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Abstract—Joint blind source separation (JBSS) techniques
have been successfully applied for the analysis of multi-subject
functional magnetic resonance imaging (fMRI) data. However,
convergence in JBSS can be only guaranteed to a local optimum,
since typically cost functions are non-convex. Also, iterative
methods are usually implemented with random initialization for
best performance, resulting in high variability, especially for more
flexible solutions. Yet, the assessment of the reproducibility of
JBSS has been limited in the literature, even though it has been
demonstrated that when not taken into account, the solutions
can be highly suboptimal. In this work, we propose a framework
for the evaluation of the reproducibility of independent vector
analysis, an important JBSS solution. We introduce a mechanism
for selecting the model complexity that offers the most consistent
and accurate solution, and demonstrate results to underline its
importance using resting state fMRI data.

I. INTRODUCTION

During the last few years, the scientific community has wit-
nessed an increase in the availability of shared neuroimaging
data [1]. This higher accessibility to datasets has promoted
the development of large-scale and multi-subject analysis for
understanding the brain function and the identification of brain
disorders [2]. Functional magnetic resonance imaging (fMRI)
and the study of brain functional connectivity patterns have
proved to be an effective technique for the identification of
biomarkers in various disorders such as schizophrenia, bipolar
disorder and autism [3].

Data-driven methods and, in particular, blind source sep-
aration (BSS) techniques, such as independent component
analysis (ICA), have been widely applied for the study of
fMRI data [2], [4]. These methods assume that there are
different linear combinations of latent variables of interest in
the observed data and apply a matrix decomposition solution
for their extraction. For fMRI data, ICA decomposes the brain
activities of a subject into maximally independent functional
networks. It provides a fully interpretable result, where the
rows/columns of the decomposed factors can be associated
with the spatially independent sources and their corresponding
time courses [2], [5]. To leverage the joint information across
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multi-subject data, a joint analysis must be performed. Joint
BSS (JBSS) techniques, such as group ICA (GICA) [6], gener-
alizes ICA to multiple datasets and exploits the dependencies
across them [7]. However, since GICA assumes a common
subspace for all the subjects, it might lead to information
loss and to limited capture of inter-subject variability [5], [8].
Independent vector analysis (IVA) extends ICA to multiple
datasets. It exploits the statistical dependencies across datasets
through a multivariate density model to achieve a powerful
decomposition [5], [7], [9]. IVA has proved to be an effective
technique for preserving inter-subject variability in the fMRI
analysis [10]. However, IVA is computationally expensive and
its performance degrades as the number of datasets increases
[11]. In this regard, constrained IVA (cIVA) incorporates prior
knowledge to the analysis to improve the performance of IVA
in large-scale multi-subjects datasets [11].

Although JBSS techniques have played an important role
in the analysis of practical problems, the assessment of their
computational reproducibility has been limited [12], [13].
Considering that the cost functions of most JBSS algorithms
are non-convex, convergence can only be guaranteed to a local
optimum. Iterative methods are usually implemented since
closed-form solutions do not exist for these problems. In ad-
dition, as there is no unique and perfect initialization for these
problems, taking the best among multiple random initialization
has been proved to be effective [12]-[14]. Hence, even though
all the algorithmic quantities are fixed, the obtained results
can be quite different due to the variability introduced by
the initialization. Furthermore, the complexity of the model
and its order plays an important role in the quality of the
estimates and its stability. Different model orders will lead to
different solutions to the problem. The proper selection of the
model order is an important feature in the model match. A
good model match that accurately captures the properties of
the observed data will offer more stable and reliable solutions
[12].

It is important to highlight that due to the bias and variance
dilemma in estimation theory, a highly reproducible solution
with reduced variability might lack of enough flexibility to
capture all the informative features of the data and yield a high
bias, and vice versa. In this regard, cIVA introduces reliable



prior information to the analysis which guides the optimization
algorithms to avoid a sub-optimal solution, hence, achieving a
good balance between bias and variance even with a flexible
approach.

The evaluation of the performance of an algorithm can
be a difficult problem in practical cases where the ground
truth is unknown. Cross-ISI, a global metric inspired by inter-
symbol interference (ISI), measures the consistency of the
results across different runs and it can be computed when
there is no ground truth since it only depends on the estimated
demixing matrix [14]. A highly consistent result does not
guarantee a low bias in the estimates and, as introduced by the
nonparametric, prediction, activation, influence, reproducibil-
ity, and resampling (NPAIRS) framework in neuroimaging
[15], both accuracy and reproducibility should be taken into
account in algorithm performance. In practical problems where
the ground truth is unknown, the estimation of the accuracy
can be a difficult task. Towards this end, in this work, we
propose a normalized measure related to the cost function
that is evaluated to guide the selection of the model order.
For IVA, which maximizes the independence of the latent
source component vectors, mutual information is a natural
cost function. Nevertheless, in contrast to other matrix de-
composition methods with a straightforward distance-based
metric (e.g., nonnegative matrix factorization (NMF) or sparse
decomposition), the evaluation of the IVA cost function is
nontrivial. For instance, the selection of different nonlinearities
changes the cost values. Therefore, a metric associated with
the goal of the algorithm, such as the pairwise normalized
mutual information among the estimated sources, can be
applied together with cross-ISI for the selection of the best
result. In this paper, we evaluate the computational repro-
ducibility of JBSS techniques with a practical focus where
there is no ground truth. In addition, we propose a new
mechanism for selecting the best model order based on cross-
ISI and the pairwise normalized mutual information among the
estimated sources, which will guarantee the selection of the
most consistent and accurate result. We also demonstrate that
our solution provides replicable results and more interpretable
functional networks when applied to resting state fMRI data
of 98 subjects. The rest of this paper is organized as follows.
Section II provides a brief overview of the JBSS problem.
Then, the employed methods are described in Section III, and
Section IV presents the results obtained when the proposed
mechanism is applied to real fMRI data.

II. JBSS PROBLEM FORMULATION
Consider K datasets z¥l(v) € RN composed by V
samples (v = 1...V) and where each dataset x!*l(v) =
[ac[lk] (v),.. asyf,]( )] € RY is modeled as a linear mixture of
N latent sources sl¥l(v) = [s[lk] (v),. sy;] (v)] e RV1 <
k < K. Then, the JBSS generative model is defined as

2l (v) = AW s (v), (1)

where Al*] is an invertible mixing matrix. JBSS techniques
estimate K demixing matrices W*] to compute the source

estimates y*1(v) = [Ww),..., s W) € RN, where
yHl(v) = Wz ().

One approach to solve this problem in JBSS algorithms is
to assume source dependence across the different datasets, i.e.,
sources of the same index n present dependencies across the
K datasets forming N sets of K sources. IVA models this
dependence by defining the concept of “source component
vector (SCV)”, and JBSS methods perform the separation
by either maximizing dependence within these SCVs and/or
minimizing dependence among the different SCVs. Each of
the IV latent SCVs is denoted as s,, = [sLl], o [K]] € RX,
and the estimated SCVs as y,, = [yLl], ... ,y,[LK]] € RX. For
multi-subject fMRI analysis, where the K datasets correspond
to K subjects, the SCV represents the concatenation of K
sources that represent similar brain regions for the K subjects.

III. METHODOLOGY
A. Independent Vector Analysis (IVA)

Assuming the latent SCVs are independent, the goal of IVA
is to minimize the mutual information among the estimated
SCVs y,,, thus, maximizing the independence between the
N SCVs. For this purpose, IVA models each SCV with a
multidimensional probability density function (PDF), allowing
it to exploit the statistical dependencies across the datasets.
The IVA cost function is given as [5], [7]

K
-3 (za n>> =S log det (W)
= k=1

where W = {WI} K ’H(yLk]) denotes the entropy of the
nth source estimate for the kth dataset and Z(y, ) denotes
the mutual information of the nth SCV. Therefore, we can
appreciate that the cost function simultaneously maximizes
the independence within a dataset with the entropy term and
also maximizes dependence across datasets by maximizing the
mutual information of the SCVs.

Different approaches have been implemented to model the
PDF of the SCVs [7], [11]. Multivariate Gaussian distribution
(MGD) has proven to be an efficient and effective solution
for modeling the SCVs. In this case, the IVA algorithm, i.e.,
IVA-G [7], [16], only exploits second-order statistics and thus
minimizes the correlation between different SCVs and maxi-
mizes the correlation within each SCV. The PDF of each SCV
is given by p(yn|Ey,) = ¥z, )b exp(—5¥, 2, yn),
where £, € REXK s the covariance matrix of the nth

estimated SCV. Thus, the IVA-G cost function is defined as

Zlog|det 3yl

X« )
= log|det(WH)].

k=1

The SCVs corresponding to fMRI data represent brain
regions that have multivariate heavy-tailed distributions, and
therefore super-Gaussian distributions, such as the multivariate

Jiva(W

NK log(2me)
Jva-c(W) = 7g



Laplacian, provide better model match with the latent fMRI
sources [11]. However, this approach is computationally ex-
pensive since its iteration complexity depends on the number
of data samples. Thus, in this work, we incorporate reference
signals into the IVA-G decomposition to guide the estimation
and maintain the model match while providing a computation-
ally efficient solution [17].

B. Constrained IVA

cIVA techniques incorporate prior information about the
sources into the IVA model [18] in order to guide the de-
composition and limit the solution space. Consider a set of
references {r,}M , c RY(M < N), the objective is to
maximize the similarity between 7, and the corresponding
estimated SCV y,, while also minimizing similarity with the
other estimated SCV y,,, where n # m. For this purpose, the
following regularization term is defined as in [17]

T zz(z () — <rn,yp>), o
n=1k=1 \m=1
m#n

where € : RV x RY — [0,1] is implemented as the absolute

value of the Pearson correlation.

The augmented cost function is a linear combination of the

IVA-G cost function and the regularization term
A

Jvac(W) + E\Zef(w)y

LA(W) = “4)

where A is a regularization parameter that weights the influ-
ence of the IVA-G cost and the regularization term in the
final cost function. In this work, after an empirical study for
different \ values, we decided to set A = 5 as the value that
provides a fair trade-off between both terms of the cost.

C. Cross-joint-ISI

Intersymbol interference (ISI) is a widely used global metric
to evaluate BSS techniques when the ground truth is available.
Joint ISI, an extension of the normalized ISI, is defined as [7]

joint-ISI = (G, ..., GIKT) = IS1(— Z IGM)), (5

where
N N N N
Z(Zj:l Gy 1) N Z(Zi:l Giy 1)
—~ \ max, G o \max, Gp;j

ISI(G) = = -
(@) 2N(N —1) ’
where Gl = AFIW K] with elements denoted as Gy, In the

ideal scenario of a perfect separation of the sources, G is an
identity matrix subject to permutation and scaling ambiguities,
thus achieving zero joint-ISI.

However, in practical scenarios, the ground truth is un-
known. Cross-joint ISI, a global metric inspired by join-
ISI, is proposed to measure the consistency of the estimated
components across R runs when there is no ground truth
available. It is defined as cross-joint-ISI; ({Wr[k]}r Lk=1) =

joint- ISP, ..., P)), where P") = AWM, Al =
(Wi[k])’ is the inverse of the kth demixing matrix of the ith
run, and Wj[k] is the kth demixing matrix of the jth run. The
cross-joint-ISI of the ith run is computed by averaging all it

pairwise cross-joint-ISI values:

1

R
cross-joint-ISI;, = — Z cross-joint-ISI; .

j=1,j#i

(6)

D. Normalized Mutual Information

Since IVA maximizes independence among the latent SCVs,
we evaluate the performance of the algorithm by quantifying
the mutual information (MI) between the estimated sources
[19]. A lower MI would imply a higher independence of the
estimated components and therefore a better separation of the
latent sources. We compute the pairwise normalized MI (I;,orm)
between two estimates as [20]

21(yi, )
I(yi,yi) + I(y;,y;)

where I(y;,y;) is the mutual information between two esti-
mated components y; and y;. For each run of the algorithm,
we first calculate the pairwise mutual information between
all N sources within each subject’s dataset and average these
N(N — 1)/2 pairs MI values. Then, the average across all
datasets is obtained and used as a metric to describe the
performance of the JBSS algorithm in that specific run. The
averaged normalized MI (N-MI) for the rth run is obtained as

Inorm(yiv yj) = (7)

K N N
k
N'MIr: ZZZI“(’"“ yIE ]7yj ])7 ()
k 1i=1 5>1
where y[ 1 and y[zk] are the source estimates of the kth subject.

J
IV. EXPERIMENTAL RESULTS

A. Resting-state fMRI data

We use the resting state fMRI data set from the bipolar-
schizophrenia network on intermediate phenotypes (B-SNIP)
[21]. In particular, we employ the data collected from the
Baltimore site and select K = 98 subjects: 49 healthy controls
(HCs) and 49 randomly selected schizophrenia patients (SZs).
A single 5-minute run was captured for each subject. The
individuals involved in the study were instructed to maintain
an open-eyed state, concentrate on a crosshair presented on
a display screen, and remain still throughout the scanning
process. The data were captured by a 3-Tesla Siemens Triotim
scanner with TE = 30 ms, TR = 2.21 s, and voxel size =
3.4 x 3.4 x 3 mm>. For each subject, 134 time points were
obtained. We removed the first 3 time points to address the
T-1 effect. The data were resampled to 3 x 3 x 3 mm? isotropic
voxels. In addition, in order to remove non-brain voxels and
flatten the data, each subject image was masked, yielding an
observation vector of V' = 50223 voxels for each of the
T = 131 time points.
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Fig. 1: Comparison of different model orders for real fMRI data with K = 98 and V = 50223. The (a) cross-joint-ISI, (b)
normalized mutual information, and (c) runtime, are shown for 50 independent runs as functions of the number of components
N. Figure (d) shows the reproducibility vs accuracy plot. Both cross-joint-ISI and N-MI were rescaled with the min/max scaler

for better visualization. Each of the markers of the plot represents one independent run.

B. Results

We evaluate the performance of the cIVA-G algorithm in
terms of reproducibility and accuracy metrics as a function
of the model complexity. For this purpose, different model
orders are analyzed when applied to real fMRI data. In these
experiments, we use the functional templates extracted by
Neuromark, specifically the neuromark fMRI_1.0 template
[3], which is composed of 53 resting-state networks (RSNs)
from seven different functional domains: SC (5 RSNs), AUD
(2 RSNs), MOT (9 RSNs), VIS (9 RSNs), CC (17 RSNs),
DMN (7 RSNs) and CB (4 RSNs). Each of these RSNs is
employed as a reference signal by the algorithm for all the
model orders tested, i.e., M = 53 for all the experiments.
However, the number of components to estimate is always
higher than the number of references N > M, ranging from
60 < N < 131.

The obtained results of 50 independent runs for each of
the tested model orders are shown in Fig. 1. The cross-joint-
IST values are depicted in Fig. 1-a. As can be appreciated,
there is a direct relation between model order and cross-
joint-ISI values, as the order increases, the cross-joint-ISI
values also increase. cIVA-G requires the estimation of high-
dimensional probability density functions and the parameters
for the demixing matrices. Therefore, for a fixed number
of samples V, the performance of the algorithm degrades
in terms of cross-joint-ISI with the increase in the number
of components N or the number of datasets K [11], [22].
Thus, a higher model complexity leads to larger variance
and lower reproducibility of the results. The same pattern
can be appreciated in the runtime on Fig. 1-c. On the other
hand, N-MI values show the opposite behavior (see Fig. 1-
b), where the higher the model complexity, the lower the N-
MI. In this case, the inclusion of more information into the
analysis by incrementing the number of components helps the
algorithm to better separate the estimated sources and make
them more statistically independent. Therefore, from these
results, we can appreciate the classic bias-variance tradeoff,
as illustrated in Fig. 1-d. Thus, an adequate model order will
be the one that finds a balance between these two aspects:

accuracy (independence in our problem) and reproducibility.
We can see that the model orders 90 and 100 are the ones that
better balance this tradeoff between the cross-joint-ISI and N-
MI values.

To determine the final model order, we analyze the quality
of the estimation and the interpretability of the results obtained
by these model complexities. One important metric to assess
the interpretability of the results is the power spectra of RSN
time courses and the power ratio between low-frequency (<
0.1 Hz) and high-frequency (> 0.15 Hz) bands. Low-frequency
activity is usually related to BOLD signals, therefore a high
power ratio value is associated with brain activity, while low
power ratio values are related to respiratory or cardiac activity
[23]. To calculate this ratio, we select the run that offers
the lowest combination of cross-joint-ISI and N-MI for each
order. The Euclidean distance from the origin (0,0) to the
point defined by the cross-joint-ISI and the N-MI of each
run is calculated and the run with the minimum distance
is selected. To give both metrics the same weight in this
selection, a min/max scaling of both metrics is performed to
rescale the values to the interval [0, 1]. The average power ratio
is calculated for the 53 components related to the references.
Model order 60 obtains a value of 3.74 £ 2, model order 90
offers a power ratio of 3.924-2.54, model order 100 of 44-2.82,
and model order 120 of 3.97+2.83. From these results, we can
appreciate that for the model orders that balance the tradeoff
between N-MI and cross-joint-ISI, such as model order 100,
there is a better model match than for those that minimize
the cross-joint-ISI, such as model order 60. Fig. 2 shows the
spatial maps of two estimated components for model order 60
and 100 as an example. We can see that order 100 presents
more interpretable results, with clearer maps and more focal
activation areas.

The functional network connectivity (FNC) map shows
the correlation of the time courses between components. We
expect the components within a functional domain to present
higher connectivity values [23]. In Fig. 3 we can observe that
order 100 shows larger correlations given a functional domain,
while for order 60 the connectivity values are weaker. These
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Fig. 2: Spatial maps for two estimated components for two
different model orders: 60 and 100.
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Fig. 3: Average FNC matrix. Pairwise Pearson correlation
between estimated RSNs time courses are first Fisher z-
transformed and averaged across all subjects. Only the 53
RSN related to the references are analyzed.

results suggest again that order 100 offers a better model match
for fMRI data and more interpretable results.

V. CONCLUSIONS

We presented a new mechanism for selecting the best model
order for a JBSS technique, such as constrained IVA. For this
purpose, we employed cross-joint-ISI and normalized pairwise
mutual information of the estimated sources to evaluate the
reproducibility and the accuracy of the results. The results
obtained with real fMRI data show that the model order
that balances the tradeoff between both metrics achieves a
better model match with higher quality estimates and more
interpretable results. Future works will study if the two metrics
contribute the same to the quality of the results, or whether
one of them should have more weight than the other in the
order selection.
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