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ABSTRACT

Subgroup identification is a fundamental step in precision medicine.
Recent research applying data-driven methods such as independent
component/vector analysis to multi-subject functional magnetic res-
onance imaging (fMRI) data has effectively revealed meaningful
subgroups. These methods typically focus on single-dimensional
information, such as individual functional networks or assuming
uniform subgroup structures across networks. Given the complex
nature of psychiatric disorders, considering the relationships among
subjects across different functional networks can offer valuable in-
sights into diagnostic heterogeneity. We introduce a novel subgroup
identification method that leverages multiplex community detection
to identify subgroups from multi-subject resting-state fMRI data.
The proposed method models subject correlations across functional
networks as a multiplex network and identifies common commu-
nities across multiple networks and unique communities specific
to each functional network. Results from applying the proposed
method to 464 psychotic patients show that the identified subgroups
exhibit significant group differences on multiple meaningful func-
tional networks as well as the clinical scores, which demonstrate the
effectiveness of our method on identifying meaningful subgroups.

Index Terms— Subgroup identification, multiplex network,
blind source separation, community detection, resting-state fMRI

1. INTRODUCTION

Identifying subgroups within a cohort of patients represents a fun-
damental step in precision medicine, which tailors medical treat-
ments to individuals in different subgroups to minimize medication
side-effects [1]. Brain disorders, including neuropsychiatric disor-
ders like bipolar disorder and schizophrenia, often exhibit distinct
subtypes [2, 3]. Patients can be categorized into subgroups based
on biomarkers associated with specific subtypes. Categorizing neu-
ropsychiatric patients is challenging due to the uncertain etiology of
these neuropsychiatric illnesses [4]. Methods that attempt to classify
patients based on external observations, such as clinical assessments
and cognitive evaluations, have limited success as the connection be-
tween subtypes and post hoc descriptions is not well understood.
Subgroup identification methods based on neuroimaging data
can rely on objective surrogates such as the structure of functional
connectivity networks. Functional magnetic resonance imaging
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(fMRI) has been widely used to study functional connectivity of
the brain, and these networks are identified to be unique as fin-
gerprints [5, 6]. With neuroimaging data, subgroup identification
methods by blind source separation algorithms such as independent
component analysis (ICA) or independent vector analysis (IVA)
have exhibited promising results in identifying meaningful sub-
groups [7, 8, 9]. Data-driven methods like ICA/IVA offer the key
advantage of direct interpretability of the results as functional con-
nectivity networks [10]. However, these subgroup identification
methods primarily rely on single-dimensional information, either by
focusing on a single functional network or by assuming the same
subgroup structure across networks. Given that psychiatric dis-
orders have been associated with abnormalities spanning multiple
functional networks [11], considering the relationships among sub-
jects across different functional networks can offer valuable insights
for the subgroup identification problem.

Recently, the concept of multiplex networks, which represents
multiple modes of interaction across the same set of nodes, has
gained attention [12]. A multiplex network is a multilayer network
where all layers share the same set of nodes with different topolo-
gies. Existing community detection methods for multiplex networks
mostly focus on extracting the common community structure across
layers. However, in neuroimaging applications, it is important to
identify both the shared and unique community structure across a
group of functional networks or subjects. While recent research
has applied multiplex networks to EEG data to select a subset of
edges from the functional connectome as features [13, 14], lever-
aging multiplex networks to identify subgroups with multi-subject
resting-state fMRI data remains relatively unexplored.

In this paper, we propose a subgroup identification method that
utilizes multiplex community detection to identify subgroups of sub-
jects from multi-subject resting-state fMRI data. The proposed ap-
proach models the covariance matrix of subjects across functional
networks as the layers of a multiplex network. Multiplex orthogo-
nal nonnegative matrix tri-Factorization (MX-ONMTF) [15] is then
used to identify the common communities across multiple functional
networks as well as the unique communities for a certain functional
network. We apply the proposed method to 464 psychotic patients,
and the results show that the identified subgroups exhibited signif-
icant group differences on multiple functional networks, including
the anterior prefrontal cortex, dorsal posterior cingulate cortex, vi-
sual cortex, etc. These regions have consistently shown abnormal-
ities in various neuropsychiatric disorders. Furthermore, the clini-
cal scores associated with these subgroups also displayed significant
group differences, with the observed symptoms closely connected to
the functional networks exhibiting group differences.



The rest of this paper is organized as follows. The proposed
method is presented in Section 2. The fMRI data and the corre-
sponding clinical variables are described in Section 3. Results and
conclusion are presented in Section 4 and Section 5 separately.

2. METHOD

In this section, we describe the different components of the proposed
method. We first introduce the definition of source component vec-
tor (SCV), based on which the multiplex network is formed. Sub-
sequently, we explain the connection between multiplex community
detection and subgroup identification.

2.1. Source Component Vector

ICA has been shown to be effective in identifying biomarkers associ-
ated with neuropsychiatric disorders [16, 17]. Constrained EBM (c-
EBM), a constrained ICA algorithm based on minimizing the source
entropy bound, provides a more flexible model match without im-
posing orthogonality constraints on the demixing matrix. C-EBM
leverages a set of spatial maps as constraints to establish connections
across datasets, serving as a foundation for subgroup identification.
Recent research has demonstrated the successful application of c-
EBM in addressing the subgroup identification problem [18]. In this
work, c-EBM, is applied to K subjects individually. The ICA model
for the k™ subject can be written as

xF @) = Al () 1 <v < (1)
where x* (v) = [2!F (v), . .. ,ac[Lk] (v)]" is an observation vector at

sample index v (superscript T represents transpose); ARl ¢ REXL
represents an unknown invertible mixing matrix, and s*! (v) =
[5[1]“] (v)y..n,s sf](v)]T are L statistically independent, zero mean,
and unit variance latent sources. With the provided prior informa-
tion serving as constraints, c-EBM estimates the latent sources by
estimating a demixing matrix WU € REXE uch that the estimates
yH@) = [ (), .y ()], where y (v) = WX (),
are maximally independent. The constraints serve as a foundation
for subgroup identification by establishing connections across the
subjects and aligning subject-wise components from separate ICA
analyses. We define the I source component vector (SCV) as
si(v) = [sgl] (v),..., SEK] (v)]" € R¥, which is the concatenation
of the I"™ source from each of the K datasets. Accordingly, the esti-
mate of the I"™ SCV is denoted by y;(v) = [yl[l] (v),... ,yl[K] ()] .
The illustration of SCV can be found in Fig. 1. In the context of
fMRI data, the I"™ SCV summarizes the spatial activation pattern
of the [™ component, such as default mode network, across all K
subjects. For a total of V' samples, the estimated sample covariance
matrix of the ™ SCV is given by Cl = ﬁYlYlT, where Y; =
[yl[l], . ,ng]]T € RV and ygk] = [yl[k](l)7 e yl[k](V)} eRY
is a row vector of the estimation for the k™ subject. We note that (o]
provides the correlation information among K subjects for a given
functional network.

2.2. Multiplex Community Detection

Given the sample covariance matrix of the ™ scv, Cl, with [ €
{1,2,..., L} corresponding to the different SCVs, we can construct
a multiplex graph G; = (V, Ey, |C§l |), where V denotes the set of K
nodes (subjects), E; the set of edges, and |C;| € R ¥ represents
the adjacency matrix for layer /. The illustration of forming the mul-
tiplex network can be found in Fig. 1. In this paper, MX-ONMTF
[15], which models each layer’s adjacency matrix as the sum of low-
rank representations of common and private communities, is used to

identify the community structure. A common community refers to a
collection of nodes that are assigned to the same community in more
than a single layer, whereas a private community is defined as any
community that is not common across at least two layers.

For a multiplex network with L layers that is formed from co-
variance matrices, C; € R¥*¥ | ¢ {1,2,..., L}, the objective
function in [15] is reformulated as

L
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where H € RE*Pe and H; € R¥*": are the community mem-
bership matrices corresponding to the common and private commu-
nities, respectively, and M; € R”*"e and G; € R *" are diag-
onal matrices that capture the inter-community interactions with P,
and P, corresponding to the total number of common communities,
and the number of private communities in layer [, respectively.

The optimization in (2) can be solved using a multiplicative up-
date algorithm as given in [15]. P. and P, are determined following
the eigengap and hierarchical clustering-based method proposed in
[15]. First, the total number of communities per layer is determined
using the Eigengap rule [19], followed by applying orthogonal non-
negative matrix tri-factorization to each layer. This results in em-
bedding matrices representing the nodes’ community affiliations for
each layer. Subsequently, an agglomerative hierarchical clustering
algorithm is applied to these matrices to determine P, and P;. Since
H c R¥*« js the community membership matrix corresponding to
all of the common communities, to determine whether a node from
a particular layer belongs to any of the common communities, H
needs to go through post-processing. In this paper, we propose a
flexible community assignment criterion. Once the subset of layers
that are assigned to each common community is identified, a node ¢
is assigned to a common community j if the value of common com-
munity membership, H(¢, 7), is greater than the majority (i.e., 80%)
of the private community membership values, H, (i, ), for all layers
[ where community j is present. This ensures that while the com-
mon communities contain mostly the same set of nodes (subjects)
across layers (functional networks), there is still room for some vari-
ation of the common community structure. We evaluated thresholds
ranging from 100% to 50%. The standard deviation of the number
of nodes assigned to common communities showed a significant in-
crease when the threshold fell below 80%. Consequently, we chose
80% as the appropriate threshold for the current dataset. The nodes
that are not assigned to any common community are assigned to pri-
vate communities in each layer [ by identifying the column of H;
with the highest value for their corresponding rows. We summarize
this procedure in Algorithm 1.

argmin
H>0,H;>0,M,;>0,G;>0

3. RESTING-STATE FMRI DATA

The resting-state fMRI datasets and the corresponding clinical scores
are collected from the Bipolar-Schizophrenia Network on Interme-
diate Phenotypes (B-SNIP) study [20, 21]. All subjects underwent
a single 5-minute run of resting-state fMRI on a 3-T scanner. Sub-
jects were instructed to keep their eyes open, focus on a crosshair
displayed on a monitor, and remain still during the entire scan.

We removed the first three time points and performed head mo-
tion correction followed by slice-timing correction. The corrected
fMRI data were then warped into standard Montreal Neurological
Institute (MNI) space and resampled to 3 x 3 x 3 mm?® isotropic
voxels. The resampled fMRI data were further smoothed using a
Gaussian kernel with a full width at half maximum (FWHM) equal
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Fig. 1. Flowchart of the proposed method. Subject-wise c-EBM is applied to individual datasets. The I SCV can be formed by concatenating
the I™ component from all estimates. The sample covariance matrix of I SCV, C, provides the correlation information among K subjects
for a given functional network. Each C; can then be transformed into a weighted undirected graph, where subjects are represented as nodes,
and the absolute values of the correlation values across subjects for a particular functional network serve as edge weights. Subsequently, a
multiplex network-based community detection algorithm is applied to reveal the community structures.

Algorithm 1 Assigning community labels

Input: Community membership matrices H and H;, the number of

common P, and private communities P, [ € {1,2,...,L}
Output: Community labels idx; for each layer.
1: for each common community p; € {1,2,--- , P.} do

2 Identify the set of layers where p. is present, ..
3 for each layer [ in /. do

4 for each node i do

5: J* < argmax,H(s, j)

6 m = [H(i, j*) > [Hi, (i,:)]]

7 ifm > 0.8 Zlelc P, then

8

idx (i) < j*
9: else
10 idx (i) « (argmax;H; (7, j)) + Pe + SR,
11: end if
12: end for
13: end for
14: end for

15: for each layer [ do
16:  find n, = find(idz; == 0)
17:  for each node ¢ in n,, do

18: idx (i) < (argmax;Hi (4, j)) + Pe + SR,
19: end for
20: end for

to 6 mm. We use 464 individuals diagnosed with psychotic disor-
ders in this study. The spatial constraints for c-EBM are derived
from the fSIG pipeline, which comprises 49 resting-state networks
(RSNs) including auditory (AUD: 1 RSN), sensorimotor (MOT: 8
RSNs), visual (VIS: 10 RSNs), default-mode (DMN: 11 RSNs), at-
tentional (ATTN: 8 RSNs), frontal (FRONT: 8 RSNs), cerebellar
(CB: 2 RSNs), and basal ganglia (BG: 1 RSN) networks [9].

The Positive and Negative Syndrome Scale (PANSS) [22] are
collected from the same group of individuals. The PANSS scores
encompass 30 disparate symptoms observed in psychotic patients
and are scored on a scale ranging from 1 to 7. These scores con-
sistently capture three symptom dimensions: positive, negative, and
general [23]. PANSS has been applied to quantify variations of func-
tional networks across individuals with psychotic conditions [24,
25]. In cases where clinical scores are missing for certain subjects,
the values are padded with the mean of that specific test or subtest,
calculated from all subjects with available test data.

4. RESULTS

We applied the MX-ONMTF algorithm to a multiplex network with
L = 49 and K = 464 corresponding to the aforementioned 49
resting-state networks and 464 psychotic patients. The determined
number of communities is 7 common communities across different
subsets of networks and a total of 105 private communities.

A two-sample t-test was employed to analyze the activation
value at each voxel of the spatial maps across the subjects within
each subgroup to determine whether the spatial activation patterns
of RSNs show significant group differences across subgroups. False
discovery rate (FDR) correction [26] is included in all comparisons.
The first common community is identified across 11 functional net-
works and exhibits significant group differences from the rest of the
subjects in multiple meaningful functional connectivity networks.
In addition, we observe a connection between the neuro-activity
t—maps and clinical scores. In Fig. 2(a), layer 34 (ATTN), we
observe significant group differences (p = 0.00917) in the anterior
prefrontal cortex (antPFC, BA 10), dorsolateral prefrontal cortex
(dIPFC, BA 9), middle occipital gyrus (BA 37), and angular gyrus
(BA 39). In Fig. 2(b), layer 37 (ATTN), we observe significant
group differences (p = 0.00256) in the dorsal posterior cingulate
cortex (dIPCC BA 31), anterior insula (AI, BA 13) ares, where
dIPCC is a key node in the default mode network and Al is part of
salience network. The anomalous connectivity of these two could
be associated with a greater risk for psychiatric disorders [27, 28].

These differences in the aforementioned neuro-activity t—maps
are aligned with findings in neuroimaging research and the group
differences observed in PANSS scores. In Fig. 2(c), we summa-
rize the dominant and absent symptoms of the identified common
community. The dominant symptoms of a community are charac-
terized by median values greater than 2 or the median value is 2
for one community while it is 1 (which means absent) for the other
community. For instance, the antPFC regions, associated with cog-
nitive functions like abstraction [29] and relational reasoning [30],
show reduced activation in subjects from the common community 4,
potentially contributing to symptoms such as difficulties in abstract
thinking. Similarly, the decreased local connectivity in the dIPFC,
known for its role in higher cognitive functions like working memory
and inhibiting inappropriate responses [31], might reflect deficien-
cies in thought suppression processes. Furthermore, the abnormal
activation observed in the middle occipital gyrus and angular gyrus
may be linked to severe symptoms such as anxiety and grandiosity
[32, 33, 34]. Research from [35] indicates that altered connectivity
in the PCC area is associated with both positive and negative symp-
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Fig. 2. The identified subgroups exhibit notable disparities in both neuro-activity maps (t-maps) and clinical scores. The distinctions in spatial
activation patterns between the first common community and the rest of the subjects are quantified via a two-sample ¢-test with FDR (< 0.05).
For the first identified subgroup, which is presented in I, the group differences shown in neuro-activity maps are displayed in (a) and (b), and
the corresponding differences in clinical scores can be observed in (c). Similarly, for the second identified subgroup, the corresponding results

are displayed in (d) and (e).

toms in schizophrenia, which aligns with the more severe positive
symptoms observed in the common communities.

Another common community identified by the proposed method
(across 21 functional networks) also exhibits significant group dif-
ferences in meaningful brain areas. For example, in Fig. 2(d), layer
14 (VIS), we observe significant group differences (p = 0.00213)
in the secondary visual cortex (BA 18), and superior parietal lob-
ule (BA 7). Studies highlight that the visual cortex has multisensory
functions beyond mere visual processing, which can directly affect
subjects’ behavior and perception. Increased visual perceptual ab-
normalities (VPAs) are reported to be associated with multiple clini-
cal features, including depressive and bizarre behavior symptoms in
psychotic disorders [36]. The superior parietal lobule has close links
with the occipital lobe and is involved in functions of attention and
visuospatial perception, including the representation and manipula-
tion of objects [37]. The clinical scores are aligned with the afore-
mentioned neuro-activity t—maps. For example, in Fig. 2(e), the
dominant symptoms observed from the common community 5 in-
clude poor attention, depression, and persecution may be caused by
the abnormal connectivity observed in the visual cortex and superior
parietal lobule.

5. CONCLUSION

Identifying subgroups from a cohort of patients is a challenging
problem and has recently started to receive attention. In this work,

a novel subgroup identification method based on multiplex com-
munity detection is introduced. The proposed method considers
multi-dimensional information from functional connectivity net-
works for subgroup identification. In contrast to recent approaches
that only rely on one-dimensional information, our method char-
acterizes subject correlations across multiple functional networks
as a multiplex network, which uncovers both shared communities
across multiple networks and unique communities specific to each
functional network. Results from real fMRI data show that the iden-
tified subgroups exhibit significant group differences on multiple
meaningful functional networks as well as the clinical scores. The
concordance between the identified subgroups and the observed
differences in clinical scores relating to symptoms demonstrates the
effectiveness of our method in identifying meaningful subgroups.

Currently, our method is only applied to datasets comprising
psychiatric patients. To further validate its generalizability and
robustness, future work will involve extending its application to
a larger and more diverse dataset. Given the familial aggregation
of certain mental disorders, like schizophrenia, it is pertinent to
explore datasets encompassing healthy relatives of patients. This
exploration aims to investigate whether analogous subgroup patterns
emerge among the relatives, which provides valuable insights into
the hereditary aspects of these disorders.
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