE}

9 SV
= (]_Eél . (lDA(et/Q)et) — Te tAthA)) (w)
SV
= - (].E;L ~7T62tAthA) (w)

where the last line follows from the fact that E} is disjoint from D4 (e!/2, e?).

4.3.5. Decomposition. By construction

4
Da(e'/2,e") U{(z,w) : (Atha)(z,w) > 0} = M, U U E,
i=1
and the sets M; and E} are pairwise disjoint. Therefore
(4.10) N (w, et) — me?t (AJL}) (w)‘ =13 (Lnaerszen(zw) — 7 (Aiha) (z,w))

(z,w)EAZ

= (1DA(et/27et) — 7T€2tAthA)SV

()]

= [me(w) + 3 i)

5. UPPER BOUNDS

5.1. Almost sure bounds. We now show our key almost sure quadratic upper bound for pairs of sad-
dle connections with bounded virtual area (Proposition 3.2), then show how to modify the proof to give
Proposition 5.1, which controls the main and error terms defined in the previous section.

Proposition 5.1. For almost every w,

(5.1) e (w)| = o(e*)
and fori=1,2,3,4

(5.2) lei(w)] = o(e*)
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5.1.1. Proving Theorem 3.1. To prove Theorem 3.1, we combine (4.10) and Prop 5.1 to get

(5.3) NyMayw&%&EQ@ﬁzkmm+ﬁiﬂw
=1

IN

4
e (w)] + Z i (w)]

= o(e?).

5.1.2. Proving the estimate (5.1). For (z,w) € My, we have, by Lemma 4.2:

arctan(e=2t)

(1DA(8t/278t) - (AthA)) (z,w)=1- et . -
=1-1+e*.0( %)
=0(e™*)

Combining this with Proposition 3.2, we have

(5.4) [my(w)| < O(e™) - Nj(w, e')
= 0(e" " O(e?)
=0(e™?") = o(e?).

5.2. Notation. In the remainder of the section we prove Propositions 3.2 and 5.1. We adopt the following
notation:

Systoles. If «y is a saddle connection on w, we write £(vy) for the length of ~, i.e.,
L(7y) = |zy|, where z, = /w is the holonomy vector of ~.
v

We write £(w) = £(7o) for the length of the shortest saddle connection ~o(w) on w, and £(w) = £(v;) for the
length of the shortest saddle connection +; (w) not homologous to the shortest saddle connection g (w). We
define

C ={w e H: v(w) bounds a cylinder}

and
BC. = {w € H : y0(w) bounds a cylinder of width < e}.
Note that
BC = | | BC..
e>0
Scales. Fix 0 < o < 1. Let
_logl(w) ., logg(w)
50(w) = log o 8(w) = log o

Angles. On a base surface w we refer to a holonomy vector z of a saddle connection - without subscripts. On
the surface g;rpw the image holonomy vector girgz will be denoted zg ;. If z = |z|€’?, we define 0, = /2 — ¢
to be the angle so that rg_z is vertical, that is ro, = |z|i.
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Delaunay triangulations. Following [MS91, §4], we define a Delaunay triangulation of a translation surface
w € H. Consider the Voronoi decomposition of the translation surface with respect to the flat metric: each
zero of w determines a cell given by points which are closer to it than to any other zero, and have a unique
shortest geodesic connecting the two. The dual decomposition is the Delaunay decomposition of the surface,
and any triangulation given by a further dissection of this is a Delaunay triangulation of w.

Let N = N(H) be the maximum number of edges in a Delaunay triangulation by saddle connections of any
w € H. This N is finite, since there are a bounded number of vertices since they are at the zeroes of w.
Given any pair of zeroes the saddle connections joining them are in different homotopy classes. There are a
bounded number of arcs joining two points when the arcs are in different homotopy classes and they do not
intersect. Thus we have a uniformly bounded number of edges. For the rest of this section, we fix § < ﬁ

The set. Define
Pa(w,e') = A2 N Da(e'/2,€"),
s0 |Pa(w,e’)] = Nj(w,et).
Partitioning the circle. For each t > 0 partition [0,2) into |e?!| intervals I(6;) of radius oy Centered

at points 0; for i = 1,...,|e*|. We will look at counting on the finite set of surfaces {w; = g;rp,w} and
then prove Lemma 5.6 to observe that in each of these intervals centered at ; lengths change by at most a
multiplicative constant which will be absorbed in our estimates.

Ratios. For each i, define

SO

5.2.1. Measure bounds. Next we state a result originally due to Masur-Smillie [MS91], estimating the mea-
sure of the set of surfaces with two non-homologous short saddle connections.

Lemma 5.2. [MS91, Equation 7] For all €, k > 0, the Masur-Smillie- Veech measure of the set Vi(e, k) C H
of w which have a saddle connection of length at most €, and a non-homologous saddle connection with
length at most k is O(€2k?).

5.2.2. Counting lemmas. Finally we state a counting lemma which is summarized from [ACM19, §3.6.2 and
3.6.3].

Lemma 5.3. Fiz w € H with shortest saddle connection v and second shortest saddle connection ~'. If
either v does not bound a cylinder, or v bounds a cylinder of width at least €y then

N(w,e0)® = O(|£(y")|7*Y).

5.3. Counting bounds with systoles. The following is a slight modification of [EM01, Theorem 5.1].

Lemma 5.4. For any Lo > 0 and 6 > 0 there exists C = C(0, Lg) such that for any L < Lo and any
surface (X,w) in the stratum

(5.5) N(w, L)< C <%>H6

(w

Proof. Fix Lo > 0, 6 > 0, let L < Ly, and let w € H. [EMO1, Theorem 5.1] states that there is a
k= k(H) >0 and C" = C(6,H) so that for L < &,

L 1+6
N(w,L)<C" | — :
D= (75)
Thus, if Lo < i we are done. We now consider the case Ly > x. Divide [0,27) into equally sized intervals

J; of radius 7 L2 and let ¢; be the center of J;. Note that there are O(L3) such intervals. For any z € A, (L)
choose ¢; with angle 0. € J;. We rotate z to almost vertical via r_g4,, and then shrink r_g, z to have length
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less than k by applying g:r_4, where e! = % The largest possible imaginary component for r_g,2 is
bounded above by |z| < L < Lg, so
K K
Im(z_yp, ;) = —Im(r_g.2z) < =

After rotating by —¢;, 7_g,z must lie in B(0, L) with angle with the vertical in (—%, %) , S0 the real
0 0

component of 7_gy, z must satisfy

2Lg 2Lg K2 2L% k K
Re(z—¢;,t) = — R < —I t — | < — =—
e(Z ¢'L7t) e('f‘ ¢ Z) m('f‘ ¢1 ) an (4L%) — K 4L2 2 )

where we used tan(z) < z for 0 < z < %. Thus
lgir—s.2] < K.

Moreover, for each i the systoles satisfy

2L
U(w) < Ugirp,w) - 2.

“% () =0 () e ()™

)1-‘1-5

So

Combining the terms O(L3) (ke

K

C’, we get a constant C = C(d, Ly) as desired.

5.4. Integral bounds and counting in thin part of the stratum. Choose 6 < 1/2N. Given ¢, let
Ho={we M bw) < e}
denote the e-thin part of the stratum. Fix Ly > 0. For w € H, let
VLoe(w) = X%‘(/O,LOP(W)XHJW)-

YLy ,e(w) counts the number of pairs of saddle connections of length at most Lg if w € H,, and if w ¢ H,,
Yr,e(w) = 0. For ease of notation we write ¢ = ¢, .

Lemma 5.5.

[ wdn =0t =),
H

where the implied bound depends on Ly.

Proof. We define three families of sets exhausting the thin part of the stratum, in terms of the length of
the shortest and second shortest non-homologous saddle conenctions. Recall we have fixed 0 < o < 1. For
0 <j < N,let F'(j) be the set of w with a shortest saddle connection ~o(w) with length between o/*! and

o7 and a non-homologous saddle connection of length at most oz¥. That is

(5:) P )= {w et o] =500 < 5 -
By Lemma 5.2,
w(F()=0 (02j+2ﬁ) =0 (02j0%) .

We now apply Lemma 5.4 which says for each w € F(j) we have (w) = O(c~7(*29). This gives

/ vy = O(o7 (=29
F(y)
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Next, let €o := 87ca. Define G(j) to be the set of w where the shortest saddle connection o (w) has length

between o/*! and o7, the shortest non-homologous saddle connection v;(w) has length at least o2v, and
~o(w) either does not bound a cylinder or bounds a cylinder of width at least e := 87c4. That is,

60) = { # BC s o)) =siint) > 25}

By Lemma 5.3, for each w € G(j) we have ¢(w) = O ((aj/zN)72N> = O(0~7). We also have by Lemma 5.2
that u(G(j)) = O(c?) giving
/ Ydp = O(a”).
G()

Finally let H(j) be the set of w where the shortest saddle connection ~o(w) has length between o7*! and
o7 and bounds a cylinder of width at most €,

H(j) ={w € BCq : [s0(w)] = j}-
Then again if w € H(j) ¥(w) = O(c=7(?+29) and now
u(H(5)) = O(c™),
where the the implied constant depends on ¢y. This gives
Ydp = O(c? 172,
H(j)
Finally choose jg so that o70*! < ¢ < g%. Thus
Hec |J F(HUGH) UH()
Jj=2jo
and so
/ Ydp =0 Z of 4 gI(/N=26) 4 5i(1=20) | _ ) (Ujo(l/N—ms)) -0 (61/N_25) .
H =
€ Jj>Jjo

O

5.5. Reducing to finitely many surfaces. This next lemma shows that within a fixed range of angles
for 6 and times for ¢, |g:79z| cannot change too much, which allows us to reduce to our finite collection of
surfaces.

Lemma 5.6. Givent >0, 6y € [0,27), define
1,(6g) = (90 —me 2 fy + 7re_2t) )
Then for any t > 0, any z € C, § € I(6y), and s € (t,t + log2) we have

8 |gt’f‘002|

Proof. First write

9sToz = GsTo—0,9—t(9t70,2)-
We need to control the operator norm of gsryg—¢ where [1)| = |0 — 6p| < me=2t. We note that gsryg—+ =
gsTypg—sgs—t. Note that ||gs—¢]|op < 2, and

. cos Y —e2% sinp
IsTg—s = <e‘25 sin ¢ cos '
The operator norm of a matrix A is the square root of the largest eigenvalue of AT A. In this case

_ [cos®’p+e P sin® ¢ —sin(2¢) sinh(2s)
(95759-0)" (g5r09-) = < —sin(2+) sinh(2s)  cos? ¢ + e** sin2(¢)> .
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For a determinant 1 matrix M, with |tr(M)| > 2 the largest eigenvalue \™ (M) is given by

NF(M) = (M) (tr(M)>2 1

2 2
Applying this to M = (gsryg—s)T (9srpg—s), we have

tr(M
BM) _ o2 1 4 cosh(4s) sin® ¢ = 1 + (cosh(4s) — 1)sin® ¢ = 1 4 2sinh?(2s) sin 1,

S0
A (B) = 1 + 2sinh?(2s) sin® ¢ + v/2sinh(2s) sin 1.
Since || < me™?%, |siny| < e, and sinh(2s) < 2e?, so
MH(M) <14 2n%e et + /222 me™ 2

<1+ 872+ 2V2r.

lgstpg—sllop = VAT(M) < /14872 + 2V/2r < 4r,

9579 9—tllop < 95T g—sllopllgs—tllop < 8.

Therefore,

and so
O

5.6. Geodesic flow length bounds for pairs. In this section we collect bounds that hold under certain
assumptions for pairs of holonomy vectors. Note that, by (4.3), if A;ha(z,w) > 0, then

|w| < V14 cae™%|z|,
where ca4 = (84 + 16A42). We define the large set
t

La(e') = {(z,w) : % < |z| < v/2cosh(2t),|w A z| < A, Jw| <1+ cAe4t|z|} ,
which satisfies, for 1 <17 < 4,
E! C La(e') and Pa(w,e’) C La(e’)NAZ.

Recall that for z € C, 8, = n/2 — arg(z) is the angle so that rg, z is vertical.
Lemma 5.7. There exists Ca so that for all (z,w) € La(e?)

1

5 S lgire.z| < V2,
and

lgire.w| < Ca.

Proof. By definition r¢_z = |z|i. Since

o)
IN
o
IN
@(_‘_
—_
—+
o
.

we have

SO

By Lemma 4.2, |w| < |z|v/1 + cae~*, so the vertical component of rp_w is at most |z|v/1 + cae=*, so

Im(gire, w) < |giro. 2|V 1+ cae .

Since |z Aw| < A, | Re(giro, w)| - |gire, 2| < A. Hence

A

|9170.2]

< V21 + ¢4 + 2A.

|giro. w| < [Tm(g;rg. w)| + | Re(gire. w)| < |gere. z[v/ 1+ cae™ +
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where we now define ¢4 = v2/1 + ¢4 + 2A. O
5.7. Proof of Proposition 3.2.

Proof. We partition the circle into e! intervals centered at angles 6;. We will break up the set of 6; into
three subsets depending on the lengths of shortest and second shortest saddle connections of g;rp,w. In the
case of F(j, 2N) for j large we will use Nevo’s ergodic theorem (Theorem 2.1) to show that the number
of 6; is small. We again will use Lemma 5.4 to count pairs of saddle connections for this small set of 6;.
In the case of G(j, ﬁ) as we count pairs exactly as before using Lemma 5.3 and then use some standard
quadratic estimates to count the number of possible such 6;. The case of H(j, ¢y) will be handled similarly.

Case I. Following the notation from Section 5.2, for each j define

Nj]:#{ie{l,. e} gtr‘gweF(],m'V)}

We first bound le using Theorem 2.1. Similar to our definition of the set F’ (j, ﬁ) define E (j, ﬁ) to
be the set of w with a saddle connection of length between 8mo7*t! and 8707, and a nonhomologous saddle
connection of length at most 8702¥ . Again by Lemma 5.2,

(6(03w)) =0 () o (shrt).
Let h be the characteristic function of £ ( 7 ﬁ) The function h is K-finite since E ( N) is invariant under

rotations. Choose 1 € C§°(R) be such that n(t) = 1 on [—1log(2),0] and [n(t)dt = 2. By Theorem 2.1,
there is some % large enough so that for ¢t > ¢

|t sames < [

N th,u: O(ana%) .

Switching the order of integration

t+log(2 t+log(2) 00 o
(5.7) Z/ / (gsrgw) dsdf = / (Ash)(w)ds < / n(t—s)(Ash)(w)ds = O (UQJUW) .
1(6;) t —00

Now if there is some i € {1,..., e} so that g;re, (X, w) € F (j, ﬁ) , S0 ¢ contributes to Nj], then Lemma 5.6
guarantees that gsrow € E(J, ﬁ) whenever

(6,5) € 1(6:) x [t,t + log(2)].
Since for each 4 contributing to N JI we have a full annulus of integration, (5.7) gives an upper bound
27 i g
NS5 - [t+1log(2) = ] = O (a%w) .
Hence _
le =0 (e2t02jajﬁ) .

Now suppose we are given (z,w) € La(e). Choose i so that 6, € I(6;). Lemma 5.7 and Lemma 5.6 show
that |gere,z| < 87 and lgsro,w| < 8mca. Apply Lemma 5.4 with Ly = 87cs. Thus for each j and 4, if
girg,w € F (j, 5% ), then

2(1+9)
#{(z,w) € La(e") NAZ : 6. € I1(6;)} < N(gero,w, Lo)* = O <(;|> ) -0 (U*j(2+25)) )

|9t7°01- Zi

The number of possible i is given by NV jl , so for ¢ large enough and any j

#{(z,w)eLA(et)ﬂA : 34 so that 6, € I(6;), giro, (X, )€F< 2N>}§Nj]0(o'j(2+25))

=0 (thaj(%fm)) .
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Summing over all possible j, since % —2§>0and o <1,

#{(27@0) € La(e")NAZ : 34, and j(i) so that 6, € 1(0;), gire, (X, w) € F ( 2;;)}

(5.8) =0 2tzaﬂ<*—25 = 0(e?).

Case II. Define .
I _ . o2t
N; —#{ze{l,. }: gtr9w€G<3,2N)}

For any holonomy vector z, define

NJ‘H(Z) = #{ girg,w € G (j, ZN) and o/t < |girg, 2| < O'j}.

Specifically, the holonomy vector z which becomes short after rotating and flowing satisfies |rg, z| = |z| and

— el < 2| € T —elod,

e'lgire; 2| e'lgiro. 2|
Notice |rg,z| < ef|gire, 2], so we can choose k > j so that
The horizontal component Re(rg, 2) satisfies

e' Re(rg, z) < |gire, 2| < 07
So if ¢; = arg(z) — m/2 is the angle which makes ry, z vertical, then
R; J 1 ,

(5.9) | sin(p; — 0;)] = [Re(ro.2)| _ o’ — o 2Gi—k1

Iro,z| — et oktlet
By symmetry,

0 € 0.2m) : |sin(6: — )] < 2091} = 4l{B € [60,7/2+ 61) ¢ [sin( )] < eI,
Then when |¢; — 6] < Z we have |sin(¢; — 0)| > 2[¢; — |. Since the §; are spread evenly over [0,27), we

can estimate
3 ot jk—1
9:|¢i—9|§§e o’

=0(e* - e %I 7F) = 0(c77F).

or ’{9 € [0,27) : |sin(¢; — 0)| < ethUjfkfl}‘ < 4e?t
e i

NI(z) =
J (2) 2 - 27

Using quadratic growth from [Mas90], the number of possible z with length at most o¥et is O(a2¥e??).
Since k > 7,

lel <0 ZU2k62t ol TR < O(a¥e?).
k>

For each ¢ in N jI I by Lemma 5.3, the number of pairs of saddle connections of length at most 87¢, is
O(o=7). Multiplying by Nj[ I the number of pairs of length at most 87Cy4 is
O(a7e?).

Then we have
(5.10)

#{(z,w)ePA(w,et):Hi,j()sothatH € 1(6,), tmweG( J)} <0 iow‘e%) — 0(e?)
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Case III.
NIII #{7’ € {1 Qt} L giTe; W € H(607j)}

To finish the proof we need to cover the last case from Lemma 5.3 concerning the set H (e, 07). As we have
seen

u(H(eo,07)) =0 (6¥) =0 (0’2j+%) .
In this case we can use the estimate (5.8), and follow the exact method as in Case I to get a bound of O(e?")
on the number of pairs.

This concludes the proof of Proposition 3.2, where we note T" in the statement must be large enough to
apply Theorem 5.4 in both Case I and Case II. Moreover when applying Lemma 5.4 and Lemma 5.3, the
constant C' depends on A. d

The next corollary is a small modification of Proposition 3.2 which bounds the number of pairs (z,w) €
La(et) N A2 where flowing in an appropriate direction lands is in the the e-thin part
Corollary 5.8.

#{(z,w) € La(e") N A2 : 3i, and j(i) so that 0. € 1(0;), giro,w € He} = O( v 20 2,

Proof. We follow exactly the proof of Proposition 3.2 where we have the additional assumption now that
07 <€ This comes into effect in Equations (5.8) and (5.10) and in Case III when we restrict 07 < € which

limits the set of possible j to j7 > llsgg((?) So then the geometric series when altering Equation (5.8) yields
Z U;(—725 _ O(ﬁfzaem)
i=1ers
and similarly for Equation (5.10) and Case III. O

5.8. Subquadratic decay in the thick part of the stratum. As a complement to Corollary 5.8, we
want to understand decay of pairs of saddle connections in the thick part of the stratum, that is the set
of surfaces where the systole has length at least e. To this end we will prove the following lemma which
gives measure bounds for pairs of saddle connections near the boundary of Rs(T). Given L,€ € > 0,
and L' € {%, 1} define Q(€,€’, L, L’) to be the set of surfaces w such that w is ethick, and there are
(z,w) € A2 N B(0, L)? where at least one of the following holds:

(1) 1-¢< ‘\111211:" <l+¢

(2) (1- )A<|z/\w|<(1+e)A

(3) [Im(z) — L'| < ¢

(4) 1—€)Imz <|Rez| < (1+¢€)Imz.

Lemma 5.9. Let D be the complex dimension of the stratum. For each L, there exists C' so that for all
-~
€ €

!
H00@ ¢ L) <O (5 )

Proof. Using the Delaunay triangulation [MS91, §4] for each w we take a basis {v;}2, for H1(X,%,Z) of
saddle connections, where the lengths are all bounded below by €. Here X is the set of zeroes of w. Let
Zi =& +1y; = f w be the holonomy vectors of the basis. The assumption of thickness says |z;| > € It

follows from [MSQl §4] that the lengths are also bounded above by . Since the thick part of the stratum
is compact we can cover it by finitely many coordinates maps via the map

UH</%77,.../7D77)
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which gives local coordinates on H in a neighborhood of w. For the remainder of the proof we will work in a
single chart and to simplify notation we will use (z1,...,2p) as the coordinate charts. Our measure p arises
from Lebesgue measure in these period coordinates. Since there are a bounded number of possible Delaunay
triangulations that cover the stratum it is enough to bound the measure for each Delaunay triangulation.
In [ACM19, §2] it was shown that Delaunay triangulations are efficient. By this we mean that up to a fixed
multiplicative constant, the length of any saddle connection is bounded below by the length of a homologous
path of edges in the triangulation joining the same endpoints. It follows that since |z|,|w| < L, we can
write the holonomies z, w in this basis as Zil n;z; and Zil m; z; respectively with coefficients n;, m; € Z
that are O (%), where the implied bound depends on L. We wish to compute the Lebesgue measure of the
subset of C” where we have one of the relations.

For the first where we have a relation between |Imz| and |Imw| the assumption that the ratio of the
imaginary parts of the holonomy z,w are within € of each other gives for some m;, n;, 2;

D

Lt MYy g

Zi:1 m;y;
which by the bound on m;, n; and y; implies

D ¢

5.11 —may| =0 (= ).
(5.11) St —mw| =0 (5)
For each fixed D-tuple of integers n; — m; the set of (z1,...,2zp) which satisfy Equation 5.11 forms a

neighborhood of width O(g—;) around the R?P~1 hyperplane formed by the linear condition on the imaginary
parts of z; = x;+iy;. So the Lebesgue measure in C? within this fixed chart is O(g—;) Since [n;—m;| = O(%)
there are O(g%) integer tuples when taking the differences and so the total measure is O(E%) This gives
a bound for the measure of the set of w satisfying the first statement in the definition of Q(€, €', L, L').

(e (3 ) () (o) -4

For fixed D tuples (n1,...,np) and (mq, ..., mp) the set of possible z; = x;+1iy; lives in the ¢’ neighborhood
of a hyperplane determined by the determinant condition, and thus for fixed A has Lebesgue measure O(¢’).
In this case there are O(E%) such tuples and so the result follows.

For the second we have

< €.

The proof of the measure bound for w satisfying the third and fourth statements are similar. Write z =
> n;z;. The third assumption is

<€,

D
=1

The measure of the set of z that satisfy this inequality for some n; is O(;—;), which implies the desired
bound since € < 1. The proof of the last is similar.

O

5.9. Proof of Proposition 5.1. In this section we will apply Lemma 5.9 and Corollary 5.8 to prove
Proposition 5.1.

Proof of Proposition 5.1. Let €’ > 0. Choose € so that ¢/ = €829, Let L = /81¢4, and choose € small

enough so that
146
< (ﬁ) ~ e
Z2+20 \ 7

Choose Tj large enough so that whenever ¢ > Tp, Corollary 5.8 holds. Corollary 5.8 shows that the number
of pairs (without restrictions to be in F}) such that after rotating and flowing land us in the ethin part
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(where the shortest curve has length at most 07 <€) is O(e”e??). Since we have the desired bounds in the
thin part, we now only need to consider the thick part of the stratum, so we suppose |g:rg, z;| > €.

Bounds on z in trapezoid. Suppose 6 € I(6;) satisfies rgz € g_ T, where we first choose ¢ large enough
SO

tan(me ") < 6me 2.

Notice that ., the angle which makes ry_ vertical has rg_z,792 € g_;T, so |0 — 6.| < e~2t. Then for any
0" € 1(0;), since |0 — 0’| < 2me™2t, we have

(5.12) 10 —0.| < 2me 2 4+ e < 3me 2t
Notice Im(rg:z) < |rg. z|, so we now want a lower bound for Im(r¢ z). Indeed since
| Re(rg:2)| = Im(rg..) tan(|0, — 6'|) < Im(re 2) tan(3me ") < Tm(rg 2)6me ™",
this implies
Im(rgr2)%(1 + 36m%e %) > Im(rg 2) + Re(re:2)* > |2|* = | Im(rg. 2)|?.
Thus for any 6’ € 1(6;),

I
002l 1(r2) < (s, 2)]

(5.13) <
V1 + 36m2e— 1

Bounds on w. We claim the imaginary parts of rp,w and rg-w don’t differ too much. To do this we will
use polar coordinates, so set

ro.w = |wle’* and rpw = |wle’’.

Recall by Equation (5.12), [¢' — .| = |0, — 0| < 3me~2!. Then since circumference [/ —1),| is bigger than
the length of a chord on the unit circle,

Bre > > 10" — 0.] = [ — | > | — 5| > |sin(y)) — sin(y.)].

Dividing by sin(t).), we have

(5.14)

sin(¢') ’< 3me~ 2t

sin(v.) | sin(tps)|

Error term E}. Choose T} > Ty large enough so that for ¢ > Ty,

1 1 VIite & 1>}< )
- = < €.

max - — ,
{(2 2\/—1—1—736#26—4‘5)( 2 2

Combining Equation (5.13) with the fact that

c <Im(rg.z) =z < c V14e 4

2 2

-
-~

1 A /1 —4t
— < TIm(gre2) < L.
2v/1 + 36m2e—4 2

By our choice of T, 4 — € < Im(girg-2) < 4 + €. Thus the resulting surface by Lemma 5.6 satisfies

€ 1
(X Q| —.,€¢,L,=].
gtré}( 5(*'))6 (\/gﬂ_vev 72)
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Error term E?. Choose Ty > Ty large enough so that for ¢ > T,

1-— (1 — 3me—2t ( Vite 4t )) 1_4Ae—2t <

N
m\

max

1—4Ae—2t 1+e—4t
Since |z| = Im(rg_ 2),

[ Tm(r. 2)| < Jw| < [Im(re.2)].

1
V1+e 4t

The determinant condition guarantees small angle. That is if ¢ is the angle of rp_w from the vertical, then

|Re(rg,w)| | . A AV1+e 4t 4Ae=2
Relro )l _ iy ¢ A AVITET o Mo B
|w] |w] - |z] || Vite
Thus
| Tm(rg, 2)] 4Ae=2

< |Re(rg.w)[ + [Tm(re, w)| < [Tm(re. w)| +

Vi4e 4 VIfe X

[ Tm(ro. 2)],

which yields

—2t _ —2t
(5.15) | Tm(rg, w)] > 1 ~ 4Ae _1-44e .
Im(rg.z) — V1+e ™ Vite ™ Vite ™
In the other direction we have the easier inequality that
I
(5.16) Hm{re.w)| _ [wl
Im(rg.z) — |2

Thus by our assumption on |w|, Equation (5.14) and Equation (5.15),

' —a%
(5.17) (rgw) | e ol g e I(r2) g (VI T
Im(re w) [ Im(re, w)] | Im(rg, w)] 1—4Ae—2

In the first direction we combine (5.17), (5.13), and (5.16) to obtain

I , /1 —4t
[Tm{ry w)| <V 1+ 36m2e4 (1 + 3me 2t <L>> <1+¢€.

Im(re 2) 1—4A4e~2
In the other direction, combine (5.17), (5.13), and (5.15) to obtain

, 4 _ —2t
| Tm(rg:w)| > (1= 3me2 Vi+te 1—4Ae 1o
Im(rg:z) 1—4Ae—2t VIFeH

Thus by Lemma 5.6, and noting that flowing by g: does not change the ratio of imaginary parts,

€
girerw € €2 <—,e/,L,1 .
\/gﬂ'

Error term E}. Choose T3 > T large enough so that for ¢ > Tj,

1 rar—
max{(l—W>,( 1+e 4t_1)}§6’.

For any 6" € I(6;), combining 5.13 with the fact that in this case

' <Im(re.2) = 2| < e'V/1+e ™,

1
— < Im(grez) < V1+e 4.
V1t 3672¢ % (9erer)

By our choice of T5, 1 — ¢ < Im(gsrg-z) <14 €. Thus the resulting surface by Lemma 5.6 satisfies

we have

€
girerw € 2 <—,e/,L,1 .
\/gw
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Error term E}. Choose Ty > T, large enough so that for ¢t > Ty,

V14 cae 5 /1 + 36m2e—4 (1 + 3me 2 ( V1teac 7 t>) -1

1—4Ae—2t \/1+cAe*4

<e€.
1 (- e T ™) (1= sne ()

1—4Ae—2t \/1+cAe*4‘

max

Since |z| = Im(rg_ 2),
[ Tm(rg, z)| < |w| < [Im(rg.2)|v/ 1+ cae™4.
The determinant condition guarantees small angle. That is if ¢ is the angle of rp,w from the vertical, then

| Re(rg,w)| A A

= |sin(z)) < 4Ae™%,

<5< <
|wl ERERER

Thus
| Tm(ro, 2)| < w| < |Re(ro,w)| + [Tm(rg,w)| < [Im(ro,w)| +4Ae™> | Tm(ro. 2)|\/1 + cae~*,
which yields
I
(5.18) Hm(ro. 0l oy _ g go=20 /T cpe .
Im(rg_z)
In the other direction we have the easier inequality that

(5.19) [mlro.w)|  Jul o e e,

Im(rg, 2) 2| =
Thus by our assumption on |w|, Equation (5.14) and Equation (5.18),

Im(rgw) 1' <3men_ AWl g Ime2) A
Im(rp, w) | Tm (79, w)| | Im (7, w)]
P < V1+cpge % ) |
- 1—4A4e2t\/1 4+ cpe— 4

Now in the first direction we combine Equations (5.13),(5.20) and (5.19) to obtain

(5.20)

| Im(rgrw)| 9 V1+cype
7 <1+ cpe /1 4+ 36m2e4 (14 3me™ 2 <1+4¢€.
Im(re z) — \/ A \/ 1—4Ae 2t\/1 + cpe -

In the other direction, combine Equations (5.20)(5.13), and (5.18) to obtain

| Im(ro-w)| —2t ( —2t ( V1+cae ™ )) /
————2 > (1—44e "1+ cae ) [ 1 — 3me >1—€.
Im(rg/z) - ( A ) 1-— 4A€_2t\/ 1+ CA€_4t N

Thus by Lemma 5.6, and noting that flowing by ¢; does not change the ratio of imaginary parts,

rorw € L, L
gire (\/_W6 )

Combining cases. We conclude by Lemma 5.9, that

€ €
o) -o()

Using the relative homology coordinates given by the Delaunay triangulation we can identify €2 ( \fgﬂ, "L, ’)

with a domain in CP.

Let h be the characteristic function of the compact set (2 ( e, L, L ) Choose a small neighborhood of

f I’
Q (\/Egﬁ, 'L, ’) and a continuous g € C§°(CP) such that h < g, and

!
/gd'“ O</‘2+2D>
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We can consider a family of functions F as in the proof of Proposition 2.2 in this case defined on CP. Let ¢

be a radially symmetric continuous function of compact support which is identically 1 on 2 (ﬁ, e, L, L' )

and consider the family F={¢f : f € F}. This is a K-finite compactly supported family and so there is
f € F uniformly close to g. Since we only need upper bounds, we can choose g larger if necessary so that
we can choose a smoothing function n with
o0
/ n(u)du =1
— 00

and support close enough to 0 so that h < (n * f). By Theorem 2.1,

lim wmw@mmwmzﬁﬁwzoegﬁ)

t—o0 P

which for ¢ large enough gives

6/

Then as in Equation (5.7), by Lemma 5.6, for ¢ sufficiently large

!/
#{1(6;) : 30 € 1(6;) so that r9z € g_,T for z € Ef} =0 <Eﬁe2t> .

Moreover by Lemma 5.4 for each I(;) the number of possible z € EF is O ([%] 1+6) . Thus by our choice

of €', as desired

1496
k| _ € o £ _ ", 2t
|Et|_0 /6~2+2De = —0(6 e )

€

O

Proof of Lemma 3.4. For any €' consider the set U of points (z,w) such that 1/4 < Im(z) < 2, |Re(z)| <
Im(z) + 1, and |w| < 34/1+ (84 + 16A42) (c. f. Equation 4.3), and at least one of

Al —-€)<|lzhw| <(1+€)A
(1—€)Imz <|Imw| < (1+€)Imz
(1—€)Imz<|Rez|<(1+¢€)Imz
(1-€¢)<|Im(z)]| <1+¢€
(3—¢) < |m(s)| < b +¢

(1)
(2)
(3)
(4)
(5)

holds.
The set U describes a neighborhood of OR4 (7). Choose g = g(€’) continuous such that

(1) g(z,w) <1 and is supported in Ra(7T)UU
(2) g(z,w) =1 for (z,w) € RA(T)

Let ¢ = ¢(€’) continuous, supported on U, such that ¢ < 1, and ¢ = g on U\ Ra(T). (The point is that
¢ =1o0n ORA(T)). Then

g—ha<o.
By Proposition 2.2,

lim (A,0)(w)ds :/ o :/
T—00 H H
where He is the e-thin part. By Lemma 5.5 the first term on the right is

o) (ﬁv—%) .

ddp + / ody,
H\He

€
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By Lemma 5.4, each w in the € thick part has O (g?izé) pairs of saddle connections of bounded length. This
together with Lemma 5.9 says the second term is

E/
O\ 55735 |-
o1+2D+28

These two inequalities imply that for 7 large enough,

!/

AG = a)) = 0 ) + 0 (i ) -

Recall we fixed § so that & > 26. Then given €, choose € so the first term is at most /2. Then choose ¢
so the second term is also at most €/2. The first conclusion of the Lemma follows. The second conclusion
follows directly from Lemma 5.9 and Lemma 5.5.

O

6. PARALLEL SADDLE CONNECTIONS ON LATTICE SURFACES

In this section, we will prove Theorem 1.2. Let w be a lattice surface. We recall first further details of
Veech’s result on the decomposition of A, into finitely many orbits of the Fuchsian group I' = SL(w) acting
R-linearly on C.

6.1. Cusps and orbits. We denote the finite collection of cusps of T' by [I'1],[I'2],...[['s], where each
[[;] is a distinct conjugacy class of a parabolic subgroup of I'. To each [I';] we can choose a direction in
R U {oo} stabilized by a representative of [I';], and in this direction, there will be a finite set of parallel
saddle connections 7; 1, ..., Vi m, With

(i) > (Vi) - = L(Viom,)-

_ _ Zi1
Zij = W,k = —-
Vi Zik

7

Let

Note that for a fixed i, the z ; are parallel, so the r; , = zi = 583 are real numbers greater than 1 for

k > 1. By [Vee98, Theorem 16.1], there is a ¢; , such that
#(T - 2ix N B(0,R)) ~ ¢; 1 R*.

Note that since
#T -2, NB(0,R)) =#(T'- 2,1 N B(0,Rr; 1)),
we have
Cik = ci71rz-2)k.
Therefore, for j < k,
#(T - (210, 2i,;) N B(0,R)*) = #(I' - z1; N B(0, R)) ~ ¢; 177 ; R*.

6.2. Completing the proof. To complete the proof of Theorem 1.2, we put these together to obtain

n m;—145-1 n mj—1j—1
2 p2
= #(T - (25, 2i,5) N B(0, R)?) ~ E g ciarg R
i=1 j=1 k=1 i=1 j=1 k=1
This proves Theorem 1.2, with
n mj—l Jj—1 n mj—l
:E c“r” g Cil g (j—Dr
i=1 j=1 k=1
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