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Abstract The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations
have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions
or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go
beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and
computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional post-
processing and visualization tools for analyzing such massive simulation ensembles. In situ visualization
approaches alleviate I/O constraints by saving predetermined visualizations in image databases during
simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration
of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it
comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose
an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature
extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-
based ensembles. Our approach utilizes local features and deep learning techniques to learn the image
features of ensemble members. The extracted features are then combined with simulation input parameters
and fed to the visualization pipeline for in-depth exploration and analysis using human expert ? AI
interaction techniques. We show the effectiveness of our approach using several scientific simulation
ensembles.

Keywords Human–computer interaction (HCI) � Visual analytics � Simulation ensembles �
In situ visualization � Human–AI interaction � Neural networks

1 Introduction

Simulations are used across numerous computational science domains, such as atmospheric science,
computational fluid dynamics, astrophysics, and particle physics, to study challenging and complex phe-
nomena. However, running a few long simulations do not precisely capture all features of the studied
phenomena or manage uncertainty in the model, thus limiting scientists’ exploration space. To avoid making
erroneous decisions, a simulation ensemble is carried out using different configurations (i.e., parameter
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settings, computational models, or boundary/initial conditions) to sample representative states occurring in
the studied phenomena (Kovalchuk and Boukhanovsky 2015). Hence, the primary goals of using simulation
ensembles are deepening the understanding of the simulated model, exploring parameter sensitivity, and
examining patterns, relationships, and trends between and among ensemble members (Mahajan et al. 2017;
Höllt et al. 2014).

The continuous increase in computing capacity has a significant driving force in addressing these
complex problems, generating larger datasets, and developing more high-resolution models and simulations
at exascale. This is happening in many fields, such as medical modeling, climate modeling, or fluid
dynamics. These exascale simulation ensembles are modeled using high-dimensional parameters and pro-
duce massive datasets. The increasing dimensionality and complexity of ensembles usually lead to I/O and
storage constraints in terms of storage capacity and transfer rates, therefore, imposing limits on the avail-
ability of full simulation raw data for post hoc analysis and exploration. In situ approaches have been
developed to minimize the amount of data transferred over networks and written to disk by coupling
computation and visualization tasks. In this case, visual portrayals (i.e., images) are created while the
simulation results are in memory (Bauer et al. 2016).

Despite the effectiveness of in situ approaches in handling I/O and memory constraints, they still present
some restrictions on the visual analysis and exploration of simulations. To address this, the Cinema
framework (Ahrens et al. 2014) has been proposed to assist with the exploration of in situ visualization
results. Cinema is a novel in situ approach for capturing, storing, and analyzing exascale simulation data. It
saves data abstracted from various camera angles, such as images and data parameters, allowing instant
access to numerous data views. While Cinema does offer support for data browsing, management, and
exploration, its current exploration capabilities are primarily focused on view parameters, such as camera
viewing angles and visual parameter maps. As a result, there is a need to expand Cinema’s capabilities with
new interactive exploration approaches that utilize human expertise during the exploration and analysis of
simulation ensembles.

Exploring simulation ensemble parameter and ensemble spaces simultaneously is a challenging task due
to the high complexity of relationships and associations between simulation outputs and input parameters.
Many visual analysis techniques have been developed to understand and explore parameter sensitivity,
optimization, uncertainty, or/and the differences and similarities between different ensemble members
(Wang et al. 2018). However, the majority of these approaches rely on either aggregated solutions (i.e.,
descriptive statistics) (Mirzargar et al. 2014) or a sample of ensemble members to reveal the correspondence
and associations between simulation inputs and outputs of spatial or spatiotemporal ensembles. These
techniques assume full access to raw output data, which may not be possible for exascale image-based
ensembles.

This paper proposes a visual approach to support the exploration of high-dimensional image-based
parameter and ensemble spaces. Our approach is built on significantly expanding a current visualization
tool, GLEE (Dahshan et al. 2020), by integrating the Cinema framework to produce Cinema-GLEE (C-
GLEE). C-GLEE is different from GLEE in that it uses image databases and input parameters instead of
summary statistics derived from numerical raw simulation data to analyze and explore ensembles. This calls
for: 1) additional procedures to extract meaningful information from image databases, 2) merging them with
simulation input parameters, and 3) a reformulation of GLEE’s visualization and statistics pipeline to ensure
coherence between user interactions and model specification. C-GLEE provides scientists with an intuitive,
user-friendly tool for interactively browsing, analyzing, and exploring image-based simulation ensembles.
In turn, scientists can recognize and understand visually complex insights patterns and structures in image-
based ensembles, such as image correlations and parameter sensitivity together. In summary, the contri-
butions of this paper are the following:

• rephrasing GLEE’s statistics, visualization, and interaction pipelines to execute C-GLEE for the
integration of exascale workflows.

• demonstrating that local feature extraction techniques along with deep learning (DL) models can be
applied to analyze and explore image-based ensembles, while preserving sufficient information for
scientists to derive meaningful scientific insights.

• applying C-GLEE to Geoscience data from in situ simulations (Cinema outputs) and supporting expert’s
insights into their ensemble exploration.
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2 Related work

This section reviews prior research work in ensemble visualization, image-based in situ visualization, and
image feature extraction.

2.1 Ensemble visualization

Ensemble visualization techniques have been introduced in a wide range of scientific domains. These
techniques visualized either ensemble members, their parameters, or both simultaneously. Ensemble visu-
alizations have been represented either as a comparative visualization of a handful of ensemble members or
as an aggregation of several ensemble members (Wang et al. 2018). Most of these visualizations have
focused on analyzing the variability between ensemble members using techniques such as pseudo-coloring
(Hummel et al. 2013) and gylphs (Bensema et al. 2015). More complex techniques have been developed to
demonstrate variations in the ensemble using isosurfaces (Ma and Entezari 2018), summary statistics
(Mirzargar et al. 2014; de Souza et al. 2022), density estimation (Leistikow et al. 2020), feature bagging
(Xu et al. 2018), and clustering (Kumpf et al. 2018).

Parameter space visualizations enable scientists to study the correlation between parameters, parameter
sensitivity, and optimization using different methodologies, including summary statistics (Ribés et al.
2019), parallel coordinate plots (Kumpf et al. 2021), glyphs (Sanyal et al. 2010), and probabilistic features
(Petz et al. 2012). Increasing in complexity, various high-dimensional parameter space visualization tech-
niques have been developed spanning several tasks including but not limited to, comparison (Sedlmair et al.
2014), parameter sensitivity (Orban et al. 2018), optimization (Torsney-Weir et al. 2011), and prediction
(He et al. 2019). On the other hand, several multi-view visualization exploring ensemble and parameter
spaces simultaneously have been introduced (Luciani et al. 2018).

The ensemble visualization and visual analysis techniques mentioned earlier targeted domain-specific
problems with a limited number of simulation parameters (i.e., inputs and outputs). In addition, these
techniques did not incorporate human intuition or expertise as a key component of the visual analytics
process, which restricted the ability to explore the data thoroughly. As the scientific community transitions
to exascale simulations, more in situ visualization would be produced to overcome memory and I/O
constraints. This necessitates the need for visual exploration tools to analyze and explore image-based
ensembles. A recently developed visualization tool, PEViz (Zhang et al. 2022), proposed an in situ pro-
gressive method with a visual analytics system to explore ocean ensemble data. However, the proposed tool
exploration capabilities did not account for parameter sensitivity nor explore correlations and relationships
among ensemble members.

2.2 Image-based in situ visualization

In situ approaches have been developed to overcome storage and I/O limitations. Early implementations of
in situ approaches focused on steering the simulation by coupling the visualization routine with the sim-
ulation routine. Advanced techniques have been adopted to address time-varying datasets (Fernandes et al.
2014), data compression (Di and Cappello 2016), depth map (Ye et al. 2015), pixel color (Tikhonova et al.
2010), light field (Meyer et al. 2005), and pixel rays (Shareef et al. 2006) for volume rendering. On the other
hand, several approaches, such as Cinema, have been developed to explore in situ visualization. More
advanced features have been added to Cinema, including but not limited to feature-centric queries (Orban
et al. 2020), geometry buffers (Lukasczyk et al. 2020), zooming (Maack et al. 2020). However, these
image-based approaches do not support a full semantic exploration of ensemble parameter space.

2.3 Feature extraction techniques

Feature extraction (FE) techniques are used to identify and extract relevant and meaningful features from
complex high-dimensional data. These techniques reduce the dimensionality of the data while preserving the
essential information contained within. The reduction of dimensions could be linear (e.g., random projection
(RP) and principal component analysis (PCA)) or nonlinear (i.e., kernel PCA and autoencoders) (Kunang
et al. 2018). FE techniques seek to identify the most descriptive and informative feature sets, which can be
global or local feature extraction techniques. Global features’ represent features extracted from the overall
image (such as shape, color, or texture) (Ping Tian 2013).
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Local feature extraction techniques acquire the image’s low-level feature information (e.g., edges,
changes in intensity, and gradients) to identify its distinctive representation. Local feature extraction
techniques consist of two steps: feature detection and feature description. Feature detection extracts key
points by identifying the salient areas in an image. Feature description creates a vector representing the
neighborhood of the detected key point (Tuytelaars and Mikolajczyk 2008). Several approaches combining
local and global features have been proposed to take advantage of both techniques. Risojević and Babić
(2012) combined SIFT descriptors and Gabor filters to extract the image’s local and texture features.

Recently, several DL architectures have been developed to learn representative features directly from the
raw pixels of an image. He et al. (2018) extract spectral and spatial features from the image via 2D
convolutional neural network. Chen et al. (2020) used a deep neural network to determine bone age by
extracting features from the X-ray images. Moreover, there have been several attempts to combine global
and local feature extraction with deep learning models. Gao et al. (2015) proposed DEFEATnet, a deep
learning network that integrates SIFT feature extraction technique into the deep learning architecture.
However, these feature extraction techniques give limited attention to scientific data, particularly in the
context of simulation ensembles, where the characteristics of the simulation model vary from one simulation
to another.

Our proposed approach focused on the post hoc exploration of in situ generated image databases by
integrating in situ visualization with human expert–AI interaction techniques to empower the visual analysis
process of image databases. The proposed approach allows scientists to explore parameter and ensemble
spaces simultaneously.

3 Approach

To facilitate the exploration and analysis of high-dimensional image-based ensembles, we propose a human
expert–AI partnership approach that is manifested in a visual analytics system. Cinema-GLEE (C-GLEE) is
an interactive multi-view visual analytics system that helps scientists analyze, search, filter, and explore
high-dimensional simulation ensembles by blending human expertise and intuition with statistics and
machine learning. C-GLEE incorporates human expert–AI interaction into its visual analysis process to
allow scientists to interactively explore correlations and similarities between ensemble members, exploring
the influence of input parameters on simulation output. In this section, we explain the system design and
provide an overview of C-GLEE, detailing its various functionalities and interactions that assist in exploring
the ensemble.

3.1 System design

The transition from full numerical outputs of ensembles to in situ-generated ensembles necessitates
extracting information or ‘‘features’’ from images to serve as the base for the interactive visualization
pipeline. Several techniques have been developed to extract features from images, including but not limited
to: global feature extraction, local feature extraction, and deep learning techniques. Global feature extraction
techniques extract global properties, such as texture values, histogram, entropy, contrast, etc., from the
entire image. This makes them less sensitive to noise but more prone to cluttering and occlusion. Con-
versely, local feature extraction techniques recognize patterns or objects, such as shapes, edges, lines, etc.,
from different regions of an image despite the clutter and occlusion. However, local features are hindered by
the high dimensionality of the produced feature descriptors, which describe the image’s distinctive char-
acteristics (Zhen et al. 2017). The high dimensionality of the feature descriptors may result in high com-
putational costs, noise, and redundant information, which could affect the accuracy of the visual analysis
process.

Deep learning models have recently proven their effectiveness in producing extremely promising results
in terms of image feature extraction. A key aspect of deep learning is its ability to learn and extract
discriminative features from an image automatically. A deep learning model transforms low-level features
of an image into high-level abstract features using an artificial neural network (Sun et al. 2018). However,
adopting deep learning models to extract features from an image-based ensemble is highly challenging.
Scientific data is a scarce resource, and each simulation model has its own characteristics. Therefore,
obtaining sufficient labeled data for a supervised model would be hard. Even with an unsupervised model,
there would not be enough training data, and the problem domain is narrow to have pre-trained models. This
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could easily result in a low-accuracy model. Consequently, relying on a single feature extraction technique
for extracting representative features from an image-based ensemble may not be sufficient for visual
analysis, and exploration as the extracted features may have noise or unessential features.

This paper proposes a multi-level approach for feature extraction. First, a local feature extraction
technique is used to extract feature descriptors for each image in the database. Then, a deep learning model
is applied to extract key features from feature descriptors while discarding unnecessary ones. The reduced
feature descriptors and simulation input parameters are then used in C-GLEE’s visualization pipeline.

3.2 System overview

Figure 1 provides the workflow of our approach, which consists of three primary components. First, given a
high-dimensional simulation ensemble with different simulation input parameters, we employ in situ pro-
cessing to visualize the output. This involves utilizing various visual mapping and view parameters to
generate an image database. Thus, our approach begins with an ensemble E =f1; :::;Ng of N members. Each
ensemble member ei ði 2 f1; :::;NgÞ consists of a set of input parameters (i.e., scalar fields) and an image
database encoding simulation output from K different camera positions; ei ¼ finputs; I1; :::; IKg: We first
apply scale-invariant feature transform (SIFT), a local feature extraction technique, to the image database
members Il ðl 2 f1; :::;KgÞ for extracting significant features that preserve the intrinsic content of the
images. Then, an autoencoder extracts important features from feature descriptors while eliminating
superfluous features. Second, the reduced visual features and simulation input parameters are sent into
similarity model, which, in turn, learns, manipulates, and projects the data into a 2D workspace space. Third,
we build an interactive multi-view visual interface to simultaneously analyze and explore parameter and
ensemble spaces.

C-GLEE’s multi-view visual interface (Fig. 2) and interaction techniques facilitate the analysis and
exploration of image-based simulation ensembles. Ensemble members are visualized in C-GLEE’s
ensemble view (Fig. 2a), which projects ensemble members in two-dimensional space via a projection
technique (e.g., MDS, PCA, tSNE, etc.), using ensemble attributes (i.e., the simulation input parameters and
reduced feature descriptors) and weights associated with them. The spatial arrangement of ensemble
members in the ensemble view relies on both the attribute values and associated weights. C-GLEE positions
ensemble members in low-dimensional space based on their similarity in high-dimensional space. Members
with similar attributes are projected close to each other, while dissimilar ones are situated farther apart.
Consequently, the initial projection of ensemble members or any projection resulting from an interaction
may produce different layouts; the key aspect is that all these layouts maintain consistent distances between
ensemble members in the low-dimensional space. Scientists can directly manipulate ensemble members
through an observation-level interaction (OLI) technique, an interactive interaction technique designed
based on the principles of semantic interaction. This interactive technique enables scientists to explore
correlations and associations between and within the ensemble members using their intuition and expertise.

On the other hand, the input parameters are displayed as weights on a horizontal slider in the parameter
view (Fig. 2b). The slider value represents the importance of that parameter within the similarity model.
Scientists can explore parameter sensitivity by manipulating the value on the slider (i.e., increasing or
decreasing) performing a parametric level interaction (PLI). PLI is used to understand and determine the
sensitivity and influence of parameters on all ensemble members. Scientists might increase the weight of one
or more attributes to learn which ensemble members are similar and different when focusing on these
attributes. As additional attributes are up-weighted, scientists develop an understanding of how the attributes
influence the data. Scientists can also use the Cinema slider (Fig. 2c) to navigate the image database,
viewing the ensemble members from different phi–theta camera positions. A phi–theta camera is charac-
terized by two angles, phi and theta, defining the view direction within a spherical coordinate system, where
theta represents the polar angle while phi denotes the azimuthal angle. Manipulating the Cinema sliders (i.e.,
phi and theta controls) will result in an updated projection of ensemble members based on the visual features
of images corresponding to the new view angle. These sliders enable the exploration and navigation of 3D
data from different camera orientations (such as top, bottom, etc.). Cinema sliders thus offer scientists
several perspectives into their ensemble results through the Cinema image database.

Human–machine partnerships at the exascale



4 C-GLEE image-based ensemble attributes

The in situ processing of the high-dimensional simulation ensemble involves employing different simulation
input parameters, leading to the creation of an image database through the application of various visual
mapping and view parameters. The simulation input parameters and image database serve as the entry point
for our approach. However, before their integration into the C-GLEE’s similarity model and visualization
pipeline, a preprocessing step is implemented on all images in the databases. This entails extracting key
features, starting with the utilization of SIFT local feature extraction, followed by the application of an
autoencoder to reduce the dimensionality of the features extracted from SIFT. Subsequently, the input
parameters and reduced feature descriptors are fed into the C-GLEE similarity model and visualization
pipeline for visualization, exploration, and analysis.

4.1 Feature extraction

Given an ensemble of N members. Each ensemble member has an image database of K from different
camera positions; K = h � /, where h and / represent theta and phi, respectively. All images in the image

Fig. 1 Workflow of our approach. The workflow consists of three primary components: a the input source (attributes): the
input parameters and reduced visual features from the image database. b The similarity model couples forward and backward
models by translating semantic and parametric interactions into manipulations of model parameters that result in a new
visualization. c An interactive multi-view visual interface that allows the exploration and analysis of the simulation ensemble

Fig. 2 C-GLEE’s multi-view visual interface includes: a Ensemble View displays image thumbnails in a low-dimensional (2D)
workspace representing the similarity and difference among ensemble members in the high-dimensional (parameter) space.
Using weighted multi-dimensional scaling (WMDS), the image thumbnails are spatially organized in 2D space for interactive
sorting by the scientist, b Parameter View shows the weights of simulation input parameters; the user can adjust the weights to
explore the influence of parameters on the ensemble, and c Cinema View allows the selection of a certain viewing angles as
thumbnails (from the Cinema image database)
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databases are preprocessed by extracting key features that are then passed as input to C-GLEE. To start,
SIFT is applied to every image Il in the image database (l 2{1,..., K }). SIFT extracts distinctive invariant
visual features from noisy, occluded, and cluttered images due to its high invariance to scaling, translation,
and rotation. Specifically, SIFT detects potential pixels of interest in an image using a Difference-of-
Gaussian (DoG) detector. Let Ilði; jÞ represents one pixel in image l, where i and j are pixel coordinates. The
DoG detector starts by convolving all pixels in images with a Gaussian function Gði; j; rÞ (1) to create
Gaussian-filtered images (Fl),

Flði; j; rÞ ¼ Gði; j; rÞ � Ilði; jÞ; ð1Þ

where r is a scaling argument of function G(). Then, a DoG image Dl is computed from the difference
between baseline and scaled Gaussian-filtered images (2), where the scaled version inflates r by g,

Dlði; j;rÞ ¼ Flði; j; grÞ � Flði; j;rÞ: ð2Þ

Next, SIFT selects feature key points from the local minimum or maximum of the Difference-of-Gaussians
(DoG) smoothed images at different scales. After selection, each key point is assigned a principal orientation
based on the local image-gradient direction, where the gradient magnitude (m) and orientation (h) per image
and pixel (i, j) are computed as follows:

mlði; j; rÞ ¼
�
ðFlðiþ 1; j; rÞ � Flði� 1; j;rÞÞ2

þ ðFlði; jþ 1;rÞ � Flði; j� 1; rÞÞ2
�1=2 ð3Þ

hlði; j; rÞ ¼tan�1
�Flði; jþ 1; rÞ � Flði; j� 1;rÞ
Flðiþ 1; j; rÞ � Flði� 1; j;rÞ

�
ð4Þ

Finally, each key point and its neighboring pixels are transferred into feature descriptors. The feature
descriptor of a key point is a vector of length 128 representing a 4x4 histogram array with eight orientation
bins per histogram. That is, if P represents the number of key points plus nearest neighbors found in image
Ilði; jÞ, then SIFT produces a P� 128 feature matrix.

Each image Il is represented by a set of P key points, with 128 descriptors (128 dimensions) assigned to
each key point. Typically, an image with dimensions of 512 � 512 pixels will generate around 2000 key
points in total. As a result, the total number of key descriptors for such an image would be 2000 � 128
descriptors. Since the number of SIFT-detected key points varies among images within the database, some
feature matrices are zero-padded. This ensures that all images in the database possess the same number of
feature descriptors. The challenge with these feature descriptor vectors is their high dimensionality. To
mitigate the curse of dimensionality, autoencoders are employed.

An autoencoder is an unsupervised artificial neural network model that learns meaningful features from
high-dimensional image descriptors and transforms them into a low-dimensional representation while
preserving the intrinsic structure of the data. An autoencoder is composed of two components: an encoder
(C) and a decoder (D). The encoder translates the input data to a desired lossy compressed representation,
known as a code layer or latent space representation, while the decoder decodes this code layer to an
approximation of the inputs. The decoder is discarded after the training, and we are left with the encoder,
which compresses the input data, reducing the dimensionality in a way that maximizes the salient features
preserved in the input data.

The autoencoder reduces the dimensionality of the 128-dimensional SIFT feature descriptor vector for
each key point to a Q-dimensional vector. The value of Q is dynamically chosen based on the characteristics
of the image database. In this paper, Q was set to 2 or 5 based on the number of key points generated.
Increasing Q above this threshold will result in a substantial increase in the number of visual feature
descriptors. Such a combinatorial explosion of features has a direct impact on the number of calculations
needed for the backward similarity model; this computational overhead is a challenge for C-GLEE to work
in the real time regime.

In turn, the autoencoder is applied to transform the feature matrix from P� 128 to P� Q. The
autoencoder architecture comprises three hidden layers, with a code layer containing Q nodes. This design is
symmetric, maintaining an equal number of layers and nodes per layer in both the encoder and decoder.
Consequently, the autoencoder is structured with a total of five layers, encompassing both input and output
layers. The node configuration across the autoencoder architecture is as follows: (128 -[ 16 -[Q -[ 16 -
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[128). The activation function applied to the encoder neurons is the sigmoid activation function, whereas
the decoder neurons use the rectified linear unit (ReLU) activation function. The Adam optimization
algorithm was used for stochastic optimization, along with mean squared error to compute losses.

The simulation input parameters and reduced feature descriptors are then supplied to C-GLEE similarity
model and visualization pipeline for visual analysis and exploration of the ensemble.

5 C-GLEE image-based ensemble similarity model

C-GLEE similarity model leverages both input parameters and reduced feature descriptors (i.e., vectorized
P� Q feature matrix) as the fundamental foundation for mapping data into the visualization outputs.
Initially, to avoid misrepresentation during the visualization of the high-dimensional image-based ensemble,
all the values are z-score normalized. Additionally, an initial weight vector is applied where a weight of (1/A
) is initially assigned to each ensemble’s parameters and the visual features representing the image, where A
represents the number of input parameters to the simulation and the reduced visual features derived from the
image.

5.1 Similarity model

The similarity model comprises the forward and backward models, which translate user interactions into
changes in the model’s parameters. This leads to the generation of a new visualization.

The forward similarity model projects the high-dimensional ensemble into 2D space. C-GLEE could be
programmed with any projection technique. However, we choosed to use weighted multi-dimensional
scaling (WMDS) due to its facility in interpreting weighted dimensions, particularly in parameterizing user
interactions. WMDS has shown to be easy to use and interpretable for both experts and non-experts. The
input data to WMDS are normalized simulation input parameters and reduced feature descriptors for each
image in the image database. WMDS combines a weighted distance function with multi-dimensional scaling
to generate weighted projection of the image-based ensemble. The weighted distance function is used to
capture explainable relationships (i.e., differences and similarities) among the ensemble members;
explainable by input parameters and the image’s visual features. The weighted distance function is chosen
for an application is based on the nature of the task and the data. By default, C-GLEE uses weighted
Euclidean distance function (5) is used; however, scientists can select other distance functions from C-
GLEE’s main interface, such as weighted Cosine, weighted Mahalanobis, weighted structural similarity
index. To explore ensemble members e described by attributes based on both standardized simulation input
parameters and extracted features from autoencoder, we apply WMDS using weighted Euclidean distance
Dwðei; ejÞ;

Dwðei; ejÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XA
a¼1

waðei;a � ej;aÞ2
vuut ; ð5Þ

for ensemble members i and n ( i; j 2 f1; :::;Ng) with weight wa applied to each attribute (i.e., feature or
input) denoting its importance in the projections. The result of the pairwise Euclidean distances between
ensemble members is then passed to WMDS. WMDS tries to find the low-dimensional locations of
ensemble members by minimizing the mean squared error between the 2D and high-dimensional pairwise
distance.

Conversely, the backward similarity model is invoked through the scientist’s interaction with C-GLEE’s
visual interface using an OLI, a PLI, or the Cinema sliders. An OLI is a human–AI interaction technique that
supports scientists in creating a tailored spatialization of their high-dimensional data based on their expertise
and intuition. For example, based on the scientist’s domain knowledge and expertise, s/he may disagree with
the spatialization of the projected data or may visually observe an interesting pattern among some ensemble
members. Therefore, s/he begins directly manipulating the subset of interested ensemble members, forming
a cluster in an attempt to understand which attributes (i.e., those with high weights) may explain this cluster
performing an OLI. This formed cluster expresses the scientist’s hypothesized similarity between these
ensemble members. C-GLEE learns the weights using a semi-supervised metric learning backward model.
This model learns the new weights using new low-dimensional positions of the moved ensemble members,
along with their corresponding high-dimensional points. The model starts by setting the weights for all
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attributes to a uniform value. Subsequently, an optimization algorithm iteratively adjusts these weights until
it converges, aiming to obtain a set of weights that reflect the updated positioning of the moved ensemble
members. As a result, OLI empowers scientists to explore the correlations and relationships among and
between ensemble members.

Scientists can directly explore and understand the influence of input parameters on simulation output
using PLI. PLI is a user interaction that allows scientists to directly manipulate an attribute’s weight on the
slider. This manipulation results in an updated projection and weight vector. This allows scientists to
provide parametric feedback to the similarity model regarding whatever attribute(s) s/he feels to be sig-
nificant and to explore how this attribute(s) influences the relationships between different ensemble
members. Scientists can also explore the features and properties of the ensemble using the Cinema slider to
drive different visualization viewpoints (images) in the thumbnails in the OLI workspace. Manipulating the
slider thus results in a new camera viewpoint for each ensemble member, which results in an updated
projection of the ensemble based on the feature descriptors of the new view angle. By default, adjusting the
Cinema slider resets the weight vector, and input parameters and image features are assigned the same
weight. However, scientists have the freedom to either set the weight of attributes or maintain the old
weights from the old viewpoint.

From one interaction to another, C-GLEE has no algorithmic memory. That is, weights learned from the
optimization algorithm of the backward model after one OLI will not impact the optimization algorithm
when invoked by another OLI or PLI. However, scientists accumulate knowledge over time. They might
explore specific features in the data based on insights gained from previous interactions; however, there is
no way of quantifying interactions order influence. As an exploration tool, C-GLEE does not endorse a
singular ‘‘correct choice’’ of interaction or view angle. Scientists have the entire space of images at their
disposal for exploration, enabling them to navigate and analyze the image dataset according to their specific
objectives and hypotheses. C-GLEE’s design encourages an open-ended exploration process, allowing
scientists to iteratively investigate different angles, attributes, and projections to gain insights and make
discoveries within the dataset.

6 C-GLEE image-based ensemble visualization and exploration

To implement the proposed approach as a visual analytical tool, we build an interactive multi-view visual
interface. Figure 2 shows C-GLEE visual interface, including an ensemble view, a parameter view, and the
Cinema sliders.

6.1 Multi-view visual interface

The ensemble view spatially arranges the low-dimensional projection of the image-based ensemble pro-
duced by the forward similarity model. Each ensemble member is represented by a 2D image of the
simulation output. The ensemble view supports several interactions to explore the ensemble: OLI, multiple
selection, lasso selection, and zooming. OLI enables scientists to directly manipulate the interesting subset
of ensemble members based on their hypothesized similarity. This visual feedback is then translated into
information that is fed as input to the backend similarity model, leading to updates in the weight vector and
the members’ projection accordingly.

C-GLEE’s zooming functionality enables scientists to get finer details of thumbnail(s) of interesting
ensemble member(s) for further exploration. Scientists could be interested in exploring a subset of ensemble
members; therefore, C-GLEE supports multiple selection mechanisms, both lasso and multiple selections.
These selection mechanisms allow scientists to alternate between two modes of analysis: overview first and
details on demand.

The parameter view displays the weights of simulation input parameters on a horizontal slider. The
slider’s weights denote the significance of input parameters within the similarity model. Scientists
manipulate the slider by increasing or decreasing its value(s) through PLI. This leads to an updated pro-
jection utilizing the updated weight vector, allowing scientists to explore and analyze parameter sensitivity.
On the other hand, scientists adjust the Cinema sliders to explore significant features in an ensemble image
database. This facilitates the comparison and contrast of different ensemble members from varied view-
points, opening the door to new discoveries by exploring results through these viewpoints.
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OLI results in an updated projection in the ensemble view and new weight values on sliders in the
parameter view based on the learned similarities between clusters of ensemble members. PLI in the
parameter view results in updating attribute weights on the slider and an updated projection in the ensemble
view. The Cinema sliders are linked to the ensemble view; any adjustment in slider values results in
updating the projection based on the image features of the new viewpoint.

7 Case studies

7.1 Simulation ensembles

We evaluated C-GLEE to assess its effectiveness using two ensemble simulations. The first simulation
ensemble is a 2D dataset from oilfield wastewater disposal. The second dataset is a 3D ensemble of CO2

sequestration. Our selection of datasets from the geosciences domain aims to examine C-GLEE’s capability
to manage scientific ensemble data that could run at the exascale. During the evaluation, we investigated
how well the proposed workflow and C-GLEE’s interaction techniques (OLI, PLI, and Cinema sliders)
supported the scientists in exploring and analyzing their image-based ensemble results. The emphasis was
on evaluating C-GLEE’s effectiveness in capturing the intricate structure of the data contained in image
databases and input parameters. C-GLEE functions as an exploratory visual analytical tool, enabling sci-
entists to utilize various interactions that enhance the exploration process. The scientist has the flexibility to
initiate the exploration with any combination of OLI interactions and PLI interactions. OLI and PLI
represent two independent interaction techniques. Scientists have the flexibility to use them in any sequence
during data exploration, depending on their personal expertise, needs, and curiosities. For instance, when
scientists form hypotheses about relationships among ensemble members, they might employ OLI to
identify attributes that could explain these relationships. On the other hand, when scientists assume cor-
relations among two or more input parameters, they may use PLI to emphasize the importance of these
attributes and assess how well the data aligns with these assumptions. However, with each new projection,
scientists may choose to stop and summarize what they have learned, reapply the same interaction, or try a
different interaction, depending on the insights gained.

7.1.1 Oilfield wastewater disposal

Our first case study evaluates the role of geologic and fluid properties on fluid pressure transients that trigger
earthquakes during oilfield wastewater disposal (Pollyea et al. 2018). Recent research shows that fluid
density plays an important role in fluid pressure build-up and earthquake triggering when oilfield wastewater
is pumped into deep geologic formations via injection wells (Pollyea et al. 2019). Nevertheless, there
remains substantial uncertainty in the correlation between fluid pressure build-up and 1) injection fluid
temperature, 2) basement rock compressibility, and 3) basement rock permeability. The ensemble comprises
numerical models of oilfield wastewater disposal using geologic and operational features of the Anadarko
Shelf in southern Kansas and northern Oklahoma. Fifty ensemble members are reproduced from the same
injection scenario and model domain, but they differ in the combination of spatially homogeneous injection
fluid temperature, basement compressibility, and basement permeability. The simulation ensemble studied
the influence of measurable parameters on the migration depth of fluid pressure after 10 years of wastewater
disposal operations.

7.1.2 CO2 saturation

The second case study focused on the effects of fracture-controlled reservoir heterogeneity in low-volume
basalt reservoirs during geologic CO2 sequestration (Pollyea et al. 2014). The permeability distribution was
developed using sequential indicator simulation methods with constraints based on outcrop-scale fracture
correlation models. The ensemble includes 3D synthetic reservoirs of 50 equally probable comprising a
spatial permeability structure. It reflects basalt flow morphology in which the permeability of densely
fractured flow tops/bottoms is 5� greater than the lower permeability flow interiors.
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7.2 Qualitative and quantitative analysis

To demonstrate the effectiveness of our approach, we compare the insights and conclusions generated by
C-GLEE against the ground-truth conclusions derived during the scientist’s regular analysis process.
Typically, scientists employ visualizations of simulation outputs and summary statistics displays to study the
variation of a single parameter (i.e., simulation outputs or input parameters) across all runs. This requires the
use of multiple scripts or/and programs to visualize the data, which is usually time-consuming and error-
prone. To facilitate post hoc exploration of in situ ensembles, we used the original input parameters and a
Cinema dataset. Our challenge is then to extend the visualization and interaction pipelines to use the image
database rather than numerical simulation outputs to answer the scientists’ main questions. We used
C-GLEE as the platform to test our method. We took special note of additional insights and conclusions that
were not found during their traditional analysis.

We evaluated C-GLEE’s image-based approach with three Geoscience domain scientists (a faculty
member and two graduate students). The faculty member provided the ensemble data used in the experi-
ments. We provided our tool to the domain experts to study relationships and similarities between ensemble
members and parameter sensitivity. Initially, the scientists were given training on how to use C-GLEE and
its interaction techniques. Later, we asked them to explore the ensemble using C-GLEE’s multi-linked views
and interaction techniques. During the evaluation, we measured the time taken to complete each task and the
completeness of the task. We also measure the time taken by each performed interaction (i.e., OLI and PLI).

7.2.1 Expert evaluation—oilfield wastewater

The oilfield wastewater disposal simulation ensemble implements multi-physics numerical simulation
methods that investigate fluid pressure transients that cause earthquakes. During the analysis of this
ensemble, the scientist was trying to understand the correlation between fluid pressure build-up and rock
permeability, injection fluid temperature, and rock compressibility. Therefore, s/he was interested in
exploring if: (1) There are similarities between different ensemble members in which fluid pressure migrates
deeper into the formation; and (2) if injection fluid temperature has any influence on fluid pressure build-up.

Figure 3 shows the initial projection of ensemble members (i.e., simulation outputs) in ensemble view.
From these projections, the scientist observed that the ensemble members are arranged so that high and
shallow magnitude pressure build-up are clustered on the one side, while lower and deeper magnitude
pressure build-up are clustered on the other. The arrangement of ensemble members shows a more infor-
mative grouping of magnitude pressure build-up. To understand which parameter(s) governs this relation-
ship, the scientist performs an OLI by grouping ensemble members into three clusters based on the
migration depth of fluid pressure in the image representing each ensemble member, then clicking ‘‘Update’’
(Fig. 4). OLI is used to understand the similarities and differences between these ensemble members. The
updated projection produced from this OLI led the scientist to gain an insight that permeability is the
prominent parameter that governs the migration of fluid pressure depth (Fig. 5). Additionally, the clustering
of ensemble members captured different behaviors (i.e., deep density-driven plumes and fluid pressure-
driven down plumes). The insight concluded from using OLI allowed scientists to determine which
parameter governs the similarities between different groups of ensemble members.

To explore if injection fluid temperature has any role on fluid pressure, the scientist manipulated the
slider, increasing its value to make its importance, performing a PLI (Fig. 6). Based on the re-projection, the
scientist concluded that ensemble members are arranged such that fluid pressure magnitude grows from top
to bottom and fluid pressure depth increases from left to right. This leads the scientist to learn that the
temperature of the fluid injection also affects the magnitude of fluid pressure buildup. Using PLI, the
scientist was able to determine the influence and sensitivity of temperature on the ensemble. Additionally,
the clustering of ensemble members in ensemble view accurately captures the second-order control on the
depth of fluid migration.

The scientist continued using C-GLEE to explore the ensemble data. At the end, s/he concluded that (1)
permeability governs the depth of pressure build-up, (2) for a given pressure depth, the changes in pressure
magnitude are controlled by injection fluid temperature, and (3) rock compressibility does not impose any
parametric control on depth or magnitude of fluid pressure transients caused by oilfield wastewater disposal.
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7.2.2 Expert evaluation: CO2 saturation

The CO2 saturation simulation ensemble is focused on studying the structure of vertical CO2 flow, which is
governed by the spatial distribution of permeability. The initial projection appeared to cluster similarly
shaped CO2 plumes in close proximity, Fig. 7. The grouping of ensemble members captures this similarity
more accurately. The scientist was interested in knowing how likely CO2 escape is in the reservoir to find
out if a CO2 plume is leaking or not. Therefore, the scientist groups images with vertical CO2 features (i.e.,
chimney-like features) based on their shape (wide fat or short tall). From the re-projection, the scientists
observed that all CO2 ensemble members with strong vertical expression are placed near the center, while
the CO2 plumes with more lateral continuity were projected in a ring around the center as shown in Fig. 8.

The scientists investigated the semantic impact of Cinema’s different view angles on the ensemble by
manipulating the Cinema slider. S/he manipulated the Cinema slider by changing to a view angle
(i.e.,h ¼ �75 and / ¼ �30) in the bottom of the reservoir colored by temperature, Fig. 9. This interaction
resulted in an updated projection based on the image features of the view angle. This angle enables the
scientist to explore the thermodynamics of the whole system, where the temperature cools in the middle of
the reservoir. This is because the pushed CO2 into the reservoir expands and cools down. The scientist
noticed from the initial projection of this angle that the reservoir itself has an influence on the temperature
regime of CO2, and there is some kind of control as part of the reservoir that needs further exploration. S/he
then performs an OLI by grouping together ensemble members showing cooling, then clicking update
Fig. 10. The resultant projection leads the scientist to observe that there are features worth exploring in more
detail, requiring higher fidelity simulations near the borehole where the temperature could be used as a
monitoring tool. Deriving new hypotheses such as this (for future testing) highlights the value of C-GLEE’s
multiple views into ensemble and its Cinema image database.

Fig. 3 The semantically sorted results from Oilfield wastewater disposal ensemble initial projection. The arrangement of
ensemble members sorting shows that ensemble members are arranged so that high and shallow magnitude pressure build-up
are clustered on one side, while lower and deeper magnitude pressure build-up are clustered on the other
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Fig. 4 Investigating migration of fluid pressure through OLI. Ensemble members are grouped into clusters based on fluid
pressure depth from shallow (left) to deep (right), then ‘‘Update’’ button is clicked to get insights about this OLI interaction

Fig. 5 The result of the OLI for ensemble members. From the re-projection, the scientist concluded that rock permeability
controls the migration of fluid pressure depth
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Fig. 6 The updated projection clusters ensemble members such that the magnitude of fluid pressure increases from top to
bottom and the depth of fluid pressure grows from left to right. The scientist thus concluded that the injection temperature has
an effect on the magnitude of fluid pressure

Fig. 7 The semantically sorted results from CO2 sequestration ensemble. The initial projection appeared to cluster similarly
shaped CO2 plumes in close proximity
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8 Results

Cinema-GLEE (C-GLEE) is an exploratory visual analytics tool that helps scientists gain deeper insight into
simulation ensembles when they lack a comprehensive understanding of the simulated model. It offers a
new way of analyzing individuals relative to other ensemble members. Instead of relying on the whole
ensemble’s average variance or standard deviation for analysis, scientists can directly interact with and
explore the relationships among different ensemble members. C-GLEE offers a novel approach for
exploring high-dimensional ensembles when raw output data are unavailable. This differs from GLEE,
which explores summary statistics of both the input and output data of individual ensemble members.
C-GLEE allows scientists to test and explore hypotheses and ideas about the simulation data not only for a
single image-based ensemble but rather an image database, creating new opportunities to discover new
phenomena that may not be visible from a single view of the data.

The results of the qualitative analysis of the studies show that the majority of performed OLI enables
scientists to figure out the similarities and differences among and between subsets of ensemble members. As
an exploration interaction technique, OLI would not always yield meaningful results. It would be able to
produce meaningful insights or even discoveries if the grouped ensemble members have common or similar
features in the high-dimensional space that a metric learning model could capture. The updated projection
from OLI enables scientists to determine which parameter(s) control the clustering of ensemble members. In
some other re-projections, the visual features captured the similarities between ensemble members more
than input parameters. In this case, the scientists did not observe a significant change in the values of input
parameters on the sliders. However, grouping ensemble members after the projection led to new insights that
significantly furthered the exploration process.

Fig. 8 The results of the OLI for grouping the vertical CO2 features by geometry shape. From the re-projection, the scientist
noticed that ensemble members with strong vertical CO2 expression are placed near the center, while the others are projected in
a ring around the center

Human–machine partnerships at the exascale



Using PLI, scientists were able to determine the sensitivity of input parameters on visualized simulated
output. They were able to find correlations between different input parameters. This helped scientists in
determining important parameters and parameters that could be set to a constant. On the other hand, Cinema
sliders offered them a chance to understand the correlations between ensemble members and parameter
sensitivity across different viewing angles. This allowed them to compare and contrast the differences in
correlation between ensembles from new perspectives. In some cases, the adjusted view angle did not
produce clear insight, but it led to interesting observations or/and hypotheses that needed more high-fidelity
simulation.

Our quantitative measurements indicate that C-GLEE’s interaction techniques can empower scientists to
complete all their initial exploration tasks. However, during interaction with C-GLEE, more exploratory
questions were raised. While the scientists were able to find answers to some questions, others needed
higher-fidelity simulations to answer them. We calculated the number of interactions taken to answer the
initial exploration tasks. This number was different from one scientist to another depending on the type of
interaction they performed first (OLI, PI, or Cinema) and the subset of ensemble members they explored.
For example, the initial exploration tasks, on average, took 2–4 interactions to answer. More advanced tasks
that were raised during the analysis vary in their number (an average of 4–7). Moreover, C-GLEE took a
reasonable amount of time to respond to user interactions. It took less than 4 s, 2 s, and 1 s to respond to
OLI, PLI, and Cinema sliders, respectively.

Looking across our methods and case studies, our proposed approach was able to reach the same
conclusions that the scientists derived from their manual analysis process, but in significantly less time. Our
approach allowed them to uncover new insights and findings that are hard to obtain with their traditional
analysis process. Moreover, we observed that using SIFT and an autoencoder to extract image features
preserved the intrinsic visual descriptors and was able to capture more complex structures in the data during
the exploration. Moreover, the grouping of ensemble members in the ensemble view led to more insights
derived by the scientists. Thus, the autoencoder can be extremely helpful when the dataset has a complex
multi-dimensional structure. Recently, autoencoders have been used widely in several domains to extract
important features from an image (Luo et al. 2019).

However, we believe that some limitations could hinder its direct adaptation to image-based simulation
ensembles. For example, the storage and computational time required for training data. Training an image-
based ensemble will need a large number of images to cover all the possible camera view angles and
different simulation models; in case, the ensemble was constituted from different permutations of models. In
this case, the size of the training data will be close to or greater than the raw simulation output data, which

Fig. 9 The Cinema view at angle h ¼ �75, / ¼ �30 shows the bottom of the CO2 saturation contour colored by temperature
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would counteract the advantages of using in situ visualization. Another limitation is cropping images or
preprocessing steps to remove irrelevant or less important regions from the image (Xu et al. 2019).
Moreover, passing image features produced directly by an autoencoder into C-GLEE’s visualization and
interaction pipelines did not capture any complex structures in the data when OLI was used for exploration,
unlike our currently proposed approach.

8.1 Limitations and future work

The main limitation of the proposed approach is scalability. Going to hundreds of ensemble members could
easily lead to visual cluttering in the ensemble workspace. This problem could be partially solved by using
larger displays that could accommodate more ensemble members or provide levels of detail summaries.
Based on the feedback provided by scientists, we learned that they usually use an ensemble size that is
smaller than one hundred. Moreover, C-GLEE’s backward similarity model performance would degrade in
the case that the ensemble features and input parameters went over thousands of dimensions. For future
work, we plan to explore other deep learning approaches. Cinema databases typically include time as a
parameter and recent Cinema releases include non-image artifacts such as small meshes. Incorporating
extended interaction techniques that include multiple views, time, or additional artifacts is another avenue
for study.

Fig. 10 The result of OLI interaction for the Cinema view at angle h ¼ �75, / ¼ �30. From the resulted projection, the
scientist noticed that some specific features in the ensemble were worth exploring in more detail using higher-fidelity
simulations
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9 Conclusion

In this paper, we explored the use of simulation ensembles visualized in situ within Cinema-GLEE (C-
GLEE). To utilize exascale simulation ensemble outputs (i.e., Cinema image databases) as the input to
C-GLEE, we needed to find an underlying statistical model to drive human expert–AI interaction (i.e., OLI
and PLI). We achieved this by rephrasing GLEE’s visualization and interaction pipeline to handle this
exascale data. We extracted feature descriptors from an image database using a local feature extraction
technique and a deep learning model. In addition, an interactive visual interface was developed to explore
commonalities and dissimilarities between ensemble members and determine parameter sensitivity. We
illustrated the effectiveness of our proposed approach with several experiments with geoscience domain
experts. We found that using C-GLEE, scientists could effectively explore the simulation space with their
image databases and find new insights. This is important as simulations move to exascale and full numerical
output data may not be available for post-processing and visualization. Also, by validating image-based
techniques, a human expert–AI partnership could be applied to experimental image-based data, allowing
scientists a different approach to finding connections in experimental data.
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