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ABSTRACT

In computational biology, k-mers and edit distance are fundamental
concepts. However, little is known about the metric space of all
k-mers equipped with the edit distance. In this work, we explore
the structure of the k-mer space by studying its maximal indepen-
dent sets (MISs). An MIS is a sparse sketch of all k-mers with nice
theoretical properties, and therefore admits critical applications in
clustering, indexing, hashing, and sketching large-scale sequencing
data, particularly those with high error-rates. Finding an MIS is
a challenging problem, as the size of a k-mer space grows geo-
metrically with respect to k. We propose three algorithms for this
problem. The first and the most intuitive one uses a greedy strategy.
The second method implements two techniques to avoid redundant
comparisons by taking advantage of the locality-property of the
k-mer space and the estimated bounds on the edit distance. The
last algorithm avoids expensive calculations of the edit distance
by translating the edit distance into the shortest path in a specifi-
cally designed graph. These algorithms are implemented and the
calculated MISs of k-mer spaces and their statistical properties are
reported and analyzed for k up to 15. Source code is freely available
at https://github.com/Shao-Group/kmerspace.
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1 INTRODUCTION

Given an alphabet X, we denote by Si the set of all sequences of
length k over . Clearly, |Si| = |=|K. In this work, we call a sequence
of length k a k-mer, and call Sy the k-mer space, for the sake of
convenience. The Levenshtein distance [14], also known as the
edit distance, between two sequences u and v, denoted as edit(u, v),
is defined as the minimum number of insertions, deletions, and
substitutions needed to transform u into v. The edit distance is a
metric; the k-mer space together with the edit distance (S, edit)
forms a metric space.

Despite the ubiquitous use of k-mers and the edit distance in com-
putational biology, the properties and structures of the metric space
(S, edit) remain largely unknown. It is worth noting that (Sg, edit)
is intrinsically different from the well-studied metric spaces on
sequences such as the Hamming distance space or other normed
spaces (when a k-mer is represented as a vector of dimension k), as
evidenced by the fact that embedding the edit distance on {0, 1}k
into the L; space requires a distortion of Q(log k) [12, 20].

In this work, we study the maximal independent set (MIS) of a
k-mer space parameterized with an integer d > 0. Formally, we say
a subset M C Si is independent if edit(u,v) > d for every two k-
mers u and v in M, and we say an independent subset M is maximal
if there does not exist another independent subset M” such that
M € M’. These definitions can be equivalently stated using the
language of graph. Given an integer d > 0, we define an undirected
graph Gl‘j = (V. = Sk,EZ) where there is an edge (u,0) € El‘f if
edit(u,0) < d. The above defined MISs of the k-mer space with
respect to an integer d is equivalent to MISs in the graph Gl‘j,

1.1 Applications

We address the problem of finding an MIS of a k-mer space. Solving
this problem helps understand the structure of the metric space
(S, edit) as an MIS indicates how dense a k-mer space is under
the edit distance. More importantly, finding MISs of Gl‘f has critical
applications in large-scale sequence analysis thanks to its nice
properties. We elaborate on a few below.

First, an MIS M naturally can be used as a set of “centers” for
clustering k-mers. The centers (k-mers in an M) are distant from
each other which means that clusters are not crammed together. In
addition, every k-mer v can find a “nearby” center, as there exists
a k-mer u € M such that edit(u,v) < d (otherwise M U {0} is an
independent set that strictly contains M). These properties make
an MIS an ideal set of centers for clustering k-mers.
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Second, k-mers of an MIS can be used to design a new seeding
scheme for aligning error-prone reads. Modern fast aligners often
use exact k-mer matches as anchors (or seeds) [5, 15]. However,
such methods exhibits low sensitivity when aligning reads with
high error-rate (i.e., long-reads data generated by PacBio [22] and
Oxford Nanopore [9]), because under high error-rate, two biolog-
ically related sequences hardly share any identical k-mers (for a
reasonable choice of k such as k = 15 and an error rate of 15%). One
can choose to use smaller k but this will lead to high false positives
as unrelated sequences can, by chance, share many short k-mers.
A new seeding scheme can be designed by first mapping a k-mer
into its nearest k-mer u in an MIS M: two k-mers form an anchor
if they are mapped to the same k-mer in M. The advantage of this
MIS-based seeding scheme is that it tolerates edits in k-mers and is
therefore more sensitive for error-prone data. Comparing to k-mer-
alternative seeding methods such as spaced seeds [3, 17] and indel
seeds [18] where only restricted types of edits are allowed (e.g.,
spaced seeds cannot model indels), this MIS-based scheme can rec-
ognize similar k-mers with both indels and substitutions. Moreover,
the intrinsic properties of an MIS also control the false-positives:
by triangle inequality, two distant k-mers that are 2d edits apart
will never be mapped to the same k-mer.

Third, an MIS of the k-mer space can be used to improve sketch-
ing approaches. Sketching enables scaling to large datasets by only
selecting a subset of representative k-mers in a sequence. Exist-
ing k-mer sketching methods such as FracMinHash [1, 8] often
use a random permutation of k-mers and pick the top fraction as
representative k-mers. By using an MIS as a representative subset
instead, the selected k-mers are guaranteed to be at least of d edits
apart of each other, and are hence more efficient.

1.2 Related Work

All above applications require finding an MESA in the first place.
However, computing an MAYS of a k-MIA space is difficult, simply
because the number of k-moss |Si| = |Z|k (equivalently, the number
of vertices in the graph GZ) grows exponentially with k and the

number of edges in the graph |E1‘3| = 0(|z[%K) grows even faster.
Existing algorithms for finding an MASS in a general graph, for
example, the greedy algorithm that takes O(m) time for a graph
with m edges, are therefore not suitable for our problem. In fact,
even constructing EI”CI explicitly is often unaffordable.

In graph theory, both the maximum-size MIS (i.e., maximum
independent set) and minimum-size MIS (a.k.a, independent domi-
nating set) are extensively studied. Both problems are known to be
NP-hard and cannot be approximated within a constant factor in
polynomial time unless P=NP. Polynomial-time algorithms exist
only for restricted classes of graphs, see the survey [7].

For applications with massive graphs such as social networks
and traffic planning, researches have been focusing on developing
heuristics that find a large-size independent set [4, 13]. Different
practical computation models are also considered, including on
GPUs [2], on semi-external setting [16] where the edges of the
graphs are loaded on demand from disk, and on dynamic graphs [6]
where a large MIS needs to be maintained as the graph changes.

We note that the graphs studied in the above context are often
at least an order of magnitude smaller and are several orders of
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magnitude sparser than the k-mer space (k = 15) studied in this
paper. Hence their results cannot be used for our purpose. Further-
more, these approaches assume that the graph under consideration
is given which does not hold in our situation. As mentioned above,
computing and storing the entire k-mer space would be largely
inefficient, if not infeasible. In fact, one of the contributions of our
algorithms is that we efficiently exploit the structural information
of the k-mer space to avoid the expensive edit distance computation
for testing if there is an edge between two vertices.

1.3 Results

In this work, we design three algorithms for finding an MIS of a k-
mer space. Our algorithms take into account the special properties
of k-mers and the edit distance so that the underlying graph Gl‘j
does not need to be explicitly constructed. Our algorithms are able
to scale to instances with k = 15. We implemented these algorithms
and calculated an MIS for all combinations of k and d for k < 15
and reported their statistics. We also analyzed and concluded when
to use which algorithm for different combinations of k and d.

2 ALGORITHMS

We design three algorithms for finding a MIS of all k-mers, given
k and d. The first one is a greedy algorithm that is similar to the
greedy algorithm for computing an MIS on general graphs but with-
out explicitly building all edges of the underlying graph. The second
algorithm improves the first one by reducing redundant compar-
isons through recognizing the locality properties of k-mers and
estimating and incorporating the bounds of the edit distance into
the algorithm. The last algorithm transforms calculating the edit
distance into finding the shortest path in a specifically constructed
graph, and finding an MIS is then transformed into efficient graph
traversing together with accompanied data structures to speed up.

2.1 A Simple Greedy Algorithm

This algorithm maintains a (dynamic) array M that stores the cur-
rent MIS, initialized as an empty array. The algorithm examines
each k-mer in Si: for the current k-mer v, it compares with all
k-mers in M, and adds v to M if edit(u,v) > d for every u € M. See
the pseudocode given below.

Algorithm 1 Simple Greedy Algorithm

initialize an empty array M
for each k-mer v € Si do
isMapped « false
for each k-mer u € M do
if edit(u,v) < d then
isMapped « true
break
end if
end for
if isMapped == false then
add v into M
end if
end for
return M
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We now show that this algorithm is correct, i.e., the returned M
is indeed an MIS. According to the algorithm, k-mer v is added to M
only if edit(u,v) > d for all u € M. This means that any two k-mers
in M have an edit distance larger than d, i.e., M is independent. On
the other hand, for any k-mer v not included in M, the algorithm
guarantees that there exists a k-mer u in M such that edit(u,v) < d;
this implies that M is maximal.

The above algorithm runs in O(|M| - |Z|k -d - k) time, as in the
worst case it compares each k-mer in Si with all k-mers in M, and
determining if edit(u, v) < d for two k-mers u and v takes O(d - k)
time. The running time is output-sensitive. It is in favor of instances
with small MIS.

2.2 An Improved Greedy Algorithm

We say a k-mer v is mapped to a k-mer u in the (partially) con-
structed MIS M if edit(u, v) < d. Such a mapping explains why v is
not selected into the MIS. Algorithm 1 essentially finds a mapping
for each k-mer v € Si \ M using an iterative, exhaustive search. As
the size of an MIS increases, this can significantly impair the per-
formance of the algorithm. Observe that the search order matters:
if a mapping of a k-mer is found early, all the following compar-
isons can be avoided. Furthermore, based on the results of previous
comparisons, it can be inferred that some k-mers in the MIS are
close to v while some others are too far away to serve as mappings.
We design two techniques that allow us to quickly determine if
v can be mapped to some k-mer in M, by utilizing the locality-
properties, and to quickly filter out those k-mers in M that v cannot
be mapped to, by estimating the bounds on the edit distance. These
two techniques serve as extensions to the first algorithm to avoid
unnecessary comparisons.

The first technique is based on the observation that a k-mer is
likely to have a shared mapping with its “neighboring” k-mers. For
a k-mer v, we define its nearest neighbors to be the subset of Sy in
which each k-mer has edit distance 1 from v, i.e., a substitution. For
any given k-mer, clearly, its nearest neighbor set contains k(|X]| — 1)
k-mers. For example, the set of nearest neighbors of the 3-mer AAA
is {AAC, AAG, AAT, ACA,AGA, ATA, CAA,GAA, TAA}. If AAA is
selected into the MIS, all the above 9 k-mers will have it as a shared
mapping. This locality-property suggests a modification to Algo-
rithm 1: store the mapping information of k-mers (once found) so
that potential shared mappings can be examined first. Note that a k-
mer can have multiple valid mappings in the MIS, but we only keep
record of one to save both time and space. When checking whether
a k-mer v should be added to the MIS or not, we first compute the
nearest neighbors of v and check if v shares a mapping with them.
If a shared mapping is found, we store this mapping information
for v and directly conclude that v cannot be included in the MIS.

The second technique uses the estimated bounds of the edit
distance. Recall that (S, edit) is a metric space, in particular, the
triangle inequality holds. Let o* be the k-mer that is purely com-
posed of the character o. For any two k-mers u,0 € Sg and o € 2,
we have

edit(u,v) >

edit (u, ak) — edit (Uk, Z))

, (1)
edit(u, v) < edit (u crk) + edit (O'k, u) . (2)
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Note that the calculation of edit(u, ok ) is simple: all characters in u
that are not ¢ should be substituted by o (insertions and deletions
cannot reduce the number of edits needed). Hence, the upper and
lower bounds provided by inequalities (1) and (2) can be used as
a filter before performing the expensive calculation of edit(u, v).
Using this idea, we modify the algorithm as follows. For each k-mer
u in the constructed MIS, we store additional values edit(u, crk)
for each o € X. When searching for a mapping of a k-mer v, for
each k-mer u in the MIS, we check if the parameter d is within the
range given by inequalities (1) and (2). If so, we calculate the exact
distance edit(u, v) and compare it with d; otherwise, if d is less

than maxsex {‘edit (u O'k) — edit (O'k,v)”, we directly conclude
that edit(u,v) > d and therefore u cannot be a valid mapping of
v; if d is greater than mingey {edit (u, ak) + edit (O’k, U) } then we
know that edit(u,v) < d and v cannot be included in the MIS.
Algorithm 2 incorporates above two techniques. Note that Al-
gorithm 2 is also correct, i.e., the returned M is guaranteed an
MIS, following the correctness of Algorithm 1 and above analy-
sis. The worst-case running time of Algorithm 2 is the same with
Algorithm 1 but it runs faster in practice (see Section 3).

Algorithm 2 Improved Greedy Algorithm

initialize empty arrays M, mapping, and do //do[u] is later used
to store edit(u, crk), foreacho € X
for each k-mer v € Si do
isMapped « false
for each nearest neighbor u of v do
if edit (mapping[u],v) < d then
isMapped < true
mapping[v] < mapping[u]
break
end if
end for
if isMapped == true then
continue
end if
vy «— edit (U, O'k), Yo e
for each k-mer u € M do
if maxyex{|oy —do[u]|} > d then
continue
else if mingey{vs + do[u]} < d or edit(u,v) < d then
mapping[v] < u
isMapped < true

break
end if
end for
if isMapped == false then
add o into M

mapping[v] « v
dolv] « v5, Yo X
end if
end for
output M
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2.3 A BFS-based Algorithm

In the third algorithm, we build a graph in which vertices corre-
spond to all k-mers and (k — 1)-mers, and edges correspond to pairs
of vertices with edit distance being exactly 1 except that there is
no edge between any two (k — 1)-mers. For example, if we take
k = 4, the graph contains all the 4-mers and 3-mers. There is no
edge between any pair of 3-mers. Two 4-mers are connected if one
can be obtained from the other by a single substitution. A 4-mer
and a 3-mer are connected if the 4-mer can be obtained by inserting
a character to the 3-mer.

The key property of this graph is that two k-mers u and v have
edit(u, v) = d if and only if the distance (the length of the shortest
path) between u and v in this graph is d. To formally see this, by the
construction of the graph, every path between two k-mers gives a
valid sequence of edits transforming one to the other. Hence, we
only need to show that given a sequence of d edits that transforms
a k-mer u to a k-mer o, the edits can be rearranged such that it
corresponds to a path of length d from u to v in the graph. The
only issue comes from the fact that the given sequence of edits may
contain several insertions (or deletions) in a row so the intermedi-
ate strings may not be k-mers or (k — 1)-mers. However, because
both u and v are k-mers, the sequence of edits must contain the
same number of insertions and deletions. Thus the sequence can
be rearranged so that each deletion is followed immediately by an
insertion. Such a sequence has a direct representation in the graph.
For example, the transformation from the 5-mer TGATT to the
5-mer ATTGA can be represented by the following shortest path
of length 4: TGATT — GATT — GATTG — ATTG — ATTGA.

Following the above property, the calculation of all k-mers within
an edit distance of at most d from a k-mer u can be (efficiently)

Algorithm 3 BFS-based Algorithm

initialize empty arrays distance and M
distance[v] < oo for all k-mers v
distance|u] « oo for all (k — 1)-mers u
for each k-mer v € S;. do
if distance[v] == oo then //explore v
add v to M
distance[v] <« 0
initialize an empty queue frontier
frontier.add(v)
while frontier is not empty do
u < frontier.pop()
for each adjacent vertex w of u in the graph do
if distance[w] > distance[u] + 1 then
distance|w] < distance[u] + 1
if distance[w] < d then
frontier.add(w)
end if
end if
end for
end while
end if
end for
return M
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achieved by exploring u using breadth-first search, i.e., traversing
all vertices reachable from u within a distance of d. Again, if u
is already added to the MIS, then all vertices found during the
exploration can be marked as mapped to u.

We do not need to fully explore every single k-mer. Instead, we
can reuse the information stored in exploring previous vertices to
stop early. Specifically, for each vertex u (not in the current MIS),
we store the distance from u to any vertex in the MIS, and update
it in the exploring. See Algorithm 3 for the complete pseudocode.

The exploring step (variant of BFS) guarantees that all the unex-
plored k-mers must have an edit distance greater than d from all
vertices in the MIS, and all the explored k-mers must have an edit
distance less than or equal to d from a vertex in the MIS. Hence,
k-mers in the returned MIS are at least d + 1 edits apart (i.e., inde-
pendent) and no other k-mers can be added to the resulting MIS
(i.e., maximal). This shows that Algorithm 3 is correct.

To see its time complexity, note that the initial distance of a
vertex is at most d, hence it can be updated (decreased) at most d — 1
times by the subsequent explorings. In other words, each vertex
can be explored at most d times. Each time a k-mer is explored, we
compute its neighbors with distance 1. The number of neighbors
increases linearly with respect to k (for a constant-size alphabet).
Thus, the running time for this algorithm is O(d - k - |V|), where
[V] = |Z|F +|=|%~! is the total number of k-mers and (k — 1)-mers.
The space complexity of this algorithm is O(|V]). For large values
of k, the graph is dense and too large to be stored in memory, we
compute edges of the graph on the fly. The space is mainly used to
store the distance array, which grows linearly with respect to the
number of vertices.

3 RESULTS

We implemented all three algorithms described above and con-
ducted experiments for 2 < k < 15 and d < k (with the DNA
alphabet X = {A, C, G, T}). Table 1 reports the sizes of the resulting
MISs which are depicted in Fig. 1. For each row (i.e., with the same d
value), the size of the MIS increases (approximately) geometrically
with respect to k, which is consistent with the geometric growth of
the size of the k-mer space Si. For each column (i.e., with the same
k value), the size of the MIS decreases geometrically with respect to

Table 1: The size of calculated MIS (by the fastest algorithm)
for different k and d.

k

2 3 4 5 6 7 8 9 10 11 12 13 14 15
14 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456
2 412 36 96 311 1025 3451 11743 40604 141943 500882 1782677 6388106
3 4 8 20 57 164 481 1463 4574 14522 46908 153767 510118
4 4 4 14 34 90 242 668 1894 5517 16440 49992
5 4 4 12 25 57 133 338 879 2346 6486
6 4 4 10 17 38 79 188 448 1107

d 7 4 4 9 13 28 54 112 251
8 4 4 4 12 20 37 75
9 4 4 4 11 14 30
10 4 4 4 10 13
11 4 4 4 8
12 4 4 4
13 4 4

4

14
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MIS size vs. d
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Figure 1: The size of an MIS (found by the fastest algorithm)
with respect to parameters k and d.

the growth of d. As discussed before, d specifies the sparsity of the
resulting MIS. With larger d value, fewer vertices can be selected
into the MIS.

Table 2 reports the fastest algorithm to calculate the MIS for each
combination of k and d. Table 2 together with Table 1 suggests a
general strategy to choose the best algorithm for a specific combi-
nation of k and d. Algorithm 1 is efficient for d values within the
interval [k — 4,k — 1] since these d values result in an MIS with
less than 15 vertices approximately. The BFS-based Algorithm (Al-
gorithm 3) is the best for d values between 1 and 4 because such a
small d leads to an MIS that is too large to perform pairwise com-
parisons efficiently. The rest of the d values are better be handled
by Algorithm 2.

Table 3 and Table 4 record the corresponding time and memory
usage, respectively. The rows of Table 3 show that the running time
generally increases geometrically with respect to the parameter
k. The current computation bottleneck is the case with k = 15
and d = 5, which takes approximately 15 hours using Algorithm 2.

Table 2: The fastest algorithm for each combination of k and
d. Numbers 1, 2, and 3 correspond to Algorithms 1, 2, and 3.

—_
(=}
—_
=
oo
—
w
=
N
=
o

—_
_ | W

_ e |

e N S |

e e e T =Y

_ s = = = W

_ e = DN W W e

o = NN W W WO

_ e e DD DWW W

_ e e = DD DD W W W =
o= = NN W W W

==
_ O 0 X NN U R W N =
o e e = N NN W W W W

—_
Do

—_
w
e e = DD DN W W W W
o = = NN NN NN DN W W W W

—_
'S

BCB ’23, September 3-6, 2023, Houston, TX, USA

Table 3: Running time (seconds) of the fastest algorithm for
each (k,d).

k
2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 0 0 0 0 0 0 1 5 25 114 528 3382 14028
2 0 0 0 0 0 0 2 11 46 202 977 5444 22380
3 0 0 0 0 0 3 18 78 344 2161 10317 46701
4 00 0 0 1 8 55 460 4191 21801 36614
5 0 0 0 0 4 25 152 1409 11887 53478
6 0 0 0 3 17 94 659 4423 23922
d 7 0 0 1 13 77 504 3008 14864
8 0 1 7 52 438 2422 11308
9 0o 5 31 258 2128 10003
10 4 23 210 1809 9197
11 21 187 1225 7322
12 184 988 5548
13 931 4743
14 4332

Table 4: Memory usage (kB) of the fastest algorithm for each
(k,d).

k

2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1076 1076 1076 1076 1336 1332 1328 1324 3648 4568 8524 23916 85316 331164
2 1076 1076 1076 1076 1076 1324 1320 3544 4596 8364 24012 85396 331220
3 1076 1076 1076 1072 1476 1532 4008 5148 8888 24336 85984 331908
4 1076 1076 1076 1076 1624 5460 11508 36224 29512 92524 341752
5 1076 1072 1076 1648 5352 11468 36016 134416 527728 2100852
6
7
8
9

1072 1076 1072 1952 11584 36272 134484 527672 2100688
1076 1076 1880 2012 36164 134480 527688 2100568
1072 1920 1868 1952 1920 527772 2100568

1980 2012 3464 1920 527760 2100548

10 1980 1868 3456 1964 2100636
11 2032 3396 3184 3308
12 1976 3380 1992
13 3404 1964
14 3384

Algorithm 2 always has the largest memory overhead comparing
with other two. The extra memory is mainly used to store the
mapping information of all k-mers. The peak memory usage is
approximately 2 GB for k = 15 and d € {5,6,...,10}.

4 CONCLUSION AND DISCUSSION

We studied the problem of extracting an MIS as a representative
substructure from a k-mer space. Three algorithms are designed
to efficiently solve the problem for different ranges of parameters
k and d. The first one is a simple greedy algorithm similar to the
greedy graph for general graphs. The second algorithm extends
the first by implementing two techniques to avoid some redundant
comparisons. The third algorithm represents the edit distance as
a shortest path in an extended graph and uses a variant of BFS.
Experiments are done for k up to 15. The computation bottleneck
occurs at k = 15 and d = 5 where the second algorithm performs
the best. The corresponding peak running time is approximately
15 hours, and the peak memory usage is about 2 GB.

For future work, we would like to extend this study to larger
k-mer spaces. Considering the current computation bottleneck, one
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potential improvement is to design more heuristics to partition the
k-mer space so that only a small subset of k-mers will be involved
in the expensive pairwise edit distance computation.

Another idea is to revise the BFS-based algorithm. The extended
graph with both k-mers and (k — 1)-mers is highly symmetric with
respect to permutations of the alphabet. For example, the search
tree for the 5-mers AGAAC and TATTG are isomorphic where A,
G, and C are replaced with T, A, and G, respectively. This algorithm
may take advantage of such symmetries to explore the graph more
efficiently. Identifying and utilizing symmetric substructures of the
k-mer space is of independent interest and has applications in other
related fields [23].

Regarding the practical applications of the constructed MISs, one
potentiality is their usage in k-mer-based reads clustering prob-
lems [10, 11], where the choice of centers is crucial. Because an
MIS contains a group of representatives for the k-mer space that
are guaranteed to be a certain edit distance apart, it is ideal for
generating even-sized clusters. Moreover, the MISs can also be used
to generate keys for k-mer-based reads hashing problems [19, 21]
where nearby k-mers are desired to share a hash value (i.e., locality-
sensitive hashing), which is particularly useful in aligning error-
prone long reads—a challenging yet unsolved problem. Last, it is
interesting to apply the constructed MISs as the set of representative
k-mers in sketching large-scale sequences.
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