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ABSTRACT

The high-throughput short-reads RNA-seq protocols often produce
paired-end reads, with the middle portion of the fragments being
unsequenced. We explore if the full-length fragments can be com-
putationally reconstructed from the sequenced two ends in the
absence of the reference genome—a problem here we refer to as de
novo bridging. Solving this problem provides longer, more infor-
mative RNA-seq reads, and benefits downstream RNA-seq analysis
such as transcript assembly, expression quantification, and splic-
ing differential analysis. However, de novo bridging is a challeng-
ing and complicated task owing to alternative splicing, transcript
noises, and sequencing errors. It remains unclear if the data pro-
vides sufficient information for accurate bridging, let alone efficient
algorithms that determine the true bridges. Methods have been
proposed to bridge paired-end reads in the presence of reference
genome (called reference-based bridging), but the algorithms are
far away from scaling for de novo bridging as the underlying com-
pacted de Bruijn graph (cdBG) used in the latter task often contains
millions of vertices and edges. We designed a new truncated Dijk-
stra’s algorithm for this problem, and proposed a novel algorithm
that reuses the shortest path tree to avoid running the truncated Di-
jkstra’s algorithm from scratch for all vertices for further speeding
up. These innovative techniques result in scalable algorithms that
can bridge all paired-end reads in a cdBG with millions of vertices.
Our experiments showed that paired-end RNA-seq reads can be
accurately bridged to a large extent. The resulting tool is freely
available at https://github.com/Shao-Group/rnabridge-denovo.
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1 INTRODUCTION

The high-throughput RNA sequencing technologies (RNA-seq) en-
able accurate measurement of isoform-level gene activities and
have been widely used in biological and biomedical research. The
second generation short-reads RNA-seq, which remains de facto
standards for most expression studies, often produces paired-end
reads. Such data reports sequences of the two ends of a fragment
of an RNA molecule, but misses the middle portion of the frag-
ment. The fact that two ends are from the same molecule and that
the length of fragments follows a certain distribution (through
fragment size selection) provides valuable long-range information
in determining complicated splicing variants, and has been incor-
porated into various RNA-seq analysis tools and software to im-
prove accuracy, including splicing-aware alignment (e.g., STAR [5],
HISAT?2 [10], SpliceMap [1]), isoform-level expression quantifi-
cation (e.g., Salmon [17], kallisto [2], RSEM [12]), transcript as-
sembly (e.g., StringTie [18], StringTie2 [11], TransComb [14], Scal-
lop [20], and Scallop2 [22]), gene fusion detection (e.g., FuSeq [21],
STAR-Fusion [7], SQUID [16]), and splicing quantification (e.g.,
DARTS [23], leafCutter [13]), among many others.

We explore computationally inferring the full-length fragments
from paired-end RNA-seq reads, a problem we refer to as bridging.
Solving this problem can substantially benefit downstream RNA-
seq analysis such as transcript assembly, isoform quantification,
and splicing quantification. Specifically, the inferred full-length
fragments likely contain more splicing junctions than individual
reads, and hence provide additional long-range information that
helps resolve more complicated splicing variants in transcript as-
sembly. Longer sequences will be less likely to be ambiguously
located to transcripts expressed from the same gene or from ho-
mologous genes, and hence improves isoform quantification. The
reconstructed full-length fragments may reveal missing junctions
in the unsequenced portion, which will likely lead to a more accu-
rate estimation of junction abundance, and hence improves splicing
quantification.

The above bridging problem has been studied in a reference-
based setting, implemented as part of the Scallop2 assembler [22].
In that method, the reads alignments of a gene locus are first or-
ganized by a splice graph, and reads are then presented as paths
in the graph. Scallop2 proposed a formulation that seeks a path
connecting the two ends of a paired-end read such that the bottle-
neck weight (defined as the smallest edge-weight) of the path is
maximized. Scallop2 designed a dynamic programming algorithm,
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and it was demonstrated to be efficient in improving the accuracy
of reference-based assembly.

In this work, we explore the bridging problem in the de novo
setting, i.e., without using a reference genome, termed de novo
bridging. This is motivated by the RNA-seq analysis for non-model
species, for which a good-quality reference genome is not yet avail-
able. The de novo bridging problem can also be modeled as a graph
problem. Specifically, all RNA-seq reads can be organized by a de
Bruijn graph (dBG) or compacted de Bruijn graph (cdBG) [3]. (In this
paper we use cdBG.) Similar to the aforementioned reference-based
bridging, the sequenced two ends of a fragment can be mapped to
the cdBG, and the bridging problem amounts to finding a path that
can connect the two ends in the graph. Given the proven efficiency
of the formulation proposed in Scallop2 for reference-based bridg-
ing, here we adopt it for de novo bridging, i.e., to seek a connecting
path in the cdBG such that the bottleneck weight is maximized.
However, the dynamic programming algorithm in Scallop2 cannot
be applied for de novo bridging, as it is designed for splice graphs
which is acyclic (while cdBGs have cycles) and that it cannot scale
for cdBGs which contain millions of vertices (while splice graphs
typically contain hundreds of vertices or less).

We propose two algorithmic innovations to enable de novo bridg-
ing that scales to graphs with millions of vertices. First, we design
a truncated Dijkstra’s algorithm which can find the optimal path
while taking into account the fragment length to speed up searching.
Second, we propose to use shortest path tree to store the optimal
solutions for a single vertex and propose an efficient algorithm to
construct such shortest path tree for the next vertex by reusing the
nodes and edges on previous trees. This allows us to avoid running
the above truncated Dijkstra’s algorithm from scratch for all pos-
sible vertices. Combined, the resulting algorithm can accurately
bridge all paired-end reads in a couple of hours on typical RNA-seq
samples (with millions of vertices in the underlying cdBG).

2 ALGORITHMS

Our approach for de novo bridging consists of three modules (see
Figure 1): constructing the cdBG (Section 2.1), mapping reads to
the cdBG (Section 2.2), and bridging the reads. The last module is

Paired-end RNA-seq reads

Module 1:
Construct compacted de Bruijn graph

Module 2: l
Map reads to graph
Reads

L

\ / Fragments

Module 3:
Find a path connects two ends

Figure 1: The pipeline of our method for de novo bridging.
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organized as a formulation (Section 2.3) followed by the algorithms
for solving the formulation (Section 2.4).

2.1 Constructing Compacted de Bruijn
Graph (cdBG)

We use cdBG to represent the given paired-end RNA-seq reads. See
Figure 2. In the de Bruijn graph (dBG), each vertex represents a dis-
tinct k-mer, and its weight is equal to the number of the appearance
in the reads. The corresponding cdBG is defined as concatenating
each simple path (i.e., every vertex in it except the first and the
last one has in-degree of 1 and out-degree of 1) of the dBG as a
single vertex (the resulting sequence is called a unitig). To comply
with our formulation of finding the most reliable path (see details
in Section 2.3), we assign the weight of each vertex in cdBG as the
smallest weight of the corresponding simple path in dBG.

(paired-end RNA-seq reads)

TAGC -- TCAT (2) TAGG -- GCAT (1)
AGCT -- CATG (1) GCTC -- TCAT (2)
AGCA -- CATG (2) TAGG -- GGCA (1)

(de Bruijn graph)
4 5 3 2 4 8 3

[TAG}—{AGC}—[GCT}—[{CTC}—[TCA
AGG
2 3 4

Figure 2: Example of a ¢cdBG constructed from paired-end
RNA-seq reads.

In implementation, we directly construct the cdBG and calcu-
late vertex weights, instead of explicitly constructing dBG as an
intermediate. Specifically, we use the library Bifrost [8] to build the
cdBG. In order to assign vertex weights, we first build a table that
stores the frequency of each k-mer; we then examine all k-mers
in this vertex (a unitig of length I contains [ — k + 1 k-mers) and
assign the smallest frequency as the weight of the vertex.

2.2 Mapping Reads and Constructing
Equivalent Classes

After constructing the cdBG, we map all paired-end reads to the
graph. For each end, we first call the findunitig function provided in
the library Bifrost to fetch the vertex that matches the beginning of
this end. Then we can traverse the graph by extending the following
characters to get a list of vertices that this end is matched to. This
procedure gives the path for each end in the cdBG.
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Let G = (V,E) be the cdBG and let f be a fragment. Each end
of f can now be represented as a path in G, and f can then be
represented as a pair of paths in G. Note that multiple fragments
may correspond to the same pair of paths in G; we cluster them
into equivalent classes. In other words, an equivalent class is a pair
of paths (p1, p2) in G that represent all fragments with two ends
corresponding to p1 and p; respectively.

Let F = (p1 = (a1, a2, ,am),p2 = (b1, ba,--+,by)) be an
equivalent class. The problem of bridging fragments in F becomes
finding a path in G from ay, to b1; such path is defined as a bridging
path. We assume that all fragments in an equivalent class have
the same true bridging path. Because fragments in an equivalent
class are similar, as their two ends are mapped to exactly the same
list of vertices in the graph. Algorithmically, it allows us to reduce
computational load, as all fragments can be bridged in a single run.

2.3 Formulation

We now formulate the de novo bridging as an optimization problem,
using the same idea proposed in Scallop2 [22]. We define a full
ordering of all bridging paths w.r.t. an equivalent class F = (p; =
(a1, a2, ,am), p2 = (b1,ba,---,by)). Let q1 and q2 be two arbi-
trary paths from an, to by in graph G. Let wi (resp. wé) be the ith
smallest weight in path g; (resp. g2). We say q1 is more reliable than

q2, if there exists an integer k such that wi = w; forall1 <i <k,

and w’f > wé‘. We now formulate the bridging problem as to find

the most reliable path. Intuitively, we seek a path q from a,, to by
in G such that the smallest weight in this path is maximized, and
in case there are multiple paths with maximized smallest weight,
among them we seek the one whose second smallest weight is max-
imized, and so on. This formulation has been showed to be accurate
when applied for reference-based bridging.

We note that this formulation satisfies the optimal substructure
property. Specifically, if ap, — v;;, = v, = -+ = v, — by is
the most reliable path, then ay, — v;;, — v;, — .-+ — v;;_ is the
most reliable path from ay;, to v;; . This formulation forms the basis
for designing efficient algorithms. The bottleneck weight (smallest
weight of the optimal path) in this formulation can be used as
a filtering criterion to decide if a bridging path is true. We set
this threshold with different numbers to balance sensitivity and
precision in bridging (see Table 1 and Table 2).

2.4 Bridging Algorithms

Given the optimal substructure property, a straightforward dynamic
programming can be designed (which essentially was used in Scal-
lop2). However, as the cdBG constructed from a typical RNA-seq
sample may consist of millions of vertices (see Table 3), above dy-
namic programming algorithm simply cannot scale. We propose to
adopt the Dijkstra’s algorithm. Dijkstra’s algorithm is primarily used
for solving the shortest path problem, but we modify it to find the
most reliable path defined above. Specifically, we maintain an array
d[] to store the bottleneck weight on the most reliable path from the
source to other vertices; each time we select the vertex with highest
d-value using a priority queue. Then for each vertex j adjacent to i,
d[j] can be updated as d|j] = max(d[j], min(d|[i], e(i, j))) where
e(i, j) is the weight of the edge from vertex i to vertex j.
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A single run of the above Dijkstra’s algorithm starting from
a vertex in the ¢cdBG G = (V, E) will find the most reliable path
connecting it to all other vertices. It runs in O(|V|log|V]) time,
already faster than the dynamic programming algorithm used in
Scallop2, which runs in O(]V’| - |E’|) time where V' and E’ are the
vertices and edges of the splice graph.

To further speed it up, we propose two algorithmic innovations.
First, we implemented a truncated Dijkstra’s algorithm to find the
most reliable bridging path starting from a starting vertex a, to any
other vertex up to a certain length D. In our truncated Dijkstra’s
algorithm, for each vertex v we maintain the total length of the
most reliable path from the current starting a, to v, and when such
length for v reaches D, we won’t further extend from v to any other
vertices in the Dijkstra’s algorithm.

The second algorithmic innovation is that we reuse the optimal
solutions obtained for the current starting vertex ap, to construct
the optimal solutions for the next starting vertex a},,. This allows
us to avoid running the above truncated Dijkstra’s algorithm from
scratch for all possible starting vertices. Specifically, for the current
starting vertex a,, we maintain a shortest path tree, denoted as
T(am), to store the most reliable paths from ay, to all other ver-
tices (up to length D), i.e., the unique path in T from root a,, to any
vertex v gives the most reliable path from ay, to v in the cdBG. See
Figure 3. This tree can be constructed in linear time while running
the truncated Dijkstra’s algorithm. We note that, again according
to the property of optimal substructures, any subtree of T(a,),
say the one rooted at u, also gives the most reliable path from u
to any other vertex w in the subtree. This suggests we can reuse
the subtree rooted at u to calculate all reliable paths starting from
u (and then construct the corresponding shortest path tree). More
specifically, in implementation, we directly load the subtree rooted
at u to the priority queue (recall that the core data structure of Di-
jkstra’s algorithm is a priority queue that gets updated iteratively).
In other words, for the next starting vertex u, we run the truncated
Dijkstra’s algorithm in the middle rather than from scratch, as we
already know the optimal solutions for a subset of vertices (i.e.,
those in the subtree of T(a,,) rooted at u). To benefit from this
property to the largest extent, we determine the starting vertex
whose subtree is largest as the next one to bridge.

Figure 3: Illustrating the shortest path tree starting from
vertex a,,. Consider subtree rooted at v. Then for any vertex
in it, say w, the path from v to w in this subtree is the most
reliable path from v to w in the c¢dBG.
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3 RESULTS

3.1 Resulting Tool

The above algorithm was implemented, available at https://github.
com/Shao-Group/rnabridge-denovo. The input files for this tool
is the paired-end RNA-seq data in fastq/fasta format, and it gen-
erates sequences of full fragments again in fasta format. Since so
far our method is the only one for de novo bridging, we could not
compare it with other methods in the following experiments. In
our experiments, we choose k = 31 when constructing cdBG. The
upper bound of the bridging path D can be picked according to the
distribution of the insert size so as to cover most of the fragments.
We use a default value of D = 400, based on the ENCODE RNA-seq
Data Standards [19].

3.2 Datasets

We use two datasets to evaluate the accuracy of bridging. The first
dataset includes 80 paired-end RNA-seq samples simulated using
Flux-Simulator [6]. We vary two parameters in the simulation:
the average length of fragments (flen; 300 and 500) and the read
length (rlen; 75 and 100). For each combination of parameters,
we independently simulated 20 samples. The number of reads in
samples with fragment length being 300 and 500 are roughly 150M
and 90M, respectively. The second dataset was previously used in
the Scallop paper [20]: it contains 10 biological RNA-seq samples.

3.3 Results on Simulation Data

We first evaluate the accuracy of our algorithm using simulation
data, for which the ground-truth is available. A bridged fragment is
correct only if it is exactly the same as the ground-truth fragment.
The sensitivity is defined as the number of correctly bridged frag-
ments divided by the total number of fragments (i.e., paired-end
reads), and precision is defined as the number of correctly bridged
fragments divided by the total number of bridged fragments.

The results are summarized in Table 1. The bottleneck thresh-
old used to filter bridges is set to 5 for all simulated samples. Our
algorithm exhibits high accuracy, suggesting that the missing por-
tion can be accurately bridged given solely the reads information
and that our algorithm is able to use such information to bridge.
The accuracy drops with long fragment length. This is expected as
in this case the missing portion is longer and therefore harder to
bridge. Higher accuracy is observed when the read length is longer
at the same fragment length, again as expected.

Table 1: Averaged bridging accuracy on the simulated RNA-
seq datasets.

flen rlen bottleneck sensitivity (%) precision (%)

300 75 5 80.7 91.8
300 100 5 85.7 92.5
500 75 5 66.6 85.4
500 100 5 76.3 86.9
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3.4 Results on Real Data

We then evaluate the accuracy of our algorithm on real dataset.
The paired-end reads are first processed by an error correction tool
RECKONER [4]. As we do not have ground-truth for them, we use
the sequences in the reference transcriptome to evaluate. We align
all the bridged fragments to reference using BLAT [9]. A bridged
fragment is correct only if it is hit by one of the reference sequences
with at least 95% sequence identity. The sensitivity and precision
are defined the same as in evaluating with simulation data.

The results are summarized in Table 2. Overall the precision
keeps high but the sensitivity varies quite a lot. This is because we
prioritize precision by setting a high bottleneck-threshold: 20 for
samples with less than 50M paired-end reads and 100 otherwise.
Comparing with simulated data, biological data are noisier and
harder to bridge. We note that high precision is more desirable
for downstream analysis in order not to introduce false positives.
Given the high precision, even a small portion of correctly bridged
paired-end reads are able to improve the accuracy of downstream ap-
plications. Users may also choose to adjust the bottleneck-threshold
to balance the precision and sensitivity.

Table 2: The bridging accuracy on the 10 RNA-seq samples.
The number of paired-end reads are given in unit of million.

SRAID #paired-reads bottleneck sensitivity (%) precision (%)

SRR307903 36.0M 20 59.5 91.5
SRR307911 41.4M 20 52.8 91

SRR315323 30.3M 20 39.7 88.5
SRR315334 39.5M 20 60.2 93.3
SRR545723 38.9M 20 443 75.5
SRR387661 124M 100 59.9 93.7
SRR534291 114M 100 67.4 93.0
SRR534307 165M 100 65.6 89.5
SRR534319 76.6M 100 29.5 71.2
SRR545695 119M 100 43.4 77.0

3.5 Analysis of Running Time

We show the breakdown of the CPU time of the 3 modules (Sec-
tion 2) of our tool together with the size of the resulting cdBGs on
the 10 biological samples in Table 3. Note that module 3 takes the
least CPU time among 3 modules, which proves the efficiency and
scalability of the bridging algorithms. Performance was tested on a
server with 40 cores (CPU model: Intel(R) Xeon(R) Gold 6148 CPU
@ 2.40GHz) and 760 GB memory.

4 CONCLUSIONS AND DISCUSSION

We study the problem of reconstructing the full-length fragments
from paired-end reads without a reference. The experimental results
showed that the simulated RNA-seq data does provide sufficient
information for accurate bridging. As for the real RNA-seq data, it
provides enough information to bridge a large part of the reads.
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Table 3: The size (number of vertices and edges; in unit of mil-
lion) of the cdBGs and the CPU time (in minutes) measured
for the 3 modules of our bridging tool on the 10 biological
RNA-seq samples.

SRA D size of cdBG CPU time (in minutes)
#vertices #edges 1 2 3

SRR307903 3.09M 6.17M 96 26 22
SRR307911 5.24M 10.77M 138 48 135
SRR315323 5.22M 10.14M 102 31 112
SRR315334 3.04M 7.27TM 124 46 45
SRR387661 10.69M 26.06M 413 162 118
SRR534291 7.83M 21.66M 679 244 95
SRR534307 15.44M 42.92M 938 512 418
SRR534319 10.23M 23.22M 298 81 97
SRR545695 11.04M 25.65M 415 128 133
SRR545723 9.51M 19.6M 226 64 303

We invented two algorithmic innovations for de novo bridging,
including a novel truncated Dijkstra’s algorithm and a new tech-
nique that reuses optimal path trees to speed up. Experimental
results proved that the resulting tool is efficient on real data. We
also proved that the formulation used for reference-based bridging
is also accurate for de novo bridging when applied on the cdBG;
this conclusion was unclear before we conducted this research.

We explored if bridging could improve de novo transcript assem-
bly. To this end, we piped the bridged fragments to one leading
assembler TransLiG [15], but only observed marginal improvement.
This may be because TransLiG is not optimized to make use of
mixed short and long sequences. Developing a new de novo assem-
bler that can fully use such bridged data is on our research agenda.
Experimenting if de novo bridging could improve isoform quan-
tification and splicing quantification is also an interesting future
research topic.

The sensitivity of our algorithm is low on some biological RNA-
seq samples. One reason is that we used a high bottleneck-threshold
to keep high precision, which consequently disconnects paired-end
reads in low-coverage gene loci. We are therefore developing a
post-bridging algorithm to use full-range information in the reads
to decide if a bridged fragment is correct (rather than just using a
bottleneck-threshold), in the hope of keeping high precision while
improving sensitivity. Specifically, note that the cdBG is not a loss-
free representation of sequencing reads, as it breaks reads into
k-mers, and any phasing information beyond (k + 1)-mer is not rep-
resented. Let s be the bridged sequence of a fragment f constructed
using above algorithm. We can examine each sliding window of
length L, where L is the read length, and determine the number of
input reads that are identical to this L-mer (i.e., these reads sup-
port this L-mer). This gives a supporting profile, a vector of length
[s| = L+1 for this bridged sequence. Intuitively, a profile with few 0s
suggests that the bridged sequence is likely a true one, while long
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consecutive 0s in the profile suggest a false bridge. We are exper-
imenting if such a supporting profile could lead to more efficient
algorithms in boosting bridging accuracy.
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