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Abstract

Transcript annotations play a critical role in gene expression analysis as they serve as a reference
for quantifying isoform-level expression. The two main sources of annotations are RefSeq and En-
sembl/GENCODE, but discrepancies between their methodologies and information resources can lead
to significant differences. It has been demonstrated that the choice of annotation can have a significant
impact on gene expression analysis. Furthermore, transcript assembly is closely linked to annotations,
as assembling large-scale available RNA-seq data is an effective data-driven way to construct annota-
tions, and annotations are often served as benchmarks to evaluate the accuracy of assembly methods.
However, the influence of different annotations on transcript assembly is not yet fully understood. We
investigate the impact of annotations on transcript assembly. Surprisingly, we observe that opposite
conclusions can arise when evaluating assemblers with different annotations. To understand this strik-
ing phenomenon, we compare the structural similarity of annotations at various levels and find that the
primary structural difference across annotations occurs at the intron-chain level. Next, we examine the
biotypes of annotated and assembled transcripts and uncover a significant bias towards annotating and
assembling transcripts with intron retentions, which explains above the contradictory conclusions. We
develop a standalone tool, available at https://github.com/Shao-Group/irtool, that can be combined with
an assembler to generate an assembly without intron retentions. We evaluate the performance of such a
pipeline and offer guidance to select appropriate assembling tools for different application scenarios.

Author Summary. Transcript annotations are essential foundations for transcriptomic studies, offer-
ing valuable insights into gene structures, functions, and acting as references for isoform-level expres-
sion expression quantification and differential analysis. However, the impact of different annotations
on transcript assembly remains uncertain. We demonstrated that the choice of an annotation can lead
to conflicting outcomes when evaluating assemblers. Our investigation revealed the distinctive features
of annotations that led to the aforementioned contradictory conclusion, through a comprehensive com-
parison of annotations from the perspectives of biotypes and gene structures, contributing to a broader,
deeper understanding of annotations. Our research provides guidance in making well-informed choice

of annotations and assemblers for practical RNA-seq data analysis.
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1 Introduction

The isoform-level expression analysis has become a common toolbox in biological and biomedical studies.
This analysis generally involves quantifying the expression levels of annotated transcripts given the RNA-
seq data, followed by statistical methods to identify differentially expressed transcripts. Popular tools used
in this pipeline include RSEM [1], kallisto [2], Salmon [3], edgeR [4], and DESeq2 [5], among others.
The transcriptome, which is the collection of annotated transcripts, plays a crucial role in the analysis, as
it serves as a reference for isoform quantification and splicing quantification [6, 7, 8]. The construction of
high-quality, reliable, and complete transcriptomes for model species has been a long-standing community
effort. Currently, RefSeq [9], led by NCBI, and Ensembl/GENCODE [10], led by EMBL-EBI, are the two

main sources of annotations, with updates and curations constantly being made.

It is widely acknowledged that the RefSeq and Ensembl annotations differ significantly due to differences
in methodology and information resources. Generally, RefSeq annotation prioritizes experimental evidence,
while Ensembl annotation incorporates more computational predictions and includes more novel splicing
variants [11]. The choice of an annotation depends on the specific need; for example, RefSeq is commonly
used for variant studies [12], while Ensembl annotations are preferred for extensive research initiatives such
as ENCODE [13], gnomAD [14], and GTEx [15]. Several studies have investigated the impact of different
annotations on gene expression analysis. It has been reported that the choice of annotation has a significant
effect on RNA-seq read mapping, gene/isoform quantification, and differential analysis [16, 17, 18]. In

addition, integrating diverse annotations can markedly improve transcriptomic and genetic studies [19].

Computational methods are increasingly used to identify novel isoforms to complement annotations of
model species and to construct transcriptomes for non-model species, thanks to the availability of large-
scale deposited RNA-seq data. The process of reconstructing full-length transcripts from RNA-seq reads,
known as transcript assembly, has been extensively studied, with significant progress made in advancing
the theory [20, 21, 22] and in developing practical assemblers, including Cufflinks [23], CLASS2 [24],
TransComb [25], FLAIR [26], StringTie [27], Scallop [28], StringTie2 [29], and Scallop2 [30], to just name
a few. There is a close relationship between transcript assembly and annotations. On one hand, transcript
assembly offers a data-driven venue to construct annotations [31]; on the other hand, annotations serve as a

ground-truth to evaluate assemblers on real RNA-seq data where the true expressed transcripts are unknown.



We study the impact of annotations on transcript assembly in this work. We evaluate the accuracy of two re-
cent and popular assemblers Scallop2 and StringTie2 with different annotations (Section 2.1). Surprisingly,
we found that Scallop2 performs better than StringTie2 when evaluated with Ensembl annotations but worse
with RefSeq annotations. To uncover the underlying reasons, we first systematically compare the structural
similarity between different annotations to investigate the primary sources of divergence (Section 2.2). We
found that while annotations already differ significantly at the intron-exon boundary and junction levels, the
differences are most pronounced at the intron-chain level. We then investigate if the differences are related
to transcript biotypes (Section 2.3). We observed that transcripts with intron retentions contribute the most
significant disparity to RefSeq and Ensembl annotations. Meanwhile, Scallop2 and StringTie2 also behave
differently in assembling such transcripts. We therefore conclude that the joint bias in assembling and anno-
tating transcripts with intron retentions leads to the opposite evaluation results. Finally, we propose criteria
and develop a tool to adjust the biases in intron retention for an assembly and provide guidance for a suitable

pipeline based on testing the assemblers with and without using the adjustment (Section 2.4).

2 Results

2.1 Evaluating Assemblers with Different Annotations

We show that divergent conclusions can be drawn when transcript assemblers are evaluated using differ-
ent annotations. We investigate this phenomenon by comparing two widely-used reference-based assem-
blers, StringTie2 and Scallop2, with five transcriptome annotations derived from two human genome build,
GRCh38 and T2T-CHM13 [32], on 17 paired-end RNA-seq samples from two datasets, 10 samples from
EN10 and 7 samples from HS7, aligned with two popular aligners, STAR [33] and HISAT?2 [34]. The assem-
bly accuracies are evaluated using GffCompare [35]. Details about the comparison of the methods, accuracy
measures, and evaluation pipeline are provided in Section 4.1. We do not intend to conduct a comprehensive
benchmarking analysis for assemblers but rather to reveal the divergence of annotations and their impacts
on evaluating assemblers. Please see Section 2.5 for a broader comparison under more experimental settings

and our insights about the assemblers’ methodological differences.

Table 1 compares the accuracy of StringTie2 and Scallop2. As shown in the table, Scallop2 outperforms

StringTie2 when evaluated with Ensembl and CHM 13 annotations, evidenced by Scallop2 outperforming on



Table 1: Comparison of the assembly accuracy, measured with precision (%) and the number of matching
transcripts, of StringTie2 and Scallop2 using different annotations as the reference. In each combination (of
dataset, aligner, genome build, annotation) the two metrics are averaged over all samples in the dataset.
Symbol () indicates that one method gets higher on one metric but lower on the other; symbol > indicates
that StringTie2 outperforms on both metrics, while < indicates Scallop2 outperforms on both metrics. The
three columns of raw counts give the number of samples in each category by comparing raw precision and
recall. Samples in the () category are further compared using the adjusted precision, and the number of
samples are merged into either > or < category accordingly, shown in the two columns of under adjusted.

dataset aligner genome anmotation StringTie2 Scallop2 raw counts adjusted
prec. #mat.  prec. #mat. > () < > <
EN10 HISAT2 GRCh38 RefSeq 32.1% 14906 28.8% 16256 0 8 2 1 9
EN10 HISAT2  T2T RefSeq 28.2% 13298  25.3% 14396 0 8 2 1 9
EN10 STAR GRCh38 RefSeq 34.3% 15113  30.1% 14929 6 3 1 g8 2
EN10 STAR T2T RefSeq 30.2% 13279 27.4% 14416 0 8 2 1 9
HS7 HISAT2 GRCh38 RefSeq 41.5% 18523  37.5% 18395 7 0 0 7 0
HS7 HISAT2  T2T RefSeq 36.6% 16429  33.1% 16358 6 1 0 7 0
HS7  STAR GRCh38 RefSeq 42.2% 18695 41.9% 18300 5 20 7 0
HS7  STAR T2T RefSeq 37.1% 16425 37.2% 16250 3 4 0 6 1
Summary RefSeq 353% 15834  32.7% 16163 27 34 7 38 30
EN10 HISAT2 GRCh38 Ensembl 32.2% 14684  32.7% 18205 0 4 6 0 10
EN10 HISAT2  T2T Ensembl 29.1% 13707 29.9% 17100 0o 3 7 0 10
EN10 STAR GRCh38 Ensembl 32.7% 14412 34.2% 18133 0 4 6 0 10
EN10 STAR T2T Ensembl 31.5% 13885 32.9% 17406 0 4 6 0 10
HS7 HISAT2 GRCh38 Ensembl 38.8% 17304 38.6% 18971 0 5 2 0o 7
HS7 HISAT2  T2T Ensembl 37.1% 16619  36.8% 18165 0 5 2 0
HS7  STAR GRCh38 Ensembl 39.7% 17594 43.7% 19145 0o o0 7 0o 7
HS7  STAR T2T Ensembl 383% 16939 42.0% 18355 0o o0 7 0
Summary Ensembl 34.9% 15643  36.4% 18185 0 25 43 0 68
EN10 HISAT2  T2T CHM13 29.5% 13926 29.9% 17101 0 6 0 10
EN10 STAR T2T CHM13 31.7% 13940 32.7% 17332 0 0 10
HS7 HISAT2  T2T CHM13 37.5% 16832 37.0% 18236 0 0
HS7  STAR T2T CHM13 38.4% 16965 419% 18273 0 O 0o 7
Summary CHM13 343% 15416 354% 17736 0 13 21 0 34
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Figure 1: Illustrating the difference of assembly accuracy evaluated with RefSeq and Ensembl annotations,
both from GRCh38 genome build. Each arrow represents a sample, pointing from the accuracy evaluated
with RefSeq annotation to that with Ensembl annotation. The subfigures correspond to the four combinations
of dataset (EN10 or HS7) and aligner (HISAT?2 or STAR).
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Figure 2: Illustrating the difference of assembly accuracy evaluated with RefSeq and Ensembl annotations,
both from T2T-CHM 13 genome build. Each arrow represents a sample, pointing from the accuracy evaluated
with RefSeq annotation to that with Ensembl annotation. The subfigures correspond to the four combinations
of dataset (EN10 or HS7) and aligner (HISAT?2 or STAR).



all samples (68 and 34, respectively; using adjusted precisions to break ties). However, a different conclusion
is reached when evaluated with RefSeq annotations, as StringTie2 outperforms on more samples (38 out of
68) than Scallop2. The high level of agreement between Ensembl and CHM13 annotations (from T2T-
CHM13 genome build) is expected since they are very similar, as illustrated in Section 2.2. We therefore

focus on exploring the differences between Ensembl and RefSeq annotations.

We further demonstrate the dramatic discrepancy of RefSeq and Ensembl annotations in evaluating transcript
assemblers, by comparing their accuracies on individual samples. The results are shown in Figure 1 (using
GRCh38 annotations) and Figure 2 (using T2T-CHM13 annotations). Across all combinations, Scallop2’s
accuracy is significantly higher under Ensembl annotation than under RefSeq. Conversely, the pattern is
almost reversed for StringTie2, with its accuracy evaluated under Ensembl being either lower than that under
RefSeq in the case of GRCh38 annotations (Figure 1), or only slightly higher in the case of T2T-CHM13

annotations (Figure 2).

2.2 Comparison of Structural Similarities

The results presented in Section 2.1 clearly highlight the substantial differences between RefSeq and En-
sembl annotations. This prompts us to investigate the primary sources of these divergences. In particular,
since a transcript can be represented as a chain of alternating exons and introns, we seek to determine the
level of transcript structure that contributes the most to these differences, whether it be at the individual
exon-intron boundary, the junction (pair of intron boundaries), or the chain of junctions. To address this
question, we propose several metrics and use them to evaluate the similarity of annotations at these three

levels. Details about the metrics definitions are provided in Section 4.2.

We plotted the Jaccard similarities across different annotations in Figure 3. It clearly shows that the Ensembl
and CHM13 annotations of the T2T-CHM13 genome build are highly similar, with Jaccard of 0.91 at the
boundary and junction levels, and 0.80 at the intron-chain level. However, the Ensembl and RefSeq annota-
tions in both genome builds exhibit significant divergence, with Jaccard values lower than 0.69 and 0.57 at
the boundary and junction levels, respectively. This difference is most pronounced at the intron-chain level,
where the Jaccard similarity drops to 0.19, indicating that the intron-chain is the primary contributor to the

structural disparity between Ensembl and RefSeq annotations.

Next, we measure the similarity of individual genes in different annotations, aiming to determine whether
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the level of boundary, junction, and intron-chain. The three dashed lines in each subfigure mark the Jaccard
similarity at the 25th, 50th, and 75th percentile of the total frequency.



the difference of annotations can be attributed to a small portion of genes. The method to construct the cor-
respondence between genes in two annotations and definitions of Jaccard similarities of every constructed
gene pair at boundary, junction, and intron-chain levels, are provided in Section 4.3. The gene pairs con-
structed with this approach aligns very well with gene nomenclature. Specifically, there are 24957 gene
pairs between RefSeq and Ensembl annotations according to the HUGO Gene Nomenclature. Among these,

23478 pairs (94.1%) can be found in the gene pairs constructed with our approach.

The distribution of the Jaccard similarities are shown in Figure 4. As before, we observe that Ensembl and
CHM13 annotations in the T2T-CHM 13 genome build are almost identical to each other. However, Ensembl
and RefSeq annotations in either genome build show significant divergence, especially at the intron-chain
level. Furthermore, the majority of the gene pairs between Ensembl and RefSeq annotations are divergent,

as evidenced by the quartiles in Figure 4.

2.3 Comparison of Transcript Biotypes

The Ensembl annotation provides each annotated transcript with a “biotype” that indicates its biological
category and function. By leveraging this information, we aim to investigate whether different annotations

or assemblers show bias towards specific biotypes.

In Table 2, we compare the distribution of multi-exon transcripts belonging to different biotypes between
the Ensembl and RefSeq annotations. As biotype information is not available in the RefSeq annotation,
we report the number and percentage of transcripts annotated by Ensembl in each biotype that are also
annotated in RefSeq. (Two transcripts are considered the same if they share the same intron-chain.) Our
analysis reveals huge divergences in several biotypes, such as “retained_intron”, “processed_transcript”, and
“processed_pseudogene”, where only a tiny portion of them are annotated in RefSeq. Of particular interest

is the “retained intron” biotype, which is the third largest biotype in the Ensembl annotation, but only 1.3%

of them appear in the RefSeq annotation.

We investigate whether the dissimilarities between Scallop2 and StringTie2 when evaluated with Ensembl
and RefSeq annotations (as discussed in Section 2.1) can be attributed to differences in biotypes. We clas-
sify the matching transcripts based on their biotypes, using the Ensembl annotation as the reference. The
comparison of the five largest biotypes is presented in Figure 5. Notably, Scallop2 identifies significantly

more matching transcripts in the “retained intron” biotype compared to StringTie2. We therefore conjecture

10



Table 2: Illustration of the number of multi-exon transcripts in different biotypes between Ensembl and
RefSeq annotations (GRCh38 build). The first column lists biotypes defined by the Ensembl annotation; the
second column lists the number of multi-exon transcripts in each biotype; the third and the fourth columns
give the number and the percentage of multi-exon transcripts in each biotype that are also annotated in the
RefSeq annotation.

Ensembl transcript biotype # annotated in Ensembl # annotated in RefSeq percentage (%)
protein_coding 86333 41848 48.5
IncRNA 47848 7058 14.8
retained_intron 32782 411 1.3
processed_transcript 30592 1884 6.2
nonsense_mediated_decay 20754 2991 14.4
unprocessed_pseudogene 1421 21 1.5
processed_pseudogene 1294 1 0.1
transcribed_unprocessed_pseudogene 737 18 24
IG_V_gene 142 124 87.3
transcribed_unitary_pseudogene 120 5 4.2
TR_V _gene 105 101 96.2
IG_V _pseudogene 100 35 35.0
non_stop_decay 97 8 8.2
transcribed_processed_pseudogene 58 1 1.7
protein_coding_LoF 51 31 60.8
unitary_pseudogene 43 1 2.3
TR_V _pseudogene 23 20 87.0
artifact 19 11 57.9
pseudogene 19 0 0.0
IG_C_gene 18 9 50.0
TEC 7 0 0.0
TR_C_gene 6 4 66.7
IG_C_pseudogene 2 1 50.0
translated_unprocessed_pseudogene 1 0 0.0

11
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that it is the bias towards retained-intron transcripts, i.e., Scallop2 assembles more such transcripts than
StringTie2 while Ensembl annotates more such transcripts than RefSeq, that is the primary reason behind

the opposite conclusion when StringTie2 and Scallop2 are evaluated against the two annotations.

To further support the above hypothesis, we analyzed the number of assembled transcripts that were anno-
tated in Ensembl but not in RefSeq. These transcripts are considered true positives by Ensembl and false
positives by RefSeq. The results for the five largest biotypes are presented in Figure 6, which shows that
the largest difference is due to the “retained intron” biotype. Therefore, we conclude that the discrepancy in
evaluation between Scallop2 and StringTie2 is caused by the differences in transcripts with intron retentions

between Ensembl and RefSeq annotations.

To seek evidence for supporting the intron-retained transcripts annotated in Ensembl, we investigate a long-
read dataset used in the LRGASP [36]. The dataset was sequenced with the CapTrap PacBio protocol on
a mixed sample prepared from the human H1 ES/Definitive Endoderm cell line. This dataset was used in
the Challenge 1 of LRGASP, aiming to compare different computational methods (and sequencing platform
and library prep approaches, etc) on assembling transcripts with a high-quality genome. We directly use
the assemblies (e.g., assembled full-length transcripts) by two participating methods, namely Bambu and
StringTie2. We investigate the overlap between each assembly and the Ensembl transcripts with intron
retentions. Specifically, we define an annotated intron-retained transcript in Ensembl to be validated if
its intron-chain coordinates exactly matches one transcript in an assembly. This can be done by calling
GffCompare. By using the Bambu assembly, we found that 3566 (10.9% of the total annotated 32782
intron-retained transcripts in Ensembl) can be validated, and this number is 4773 (14.6% of the annotated
ones) when validating using the StringTie2 assembly. We note that the Bambu and StringTie2 assemblies
contain 30369 and 46866 transcripts, respectively; the percentages of matching intron-retained transcripts
in Ensembl are 11.7% and 10.2% for Bambu and StringTie2 respectively, which are at the same level of
the percentage of intron-retained transcripts in Ensembl (32782 of 222572, 14.7%). In contrast, as shown
in Table 2, RefSeq annotates 411 transcripts with intron-retentions. Considering that thousands of Ensembl
transcripts with intron-retentions that match assemblies from long-reads, it is plausible that RefSeq might

be too conservative in annotating transcripts with intron-retentions.

13



2.4 Quantifying the Impact of Intron Retentions

We hence investigate intron retentions. We first establish a formal definition for (partial) intron retentions
in the context of assembly (see Section 4.4). We then develop a tool, namely irtool, based on this definition
that can identify transcripts with intron retentions. This tool can be applied to an assembly generated by any
assembler, allowing for the extraction or filtering out of transcripts with retained introns. Using this tool, we

quantify the impact of intron retention on Scallop2 and StringTie2.

We apply irtool to filter out transcripts with (partial) intron retentions in the StringTie2 and Scallop2 assem-
blies, and then evaluate the filtered assemblies using RefSeq and Ensembl annotations. Based on the fact
that Ensembl annotates many more transcripts with intron retention than RefSeq (Table 2), and that Scallop2
assembles more such transcripts than StringTie2 (Figures 5 and 6), we expect that the accuracy of Scallop2
would decrease under Ensembl annotation and increase under RefSeq annotation after filtering. The ex-
perimental results confirm this conjecture, as shown in Table 3. When evaluated with RefSeq, Scallop2’s
precision improve by 27.0% with a small decrease in recall (4.4%), while StringTie2 gains a 7.3% increase in
precision but loses 4.0% in recall. When evaluated with Ensembl, Scallop2’s precision increases by 14.0%,
but there is a significant (14.3%) drop in recall. In contrast, StringTie2 improves by 4.8% in precision but
decreases by 6.0% in recall. The changes in accuracy resulting from filtering in individual samples are
shown in Supplementary Figures 1-2 (GRCh38 annotations) and Supplementary Figures 3—4 (T2T-CHM13
annotations). In all cases (combinations of dataset, aligner, and genome build used), Scallop2 shows a
sharper slope than StringTie2 on RefSeq annotations, indicating a much higher gain in precision with a

similar decrease in recall.

As observed in Section 2.1, Scallop2 performs better than StringTie2 with Ensembl annotations but worse
with RefSeq annotations. We now compare the accuracy of Scallop2 after filtering (referred to as Scallop2-
ft) and unfiltered StringTie2. The results, presented in Supplementary Table 1 show that Scallop2-ft out-
performs StringTie2 with RefSeq annotations, evidenced by its outperforming on 45 (out of 68) samples.
Scallop2-ft still outperforms StringTie2 with Ensembl annotations, although the margin is not as large as the
one with unfiltered Scallop2 (see Table 1). We also compare the accuracy of both assemblers after filtering,
i.e., StringTie2-ft and Scallop2-ft in Supplementary Table 2. The results reveal that Scallop2-ft has a draw

with StringTie2-ft with RefSeq annotations, and that Scallop2-ft outperforms StringTie2-ft on all samples.
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Table 3: Comparison of relative change in percentage of precision and the number of matching transcripts
after filtering out transcripts with intron retentions in StringTie2 and Scallop2 assemblies, evaluated with
different annotations as the reference. Numbers are averaged over all samples in each dataset.

dataset  aligner genome  annotation StringTie2 Scallop2
Aprec. A#mat. Aprec. A#mat.
EN10  HISAT2 GRCh38 RefSeq +7.7% -5.1% +30.1% -5.1%
EN10  HISAT2 T2T RefSeq +8.2% -4.6% +30.4% -4.8%
EN10 STAR GRCh38 RefSeq +8.9% -4.5% +36.9% -4.7%
EN10 STAR T2T RefSeq +9.5% -4.1% +37.6% -4.5%
HS7 HISAT2  GRCh38 RefSeq +4.9% -3.7% +17.8% -4.3%
HS7 HISAT2 T2T RefSeq +5.1% -3.5% +17.8% -4.2%
HS7 STAR GRCh38 RefSeq +5.5% -3.5% +22.7% -3.9%
HS7 STAR T2T RefSeq +5.7% -3.3% +23.0% -3.8%
Summary RefSeq +6.9% -4.0% +27.0% -4.4%
EN10  HISAT2 GRCh38  Ensembl +6.0% -6.8% +171%  -16.4%
EN10  HISAT2 T2T Ensembl +5.3% -7.2% +15.4%  -16.2%
EN10 STAR GRCh38  Ensembl +6.4% -6.8% +20.5%  -16.7%
EN10 STAR T2T Ensembl +6.4% -6.7% +20.8%  -16.6%
HS7 HISAT2 GRCh38  Ensembl +3.2% -5.3% +8.0% -12.2%
HS7 HISAT2 T2T Ensembl +3.4% -5.1% +8.1% -12.1%
HS7 STAR GRCh38  Ensembl +3.7% -5.2% +12.3%  -12.1%
HS7 STAR T2T Ensembl +3.9% -5.0% +124%  -11.9%
Summary Ensembl +4.8% -6.0% +14.3%  -14.3%

To further evaluate the impact of partial intron retention (criterion 1 and criterion 2 of irtool, see Sec-
tion 4.4) and full intron retention (criterion 3 of irtool, see Section 4.4) on assembly accuracy separately,
We compared the relative change in assembly accuracy of StringTie2 and Scallop2 on filtering partial in-
tron retention only and filtering entire intron retention only (Supplementary Table 3). We observed that
partial intron retention plays a more effective role in enhancing the precision of Scallop2’s assemblies with
a slightly decrease of sensitivity when evaluated with the RefSeq annotation. This observation aligns with
our initial expectations. In developing the irtool, we conducted an investigation into the characteristics of
transcripts annotated as “retained_intron” within the Ensembl annotation. We found that approximately
one-third of “retained_intron” transcripts possessed exon(s) that overlapped with entire introns in other tran-

scripts, a classic indicator of intron retention. Furthermore, our investigation revealed that the remaining
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approximately two-thirds of “retained_intron” transcripts exhibited partial intron retention. Therefore, three
designed criteria help ensure the comprehensive coverage of both partial intron retention and entire intron

retention.

We evaluate the performance of irtool with different threshold of minimum length-ratio on StringTie2’s
and Scallop2’s assemblies (Supplementary Figure 5). We draw the precision-sensitivity curve to see the
capability of length-ratio threshold to balance sensitivity and precision. The precision-sensitivity curves for
both assemblers evaluated with annotations (Ensembl and RefSeq) show a linear relationship as length-ratio
varies. This suggests that there may not be an optimal choice of length-ratio; the selection of a suitable

length-ratio mainly depends on users’ preference.

We then evaluate irtool with different threshold of minimum coverage-ratio on StringTie2’s and Scallop2’s
assemblies (Supplementary Figure 6). We draw the precision-sensitivity curve to see the capability of
coverage-ratio threshold to balance sensitivity and precision. To have better balance of sensitivity and pre-
cision, we usually want to choose the most top-right point (i.e. higher sensitivity and higher precision) in
the precision-sensitivity curve. The points of default coverage-ratio threshold 0.5 usually located (or near)
the most top-right on curves for all combinations of assemblers, annotations, aligners and datasets. This

indicates the default coverage-ratio 0.5 may be a reasonable choice for general cases.

Users may choose the most suitable parameter, assembler and pipeline according to their specific require-
ments. For examples, if a more comprehensive assembly is preferred, particularly when transcripts with
retained introns are needed, then Scallop2 may be the best choice among Scallop2-ft, StringTie2, and
StringTie2-ft; on the other hand, if transcripts with retained introns are not needed, then Scallop2-ft would

be the best option among the other choices.

2.5 More Comparisons Across Assemblers

Some assemblers such as StringTie2 can run in annotation-guided manner by using a given transcriptome
as input to boost the assembly accuracy. We perform a broader comparison across four reference-based
assembly methods, including StringTie2, Scallop2, StringTiel, and StringTie2-G (i.e., annotation-guided
StringTie2). The results were shown in Supplementary Table 4. StringTie2-G significantly outperforms all
other three methods. This indicates that annotation-guided assembly can be beneficial when a well-annotated

transcriptome is available. We note that there is a potential risk of being biased towards the provided anno-
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tation. In this experiment, the annotation provided to StringTie-G is also used in the evaluation, which may

partially contribute to the improvement of StringTie2-G.

We also evaluate assemblers using the union and intersection of Ensembl and RefSeq annotations, shown in
Supplementary Table 5. We observe that all assembly methods has higher precision and number of matching
transcripts on the union set of annotations, compared with the corresponding numbers in Supplementary
Table 4. This observation aligns with the expectation since union contains a more comprehensive set of

transcripts, and suggests that evaluation with union of different annotations may be a better choice.

We now elaborate the methodological differences between StringTie and Scallop series, trying to give
another perspective that explains the discrepancy when they are evaluated with RefSeq and Ensembl an-
notations. The algorithmic core of Scallop series, Scallopl and Scallop2, is characterized by a “phase-
preserving” strategy, ensuring all phasing paths constructed from reads, except for those identified as false
positives, are comprehensively covered in the final output of assembled transcripts. This methodology is
designed to to fully “respect” the nuances of reads and their alignments throughout the assembly process.
In particular, when there are reads or partial of reads aligned within intron regions, Scallop2/Scallop1 con-
sistently tries to assemble them into transcripts. Such reads overlapping with intron regions are commonly
interpreted as indicative of intron retention events, resulting in transcripts with intron-retentions. On the
other hand, StringTie2 series, StringTiel and StringTie2, takes a divergent approach by employing a robust,
greedy-based algorithm, which iteratively calculates the “heaviest” path in the splice graph. This approach
is robust to the “noisy” reads in the intron regions, as such reads often exhibit low coverage and does not
span the entire intron. As a result of this algorithmic distinction, StringTie2/StringTiel assembles a reduced
number of transcripts with intron-retentions in comparison to Scallop2/Scallopl. Ensembl annotates a much
higher number of intron-retained transcripts while RefSeq rarely incorporating such transcripts. The com-
bination of this fact and above analysis explains the divergent performance on intron-retentions when these

assemblers are evaluated with different annotations.

According to Supplementary Table 4, StringTiel exhibits reduced precision and identifies fewer matching
transcripts compared to the other three methods across various combinations of aligners, datasets, annota-
tions, and genome builds. The improvement of StringTie2 over StringTiel may be attributed to its more
aggressive strategy for identifying and removing spurious spliced alignments. Specifically, StringTie2 re-

quires 25% more reads than StringTiel to support spliced reads. Also, StringTie2 accepts spliced alignments
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with a long intron only if a at least 150% longer anchor is present on both sides of the splice site. This strict

strategy of loading spliced alignments than StringTiel likely contribute to its improvement.

3 Discussion

In this work we assess the impact of annotations on transcript assembly. We have discovered that different
conclusions can arise when using different annotations for evaluation. To unravel this mystery, we analyzed
the transcript biotypes across various annotations and assemblies, and figured that the bias in annotating and

assembling transcripts with retained introns is the main cause.

Moreover, we investigated similarities and differences in annotations at the intron-exon boundary, junction,
and intron-chain levels, and our results indicate that the primary structural divergences in annotations occur
at the intron-chain level. In addition, we have developed a standalone tool for extracting or filtering out
transcripts with retained introns from an assembly, freely available at https://github.com/Shao-Group/irtool.
This tool can be used in conjunction with any assembler to mitigate bias in transcript assembly with intron
retentions. Our results show that the accuracy improvement varies significantly when applying this tool to
different assemblers. Specifically, we found that Scallop2-ft (Scallop2 followed by filtering) is superior to

Scallop2, StringTie2, and StringTie2-ft when producing an assembly without intron-retained transcripts.

4 Methods

4.1 Evaluation Pipeline

We evaluate Scallop2 (version 1.1.2), StringTiel (version 1.3.6), StringTie2 (version 2.2.0), with and without
-G option which enables the annotation-guided assembly. All assemblers were run with default parameter
setting. The command lines of running StringTie2 and StringTiel are the same: stringtie <input.bam>
-0 <output.gtf>. When an annotation is provided, StringTie2 use the following command line to per-
form annotation-guided assembly: stringtie <input.bam> -G <reference.gtf> -o <output.gtf>.
We use scallop2 -i <input.bam> -o <output.gtf> to run Scallop2. The assembled transcripts (from
any method) are evaluated with GffCompare by command line: gffcompare -r <reference.gtf> -o
<outout.prefix> <query.gtf>. Theirtoolisrunby irtool <input.gtf> <intron-retention.gtf>

<filtered.gtf>.
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We use two human RNA-seq datasets: EN10, consisting of 10 paired-end RNA-seq samples downloaded
from the ENCODE project, and HS7, containing 7 paired-end RNA-seq samples used in the Long Read
Genome Annotation Assessment Project. The assembled transcripts are assessed mainly using five tran-
scriptome annotations derived from two human genome builds: GRCh38 and T2T-CHM13. GRCh38 is the
most commonly used human genome assembly, while T2T-CHM13 is the most recent and comprehensive,
gapless sequence of a human genome. For GRCh38, we use the latest Ensembl annotation (release 107 on
genome build GRCh38.p13) and RefSeq annotation (release 110 on genome build GRCh38.p14). We use
3 annotations from T2T-CHM13, namely the Ensembl annotation, RefSeq annotation, and its own CHM13

annotation released with its paper.

We created two additional annotations, the union and intersection sets of Ensembl and RefSeq annotations,
by GffCompare. These two sets were also employed to evaluate the assembly accuracy of different assembly
methods. Specifically, we run GffCompare by taking the Ensembl annotation as reference and RefSeq
annotation as query. GffCompare generates a . tmap output file for the query RefSeq annotation. The . tmap
file includes a tag Class Code for each transcript in the query annotation. We say a transcript ¢ is in the set
of intersection set of Ensembl and RefSeq annotations if its Class Code is ”’=". We collect all transcripts in

99__99

the RefSeq annotation that have a Class Code as =" to form the intersection set. We collect all transcripts

in the RefSeq annotation that does not have a Class Code as =" to form a unique set, then union it with

the Ensembl annotation to form the final union set.

We use the pipeline depicted in Figure 7 to assess the assemblers’ accuracy using different annotations.
Each RNA-seq sample is aligned with two popular splice-aware aligners, STAR [33] and HISAT?2 [34].
The resulting read alignments will be piped to the assemblers, producing a set of assembled transcripts.
The accuracy of the assembled transcripts will be evaluated using tool gffcompare [35], with one of the
annotations serving as the ground-truth. We use the “transcript level” measure defined by gffcompare: an
assembled multi-exon transcript is considered to be “matching” if its intron-chain exactly matches that of
a transcript in the annotation; an assembled single-exon transcript is defined as “matching” if there is a
significant overlap (80% by default) with a single-exon transcript in the annotation. We report the two
metrics calculated by gffcompare: the total number of matching transcripts, which is proportional to recall,
and precision, defined as the total number of matching transcripts divided by the total number of assembled

transcripts. On samples where mixed outcomes exhibit, i.e., one method performs better on one metric but
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Figure 7: Pipeline of evaluating the accuracy of compared assemblers.

not on the other, we compare their adjusted precisions, defined as their precisions when matching transcripts
are adjusted to be the same. Specifically, we take the assembly with higher recall and gradually remove its
transcripts with lowest (predicted) abundance. In this process its recall will drop but its precision will likely
increase as abundance is highly correlated with accuracy. We step this process when its recall matches that
of the other assembler, and the precision at this moment (i.e., the adjusted precision) will be compared with

the precision of the other assembler. This way of comparison has been used in previous studies [28, 30].

4.2 Metrics for Structural Similarities

We propose a set of metrics for measuring the structural similarities of two annotations. Let ¢ be a transcript.
We use B(t), J(t), and C() to represent the set of intron-exon boundaries, the set of junctions, and the intron-
chain, of 7, respectively. Let g be a gene, which may contain multiple transcripts in an annotation, we define
B(g) = UeB(t), J(8) = UregJ (t), and C(g) = U,C(2), to represent the set of boundaries, junctions, and
intron-chains, of all transcripts in gene g, respectively. Let T be an annotation with many annotated genes.
We then define B(T) = UyerB(g), J(T) = UgerJ(g), and C(T) = UgerC(g). We use Jaccard similarity to
measure the structural similarity of two annotations. Formally, let 77 and 7, be two annotations, we use

Jg(T\,T2) := |B(T)NB(T)|/|B(Th) UB(T»)|, J;(Th, T») := [J(Th) NI (T2)|/|J(T1) UJ(T2) |, and Jo(Th, T2) :=
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|C(Th)NC(T»)|/|C(Th) UC(T2)|, to measure the similarity of 77 and 75 at the level of boundary, junction,

and intron-chain, respectively. Please see Figure 8 for an illustration of these definitions.

4.3 Constructing Gene Correspondence

We focus on multi-exon genes when constructing the correspondence between genes in two annotations, i.e.,
genes annotated with at least one multi-exon transcript. We propose a simple approach: two genes g; € T}
and g, € T>, where T and T, are two annotations, form a pair if they share at least one intron-exon boundary,
i.e., B(g1) NB(g2) # 0. Note that in this definition one gene in 77 may form gene pairs with multiple genes in

T5, but this rarely happens since two genes in one annotation normally do not share intron-exon boundaries.

The Jaccard similarity of each constructed gene pair (g1,g2) at boundary, junction, and intron-chain levels,
can be defined similarly, formally written as Jp(g1,82) := |B(g1) N B(g2)|/|B(g1) UB(g2)|, J;(g1,82) :=

|J(g1)NJ(g2)|/1J(g1)UJ(g2)], and Je(g1,82) := |C(g1) NC(g2)]/C(g1) UC(g2)]-

i P i b Annotation T,

|B(T,)| = # distinct boundaries = 11
|J(T,)| = # distinct junctions =7
mmmm |C(T,)| = # distinct intron-chains =5

Annotation T,

|B(T,)| = # distinct boundaries = 11
[J(T,)| = # distinct junctions =6
|C(T,)| = # distinct intron-chains =3

Figure 8: A toy example for illustrating the Jaccard similarity of two annotations 77 and 7, at the level of
boundary, junction, and intron-chain. Genes and transcripts from the same annotation are colored the same.
Identical boundaries between two annotations are marked with vertical dashed lines. We have J5(T1,T3) :=
‘B(T])ﬂB(Tz)‘/’B(T]) UB(TZ) = 5/6‘, JJ(T] , Tz) = ‘J(T])ﬂJ(Tz)‘/’J(T])UJ(Tz)’ = 5/8 ,and Jc(Tl , Tz) =
IC(T) NC(T2)|/|C(Th) UC(T2)| = 1/3].
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4.4 Definition of Intron Retentions in the Context of Assembly

We describe our definition of (partial) intron retentions. To determine if a transcript # in an assembly has
intron retention or not, we need to find another transcript r in the same assembly as reference, and compare
t with r. The definition also uses the abundances (i.e., expression levels) of ¢ and r; we therefore assume that
each transcript in the assembly are associated with an abundance. Most assemblers, including StringTie2 and
Scallop2, assembles transcripts while also predicting their abundances. Let p(¢) and p(r) be the abundances
of transcripts ¢ and r, respectively. We define transcript ¢ has intron retention if there exists transcript r (in
the same assembly with 7) such that p(r)/p(z) is above a threshold (a parameter termed coverage ratio; 0.5
by default) and either (a) the first exon of ¢ spans an intron and the following exon of r (Figure 9, criterion
1), or (b) the last exon of ¢ spans an exon and the following intron of r (Figure 9, criterion 2), or (c) there
exists an exon in ¢ and an intron in r such that the intron is fully covered by the exon (Figure 9, criterion
3). Note that one transcript ¢ may satisfy two or more criteria with the same r, or may satisfy one or more

criteria with different r.

We refer to the criteria 1 and 2 defined above as partial intron retention and criterion 3 as full intron retention.
irtool provides two options, option -po <bool> to turn off partial intron retention and keep entire intron
retention only, i.e. turn off criterion 1 and 2, keep criterion 3 only; and option -wo <bool> to turn off entire

intron retention and keep partial intron retention only, i.e. turn off criterion 3, keep criterion 1 and 2 only.

P(t1) =86 — N _‘———_
criterion 1
P(t)=2.4 ; I —I—I—A———

P(t;) =1.7 o

‘

P(ty) =32 m— {

criterion 3 i

Figure 9: An illustrative example for the three criteria used to define transcripts with intron retentions.
Identical boundaries are marked with vertical dashed lines. Transcript #, satisfies criterion 1 (it has lower
abundance than 7, and its first exon spans the second intron of #;). Transcript #3 satisfies criterion 2 (it has
lower abundance than #; and its last exon spans the fourth intron of #;). Transcript #4 satisfies criterion 3 (it
has lower abundance than #; and its second exon fully covers the second intron of #;).
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In order to characterize partial intron retention more precisely, irtool provides two parameters, coverage
ratio as defined above, and length ratio, defined as the the ratio between the length of the first/last exon
that overlaps with the intron and the length of the intron and 0 by default. Adjusting either one provides a
trade-off between sensitivity and precision. More number of transcripts can be identified as transcripts with
intron retention when the length-ratio or coverage-ratio becomes lower. Hence, the sensitivity decreases
while the precision increases when the length-ratio or coverage-ratio gets lower. Users can specify their

preferred choice of coverage ratio with option -~cr <double> and length ratio with option -1r <double>.
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