

1 **Subaerial Weathering Drove Stabilization of Continents**

2 Jesse R Reimink and Andrew J Smye

3

4 Department of Geosciences, Pennsylvania State University, Deike Building, University Park, PA,
5 16802, USA.

6

7

8 **Summary paragraph**

9 Earth's silica-rich continental crust is unique among the terrestrial planets and is critical for
10 planetary habitability. Cratons represent the most imperishable continental fragments and
11 form ~50% of the Earth's continental crust; yet, the mechanisms responsible for craton
12 stabilization remain enigmatic¹. Large tracts of strongly differentiated crust formed between 3
13 and 2.5 billion years ago, during the late Mesoarchean and Neoarchean time periods². This
14 crust contains abundant granitoid rocks with elevated concentrations of U, Th and K; the
15 formation of these igneous rocks represents the final stage of stabilization of the continental
16 crust^{2,3}. Here we show that subaerial weathering, triggered by the emergence of continental
17 landmasses above sea level, facilitated intracrustal melting and the generation of peraluminous
18 granitoid magmas. This resulted in reorganization of the compositional architecture of
19 continental crust in the Neoarchean. Subaerial weathering concentrated heat producing
20 elements into terrigenous sediments that were incorporated into the deep crust where they
21 drove crustal melting, and the chemical stratification required to stabilize cratonic lithosphere.
22 The chain of causality between subaerial weathering and the final differentiation of the Earth's
23 crust implies that craton stabilization was an inevitable consequence of continental emergence.
24 Generation of sedimentary rocks enriched in heat producing elements at a time in Earth's
25 history when the rate of radiogenic heat production was on average twice the present-day rate
26 resolves a long-standing question of why many cratons were stabilized in the Neoarchean.

27

28 **Cratons and continent stability**

29 The most enduring blocks of continental crust, cratons, form refractory nuclei that have
30 remained stable for billions of years and are some of the longest-lived and expansive geological
31 features on Earth. Archean (>2.5 billion year old, Ga) cratons host the majority of the global
32 gold and platinum inventories, and are important repositories of other critical mineral deposits,
33 such as Li-bearing pegmatites. Cratons also contain key archives of ancient planetary
34 environments including Earth's oldest preserved rocks⁴, as well as records of ancient surface
35 environments⁵ and the climatic response to changes in the solid Earth system⁶. Cratons, defined
36 here as blocks of >150 km thick stable lithosphere¹, are preserved in the Archean rock record as
37 Eo- to Neoarchean (4.0-2.5 Ga) granitic intrusions and supracrustal rocks that comprise Archean
38 'granite-greenstone' belts. They have exceptional longevity – these packages of crust have
39 remained stable and isolated from tectonic reworking for billions of years⁷. How these unique
40 lithospheric domains were stabilized remains unresolved.

41

42 Critical to craton stability is the enrichment of heat producing elements (HPE) U, Th, and K in
43 the upper crust relative to the lower crust. This serves to reduce temperatures in the deep crust
44 and uppermost mantle, thereby strengthening the lithosphere to an extent that it becomes

45 resistant to deformation^{8,9}. Intracrustal transport of the HPEs occurs predominantly during
46 melting, typified by post-orogenic magmatism, whereby partial melting concentrates HPE in the
47 melt phase which ascends to depths of neutral buoyancy in the crustal column. Thus, from a
48 crustal perspective, craton formation is marked by the timing of emplacement of post-orogenic
49 granitoids, sometimes referred to as the Neoarchean granite bloom^{7,10}. The precise timing of
50 this key crustal differentiation event differs between cratons but consistently occurs between
51 ~3.1 Ga and 2.5 Ga (Fig. 1b;^{2,11}). The granite bloom was succeeded by tectonic quiescence over
52 time scales of hundreds of millions to billions of years, indicating that this process represents
53 the final stage of cratonization¹¹. Importantly, these plutonic suites contain the first large-scale
54 evidence for potassium-rich granites; Mesoarchean and older granitoids are dominated by
55 distinctly different rock compositions^{12,13}. Pre-granite bloom rocks contain mostly sodic
56 ($K_2O/Na_2O < 0.7$) tonalite-trondhjemite-granodiorite-suite rocks (TTGs) and associated mafic
57 rocks, forming Archean “grey gneiss” provinces¹³. These TTG-suite rocks are widely believed to
58 be formed by partial melting of basaltic protocrust^{13,14} and thus represent primary additions to
59 the felsic continental crust, not the products of final stabilization.

60
61 In contrast to the older TTG-suite rocks, Neoarchean granites are potassic ($K_2O > 2.0\%$,
62 $K_2O/Na_2O > 0.7$; Fig. 1a) and can be peraluminous (herein defined as granites with molar
63 $Al/[Ca - 1.78P + Na + K] > 1.1$) and their chemical characteristics are incompatible with partial
64 melting of mafic protocrust. Instead, the genesis of potassic and peraluminous granites require
65 melting of older, intermediate composition continental crust (i.e., TTG crust) and sedimentary
66 protoliths, respectively^{2,15,16}. Thus, Neoarchean granites represent the final stage of crustal
67 differentiation in the formation of Earth’s continents. Neoarchean granites are enriched in the
68 heat producing elements U, Th, and K (Fig. 2c) such that their formation by partial melting
69 substantially depleted the lower crust of these elements, serving to strengthen and stabilize
70 lithospheric blocks.

71
72 Prevailing explanations for the petrogenesis of the Neoarchean granites invoke heating of the
73 lithosphere to induce partial melting of pre-existing crust. This requirement is supported by
74 Neoarchean metamorphic terranes that preserve a record of high-temperatures in the middle
75 and lower crust over timescales consistent with radiogenic heating in thickened crust^{17,18}.
76 Previously proposed mechanisms include mantle plumes impinging on the base of the
77 lithosphere¹⁹, lithospheric inversion¹⁷, convective removal of lithospheric mantle¹⁶, conductive
78 equilibration of thickened crust^{2,20}, and advection of magmatic heat^{21,22}. Though several aspects
79 of these models are appealing, no one model can successfully account for all the geological
80 constraints necessary to explain formation of cratonic nuclei in the Neoarchean.

81
82 A major obstacle, at least for some well-studied cratons, to models that invoke asthenospheric
83 heat transfer as a mechanism to induce crustal melting is that formation of thick mantle
84 lithosphere preceded (i.e. >2.8 Ga) granitoid emplacement in many cratons^{1,23}. Impinging
85 mantle plumes, or convective instabilities would destroy such lithospheric roots¹⁷; the existence
86 of older mantle roots thus renders asthenospheric heating an unlikely heat source for
87 widespread crustal melting in some areas. In contrast, conductive equilibration of thickened
88 lithosphere with radiogenic crust offers a satisfactory explanation for the attainment of

89 suprasolidus crustal temperatures²⁴ while maintaining thick lithosphere. Indeed, such
90 thickening has been invoked to account for the thermal evolution of the thickest tract of
91 lithosphere on modern Earth beneath Tibet²⁰. In particular, it is important to note that
92 granitoids with comparable compositions to the Neoarchean granite bloom event can be
93 produced by this mechanism²⁵. However, the invocation of crustal thickening to explain
94 widespread anatexis on modern Earth requires anomalous crustal enrichment of the HPEs
95 relative to the composition of modern continental crust.

96

97 Here, we use the Archean rock record to quantify the heat production rates of Archean TTG
98 terranes. Global compilations^{26,27} show that these terranes have substantially lower heat
99 production ($1-2 \mu\text{W}/\text{m}^3$ at 2.8 Ga, Fig. 2d) than modern crustal compositions would have had in
100 the Mesoarchean ($\sim 3-4 \mu\text{W}/\text{m}^3$). This finding implies that extrapolation of crustal thickening to
101 the Mesoarchean based on modern crustal compositions²⁰ overlooks significant secular
102 changes in the composition of crust¹² and is therefore not warranted. We build on previous
103 efforts that have demonstrated the importance of radiogenic heating for the production of
104 Archean cratonic lithosphere^{20,28} by combining rock-specific calculations of Neoarchean heat
105 production with thermal models to evaluate the potential for crustal thickening to drive crustal
106 differentiation.

107

108 **Archean heat production**

109 To quantify the heat production rates of typical rock types found in Archean terranes, we
110 compiled geochemical bulk-rock analyses and calculated heat production rates at 2.8 Ga, an
111 average age for the onset of granite bloom events, (Fig. 2) using present day U, Th, K
112 concentrations in each rock type. We used major element rock compositions to define two
113 groups of Archean crustal rock types, a ‘high-Si’ group ($> 60 \text{ wt.\% SiO}_2$) that is dominated by
114 TTG-like compositions and a ‘low-Si’ grouping ($< 60 \text{ wt.\% SiO}_2$) that corresponds to basaltic
115 rocks. Sedimentary rock data were partitioned into siliciclastic, shale and mafic sediment
116 groups; our Archean shale composition represents an estimate of the archetypal sediment
117 composition. Details of the calculations are provided in the Methods.

118

119 In the Mesoarchean, radiogenic heat production was around double the modern rate, but this
120 depends upon the specific concentrations of each radioactive isotope (due to the dramatic
121 differences in the half lives of ^{40}K , ^{232}Th , ^{235}U and ^{238}U). Common to all Archean cratons is the
122 predominance of TTG suites in poly-metamorphosed basement gneiss complexes¹³. Our
123 calculations show that by the Neoarchean, felsic igneous crust-dominated by sodium-rich,
124 intermediate to felsic TTG granitoids-had heat production rates $< 2 \mu\text{W}/\text{m}^3$ (the ‘high Si’ group:
125 median = 1.28, s.d. = 1.76, 75th percentile = 2.2, n = 2433; Fig. 2a). This defines the upper limit
126 of the heat production capacity of pre-granite-bloom Archean crust as Archean terranes
127 contain a mix of TTG and mafic gneisses^{7,29} – the addition of mafic rocks to this package will
128 reduce the internal heat production capabilities of pre-granite-bloom Archean crust (the ‘low Si’
129 group: median = $1.13 \mu\text{W}/\text{m}^3$, s.d. = 2.6, 75th percentile = 1.16, n = 3945). In stark contrast,
130 Archean sedimentary rocks from felsic sources (data from ref³⁰), have significantly elevated
131 heat production values that range from 1 to $6 \mu\text{W}/\text{m}^3$ (median = $2.54 \mu\text{W}/\text{m}^3$, s.d. = 1.5, 75th
132 percentile = 3.66, n = 193; Fig. 2b) with an asymmetric distribution to higher values. Of these

133 sediments, shales have the highest heat production rates ($3\text{-}5 \mu\text{W}/\text{m}^3$) as they are enriched in U
134 compared to non-shales. Heat producing elements are also concentrated in both potassic ($1\text{-}5$
135 $\mu\text{W}/\text{m}^3$) and peraluminous ($2\text{-}8 \mu\text{W}/\text{m}^3$) Neoarchean granites (data from refs^{2,15,31}).
136 Peraluminous granites necessitate sedimentary source rocks, while many potassic granites in
137 the Neoarchean have isotopic signatures that implicate involvement of older continental crust².
138 Further, as many melt/bulk rock partition coefficients for the HPE are <1 ^{32,33}, this implies that
139 these peraluminous granites formed from HPE-enriched sedimentary protoliths. The potential
140 for fractional crystallization to cause HPE-enrichment requires further evaluation; small grain-
141 sizes of U- and Th-bearing accessory phases makes their physical separation from the melt
142 implausible until they become included by a crystallizing major mineral.

143

144 **Thermal evolution of thickened crust**

145 Our assessment of Archean heat productivity based on actual rock compositions allows us to
146 investigate the role of radiogenic heat production in cratonization. We use these rock-based
147 heat production values to constrain one-dimensional thermal models of the cratonization
148 process in which the thermal structure of thickened crust evolves through the combined effects
149 of conductive relaxation of isotherms and radiogenic heating following thickening. Details of
150 the calculations are provided in the Supplementary Information. Critically, we examine the
151 ability of various distributions of crustal heat production to cause partial melting and
152 differentiation of the continental crust in the Neoarchean.

153

154 Our calculations show that thickening of Archean TTG crust for a range of geologically plausible
155 parameters fails to result in significant partial melting. Figure 3a shows an example result for
156 TTG crust ($1.4 \mu\text{W}/\text{m}^3$, evenly distributed) in which 30 km-thick crust is instantaneously
157 thickened by a factor of two. While this configuration results in $>400^\circ\text{C}$ heating of the middle
158 and lower crust over 50 Myr, the peak temperatures attained do not significantly exceed the
159 TTG solidus ($700\text{-}800^\circ\text{C}$ over the crustal pressure range, calculated using average TTG
160 composition, see Methods for details) and produce only low-volume melts ($<2\%$) that are
161 insufficient to account for the voluminous record of magmatism preserved in the Neoarchean
162 granitoid rock record^{2,15,31}. This finding suggests that stacking of even pure TTG crust prior to
163 the Neoarchean granite bloom could not produce the hallmark geological signatures of
164 cratonization²⁰ and that an alternative heat source is required to produce the voluminous
165 granitoids that mark the stabilization of Archean continental nuclei globally.

166

167 The common occurrence of metasedimentary rocks in Meso-Neoarchean granulite terranes^{34,35}
168 implies that heat production within thickened Neoarchean crust exceeded that of pure-TTG
169 crust. Our calculations show that the incorporation of sediments into thickened crust has the
170 potential to induce significant melting of both the sediment and adjacent TTG crust. Figure 3b
171 shows the effect of sediment incorporation on the thermal evolution of Mesoarchean crust; for
172 example, a 10 km-thick layer of sedimentary rock with an average heat production of $3 \mu\text{W}/\text{m}^3$
173 incorporated at 30 km depth results in granulite-facies metamorphism and the generation of
174 granitic melt fractions exceeding 40% after 50 Myr (green lines, Fig. 3b). Elevated rates of heat
175 flow through the upper crust mean that the potential for sediments to undergo partial melting

176 increases with depth of burial such that the distributed incorporation of low-HPE sediments
177 throughout the deep crust ($2 \mu\text{W}/\text{m}^3$ between 30 and 60 km) is sufficient to yield melt volumes
178 that locally exceed >25 vol.% (e.g. light blue line, Fig. 3b). The heat generated from buried
179 sediments also stimulates partial melting of adjacent, non-metasedimentary crustal lithologies
180 (Fig. S-9 and S-10), producing cogenetic suites of metaluminous and peraluminous granitoids. A
181 further consequence of deep sediment burial and focused radiogenic heating is the downward
182 conduction of heat from the lower crust into the underlying mantle lithosphere. Provided the
183 negative heat flux is sufficient to cause melting of fusible rocks in the uppermost mantle
184 lithosphere, this mechanism could account for the occurrence of minor volumes of mantle-
185 derived mafic rocks exposed in some cratons during this interval.
186

187 **Geology of Archean cratons**

188 Our calculations imply that the onset of terrigenous sedimentation in the Mesoarchean, caused
189 by the rise of continental freeboard⁵, resulted in a step change in the ability of the crust to
190 undergo internal chemical differentiation. Weathering of TTG crust concentrated HPE's into
191 sedimentary lithologies whose burial provided the heat source required to internally
192 differentiate the continental crust and produce cratons.
193

194 Large volumes of sedimentary rocks have not been present on Earth's surface throughout the
195 rock record. In fact, mature sedimentary packages are only preserved on Earth since the
196 Mesoarchean (Fig. 1b)^{5,36}. The Archean felsic TTG crust has long been known to have been
197 submerged beneath sea level – evidenced in large part by submarine basaltic packages that
198 overlie most Mesoarchean basement gneiss assemblages (e.g. ref⁷). Although sedimentary
199 packages are known to occur back to 3.8 Ga, prior to ~ 3.0 Ga, sedimentary packages tend to
200 consist of thin, immature, 'cover-group' sequences that have restricted catchments and likely
201 volcanicogenic origins³⁷. During the Mesoarchean, large sedimentary basins, including fine-
202 grained sediments, were deposited on pre-existing continental crust. For instance, the
203 Witwatersrand basin, deposited ~ 2.7 Ga, contains up to 6 km of interbedded clastic
204 sequences³⁸; Meso-Neoarchean sedimentary basins indicative of exposed continental crust
205 exist in many other cratons, including the Slave (up to 5 km of turbidites and shales at 2.67-2.63
206 Ga³⁹), Pilbara (>2.9 Ga, including the De Gray Superbasin⁴⁰), and Kaapvaal craton (the 3.26 Ga
207 Fig Tree Group containing up to 1 km of shale⁴¹). Importantly, large volumes of HPE-enriched
208 sedimentary rocks are not found on Earth prior to ~ 3.0 Ga (Fig. 1b) despite the fact that there
209 are large tracts of pre-3.0 Ga crust found in Archean 'grey gneiss' terranes – such terranes are
210 dominated by orthogneisses of igneous origin.
211

212 Our proposed mechanism makes specific predictions for the relative timings of sedimentation,
213 metamorphism and magmatism in the Neoarchean. Sedimentation is required to be antecedent
214 to metamorphism and crustal melting, and we logically expect that both Neoarchean K-rich
215 granitoids and exhumed granulite-facies metasedimentary rocks are consanguineous.
216 Furthermore, granulite-facies metamorphism in the middle and lower crust should precede or
217 be contemporaneous with the timing of plutonism in a specific cratonic region. There is ample
218 geochronological and petrological evidence from specific regions that supports these
219 predictions (Fig 1b; SI). For instance, the Neoarchean granite bloom event, comprising both

220 peraluminous and potassic granitoids (see Supplemental Information) of the Slave craton
221 occurred between 2.62-2.58 Ga²¹, but is predated by clastic sediment deposition (2.69-2.66
222 Ga⁷), while metasedimentary xenoliths preserve a record of granulite-facies metamorphic
223 conditions at ~2.62-2.59 Ga⁴², correlating with granitoid emplacement. These granulite-facies
224 Archean metasedimentary rocks are depleted in HPE and underwent partial melting at lower
225 crustal conditions³⁴. Lower crust in the Kaapvaal craton, exposed in the Vredefort impact event,
226 contains metasedimentary rocks that underwent granulite facies metamorphism at ~3.0 Ga⁴³,
227 succeeded by voluminous granitoid plutonism². Moreover, combined zircon O and Hf isotope
228 systematics from Kaapvaal peraluminous granites imply a negligible influence of mantle-derived
229 melts during sediment melting under lower-crustal conditions, consistent with granite
230 formation in response to radiogenic heating from HPE-enriched sediments⁴⁴. Granite formation
231 was coeval with metamorphism in the deep crust of the Kaapvaal³⁵ and resulted in the
232 redistribution of HPE's to the near-surface and net strengthening of the crust³.
233

234 At a global scale, our model predicts that granulite-facies metamorphism of sedimentary
235 protoliths occurred during or prior to Neoarchean cratonization and that large tracts of melt-
236 depleted metasedimentary crust currently exist at depth in Meso-Neoarchean orogenic crust.
237 This requirement finds support from the observation that ~50 % of samples from exhumed
238 Archean granulite terranes have peraluminous compositions⁴⁵, consistent with a
239 metasedimentary origin and the incorporation of near-surface rocks into the Neoarchean lower
240 crust. Furthermore, the conditions of metamorphism preserved by these rocks imply heating in
241 middle and lower orogenic crust⁴⁶ (see PT data shown on Fig. 3). The few constraints that exist
242 on the pressure-temperature-time evolution of such metamorphism indicate that granulite-
243 facies metamorphism occurred within thickened crust⁴⁷ at a similar time to the Neoarchean
244 granite bloom emplacement (Fig. 1b). Slow seismic wavespeeds and low V_P/V_S ratios measured
245 through some Archean cratonic regions (e.g. Kaapvaal craton⁴⁸) provide additional support for
246 the contention that portions of deep cratonic crust contain significant volumes of
247 metamorphosed sedimentary rocks.
248

249 One aspect of the geological record that may seem to be at odds with our model is the
250 observation that peraluminous granites are subordinate to potassic granitoids on some
251 Neoarchean cratons¹⁵. The mechanism presented here predicts that melting was primarily
252 driven by sedimentary heat production; however, it does not necessarily suggest that the
253 Neoarchean magmatic signature should be dominated by pure sediment melts as the
254 incorporation of sediments into the deep crust can stimulate the production of significant
255 proportions of melt from pre-existing crust (see Methods). Generation of melts from pre-
256 existing crust draws strong support from Nd and Hf isotope systematics of the global array of
257 Neoarchean granites², notably including a large proportion of the western Slave craton²¹.
258 Furthermore, post-Archean erosion may have removed upper crustal material containing such
259 melts, as inferred from zircon oxygen isotope ratios⁴⁹.
260

261 **Tectonic style need not have changed**

262 Our proposed mechanism for cratonization, whereby weathering of emergent continents
263 concentrated HPE into sediments that drove intracrustal differentiation, does not require a

264 global reconfiguration in tectonic style in the Neoarchean to explain the observed increase in
265 lithological diversity across this time period¹². The mechanism is also consistent with the
266 existence of cratonic mantle prior to Neoarchean granite formation, as likely required for
267 continental emergence¹. Several lines of evidence indicate that such lithospheric mantle was
268 stabilized by imbrication²³, generating tracts of continental crust that could maintain freeboard
269 and produce expansive sedimentary basins in the Neoarchean. These HPE-enriched
270 sedimentary rocks were then incorporated into the deep crust by compressional tectonic
271 activity that resulted in widespread melting and plutonism and was associated with the genesis
272 of high-K, 'sanukitoid' magmatism produced by mantle wedge melting⁵⁰. Incorporation of
273 sedimentary rocks into the deep crust caused widespread crustal melting and plutonism; melt
274 migration redistributed HPE from the middle- and lower- to the upper crust that, in turn, drove
275 cooling and strengthening of cratonic crust. While Mesoarchean TTG-dominated crust was
276 incapable of undergoing such differentiation, the appearance of rocks that concentrate heat
277 producing elements within a plate tectonic regime is sufficient to cause intracrustal
278 differentiation.

279
280 We emphasize that this mechanism has no specific requirement for the physical process by
281 which sediments are incorporated into the deep crust. This may have occurred by
282 relamination⁵¹, tectonic underplating⁵² or burial⁵³; such processes are active on modern Earth
283 and likely occurred in the Neoarchean². Contrary to previous interpretations, we infer that
284 tectonic regime need not have changed from the Meso- to Neoarchean in order to account for
285 the geological evolution of Archean cratons. Instead, the mechanism proposed implies that
286 craton stabilization was activated by continental emergence that, in turn, was driven by one of
287 several viable processes unrelated to tectonic transitions^{54–58}. The geological record can then be
288 cast in terms of a pre-emergence (TTG dominated) and post-emergence (granite-dominated)
289 planet. These findings demonstrate the importance of exogenic processes for the geodynamic
290 evolution of planetary interiors and the generation and sustenance of habitable conditions.
291 Ultimately, the onset of planetary-scale subaerial weathering led to not only dramatic
292 atmospheric change, but also drove final distillation and stabilization of continents.

293
294
295

296 **Main figure legends**

297

298 **Figure 1:** Geological evolution of cratons at the end of the Archean. Panel **a** shows a stacked
299 kernel density estimator for the composition of felsic (>62 wt% SiO₂) igneous rocks through
300 time, discretized in 50 Myr age bins. Rocks with K₂O/Na₂O are rare prior to 3.0 Ga and common
301 post-3.0 Ga. Panel **b** shows a compilation of granitoid geochemistry from various cratons².
302 Sedimentation, high-temperature metamorphism, and emplacement of Neoarchean granites
303 occurred at different times in each craton. Data sources are presented in the supplement. The
304 lowermost green field in **c** shows the normalized cratonic mantle age distribution¹ with a
305 prominent peak in the Neoarchean. Red and black lines show the number of preserved
306 sedimentary (black) and fine-grained (red) rocks samples in a global database averaged in a
307 moving-window calculation. Sedimentary rocks first appear en masse in the Mesoarchean-
308 Neoarchean.

309

310 **Figure 2:** Heat production rates for Archean rocks. All values are back-calculated to 2.8 Ga using
311 measured concentrations of U, Th and K; each curve is a kernel density estimator for the
312 underlying datasets. Vertical lines correspond to heat production of modern upper crust²²
313 (UCC) calculated at 2.5 and 3 Ga. Source data and calculations are detailed in the Methods.
314 Panel **a** shows heat production rates for Archean crustal rocks with silica content greater
315 ('Archean High SiO₂') or less than ('Archean Low SiO₂') 62 wt.%; panel **b**: compositional
316 endmembers of Archean sedimentary rocks; panel **c**: Late-Archean granites broken apart into
317 compositional categories and **d** Archean granulite terranes and xenoliths.

318

319 **Figure 3:** Thermal evolution of thickened crust in the Neoarchean. Panel **a** shows the thermal
320 evolution of thickened TTG crust. Left-hand plot shows the vertical distribution of heat
321 production; middle plot shows geotherms in 5 Myr increments following instantaneous
322 thickening of 30 km-thick crust by a factor of two ('saw-tooth' initial geotherm). Thick orange
323 line represents the geotherm at 50 Myr, the solid black line shows the TTG solidus ('high-Si'
324 bulk composition) and the gray markers represent a compilation of PT estimates derived from
325 Archean metamorphic terranes⁵⁹. Melt fractions corresponding to the 50 Myr geotherm are
326 shown in the panel farthest to the right. Note that this crustal configuration does not result in
327 significant melt production (<2 volume % melt at 50 Myr). Panel **b** is as for **a** except for
328 distributions of heat production that correspond to sediment burial. Combinations of sediment
329 layer thickness and heat production are chosen to demonstrate the importance of
330 emplacement depth on thermal structure: lower thermal gradients with increasing depth mean
331 that lower rates of heat production are required to cause melting. For the sedimentary layer,
332 melt fractions were calculated using T-X relations derived for the 'Archean shale' composition.
333 Colored lines show the thermal evolution of similar models that contain hot sedimentary layers
334 placed at various depths and thicknesses (heat production shown on the left panel). Black lines
335 correspond to solidus curves for TTG (as in **a**) and 'wet' shale composition. Abrupt changes in
336 melt fractions with depth are caused by the exhaustion of muscovite during melting.

337 **Figure 4:** Subaerial weathering drives cratonization. Schematic illustration of the key
338 geodynamic processes in craton stabilization. Panel **a**: prior to continental emergence,

339 thickening of TTG crust did not cause extensive melting, resulting in only limited crustal
340 differentiation. Panel **b**: following continental emergence, weathering of TTG crust
341 concentrated U, Th and K into terrigenous sedimentary rocks, which, when entrained into the
342 deep crust, elevated the crustal geotherm over tens of millions of years and induced large
343 degrees of melting. Subsequent melt-migration redistributed the HPEs from the lower- to the
344 upper crust (potassic and peraluminous granites, yellow and pink, respectively), thermally and
345 mechanically stabilizing the continental lithosphere. Vertical orange lines represent schematic
346 distributions of U, and K.

347

348 **Main Text References:**

- 349 1. Pearson, D. G. *et al.* Deep continental roots and cratons. *Nature* **596**, 199–210 (2021).
- 350 2. Laurent, O. *et al.* The diversity and evolution of late-Archean granitoids: Evidence for the
351 onset of “modern-style” plate tectonics between 3.0 and 2.5Ga. *Lithos* **205**, 1–82 (2014).
- 352 3. Schoene, B., Wit, M. J. de & Bowring, S. A. Mesoarchean assembly and stabilization of the
353 eastern Kaapvaal craton: A structural-thermochronological perspective. *Tectonics* **27**, 101–
354 191 (2008).
- 355 4. Bowring, S. A., Williams, I. S. & Compston, W. 3.96 Ga gneisses from the Slave province,
356 Northwest Territories, Canada. *Geology* **17**, 971–975 (1989).
- 357 5. Eriksson, P. G., Mazumder, R., Catuneanu, O., Bumby, A. J. & Ilondo, B. O. Precambrian
358 continental freeboard and geological evolution: A time perspective. *Earth Science Reviews*
359 **79**, 165 204 (2006).
- 360 6. Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric
361 oxygen 2.5 billion years ago. *Nature* **448**, 1033 1036 (2007).
- 362 7. Bleeker, W. Archean tectonics: a review, with illustrations from the Slave Craton. *Geological
363 Society, London, Special Publications*, **199**, 151–181 (2002).
- 364 8. Mareschal, J.-C. & Jaupart, C. Radiogenic heat production, thermal regime and evolution of
365 continental crust. *Tectonophysics* **609**, 524–534 (2013).

366 9. Sandiford, M., McLaren, S. & Neumann, N. Long-term thermal consequences of the
367 redistribution of heat producing elements associated with large-scale granitic complexes.

368 *Journal of Metamorphic Geology* **20**, 87–98 (2002).

369 10. Canil, D. Canada's craton: A bottoms-up view. *GSA Today* **18**, 4 7 (2008).

370 11. Rogers, J. J. W. Evolution of continents. *Tectonophysics* **105**, 55–69 (1984).

371 12. Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric
372 evolution about 2.5 Gyr ago. *Nature* **485**, 490 493 (2012).

373 13. Moyen, J.-F. & Martin, H. Forty years of TTG research. *Lithos* **148**, 312 336 (2012).

374 14. Rapp, R. P. *et al.* Partial melting of amphibolite/eclogite and the origin of Archean
375 trondhjemites and tonalites. *Precambrian Research* **51**, 1 25 (1991).

376 15. Bucholz, C. E. & Spencer, C. J. Strongly Peraluminous Granites across the Archean–
377 Proterozoic Transition. *Journal of Petrology* **60**, 1299–1348 (2019).

378 16. Davis, W. J., Fryers, B. J. & King, J. E. Geochemistry and evolution of late Archean plutonism
379 and its significance to the tectonic development of the Slave craton. *Precambrian Research*
380 **67**, 207–241 (1994).

381 17. Percival, J. A. & Pysklywec, R. N. Are Archean lithospheric keels inverted? *Earth and*
382 *planetary science letters* **254**, 393 403 (2007).

383 18. Thompson, P. H. Moderate overthickening of thinned sialic crust and the origin of granitic
384 magmatism and regional metamorphism in low-P-high-T terranes. *Geology* **17**, 520–523
385 (1989).

386 19. Aulbach, S. Craton nucleation and formation of thick lithospheric roots. *Lithos* **149**, 16 30
387 (2012).

388 20. McKenzie, D. & Priestley, K. Speculations on the formation of cratons and cratonic basins.

389 *Earth and Planetary Science Letters* **435**, 94–104 (2016).

390 21. Davis, W. J., Jones, A. G., Bleeker, W. & Grütter, H. Lithosphere development in the Slave

391 craton: a linked crustal and mantle perspective. *Lithos* **71**, 575 589 (2003).

392 22. Jaupart, C. & Mareschal, J. C. Post-orogenic thermal evolution of newborn Archean

393 continents. *Earth and planetary science letters* **432**, 36 45 (2015).

394 23. Timmerman, S. *et al.* Mesoarchean diamonds formed in thickened lithosphere, caused by

395 slab-stacking. *Earth and Planetary Science Letters* **592**, 117633 (2022).

396 24. England, P. C. & Thompson, A. B. Pressure—Temperature—Time Paths of Regional

397 Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental

398 Crust. *Journal of Petrology* **25**, 894–928 (1984).

399 25. Zhang, X.-Z. *et al.* Tibetan Plateau insights into >1100 °C crustal melting in the Quaternary.

400 *Geology* (2022) doi:10.1130/G50387.1.

401 26. Hasterok, D., Gard, M., Cox, G. & Hand, M. A 4 Ga record of granitic heat production:

402 Implications for geodynamic evolution and crustal composition of the early Earth.

403 *Precambrian Research* **331**, 105375 (2019).

404 27. Gard, M., Hasterok, D., Hand, M. & Cox, G. Variations in continental heat production from

405 4 Ga to the present: Evidence from geochemical data. *Lithos* **342–343**, 391–406 (2019).

406 28. Jaupart, C. & Mareschal, J.-C. 4.2 - Constraints on Crustal Heat Production from Heat Flow

407 Data. in *Treatise on Geochemistry (Second Edition)* (eds. Holland, H. D. & Turekian, K. K.)

408 53–73 (Elsevier, Oxford, 2014). doi:10.1016/B978-0-08-095975-7.00302-8.

409 29. Moyen, J.-F. The composite Archaean grey gneisses: Petrological significance, and evidence
410 for a non-unique tectonic setting for Archaean crustal growth. *Lithos* **123**, 21–36 (2011).

411 30. Ptáček, M. P., Dauphas, N. & Greber, N. D. Chemical evolution of the continental crust from
412 a data-driven inversion of terrigenous sediment compositions. *Earth and Planetary Science
413 Letters* **539**, 116090 (2020).

414 31. Davis, W. J. Granitoid geochemistry and Late Archean crustal evolution in the central Slave
415 Province. **1** 349 (1991).

416 32. Bea, F., Pereira, M. D. & Stroh, A. Mineral/leucosome trace-element partitioning in a
417 peraluminous migmatite (a laser ablation-ICP-MS study). *Chemical Geology* **117**, 291–312
418 (1994).

419 33. Yakymchuk, C. & Brown, M. Divergent behaviour of Th and U during anatexis: Implications
420 for the thermal evolution of orogenic crust. *Journal of Metamorphic Geology* **37**, 899–916
421 (2019).

422 34. Gruber, B., Chacko, T., Pearson, D. G., Currie, C. & Menzies, A. Heat production and moho
423 temperatures in cratonic crust: evidence from lower crustal xenoliths from the slave craton.
424 *Lithos* **380–381**, 105889 (2021).

425 35. Moser, D. E., Flowers, R. M. & Hart, R. J. Birth of the Kaapvaal Tectosphere 3.08 Billion Years
426 Ago. *Science* **291**, 465–468 (2001).

427 36. Reimink, J. R., Davies, J. H. F. L. & Ielpi, A. Global zircon analysis records a gradual rise of
428 continental crust throughout the Neoarchean. *Earth and Planetary Science Letters* **554**,
429 116654 (2021).

430 37. Kamber, B. S., Kamber, B. S., Whitehouse, M. J., Bolhar, R. & Moorbat, S. Volcanic
431 resurfacing and the early terrestrial crust: zircon U–Pb and REE constraints from the Isua
432 Greenstone Belt, southern West Greenland. *Earth and Planetary Science Letters* **240**, 276
433 290 (2005).

434 38. Frimmel, H. E. Archaean atmospheric evolution: evidence from the Witwatersrand gold
435 fields, South Africa. *Earth-Science Reviews* **70**, 1–46 (2005).

436 39. Pehrsson, S. & Villeneuve, M. Deposition and imbrication of a 2670–2629 Ma supracrustal
437 sequence in the Indin Lake area, southwestern Slave Province, Canada. *Can. J. Earth Sci.* **36**,
438 1149–1168 (1999).

439 40. Kranendonk, M. J. V., Kranendonk, M. J. V., Smithies, R. H., Hickman, A. H. & Champion, D.
440 C. Review: secular tectonic evolution of Archean continental crust: interplay between
441 horizontal and vertical processes in the formation of the Pilbara Craton, Australia. *Terra
442 Nova* **19**, 1 38 (2007).

443 41. Hofmann, A. The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton
444 greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-
445 Archaean times. *Precambrian Research* **143**, 23–49 (2005).

446 42. Davis, W. J., Canil, D., MacKenzie, J. M. & Carbno, G. B. Petrology and U–Pb geochronology
447 of lower crustal xenoliths and the development of a craton, Slave Province, Canada. *Lithos*
448 **71**, 541 573 (2003).

449 43. Hart, R., Moser, D. & Andreoli, M. Archean age for the granulite facies metamorphism near
450 the center of the Vredefort structure, South Africa. *Geology* **27**, 1091–1094 (1999).

451 44. Marschall, H. R. *et al.* The Annandagstoppane Granite, East Antarctica: Evidence for
452 Archaean Intracrustal Recycling in the Kaapvaal–Grunehogna Craton from Zircon O and Hf
453 Isotopes. *Journal of Petrology* **51**, 2277–2301 (2010).

454 45. Hacker, B. R., Kelemen, P. B. & Behn, M. D. Continental Lower Crust. *Annual Review of Earth*
455 and *Planetary Sciences* **43**, 1–39 (2015).

456 46. Gibson, R. L. & Wallmach, T. Low pressure-high temperature metamorphism in the
457 Vredefort Dome, South Africa: Anticlockwise pressure-temperature path followed by rapid
458 decompression. *Geological Journal* **30**, 319–331 (1995).

459 47. Anderson, J. R. *et al.* High-pressure granulites at the dawn of the Proterozoic. *Geology* **40**,
460 431–434 (2012).

461 48. James, D. Crustal structure of the Kaapvaal craton and its significance for early crustal
462 evolution. *Lithos* **71**, 413–429 (2003).

463 49. Spencer, C. J. *et al.* Disparities in oxygen isotopes of detrital and igneous zircon identify
464 erosional bias in crustal rock record. *Earth and Planetary Science Letters* **577**, 117248
465 (2022).

466 50. Shirey, S. B., Shirey, S. B., Hanson, G. N. & Hanson, G. N. Mantle-derived Archaean
467 monozodiorites and trachyandesites. *Nature* **310**, 222 224 (1984).

468 51. Hacker, B. R., Kelemen, P. B. & Behn, M. D. Differentiation of the continental crust by
469 relamination. *Earth and Planetary Science Letters* **307**, 501–516 (2011).

470 52. Jacobson, C. E. Metamorphic convergence of the upper and lower plates of the Vincent
471 thrust, San Gabriel Mountains, southern California, USA. *Journal of Metamorphic Geology*
472 **15**, 155–165 (1997).

473 53. Brown, E. H. & Walker, N. W. A magma-loading model for Barrovian metamorphism in the
474 southeast Coast Plutonic Complex, British Columbia and Washington. *GSA Bulletin* **105**, 479–
475 500 (1993).

476 54. Flament, N., Rey, P. F., Coltice, N., Dromart, G. & Olivier, N. Lower crustal flow kept Archean
477 continental flood basalts at sea level. *Geology* **39**, 1159–1162 (2011).

478 55. Vlaar, N. J. Continental emergence and growth on a cooling earth. *Tectonophysics* **322**, 191
479 202 (2000).

480 56. Molnar, P. Gravitational Potential Energy per Unit Area as a Constraint on Archean Sea
481 Level. *Geochemistry, Geophysics, Geosystems* **19**, 4063–4095 (2018).

482 57. Dong, J., Fischer, R. A., Stixrude, L. P. & Lithgow-Bertelloni, C. R. Constraining the Volume of
483 Earth's Early Oceans With a Temperature-Dependent Mantle Water Storage Capacity
484 Model. *AGU Advances* **2**, e2020AV000323 (2021).

485 58. Rey, P. F. & Coltice, N. Neoarchean lithospheric strengthening and the coupling of Earth's
486 geochemical reservoirs. *Geology* **36**, 635–638 (2008).

487 59. Brown, M. & Johnson, T. Secular change in metamorphism and the onset of global plate
488 tectonics. *American Mineralogist* **103**, 181–196 (2018).

489

490

491

492 **Online Methods section**

493 **Whole-rock heat production calculations**

494 For all samples, the modern U, Th, and K concentrations were used to calculate total rock heat
495 production back in time. Each radioactive isotope (^{40}K , ^{232}Th , ^{235}U , ^{238}U), along with their
496 respective decay constants, were used to calculate each rock's heat production. This type of
497 element-concentration based calculation is essential to obtain a clear picture of the heat
498 production in Archean rock compositions, as the distribution of U, Th, and, in particular K, vary
499 between rock compositions and over time. For consistency, we calculated the heat producing
500 capabilities of each rock sample at 2.8 Ga, then compiled these values (Fig. 2a-d).

501

502 To determine the sample-based heat production of Archean crustal rocks and sediments, we
503 compiled modern (i.e. measured) concentrations of U, Th, K (in ppm) and major elements (in
504 wt.% oxide; SiO_2 , CaO , TiO_2 , Al_2O_3 , FeO_T , MgO , Na_2O , K_2O , where FeO_T corresponds to total Fe) from published whole-rock compilations. The major element composition of each sample was
505 used to define a statistical framework that enables us to compute average and median values
506 of heat production for specific lithologies.

507

508 For Archean crustal rocks, we compiled whole-rock compositions from two sources (Fig. 2):
509 compositions of Archean TTG 'grey gneisses' from ref. ²⁹ were combined with a large
510 compilation of Archean crustal rock compositions from ref. ⁶⁰ (file 'aad5513-tang.m-
511 sm.database.s2.xlsx' from their Supplementary Material). The conjoined dataset was filtered to
512 remove partial analyses (i.e., those that did not report values for either U, Th or K, or the major
513 elements), reducing the sample set to 6691 samples for which we calculate heat production
514 values. A principal components analysis (PCA) of non-normalized major element data reveals
515 that the majority of compositional variance (73%, Fig. S-1:A-B) is accounted for by classical
516 indices of magmatic differentiation (i.e. SiO_2 , MgO concentrations). We use non-normalized
517 data for the PCA reflecting our interest in absolute—and not relative—values of compositional
518 variance; all PCA calculations were performed using MATLAB's *princomp* function. Figure S-1:C
519 shows that the aggregate dataset defines a broad positive correlation between heat production
520 and whole-rock SiO_2 concentration, as is expected for plutonic rocks⁶¹. The correlation defines
521 an obvious grouping threshold of 60-65 wt.% SiO_2 , separating 'high- SiO_2 ' ($n = 2046$) from 'low- SiO_2 '
522 (4645) compositions that we use to compute population statistics for heat production (see
523 main text); the distributions defined by these data are plotted in Fig. 2. Exemplar major
524 element compositions for each group are shown as square markers on Figs. S-1:B and C and
525 used in phase equilibria calculations detailed beneath.

526

527 Archean sedimentary rock heat production values were determined using the database of
528 compositions from ref. ³⁰. This compilation was filtered for rock samples with a complete set of

530 major element and U, Th and K concentrations, with depositional ages >2.5 Ga (n = 269). We
531 performed a PCA on the non-normalized dataset, finding that two axes account for over 80 % of
532 the compositional variance. The first axis (X_1 ; Fig. S-2A) separates SiO_2 -rich compositions (i.e.
533 arenites) from those rich in FeO and Al_2O_3 (i.e. mafic sediments and shales); the second axis (X_2)
534 separates aluminous from ferruginous sediment compositions. These axes define three obvious
535 end-members: siliciclastic, shale and mafic sediment compositions, between which the
536 aggregate data form mixing arrays. Bulk-rock heat production increases toward the shale end-
537 member (Fig. S-2B). For our calculations of heat production, we partitioned data according to
538 orthogonal distance from each end-member sediment composition (i.e., which 'arm' of the X_1
539 vs X_2 structure the sample is aligned to). We then computed population statistics on the heat
540 production for each of the three groupings, siliciclastic, shale, and mafic sediments,
541 respectively; Fig. 2 shows the distribution of these data.

542

543 Compositions of late-Archean granite samples were aggregated from three sources: (1)
544 peraluminous granites¹⁵ (n = 84); (2) a Kaapvaal granite database² (n = 51), and (3) a Slave
545 craton granite database^{16,21} (n = 109). Filtering for analyses with U, Th, and K_2O measurements
546 reduced the database from 160 samples to 159 granite samples from the suite of samples from
547 the Slave and Kaapvaal, and 84 peraluminous Archean samples. Reported (i.e. modern) U, Th,
548 and K_2O values were used to calculate heat production rates for each rock analysis at 2.8 Ga,
549 and these values are plotted in Figure 2.

550

551 Heat production rates for Archean lower-crustal rocks from exhumed granulite-facies terrains
552 and xenolith suites were calculated in a similar manner using the compilation of ref. ⁴⁵. Of these
553 samples, 36 metasedimentary xenoliths had U, Th, and K_2O values, while 441 metasediments
554 from Archean granulite terrains had all three values allowing for an accurate calculation of the
555 heat production at 2.8 Ga.

556

557 Heat production rates for modern continental crust back in time are based on the calculations
558 of ref. ²⁰ who used the composition of modern upper continental crust from ref. ⁶².

559

560

561 **Phase equilibrium calculations**

562 The effect of the latent heat of melting on thermal evolution is dependent on the relationship
563 between temperature (T), pressure (P) and melt fraction (X). As the equilibrium melt fraction
564 at any given PT condition is controlled by the availability and compositions of fusible minerals,
565 we calculated $T(P)$ - X relations for each of the compositions detailed above.

566

567 Phase relations were calculated using Theriak-Domino version 11.03.2020, downloaded from
568 <https://titan.minpet.unibas.ch/minpet/theriak/theruser.html>⁶³ combined with the 2011
569 version of the ref.⁶⁴ thermodynamic database (ds62, update February 2012); post-processing
570 was performed within MATLAB. Phase relations and rock properties were calculated between
571 4-16 kbar and 600-1200 °C.

572
573 Bulk compositions for phase equilibria calculations are presented in Table. S-1. For the crustal
574 compositions ('high-Si' and 'low-Si', Fig. S-1), $X\text{Fe}^{3+}$ ($X\text{Fe}^{3+} = \text{Fe}^{3+}/(\text{Fe}^{2+} + \text{Fe}^{3+})$) was set to 0.2
575 based on values reported for the EAT composition of Condie, (1981) in agreement with the
576 general assumption that the Archean surface environment was less oxygenated than modern
577 environments of hydrothermal alteration for which $X\text{Fe}^{3+}$ typically exceeds ~0.3 (e.g. ref.⁶⁶). For
578 sedimentary compositions, Fe_2O_3 was set to 0.1 mol.% and we assume melting occurs under
579 fluid-saturated conditions. Accordingly, bulk-rock H_2O concentrations were adjusted so that
580 minimal free H_2O was present at the solidus at 10 kbar; this approach was adopted to ensure
581 that melting initiated at the fluid-saturated solidus across the P-T range of interest.

582
583 All calculations were performed in the $\text{Na}_2\text{O}\text{-CaO}\text{-K}_2\text{O}\text{-FeO}\text{-MgO}\text{-SiO}_2\text{-H}_2\text{O}\text{-TiO}_2\text{-O}$
584 (NCKFMASHTO) subsystem. The effect of Mn on phase relations was not considered due to low
585 concentrations of MnO in most of the compositions and uncertainties on the energetics of Mn
586 mixing between relevant mineral phases. Furthermore, the principal consequence of Mn on
587 phase relations is to stabilize garnet to lower-grade PT conditions⁶⁷, such effects are expected
588 to have a minor impact on suprasolidus phase relations. For silica-rich compositions ('high-Si',
589 siliciclastic, shale and Archean shale; Table S-1) the following activity-composition models were
590 used: silicate melt^{68,69}; plagioclase feldspar⁷⁰; epidote⁶⁴; chlorite, chloritoid, biotite, garnet and
591 orthopyroxene⁶⁸; white mica^{68,71}, magnetite and ilmenite⁷². For mafic compositions ('low-Si'
592 and 'Mafic sediment'; Table S-1) we used the following activity-composition formulations: mafic
593 melt, amphibole and clinopyroxene⁷³; chlorite, garnet and orthopyroxene⁶⁸; plagioclase⁷⁰;
594 olivine⁶⁴; spinel⁷⁴; magnetite and ilmenite⁷²; epidote⁶⁴; white mica^{68,71}. The following pure
595 phases were considered in all calculations: H_2O , albite, quartz, kyanite, sillimanite, rutile,
596 sphene, clinzoisite and zoisite.

597
598 Figure S-3 shows the variation of melt fraction with temperature at 10 kbar for all bulk
599 compositions considered. Assuming minimal saturation at the wet solidus, all compositions
600 yield solidus temperatures between ~620 and 720 °C, but melt fractions diverge at >700 °C
601 between fertile shales and the remaining rock types. Curves for both shale compositions are
602 characterized by abrupt increases in $dX/dT < 800$ °C, caused by muscovite dehydration melting
603 reactions; our exemplar 'Archean shale' composition is predicted to yield a melt fraction of ~0.3
604 by ~800 °C. Such melt fertility is in contrast to the remaining sediment compositions as well as

605 the 'high-' and 'low-Si' bulks that are characterized by melt fractions <0.2 at <800 °C. The
606 broadly basaltic 'low-Si' composition is predicted to yield large volumes of melt at elevated
607 temperatures, between ~1000 and ~1150 °C, whereas the TTG-like 'high-Si' bulk produces most
608 melt at slightly lower temperatures and over a greater temperature range, from ~850 to ~1100
609 °C. Note that the mafic sediment and 'high-Si' compositions yield broadly similar melting curves
610 at >900 °C. Finally, the siliciclastic composition is the least fertile bulk composition considered,
611 yielding a melt fraction of only 0.6 at 1200 °C, due to the predominance of quartz in all phase
612 assemblages.

613

614 To examine the effect of variable H₂O concentrations on melt fertility, we constructed T-XH₂O
615 curves for the 'low-Si' and 'high-Si' compositions. Solidus temperatures for both compositions
616 range from <650 °C to >850 °C for saturated and dry melting scenarios, respectively. For 'wet'
617 melting, we used H₂O concentrations that minimally saturate the system at 10 kbar ('wet'
618 melting lines, Fig. S-4); for 'dry' melting we adopted values of H₂O that resulted in solidi
619 temperatures around 800 °C. Reduced H₂O concentrations would result in the onset of melting
620 at higher temperatures.

621

622 We note that these T-X relations and melting curves are the result of continuous and
623 discontinuous reactions amongst mineral phases and silicate melt. Interested readers are
624 referred to refs. ^{68, 75} for a detailed discussion of the phase relations of pelitic and TTG
625 compositions at supra-solidus conditions, respectively.

626

627 Thermal modeling

628 We model conduction and radiogenic heat production along a vertical column through the
629 lithosphere ^{24,76-79}. The transient thermal field is given by:

630

$$\rho \frac{\partial [C_p(T)T + LX]}{\partial t} = \frac{\partial}{\partial z} \left[k(T) \frac{\partial T}{\partial z} \right] + A(z, t) \quad (1)$$

631 where T is temperature, t is time, ρ is density, C_p is heat capacity, k is thermal conductivity, L
632 is the latent heat of melting, X is melt fraction and A is radiogenic heat productivity. The effects
633 of advection (i.e. erosion) and heat of sub-solidus metamorphic reaction on the thermal field
634 were not considered. We use temperature-dependent values of thermal conductivity and heat
635 capacity as this exerts an important insulating effect on the thermal evolution of the deep crust
636 ⁸⁰. For crustal depths, we employ the parameterization of ref. ⁸¹, whereas that of ref. ⁸² is used
637 for the lithospheric mantle. The energetics of melt production were simulated assuming a value
638 of 320 kJ/kg for L and the lithology-specific T-X parameterizations derived above. Values of
639 2800 and 3300 kg/m³ were assumed for crustal and mantle density, respectively. Crustal heat

640 production was varied between model runs, but all calculations used 0.006 $\mu\text{W}/\text{m}^3$ for heat
641 production within the mantle lithosphere⁸³. The upper surface of the model domain was held at
642 0 °C for all times and the base of the model domain was held at constant temperature, defined
643 by the initial geotherm and assumed lithospheric thickness. The initial (pre-thickening)
644 geotherm was calculated using a steady-state formulation for a layered lithosphere with crustal
645 and mantle heat production of 1.4 and 0.006 $\mu\text{W}/\text{m}^3$, respectively, and a Moho heat flux of 13
646 mW/m^2 ⁸⁴. We assumed a constant thermal conductivity of 1.8 $\text{W m}^{-1} \text{K}^{-1}$ for the initial crustal
647 geotherm to avoid unreasonably cold geotherms calculated with the temperature-dependent
648 conductivity model of ref. ⁸¹. Equation (S-1) was numerically integrated using an explicit finite
649 difference scheme.

650
651 We assume that crustal thickening occurs by instantaneous emplacement of a single thrust
652 sheet of variable thickness onto a continental section comprising crust and mantle lithosphere
653 (see Fig. S-5). This configuration of thickening is similar to that observed along modern
654 convergent margins – e.g. the Himalaya⁸⁵, and Andes, (e.g., ref. ⁸⁶; see ref. ⁷⁷ for further details
655 and examples) – in which low-grade rocks, including sediments, are delivered to middle and
656 lower-crustal depths along contractional faults. In our calculations, we consider the thermal
657 effect of underthrusting sediment layers of variable thickness and heat production (see Figs. S-9
658 and S-10). Following emplacement of the thrust sheet, the initial ‘saw tooth’-shaped geotherm
659 evolves in response to conduction and radiogenic heating. We do not consider the effects of
660 heating during crustal thickening, nor the impact of a time-dependent mantle heat flux.

661
662

663 **Enrichment of Archean-Paleoproterozoic sediments in K and U**

664 Radiogenic heat production in sedimentary rocks is controlled by depositional age and
665 radioelement concentration at the time of sediment deposition. For a sediment of an average
666 modern composition, the former parameter imposes an approximate increase of heat
667 production by a factor of ~2 (at 2.8 Ga) relative to the modern sediment.

668
669 Figure S-6 shows measured concentrations of U, Th and ^{40}K plotted against the age of sediment
670 deposition for shales and ‘non-shale’ sediment compositions, as defined in the compilation of
671 ref. ³⁰. The figure shows that K_2O concentrations in all clastic sediments broadly decrease from
672 peak values at ~2 Ga; U concentrations in shales appear to follow a similar trend, although
673 modern black shale concentrations span a large range of concentrations up to 20 ppm. Thorium
674 concentrations in clastic sediments increased from ~3 Ga to ~2 Ga after which the data are
675 highly dispersed. A consequence of these secular variations in radioelement concentrations is
676 that shales deposited between 2 and 2.5 Ga have elevated heat production relative to
677 Phanerozoic shale compositions (Figure S-7 - the median heat production for Phanerozoic

678 shales is $1.81 \mu\text{W}/\text{m}^3$ [$Q_1 = 1.47 \mu\text{W}/\text{m}^3$, $Q_3 = 2.8 \mu\text{W}/\text{m}^3$] compared to $2.76 \mu\text{W}/\text{m}^3$ for Archean
679 shale [$Q_1 = 1.85 \mu\text{W}/\text{m}^3$, $Q_3 = 3.75 \mu\text{W}/\text{m}^3$]).

680

681 Uranium enrichment in Neoarchean-Paleoproterozoic shales is broadly contemporaneous with
682 oxidation of the atmosphere^{87,88}. The onset of oxidative weathering is expected to have
683 solubilized U as mobile U(VI) complexes⁸⁹, increasing the continental U flux to marine basins⁹⁰.
684 Prior to ~ 2.5 Ga, U was likely immobilized as U(IV) in plagioclase in exposed granitoids and
685 detrital mineral phases, such as uraninite, pyrite and siderite, in shallow-marine sediments^{91,92}.
686

687

688 **Geology of Archean cratons**

689 Here, we provide salient details of the geological histories of several Archean cratons where our
690 proposed model provides a viable mechanism to explain Neoarchean intracrustal melting and
691 granitoid formation.

692

693 *The Slave Craton*: contains some of the most expansive Archean sedimentary sequences known
694 globally. The general geology has been summarized by many previous workers^{7,42,93-95}. The
695 Neoarchean record is defined by a thick package of tholeiitic submarine volcanic sequences (the
696 Kam group) that erupted onto basement gneisses and thin packages of cover group sandstones,
697 BIFs, and conglomerates. The mafic volcanic rocks generated an extrusive package of 1-6 km
698 thickness that was succeeded by a phase of calc-alkaline volcanism. The predominant
699 sedimentary rock sequences comprise two distinct packages of turbidites that were deposited
700 between 2.66-2.61 Ga⁹³. Limited geochemical analyses exist for these rocks, but in some areas
701 the packages consist of >5 km of interbedded sandstones, siltstones and black slates⁹⁶. Lower
702 crustal xenolith suites, overwhelmingly associated with the Lac de Gras kimberlite field, Eastern
703 Slave, are dominated by mafic granulites, but contain populations of metasedimentary
704 granulites^{34,42,97}. These granulite xenoliths record peak pressures of 0.8-1.2 GPa, indicating they
705 were sourced from Moho depths during the 55 Ma kimberlite volcanism that brought them to
706 the surface. Metasedimentary granulites have refractory compositions and indicate that they
707 undergone substantial melt loss; they have heat productivities of $\sim 0.29 \mu\text{W}/\text{m}^3$ ³⁴. Metamorphic
708 zircon growth occurred in Slave craton xenoliths in several intervals between 2.64 and 2.51
709 Ga⁴², overlapping with the timing of plutonism represented by the 2.62-2.58 Ga Granite Bloom
710 event in the Slave province. Thus, it is plausible that Neoarchean plutonism in the Slave
711 province was driven by heat production in response to the addition of sedimentary materials
712 into the lower crust during Neoarchean assembly of the craton.

713

714 *The Superior Craton*: is the largest, best-exposed and most intensely studied of the Archean
715 cratons. The craton has been subdivided into E-W trending provinces that are commonly fault-

716 bounded, defining a lateral structure that has been used to argue for accretionary orogenic
717 processes that sutured the Superior Province into its present configuration⁹⁸. A period of
718 (ultra)high-temperature metamorphism is recorded in the very large Pikwitonei Granulite
719 Terrane at 2.68 Ga⁹⁹ which contains m-to-km scale bands or rafts of metasedimentary
720 protoliths, though the bulk of the terrane is dominated by meta-igneous rocks. The adjacent
721 North Caribou Terrane contains a history of sedimentation dating back to ~3.0 Ga¹⁰⁰, though
722 classic wedge deposits are not typically found until 2.7 Ga. Across other parts of the craton,
723 sedimentation occurred between 2.72 and 2.68 Ga, while granitoid magmatism lags by 20-40
724 Ma. This typically coincides with metamorphism where preserved¹⁰¹.
725

726 *The Amazonian Craton*: is formed by two Archean nuclei (the Guiana and Guaporé shields),
727 separated by the Amazonian cratonic basin. Across the craton, TTG magmatism occurred
728 between ~3 and 2.89 Ga and was succeeded by emplacement of sanukitoids and anatetic
729 granites until ~2.84 Ga. In the Carajás Province, emplacement of these anatetic granites was
730 associated with crustal thickening and granulite-facies metamorphism¹⁰².
731

732 *The Pilbara Craton*: is the classic ‘granite-greenstone’ cratonic structure with domal granitic
733 provinces intruding into older basaltic supracrustal packages. The preservation of the Pilbara
734 craton is exceptional, with limited deformation and erosion as compared to other cratons –
735 thereby providing an excellent window into surficial evolution, but a poorer record of
736 metamorphism in the deep crust. The Paleo-Mesoarchean history of the Pilbara is dominated
737 by plume-vertical processes^{103,104} that constructed the East Pilbara Terrane. Up to 9-18 km of
738 stratigraphy was developed by a combination of igneous and sedimentary rocks. Significant
739 shale deposition does not occur until ~3.0 Ga¹⁰⁵, and no high-grade metamorphic sequences are
740 recorded in the Pilbara, apart from contact metamorphism surrounding late granite plutons¹⁰⁴
741

742 *The Karelian Craton*: spans ~400,000 km² of the Baltic Shield (northeastern Finland and
743 adjacent Russia) and is dominated by late Archean TTG gneisses, greenstone belts, diorite-to-
744 granite plutons and migmatitic metasediments. Emplacement of TTG granitoids occurred
745 between ~2.95 and ~2.75 Ga prior to a phase of sanukitoid magmatism, culminating in biotite,
746 and two-mica granite emplacement between 2.75 and ~2.63 Ma (see reviews by refs. 2 and ¹⁰⁶).
747 Deposition of wackes and shales that form the protoliths of amphibolite-grade paragneisses
748 occurred between 2.71 and 2.69 Ma, swiftly followed by regional amphibolite- and granulite-
749 facies metamorphism from 2.7 to 2.63 Ga^{107,108}.
750

751 *The Kaapvaal Craton*: comprises an older-joined crust and mantle root compared to the Slave
752 craton as evidenced by the geochronological investigations that constrain the last Archean
753 magmatic event to ~3.1 Ga¹⁰⁹, apparently due to intracrustal melting during amalgamation of

754 Mesoarchean continental blocks. After this time, the continental block, or tectosphere, was
755 stable and provided freeboard to erode and deposit large sedimentary basins such as the
756 Witwatersrand Basin at 2.7 Ga. A large, near-complete, cross section of Archean Kaapvaal crust
757 was exposed during the Vredefort impact event, 2.0 Ga¹¹⁰. Important to the proposed
758 hypothesis is the fact that a significant amount of the Mesoarchean lower crust exposed by the
759 Vredefort impact is metasedimentary. The exposed rocks include sapphirine-bearing
760 granulites, interlayered felsic gneiss, felsic charnockites, and paragneisses^{35,43}. Detailed
761 mapping and geochronology of this exposed lower crust provided evidence for large volumes
762 (~40%) of melting of pre-existing mafic and felsic lower crust in the craton ca. 3.1 Ga.
763 Geochronological investigations constrain the age of crust-mantle coupling to between 3.09
764 and 3.07 Ga. However, ref. ³⁵ argued that the degree of thermal reworking at 3.08 Ga was
765 inconsistent with the presence of a deep, cool mantle root at that time on the grounds that a
766 root would have served to impede heat transfer. Thus, the crust and mantle were likely
767 aggregated independently. Our proposed mechanism, where intracrustal melting is instead
768 driven by radiogenic heat delivery to the lower crust by underthrusting of sedimentary rocks,
769 provides a viable alternative to independent formation and aggregation of Archean crust and
770 mantle components. This model draws strong support from the Kaapvaal craton, where there is
771 clear evidence for large volumes of residual metasedimentary rocks being present in the lower
772 crust prior to emplacement of granite intrusions at 3.1 Ga^{35,43}. Indeed, ref. ⁴⁴ invoked a
773 comparable model to explain zircon Hf- and O-isotope trends from 3.1 Ga peraluminous granitic
774 rocks exposed in the Grunehogna Craton in East Antarctica – interpreted to be a part of the
775 Kaapvaal craton lithosphere in the Archean.
776

777 *The Dharwar Craton:* is the largest of the five cratonic shields that collectively form Peninsular
778 India and comprises a western shield (3.3-2.7 Ga) and a younger eastern shield (3.0-2.5 Ga). The
779 western shield is dominated by TTG gneisses that are overlain by greenstone belts; in contrast,
780 greenstone belts are rare in the eastern shield where late Archean (2.6-2.5 Ga) granitoids
781 intruded older TTG (2.9-2.7 Ga) gneisses (see refs. ^{111,112} and references therein). Amalgamation
782 of the eastern and western shields is constrained to 2.7 Ga. Supracrustal rocks of the Dharwar
783 Supergroup were deposited between 2.9 and 2.72 Ga based on ages of metavolcanic horizons.
784 Biotite and two-mica granites were emplaced between 2.54 and 2.51 Ga, contemporaneous
785 with regional amphibolite- to granulite-facies metamorphism at 2.51-2.52 Ga^{113,114}.
786

787 *The North China Craton:* spans ~1.7 million km² across northeastern China, Inner Mongolia and
788 North Korea, and is formed from a mosaic of microblocks that amalgamated prior to 2.5 Ga.
789 Predominant lithologies vary considerably between microblocks, but all rocks with ages >2.5 Ga
790 are affected by Neoarchean metamorphism and were intruded by 2.5-2.45 Ga granitic bodies.
791 Across the craton, TTG plutonism occurred between 2.75 and 2.55 Ga; sanukitoids were

792 emplaced in a short time period 2.55-2.52 Ga that overlapped with emplacement of biotite and
793 two-mica granites (2.55-2.44 Ga). Metapelitic granulites preserve evidence for the
794 incorporation of near-surface rocks into the lower crust along clockwise pressure-temperature
795 paths, culminating at peak conditions at 2.49 (Qingyuan terrane, eastern North China Craton;
796 e.g., ref. ¹¹⁵) and ~2.52 Ga (Yinshan block, western North China Craton; e.g., ref. ¹¹⁶).
797

798 **Predictions about volumes of peraluminous melts**

799 In the mechanism proposed here, intracrustal differentiation and craton stabilization is
800 facilitated by radiogenic heat produced in metasedimentary rocks. An obvious prediction is that
801 peraluminous – that is sedimentary – melts would be expected to dominate the Neoarchean
802 rock record. Compilations of Neoarchean granitoids show, however, that such peraluminous
803 granitoids are subordinate to I-type, metaluminous, melts across the majority of cratons (e.g.,
804 Bucholz and Spencer, 2019). There are several factors that reconcile this observation with
805 sediment-driven crustal differentiation:

806

- 807 i. Neoarchean detrital zircons tend toward elevated $\delta^{18}\text{O}$ values relative to those
808 preserved by the magmatic rock record (ref. ⁴⁹, their Fig. 1), consistent with the
809 erosional removal of differentiated and, in our model, high-heat production
810 peraluminous melts from the rock record;
- 811 ii. There are cratonic locales where substantial volumes of peraluminous granites are
812 locally preserved. Fig. S8 shows superimposed granite samples (colored symbols)
813 onto a geological map³¹ from the Slave craton. Red data points represent rocks
814 mapped as sediment-derived melts while the blue points are mapped as
815 metaluminous or potassic granites. Clearly, a substantial volume of peraluminous
816 granite is exposed in this large ($>1500 \text{ km}^2$) region, consistent with constraints from
817 seismic wavespeeds and metamorphic rock compositions (see main text).
- 818 iii. Our calculations show that the incorporation of radioactive sedimentary material
819 into the deep crust stimulates the production of melt from proximal—but non-
820 metasedimentary—lithologies. Figure S-9 shows the volumes of melt produced from
821 metasedimentary (yellow circles) and TTG sources (blue circles) for various burial
822 depths and metasedimentary layer-thicknesses. Indeed, certain configurations
823 predict a 1:1 ratio of metasedimentary and TTG melts (e.g., 10 km of 'Archean shale'
824 incorporated at 40 km depth). Due to decreasing dT/dz with depth, the deeper a
825 metasedimentary package is buried, the more potential there is for the stimulation
826 of melt from proximal TTG crust. This mechanism would account for the observed
827 dilution of pure S-type melts with I-type granitoids in Neoarchean cratons.
828 Furthermore, metasediment-derived melts generated in the deep crust will also be
829 susceptible to assimilation, the generation of mixed melts upon ascent and the
830 potential erasure of their hallmark peraluminous nature.

831

832

833 **Further results from thermal modeling**

834 Figures S-9 and S-10 show the quantities of sediment- (S-type) and crustal-derived (I-type)
835 granitoid melt produced for various combinations of crustal hydration state, sediment
836 composition, layer thickness and burial depth. Melt quantities are calculated by vertical
837 integration of the melting column (e.g. Fig. 3) and are expressed as circular markers with radii
838 scaled to the total km of melt produced after 50 Myr. Visual inspection of these results
839 elucidates that thickening of pure TTG or basaltic crust (corresponding to layer thicknesses of 0
840 km) produces minimal melt (<2 km for 'wet' melting, Fig. S-9; <1 km for 'dry' melting, Fig. S-10)
841 and such melting is restricted to depths > 30 km. Shales ('Shale' and 'Archean shale'
842 compositions) are the most fertile of the sediment compositions due to mica-rich phase
843 relations that result in characteristic steep dT/dX melting curves (Fig. S-5) at temperatures
844 proximal to the wet solidus. In contrast, burial of mafic sediment produces the smallest melt
845 fractions as a combined result of shallow dT/dX melting curves at <800 °C (Fig. S-4) and low
846 radiogenic heat production (Figs. 2 and S-2).

847

848 Figures S-9 and S-10 also show that burial of shales and siliciclastic sediments into the deep
849 crust stimulates the production of granitoid melts from adjacent TTG and basaltic rocks. For
850 example, crustal thickening of 30 km of dry TTG ('high-Si' composition) results in 0.4 km of I-
851 type granitoid melt in comparison to 1.5 km when 15 km of Archean shale (3.4 $\mu\text{W}/\text{m}^3$) is
852 buried to 30 km. Stimulation of such melt occurs predominantly in response to downward
853 conduction of radiogenic heat produced in the sediment layer—an effect that could plausibly
854 lead to melt production in the lithospheric mantle beneath orogens. Note that this effect does
855 not occur with the burial of mafic sediments within TTG crust (Fig. S-9, left column, third row),
856 due to the limited difference in heat production of mafic sediments compared to TTGs (1.65
857 $\mu\text{W}/\text{m}^3$ vs 1.7 $\mu\text{W}/\text{m}^3$, respectively) and due to the structure of the melting curve for TTG at
858 depth.

859

860

861 **Data and Code Availability statements**

862 Computer codes replicating the results here can be obtained from the authors upon request.

863

864

865 **References only cited in the online Methods section**

866 60. Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks
867 the onset of plate tectonics. *Science* **351**, 372–375 (2016).

868 61. Hasterok, D., Gard, M. & Webb, J. On the radiogenic heat production of metamorphic,
869 igneous, and sedimentary rocks. *Geoscience Frontiers* **9**, 1777–1794 (2018).

870 62. Rudnick, R., Gao, S., & others. Composition of the continental crust. in *Treatise on*
871 *Geochemistry* 1–64 (2003).

872 63. Capitani, C. de & Petrakakis, K. The computation of equilibrium assemblage diagrams with
873 Theriak/Domino software. *American Mineralogist* **95**, 1006–1016 (2010).

874 64. Holland, T. J. B. & Powell, R. An improved and extended internally consistent
875 thermodynamic dataset for phases of petrological interest, involving a new equation of
876 state for solids. *Journal of Metamorphic Geology* **29**, 333–383 (2011).

877 65. Condie, K. C. Archean Greenstone Belts, Volume 3 - 1st Edition.
878 <https://shop.elsevier.com/books/archean-greenstone-belts/condie/978-0-444-41854-8>
879 (1981).

880 66. Dungan, M. *et al.* 3. THE PETROLOGY AND GEOCHEMISTRY OF BASALTS FROM SITE 396,
881 LEGS 45 AND 46 OF THE DEEP SEA DRILLING PROJECT. **46**, (1979).

882 67. Mahar, E. M., Baker, J. M., Powell, R., Holland, T. J. B. & Howell, N. The effect of Mn on
883 mineral stability in metapelites. *Journal of Metamorphic Geology* **15**, 223–238 (1997).

884 68. White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E. & Green, E. C. R. New mineral
885 activity–composition relations for thermodynamic calculations in metapelitic systems.
886 *Journal of Metamorphic Geology* **32**, 261–286 (2014).

887 69. White, R. W., Powell, R. & Holland, T. J. B. Calculation of partial melting equilibria in the
888 system Na₂O–CaO–K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O (NCKFMASH). *Journal of*
889 *Metamorphic Geology* **19**, 139–153 (2001).

890 70. Holland, T. & Powell, R. Activity–composition relations for phases in petrological
891 calculations: an asymmetric multicomponent formulation. *Contrib Mineral Petrol* **145**, 492–
892 501 (2003).

893 71. Smye, A. J., Greenwood, L. V. & Holland, T. J. B. Garnet–chloritoid–kyanite assemblages:
894 eclogite facies indicators of subduction constraints in orogenic belts. *Journal of*
895 *Metamorphic Geology* **28**, 753–768 (2010).

896 72. White, Powell, Holland, & Worley. The effect of TiO₂ and Fe₂O₃ on metapelitic
897 assemblages at greenschist and amphibolite facies conditions: mineral equilibria
898 calculations in the system K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O–TiO₂–Fe₂O₃. *Journal of*
899 *Metamorphic Geology* **18**, 497–511 (2000).

900 73. Green, E. C. R. *et al.* Activity–composition relations for the calculation of partial melting
901 equilibria in metabasic rocks. *Journal of Metamorphic Geology* **34**, 845–869 (2016).

902 74. White, R. W., Powell, R. & Clarke, G. L. The interpretation of reaction textures in Fe-rich
903 metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral
904 equilibria calculations in the system K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O–TiO₂–Fe₂O₃.
905 *Journal of Metamorphic Geology* **20**, 41–55 (2002).

906 75. Palin, R. M., White, R. W. & Green, E. C. R. Partial melting of metabasic rocks and the
907 generation of tonalitic–trondhjemite–granodioritic (TTG) crust in the Archaean: Constraints
908 from phase equilibrium modelling. *Precambrian Research* **287**, 73–90 (2016).

909 76. Bickle, M. J., Hawkesworth, C. J., England, P. C. & Athey, D. R. A preliminary thermal model
910 for regional metamorphism in the Eastern Alps. *Earth and Planetary Science Letters* **26**, 13–
911 28 (1975).

912 77. Copley, A. & Weller, O. The controls on the thermal evolution of continental mountain
913 ranges. *Journal of Metamorphic Geology* **40**, 1235–1270 (2022).

914 78. Oxburgh, E. R. Thermal gradients and regional metamorphism in overthrust terrains with
915 special reference to the eastern Alps. *Schweiz. Mineral. Petrogr. Mitt.* **54**, 641–662 (1974).

916 79. Smye, A. J., Bickle, M. J., Holland, T. J. B., Parrish, R. R. & Condon, D. J. Rapid formation and
917 exhumation of the youngest Alpine eclogites: A thermal conundrum to Barrovian
918 metamorphism. *Earth and Planetary Science Letters* **306**, 193–204 (2011).

919 80. Clark, C., Fitzsimons, I. C. W., HEALY, D. & Harley, S. L. How Does the Continental Crust Get
920 Really Hot? *Elements* **7**, 235–240 (2011).

921 81. Whittington, A. G., Hofmeister, A. M. & Nabelek, P. I. Temperature-dependent thermal
922 diffusivity of the Earth's crust and implications for magmatism. *Nature* **458**, 319–321
923 (2009).

924 82. McKenzie, D., Jackson, J. & Priestley, K. Thermal structure of oceanic and continental
925 lithosphere. *Earth and Planetary Science Letters* **233**, 337–349 (2005).

926 83. McIntyre, T., Kublik, K., Currie, C. & Pearson, D. G. Heat Generation in Cratonic Mantle
927 Roots—New Trace Element Constraints From Mantle Xenoliths and Implications for
928 Cratonic Geotherms. *Geochemistry, Geophysics, Geosystems* **22**, e2021GC009691 (2021).

929 84. Hoare, B. C., Tomlinson, E. L. & Kamber, B. S. Evidence for a very thick Kaapvaal craton root:
930 Implications for equilibrium fossil geotherms in the early continental lithosphere. *Earth and*
931 *Planetary Science Letters* **597**, 117796 (2022).

932 85. Craig, T. J., Copley, A. & Jackson, J. Thermal and tectonic consequences of India
933 underthrusting Tibet. *Earth and Planetary Science Letters* **353–354**, 231–239 (2012).

934 86. Lamb, S., Hoke, L., Kennan, L. & Dewey, J. Cenozoic evolution of the Central Andes in Bolivia
935 and northern Chile. *Geological Society, London, Special Publications* **121**, 237–264 (1997).

936 87. Bekker, A. *et al.* Dating the rise of atmospheric oxygen. *Nature* **427**, 117–120 (2004).

937 88. Luo, G. *et al.* Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. *Science*
938 *Advances* **2**, e1600134 (2016).

939 89. Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to
940 sedimentary ore deposits. *Geochimica et Cosmochimica Acta* **42**, 547–569 (1978).

941 90. Partin, C. A. *et al.* Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen
942 levels from the record of U in shales. *Earth and Planetary Science Letters* **369–370**, 284–293
943 (2013).

944 91. Rasmussen, B. & Buick, R. Redox state of the Archean atmosphere: Evidence from detrital
945 heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. *Geology*
946 **27**, 115–118 (1999).

947 92. Roscoe, S. M. Placer Uranium, Gold. in *Geology of Canadian Mineral Deposit Types* (eds.
948 Eckstrand, O. R., Sinclair, W. D. & Thorpe, R. I.) vol. 8 0 (Geological Society of America,
949 1995).

950 93. Ootes, L., Davis, W. J., Bleeker, W. & Jackson, V. A. Two Distinct Ages of Neoarchean
951 Turbidites in the Western Slave Craton: Further Evidence and Implications for a Possible
952 Back-Arc Model. *The Journal of Geology* **117**, 15 36 (2009).

953 94. Davis, W. J. & Bleeker, W. Timing of plutonism, deformation, and metamorphism in the
954 Yellowknife Domain, Slave Province, Canada. *Canadian Journal of Earth Sciences* **36**, 1169
955 1187 (1999).

956 95. Heaman, L. M. & Pearson, D. G. Nature and evolution of the Slave Province subcontinental
957 lithospheric mantle. *Canadian Journal of Earth Sciences* **47**, 369–388 (2010).

958 96. Ferguson, M. E., Waldron, J. W. & Bleeker, W. The Archean deep-marine environment:
959 turbidite architecture of the Burwash Formation, Slave Province, Northwest Territories.
960 *Can. J. Earth Sci.* **42**, 935–954 (2005).

961 97. Davis, W. J. U-Pb zircon and rutile ages from granulite xenoliths in the Slave province:
962 Evidence for mafic magmatism in the lower crust coincident with Proterozoic dike swarms.
963 *Geology* **25**, 343–346 (1997).

964 98. Card, K. D. A review of the Superior Province of the Canadian Shield, a product of Archean
965 accretion. *Precambrian Research* **48**, 99–156 (1990).

966 99. Guevara, V. E. *et al.* Polyphase Zircon Growth during Slow Cooling from Ultrahigh
967 Temperature: an Example from the Archean Pikwitonei Granulite Domain. *Journal of*
968 *Petrology* **61**, egaa021 (2020).

969 100. Donaldson, J. A. & de Kemp, E. A. Archean quartz arenites in the Canadian Shield:
970 examples from the Superior and Churchill Provinces. *Sedimentary Geology* **120**, 153–176
971 (1998).

972 101. Percival, J. *et al.* *Geology and Tectonic Evolution of the Superior Province, Canada; in*
973 *Tectonic Styles in Canada: The Lithoprobe Perspective*. (2012).

974 102. Marangoanha, B., Oliveira, D. C. de & Dall'Agnol, R. The Archean granulite-enderbite
975 complex of the northern Carajás province, Amazonian craton (Brazil): Origin and
976 implications for crustal growth and cratonization. *Lithos* **350–351**, 105275 (2019).

977 103. Van Kranendonk, M. J., Smithies, R. H., Hickman, A. H. & Champion, D. C. Chapter 4.1

978 Paleoarchean Development of a Continental Nucleus: the East Pilbara Terrane of the Pilbara

979 Craton, Western Australia. in *Earth's Oldest Rocks* vol. Volume 15 307–337 (Elsevier, 2007).

980 104. Van Kranendonk, M. J., Hugh Smithies, R., Hickman, A. H. & Champion, D. c. Review:

981 secular tectonic evolution of Archean continental crust: interplay between horizontal and

982 vertical processes in the formation of the Pilbara Craton, Australia. *Terra Nova* **19**, 1–38

983 (2007).

984 105. Arndt, N. T., Nelson, D. R., Compston, W., Trendall, A. F. & Thorne, A. M. The age of the

985 Fortescue Group, Hamersley Basin, Western Australia, from ion microprobe zircon U-Pb

986 results. *Australian Journal of Earth Sciences* **38**, 261–281 (1991).

987 106. Sorjonen-Ward, P. & Luukkonen, E. J. Chapter 2 Archean rocks. in *Developments in*

988 *Precambrian Geology* (eds. Lehtinen, M., Nurmi, P. A. & Rämö, O. T.) vol. 14 19–99 (Elsevier,

989 2005).

990 107. Kontinen, A. *et al.* Nurmes paragneisses in eastern Finland, Karelian craton: Provenance,

991 tectonic setting and implications for Neoarchaean craton correlation. *Precambrian Research*

992 **152**, 119–148 (2007).

993 108. Mänttäri, I. & Hölttä, P. U–Pb dating of zircons and monazites from Archean granulites

994 in Varpaisjärvi, Central Finland:: Evidence for multiple metamorphism and Neoarchean

995 terrane accretion. *Precambrian Research* **118**, 101–131 (2002).

996 109. Wit, M. J. de *et al.* Formation of an Archean continent. *Nature* **357**, 553 562 (1992).

997 110. Tredoux, M., Hart, R. J., Carlson, R. W. & Shirey, S. B. Ultramafic rocks at the center of
998 the Vredefort structure: Further evidence for the crust on edge model. *Geology* **27**, 923–
999 926 (1999).

1000 111. Chadwick, B., Vasudev, V. N. & Hegde, G. V. The Dharwar craton, southern India,
1001 interpreted as the result of Late Archaean oblique convergence. *Precambrian Research* **99**,
1002 91–111 (2000).

1003 112. Moyen, J.-F., Martin, H., Jayananda, M., Jayananda, M. & Auvray, B. Late Archaean
1004 granites: a typology based on the Dharwar Craton (India). *Precambrian Research* **127**, 103
1005 123 (2003).

1006 113. Mahabaleswar, B., Jayananda, M., Swamy, N. S. & Peucat, J. J. Archaean high-grade
1007 gneiss complex from Satnur-Halagur-Sivasamudram areas, Karnataka, southern India:
1008 petrogenesis and crustal evolution. *Journal of the Geological Society of India* **45**, (1995).

1009 114. Peucat, J. J., Mahabaleswar, B. & Jayananda, M. Age of younger tonalitic magmatism
1010 and granulitic metamorphism in the South Indian transition zone (Krishnagiri area);
1011 comparison with older Peninsular gneisses from the Gorur–Hassan area. *Journal of
1012 Metamorphic Geology* **11**, 879–888 (1993).

1013 115. Liu, G. *et al.* Clockwise P–T–t paths of late Neoarchean high-pressure pelitic granulites
1014 from the Qingyuan terrane, eastern North China Craton. *Precambrian Research* **381**, 106874
1015 (2022).

1016 116. Wang, D. & Guo, J. Late Archean high-pressure pelitic granulites in the Yinshan Block,
1017 North China Craton. *Precambrian Research* **303**, 251–267 (2017).

1018
1019

1020 **Acknowledgements**

1021 The authors thank T. Chacko, P. England, B. Foley and D. G. Pearson for valuable scientific
1022 discussions that helped refine the central tenet of the paper. In particular, T. Chacko is thanked
1023 for providing an informal review of an earlier draft of the manuscript. We are grateful to C.
1024 Bucholz and an anonymous referee for detailed and constructive comments that improved the
1025 manuscript. AJS acknowledges support from NSF awards 1927631 and 2025122. JRR
1026 Acknowledges support from NSF awards 2118161 and 2145334.

1027

1028 **Author contribution statements**

1029 J.R.R. and A.J.S. conceived the project. J.R.R. curated geological and compositional datasets;
1030 A.J.S. conducted thermal and petrological calculations. Both authors contributed equally to the
1031 formal analysis and writing, reviewing and editing of the final draft of the paper.

1032

1033 **Corresponding author**

1034 Correspondence to Jesse Reimink (jreimink@psu.edu).

1035

1036 **Ethics declarations**

1037 Competing interests

1038 The authors declare no competing financial interests.

1039

1040 **Extended data figures and tables**

1041 Figure S-1: Principal components analysis (PCA) of Archean crustal rocks. Panel **a** shows
1042 principal component loads for Archean igneous and metamorphic rocks (referred to as 'crustal
1043 rocks' throughout). The first principal component (X_1) dominates the compositional variance
1044 (73%) and separates silica-rich from mafic compositions; the second principal component
1045 accounts for a subordinate proportion of the total variance (20%) and separates compositions
1046 enriched in CaO, Al₂O₃ and FeO_T from those enriched in SiO₂ and MgO. Panel **b** shows principal
1047 component scores for the compiled dataset of 6691 whole-rock analyses shaded according to
1048 radiogenic heat production at 2.8 Ga. Square markers correspond to exemplar 'high-Si' and
1049 'low-Si' compositions defined in panel **C** that, in turn, shows heat production calculated at 2.8
1050 Ga plotted against bulk-rock SiO₂ wt.%.

1051

1052 Figure S-2: Principal components analysis of Archean sedimentary compositions. Panel **a** shows
1053 principal component loads calculated from non-normalized bulk-rock compositions. The first
1054 principal component (X_1) accounts for 63% of the compositional variance and separates silica-
1055 rich sediments from other compositions; the second principal component (X_2) accounts for 24%
1056 of the variance and separates aluminous sediments from more ferruginous compositions. Panel
1057 **b** shows PCA scores for 269 Archean sedimentary compositions shaded according to heat
1058 production calculated at 2.8 Ga. End-member compositions are shown by the red (siliciclastic),

1059 green (shale) and yellow (mafic sediment) square markers; the blue marker corresponds to our
1060 exemplar 'Archean shale' sediment composition used in the phase equilibria calculations.

1061
1062 Figure S-3: Variation of melt fraction (X) with temperature. Curves show calculated melt
1063 fractions plotted against temperature at 10 kbar for all compositions considered. See text for
1064 discussion.

1065
1066 Figure S-4: Effect of bulk-rock water concentration on solidus temperature for 'low-Si' and
1067 'high-Si' compositions. Panel **a** shows T-X pseudosection calculated for 'low-Si' bulk
1068 composition; abscissa is bulk-rock molar % H₂O. Red line represents the solidus and blue line
1069 represents the phase stability limit of free H₂O. Thin lines correspond to mineral stability fields;
1070 labels omitted for clarity. Vertical dashed lines correspond to molar H₂O concentrations used
1071 for 'dry' and 'wet' melting scenarios. Panel **b** is as for A except for the 'high-Si' composition;
1072 both panels calculated at 10 kbar.

1073

1074 Figure S-5: Physical sketch of thermal model. Prior to thickening the crust and mantle are in
1075 thermal equilibrium (**a**). Subsequent crustal thickening occurs along a crustal-scale thrust fault
1076 (**b**) and is approximated by instantaneous emplacement of a thrust sheet onto a continental
1077 section (**c**). The thermal structure then evolves via conductive relaxation of isotherms and
1078 radiogenic heating (**d**). Note that burial of HPE-enriched sediments (yellow layer) by this
1079 mechanism results in a different equilibrium thermal structure to that prior to deformation.

1080

1081 Figure S-6: Secular variations in concentrations of radioelements, K, Th and U, in shales and
1082 non-shale sediments. Lowermost panels show volumetric heat production calculated at the age
1083 of sediment deposition. Data are from the global compilation of ref. ³⁰.

1084

1085

1086 Figure S-7: Probability density plots of radiogenic heat production for Archean and Phanerozoic
1087 sediments. Shales are plotted as solid lines, whereas 'non-shale' clastic sediments are plotted as
1088 dashed lines. Data are from the global compilation of ref. ³⁰.

1089

1090

1091 Figure S-8: Map of a granitoid province in the NE Slave craton, after ref. ¹⁶. Data points are
1092 granitoid samples colored according to their composition and source characteristics.

1093

1094 Figure S-9: Quantities of melt produced from hydrous melting of crustal and sedimentary
1095 lithologies. The columns show the background composition of the crustal column, while the
1096 rows indicate the composition of sedimentary layers imposed on the thermal models. For each
1097 individual plot, the x-axis indicates the depth of burial for a given thickness of sedimentary
1098 layer, shown on the y-axis. Melt volumes for each composition are shown by blue and yellow
1099 circles.

1100
1101 Figure S-10: Quantities of melt produced from dry melting of crustal and sedimentary
1102 lithologies. Structure of the plots are identical to Figure S-9 except they are conducted for dry
1103 melting scenarios.

1104
1105
1106 Table S-1: Bulk-rock compositions used for phase equilibria calculations (weight %
1107 oxides). Definition of superscript symbols: $^{\Psi}$ Fe₂O₃ set to 0.1 mol.%; * XFe³⁺ set to 0.2, where
1108 XFe³⁺ = $(2(\text{Fe}_2\text{O}_3)) / (\text{FeO} + 2(\text{Fe}_2\text{O}_3))$; $^{\phi}$ H₂O concentration required for minimal saturation at the
1109 solidus, P = 10 kbar. 'Archean shale' composition derived from shales with depositional ages
1110 >2.5 Ga, whereas 'Shale' composition include rocks of all ages.