“main” — 2023/10/25 — 16:29 — page 1 — #1

Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

Seeding with Minimized Subsequence
Xiang Li', Qian Shi':f, Ke Chen'', and Mingfu Shao 1,2,%

"Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
2Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA

TContribute equally to this work.
*To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Modern methods for computation-intensive tasks in sequence analysis (e.g., read mapping,
sequence alignment, genome assembly, etc.) often first transform each sequence into a list of short,
regular-length seeds so that compact data structures and efficient algorithms can be employed to handle
the ever-growing large-scale data. Seeding methods using kmers (substrings of length k) have gained
tremendous success in processing sequencing data with low mutation/error rates. However, they are
much less effective for sequencing data with high error rates as kmers cannot tolerate errors.

Results: We propose SubseqHash, a strategy that uses subsequences, rather than substrings, as seeds.
Formally, SubseqHash maps a string of length n to its smallest subsequence of length k, k < n, according
to a given order over all length-£ strings. Finding the smallest subsequence of a string by enumeration
is impractical as the number of subsequences grows exponentially. To overcome this barrier, we propose
a novel algorithmic framework that consists of a specifically designed order (termed ABC order) and an
algorithm that computes the minimized subsequence under an ABC order in polynomial time. We first
show that the ABC order exhibits the desired property and the probability of hash collision using the ABC
order is close to the Jaccard index. We then show that SubsegHash overwhelmingly outperforms the
substring-based seeding methods in producing high-quality seed-matches for three critical applications:
read mapping, sequence alignment, and overlap detection. SubsegHash presents a major algorithmic
breakthrough for tackling the high error rates and we expect it to be widely adapted for long-reads analysis.

Availability: SubseqHash is freely available at https://github.com/Shao-Group/subseghash.

Contact: mxs2589@psu.edu

1 Introduction

Transforming a sequence into a list of seeds (also known as markers)
that are then processed in place of the original sequence is a common
approach in sequence analysis as a remedy for the dreadfully expensive
full-length comparisons. The resulting seeds of such a transformation
are often regular in length and much shorter than the original sequences,
making it possible to apply efficient data structures and fast algorithms.
For example, in read mapping, the popular seed-and-extend strategy [2, 3]
first identifies seed-matches (i.e., pairs of identical seeds; also known as
anchors) between a read and a reference, then performs local alignment
around these seeds to look for statistically significant matches. In sequence
alignment, seed-matches across sequences are first identified, followed by
efficient chaining algorithms to find a colinear chain of matching seeds

that maximizes a scoring function [29, 1, 17]. In genome assembly, a
(sparse) de Bruijn graph can be constructed in which seeds are used
as vertices and two seeds are linked by an edge if they are adjacent
in some reads [32, 14, 4, 23, 36]. To mitigate all-versus-all pairwise
comparisons in applications such as aligning multiple sequences and
constructing overlap/string graphs [19, 30, 9], seeds can be used to bucket
sequences (i.e., assigning a sequence into buckets labeled by its own
seeds), followed by pairwise comparisons in individual buckets [40, 5].
The efficiency and accuracy of these methods heavily rely on the quality
of the generated seeds. Desired properties include high sensitivity (i.e.,
biologically related sequences producing many seed-matches) and a low
false positive rate (i.e., unrelated sequences producing few seed-matches).

Arguably the most widely used seeds are simply kmers (i.e., substrings of
fixed length k). Sketching approaches such as Minimizers [39, 35, 34, 27]
or syncmers [13] are often combined to select a subset of kmers

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

https://github.com/Shao-Group/subseqhash
mxs2589@psu.edu

“main” — 2023/10/25 — 16:29 — page 2 — #2

Seeding with Minimized Subsequence

aiming for scaling. Seeding methods using kmers have gained success
in almost all aspects of sequence analysis especially on data with
low error rates. However, requiring exact matches of k consecutive
characters becomes less effective in comparing biologically related
sequences with high mutation rates or error rates. Such scenarios include
comparing homologous genes or whole genomes from distant species
and processing long-read sequencing data generated by PacBio [33] and
Oxford Nanopore [18] technologies. Observe that a single mutation/error
can change k consecutive kmers in the sequence and the probability
of a kmer remaining intact under a uniform mutation model decreases
exponentially as k grows [6]. This greatly challenges the kmer-based
seeding methods and puts them in a dilemma: choosing a large k results
in few seed-matches even in biologically related sequences (i.e., low
sensitivity), while making k too small suffers from a high false positive
rate as unrelated sequences can, by chance, share many short common
substrings. Existing tools such as KmerGenie [10] help select a size of
kmers that balances its sensitivity and false positive rate based on the data.
But due to the intrinsic weakness of kmers against mutations, even an
optimal choice of k can still produce unsatisfactory results.

Alternative approaches have been proposed to collect nonconsecutive
characters as seeds. Spaced seeds [8, 24] are extracted by applying a
predefined pattern such as 1110111 on a string where a 1 means the
character at that position is taken and a 0 means it is ignored/masked.
The masked positions allow seed-matches to occur over substitutions,
but because of the fixed pattern, spaced seeds can only handle
substitutions at predefined locations and are still vulnerable to insertions
and deletions (indels). Indel seeds [26] use patterns with wild-cards to
accommodate certain numbers of indels. But again only indels at the
predefined regions can be managed. Using multiple patterns [22,20, 41, 15]
alleviates the restrictions of a single pattern at the cost of more
computations but still cannot handle mutations/errors at arbitrary locations.

Itis also worth mentioning that there have been successful seeding methods
that combine two or more pre-extracted (shorter) seeds. For example,
grouped methods [11, 12] use two or more independently produced kmers
as seeds. The Order Min Hash (OMH) approach [28] selects multiple kmers
from a sequence with relative positions preserved. The recently proposed
kmer-alternative method strobemer and its variants [37, 25, 38] pick and
concatenate kmers from multiple consecutive predetermined windows.
This provides more flexibility on the spacing between extracted kmers
and therefore is less susceptible to different mutation rates. Nonetheless,
since these methods all use kmers as building blocks, they cannot fully
resolve the drawback of kmer-based methods. In addition, we consider
these approaches orthogonal to the basic seeding methods (such as kmers
and our method described below) in the sense that they can be applied on
top of any kind of basic seeds.

In this paper, we explore the use of subsequences, rather than substrings,
as seeds. The key observation is that two similar strings may share few
or even zero substrings (of length k) but can contain many common
subsequences (of length & or longer). Consider an example with two similar
strings of length 7: s = ACGCCTA and ¢ = ACGGCTA that differ by
one substitution in the middle (i.e., their edit distance is 1). Clearly, s
and t do not share any kmer for k > 4, leading to zero seed-matches
for any kmer-based seeding methods (when k > 4 is used). On the other
hand, two-thirds of the total 21 unique length-4 subsequences of s are
also subsequences of ¢. In fact, the Jaccard index between the two sets
of length-4 subsequences of s and ¢ is 14/(21 + 24 — 14) ~ 0.45.
According to the property of MinHash [7], if the smallest subsequences
of length 4 (with respect to a fully random order, i.e., an order picked
uniformly at random from all possible orders over strings of length 4)
from s and ¢ are picked as their respective seeds, then the probability of

hash collision (i.e., producing a seed-match) is also about 0.45. Although
rather simple, this example demonstrates the potential advantage of using
subsequences as seeds: as it is more tolerant to edits happening at any
position, it is more likely to produce seed-matches for similar sequences,
and therefore provides enhanced sensitivity, particularly for data with a
high mutation/error rate.

To this end, we present a subsequence-based seeding method named
SubseqHash. It maps a string of length n to its smallest subsequence
of length & (i.e., the seed), k& < n, according to a given order over all
length-k strings. There is one caveat: the number of subsequences grows
exponentially in a string, which makes the computation of the smallest
subsequence intractable when a fully random order is used. To overcome
this difficulty, we propose a new algorithmic framework, consisting of a
specifically designed order, named ABC order, and an algorithm that finds
the smallest subsequence under an ABC order in polynomial time (Section
2). We show experimentally that an ABC order exhibits similar properties
as a fully random order and that the probability of hash collision is close to
that when a fully random order is used (Sections 3.1 and 3.2). We finally
demonstrate the superiority of SubseqHash over the kmer-based seeding
method Minimizer in several applications, including sequence alignment,
read mapping, and overlap detection (Sections 3.4, 3.5, and 3.6).

2 SubseqgHash
2.1 Definitions of SubseqHash

Let ¢ be a string of length n over an alphabet . Given an integer k£ < n,
denote by Sy () the set of all subsequences of @ of length k. Let 7 be a
permutation of 2%, i.e., 7 defines an order over all possible strings of length
k. Define hr () as the smallest string in S () according to 7. In other
words, the function A, maps a string of length n to its smallest (defined by
) subsequence of length k; formally, hx(2) = argmin,cg, (&) 7(2),
where 7 () is the rank of z in the order defined by 7. We use SubseqHash
to term such a hashing function hr.

2.2 Probability of Hash Collision

The intuition behind SubseqHash is that a few edits between two
sequences may destroy most of their common substrings but many common
subsequences can survive. We use the Jaccard index to measure the
similarity of two sets. Given two strings « and y, the Jaccard index
for their subsequences of length k is defined as J(x,y) := |Sk(x) N
Sk(y)|/1Sk(x) U Sk(y)|- The Jaccard index for their substrings can
be defined similarly. In Supplementary Notes 1 and 2, we estimate and
compare the Jaccard index for subsequences and substrings; in general, the
Jaccard index for subsequences is larger than that for substrings, verifying
the intuition.

We say an order 7 over X¥ is fully random if 7 is drawn uniformly at
random from all orders. For a fully random order 7, the probability of hash
collision of h, is exactly the Jaccard index for subsequences according
to the property of MinHash [7], i.e., Pr (h(z) = hx(y)) = J(z,y)
for any two strings « and y. If 7 is not fully random then this may not
hold. For example, when the lexicographic order is used, the empirical
probability of hash collision reduces considerably (Section 3.2).

2.3 Algorithmic Framework for Constructing SubseqHash

The complexity of calculating h () for a given string @ also depends on
the choice of 7. For a fully random order 7, one can compute hr () by
enumerating all subsequences of & and picking the smallest one. Another
approach is to traverse all strings of length k down the order 7 and return
the first one that is a subsequence of x. (Determining if a string z is a

“main” — 2023/10/25 — 16:29 — page 3 — #3

Seeding with Minimized Subsequence

subsequence of another string @ can be done in O(|z| + |x|) time, where
| - | denotes the length of a string.) Both approaches run in exponential
time. On the other hand, when the lexicographic order 7 is used, hr (x)
can be computed in linear time; the downside is that the probability of hash
collision gets reduced significantly as stated above.

We propose a novel approach to balance performance and efficiency.
The idea is to use a special order 7 that allows for computing hr(x)
in polynomial time. Such a special order is not fully random, but is
designed to be “quite” random, and therefore achieves a probability of
hash collision comparable with a fully random order. The special order 7
and the polynomial time algorithm are described in the next two sections.

2.4 The ABC Order

We start with designing an order 7 over ©*, named ABC order. Letd > 1
be an integer parameter. Essentially, 7 is given as a scoring function that
maps a string z € XF to a pair 7(z) := (¥(z),w(z)) where ¥(z) €
{0,1,...,d — 1} and w(2z) € R. Then all strings in $* are ordered as
follows: for z, 2’ € XF, define 7(2) < 7(2’) if and only if ¢(2) <
P(2’), or P(z) = P(2’) and |w(2z)| > |w(z’)|. The construction of
m(-) (see below) makes it extremely unlikely to have ¥(z) = (z’) and
|w(2z)| = |w(z")| for z # z’. When such a rare case happens, we define
m(z) < w(2’) if and only if 2 is lexicographically smaller than z’.

We specify such a function 7 for DNA strings by assuming ¥ =
{A =1, C =2, G=3, T = 4}. The function 7 is governed
by three (random) tables A, B, and C; hence the name. Table A is
a 3D real matrix of dimension k X d x |X|, ie., A € REXdX|Z]
Table B is also of dimension k x d X |X|, where B[i][j]lo] €
{(+1,+1), (+1,-1), (=1,+1),(-1,- D} 1 < i < k, 0 < j <
d—1,and o € X. Table C has dimension k X ||, where C[i][o] €
{0,1,---,d—1},1<i< kando € 3.

These three tables are randomly generated in the following way. Each
element A[i][7][o] is drawn independently and uniformly at random from
a predetermined subset of R; our implementation uses [230, 231}. For
any fixediand j, 1 < i < kand 0 < j < d — 1, B[i][j][o] is
picked from the four pairs {(+1, 4+1), (+1,—1), (=1, +1),(-1,—-1)}
uniformly at random without replacement, i.e., B[i|[j][o1] # B[][j][o2]
if o1 # o2. Last, for any fixed 4, 1 < ¢ < k, each element C[i][o] is
drawn independently and uniformly at random from {0,1,2,...,d—1}.
If the parameter d > |X| = 4, then we do this without replacement, i.e.,
Cli]lo1] # Cli][o2] if o1 # o2. Please see Supplementary Note 3 for
an example.

Once the tables A, B, and C are generated, the scoring function
7(z) = (Y(2),w(z)) is determined for any string z € X*. Write
z = z122 -2k, Where z; € X, 1 < 4 < k. For the sake of simplicity,
denote (2122 - - - z;) andw(z1 22 -+ - - 2;) by ¢; and w;, respectively; also
denote the first and the second element in the pair B[i][5][c] by B[é][j][c]1
and B[i][j][o]2, respectively.

The initial values are set to 19 = 0 and wp = 0. For 1 < 7 < k, we use
recurrences
¥; = (Yi—1 + Cli][2]) mod d,

and
w; = wi—1 - Bl|[Yi][zi]1 + Al][:i][=:] - Blil[ei][2:]2.

Observe that if d > 2, then one edit in the string is guaranteed to alter the
value of 1, while two edits have a small chance (approximately 1/d) to
result in the same). In addition, due to the use of —1 in table B, the value
of w can be substantially changed with even a single mutation. Combined,

a few edits can cause a drastic change in both v and w, and therefore the
rank of strings in the order, which is a desired property; see Section 3.1
for more discussions.

2.5 Algorithm for Computing the Smallest Subsequence
with an ABC Order

Let 7 be an ABC order. We design an efficient algorithm to find hr () =
argmin_cg, (o) 7(2) for any given € = z1x2---z, € X". Since
the scoring function 7(z) is defined by recurrences, it is natural to solve
hx (a) using a dynamic programming algorithm. Consider a subproblem
parameterized by [, i, and j, where 1 < | < n, 1 < ¢ < Kk,
and 0 < j < d, which is defined to seek a subsequence z122 - - - 2;
of x1xa---x; such that Y(z122---2;) = j and w(z122---2;) is
minimized or maximized. We calculate both the maximized and minimized
values because they would be switched when encountering a pair from
table B with —1 being its first element. Furthermore, both values are
needed at the end since the definition of an ABC order requires finding the
subsequence that maximizes the absolute value of w(-).

Formally, for each [, 4, and j, we define subproblems:

Trmin[1[i][4] := w(z)

min
2€S8;(z122---wy) and P (2)=j
and

Tmaz [I][1)]5] == w(z)

max
z€8;(z122--xy) and P (z)=7

They can be calculated with the recurrences below, in which 5/ = (j —
Cli][z;] + d) mod d.

Tonin [0 — 1][4]1]

+ Tnin [l = 1[0 — 1][5]
(if Bi][f]fz:]1 = +1)
- Tmax [l - 1] [Z - 1] []l]

(if Bi][f][x:]1 = —1)

Trmin[l][?][j] = min
! Alr] - B laa)s +

Tnaz [l = 1][d][7]

+ Tmazll — 1l — 1][5']
Gf Bla)[5][zi]1 = +1)
= Trnin[l = 1][i = 1]["]

(if Bla)5][zi]1 = —1)

TonaallJi]lj] = max
! AliJ)ler] - Bl i) +

Initially, for any 0 < I < n, Trmin[l][0][0] = Tma=[l][0][0] = O and
Trmin[l[0][7] = Tma=z[l][0][j]] = NaN if j # 0. Tables T}, and
Tmaz can then be filled using the above recurrences. Subsequently, for
0 < j < d, we record the values

T(n][k][j] := max{[Trmin [n][k][j]]) | Tmaz [n][k][7]]}-

In these processes, if any of the three arithmetic operations {+, —, | - |}
involves NaN as an operand, then the result is also an NaN. The min and
max operations ignore NaN and only work on numerical operands, unless
there is none, in which case an NaN is returned. At the end, we calculate

P(z) = min{j | T[n][k][j] # NaN} and |w ()| = T'[n] k][4 ()]

The optimal subsequence, i.e., hx (), can be obtained by traceback. The
entire algorithm runs in O(nkd) time.

“main” — 2023/10/25 — 16:29 — page 4 — #4

Seeding with Minimized Subsequence

2.6 Using SubseqgHash in Practice

It is desirable for a seeding/hashing function to be locality-sensitive, i.e.,
the probability of hash collision for a pair of strings @ and y is high if they
are similar (say, measured with the edit distance), and at the same time
such probability becomes low if @ and y are not similar. These desired
properties can also be interpreted as having high sensitivity (more true
seed-matches) and a low false positive rate (fewer false seed-matches). For
SubseqHash coupled with an ABC order, the choice of n and k balances
these two measures. Generally speaking, a larger n lowers the false positive
rate while a smaller n provides higher sensitivity; for a fixed n, increasing
the difference between n and k improves sensitivity while decreasing the
difference reduces the number of false seed-matches.

Again, two similar strings & and y are likely to share some (long)
subsequences. In fact, assume the edit distance between two length-n
strings « and y is e1, then a shared subsequence of length £ is guaranteed
if & < n — ej. In this case, the probability of hash collision under
SubseqHash between @ and ¥ is strictly positive. However, the probability
might be small so that one round of SubseqHash may not actually pick
a common subsequence of the two strings (see Section 3.2 for some
experimental results). To boost the chance of getting a seed-match, one
can repeat SubseqHash several times independently, each of which uses a
different set of random A/B/C tables. Assume that p is the probability
of hash collision of calling SubseqHash once, then with ¢ repeats, the
probability of having at least one seed-match is 1 — (1 — p)*. Repeats may
also increase the false positive seed-matches, but it can be well controlled
by picking a large n and a k that is close to n. Specifically, two dissimilar
strings (i.e., their edit distance ez is large) of length n will not share any
subsequence of length k if & > n — e2/2. In Sections 3.4, 3.5, and 3.6,
we show that repeats can boost sensitivity while maintaining a low false
positive rate (i.e., high precision).

On the other hand, repeats are not as practical for substring-based seeding
methods. This is because it is easy for two similar strings not to share any
substring of a reasonable length. In fact, a shared substring of length k is
guaranteed only if & < n— ke, as one edit can break up to k substrings of
length k. When two (similar) strings do not share any length-£ substring,
a seed-match will not be produced regardless of the number of repeats. In
the experiments, we include the comparison with “all-kmers” (i.e, every
sliding window of length k in a sequence is collected as a seed), which is
the limit of repeating Minimizers.

3 Results
3.1 Comparison of Orders

We propose a measure to characterize the similarity of neighboring strings
in an order. Observe that, the neighboring strings in the lexicographic
order are similar, while they are independent and therefore distant from
each other in a fully random order. Let O be an order over X* and let
O[i] be its i-th string. We define the 2w strings in a window centered at
O[4] as the neighboring strings of O[], where w is a parameter. We use
Dy (0,1) := min;_<j<itw,jzi €dit(O[j], O[i]) to quantify how
similar O[z] is with its neighboring strings, where edit(-, -) denotes the
edit distance. We finally calculate the averaged minimum neighboring edit
distance (AMNED) over the m smallest (top-ranked) strings in the order,
i.e., Dw,m(0) := >, Dyw(O,1)/m. We consider top-ranked strings
in an order as they are more likely to be hashed to in SubseqHash.

We compare the AMNEDs of ABC orderings, fully random orders, and
the lexicographic order for strings of length £ = 15. To generate the top m
strings in an ABC order, we randomly generate tables A, B, and C' (with
3 choices of d = 1,11, 31), calculate the score (¢(+),w(-)) of all strings

in $*, sort them, and pick the top m strings. The top m strings of a fully
random order is generated by independently simulating random strings of
length k& until m distinct ones are available. Note that the AMNED is 1 for
the lexicographic order regardless the choice of w and m.

Fig. 1 and Supplementary Figure 3 reports the averaged AMNEDs and the
standard deviation for the above three orders (10 repetitions for the ABC
order and the fully random order) using different choices of w and m.
The average AMNED for the ABC order is reasonably large, suggesting
that the ABC order is “quite” random, in the sense that nearby strings are
dissimilar. There is still a gap between an ABC order and a fully random
order, but the gap is gradually decreased as m grows. Changing d from 1 to
11 for an ABC order significantly increases the AMNED, suggesting the
effectiveness of using table C'. There is a small growth when d is further
increased to 31; we therefore pick d = 11 in the experimental studies.

9,
—— Lexicographic
—— ABC, d=1
84 ABC, d=11
—— ABC, d=31
—— fully random
71
61
m
z5]
=
<
41
3]
21
14

1 2 3 4 5 10 20 50 100 500
window size
Fig. 1: The AMNED of different orders over strings of length £k = 15
evaluated with varying w (z-axis) and m = 10, 000. The point and error
bar show the mean and standard deviation over 10 individual runs. Results
for different values of m are available in Supplementary Figure 3.

3.2 Comparison of Probability of Hash Collision

We compare the probability of hash collision achieved by Minimizer and
SubseqHash.Each seeding method takes a pair of strings (&, y) as input,
and extracts a single seed from each string. For Minimizer, the seed of @ is
the smallest kmer among the (|| — k + 1) kmers in @ according to a fully
random order. For SubseqHash, the seed of @ is the smallest subsequence
of length k in @, according to the chosen order. For the lexicographic
order, linear algorithm exists to find the optimal seed; for the ABC order,
algorithm in Section 2.5 is used; for a fully random order we use a brute-
force approach to find the smallest seed (and hence we are not able to
report the results for large &£ in Supplementary Figures 5). A seed of y will
be extracted independently but with the shared order used for . We then
check if the two seeds are identical (i.e., a hash collision).

We use simulations to estimate the probability of hash collisions. To
simulate pairs of strings, we start with @ being a random string of
length n, n = 20 or n = 30. We then apply n random evolutionary
events sequentially on @, with each event with probability of 1/3 being a

“main” — 2023/10/25 — 16:29 — page 5 — #5

Seeding with Minimized Subsequence

substitution, a deletion, or an insertion. We make sure that each position
can be only mutated once. We collect both the intermediate n — 1 strings
and the final string, resulting in n pairs of strings (@, y;),¢ = 1,2, --- , n.
All pairs are categorized according to the edit distance, i.e., pair (&, y;)
is put into the j-th category if edit(x,y;) = j. Note that there are
¢ mutations simulated from a to y;, but it is not necessarily true that
edit(x,y;) = i. Notice also that it is possible that |y;| # |x|, but a seed
of the same length (a kmer for Minimizer and a subsequence of length k
for SubseqHash) will be extracted from them.

‘We simulate 10,000 pairs of strings following above procedure, and in each
of the 10 categories where edit distance is from 1 to 10, we calculate the
frequency of hash collisions and use it as an estimation of the probability of
hash collision. The results are shown in Fig. 2 and Supplementary Figures 4
and 5. Minimizer and SubseqHash are compared when extracting seeds
of the same length (the same k). Observe that in all settings SubseqHash
coupled with ABC order achieves much higher probability than Minimizer
when the edit distance is in a range of 1 to 5, indicating the superiority
of SubseqHash over Minimizer in hashing similar strings but with high
error rates. The probability of hash collision of SubseqHash coupled
with the lexicographic order is very similar to that of the Minimizer,
suggesting the necessity of a more random order (than lexicographic order)
to make SubseqHash more sensitive. The probability of hash collision of
SubseqHash gets much improved when d = 11 is used in ABC order than
d = 1, again indicating the effectiveness of table C. The performance of
SubseqHash with fully random orders gives the highest probability (i.e.,
the Jaccard index) among possible orders, but the curves from ABC orders
when d = 11 and d = 31 are very close to them, indicating that the ABC
order (with large d) is nearly optimal.

025 —=— Minimizer
Lexicographic
—e— ABC, d=1
—e— ABC, d=11
0.20 —e— ABC, d=31
—e— fully random
iy
S0.15
Q
<
Q
c
o
i
o010
<
n
©
<
0.05
0.00

edit distance

Fig. 2: The probability of hash collision estimated, using simulations, for
different seeding methods with n = 20 and k¥ = 16. More results with
different n and k are available in Supplementary Figures 4 and 5.

3.3 Evaluating Seeding Methods

We discuss appropriate measures to evaluate seeding methods for tasks
involving sequence comparison, such as sequence alignment, read
mapping, and overlapping read detection. Despite variations in methods
for these tasks, they all follow a two-step procedure, consisting of a seeding

step and a post-seeding step. The seeding step treats the sequences/reads
independently and typically applies a seeding method to sliding windows
of a sequence/read, resulting in a list of seeds. Measures for this step
include the running time of the seeding method, as well as the density
of the seeds, defined as the number of seeds produced from a sequence
divided by the length of the sequence.

The post-seeding step uses the generated seeds to compare sequences. We
emphasize that in this step only the matched seeds between compared
sequences are used, while unmatched seeds are discarded. For example,
in the co-linear chaining approach for sequence alignment, the set of seed-
matches serves as the input of the chaining algorithm. In the seed-and-
extend scheme for mapping reads, each individual seed-match will be
examined in the extension. When detecting overlapping reads, a pair of
reads will be determined as “candidate” (which will be then subject to more
fine-grained procedure such as chaining to decide overlapping) if there
exists one (or more) seed-matches. Therefore, it is the quantity and quality
of seed-matches, rather than that of seeds, that determine the running time
of the post-seeding step and the accuracy of the outcomes.

In Sections 3.4 and 3.5, we report the density and running time of different
seeding methods, as well as the quantity and quality of the resulting seed-
matches to evaluate their impacts on the post-seeding step. In summary,
SubseqHash runs much slower than substring-based methods such as
Minimizers. When repetitions are applied to SubseqHash (see Section 2.6),
it generates a much larger number of seeds than Minimizers, requiring
more memory to store the seeds. However, SubseqHash outperforms other
methods in generating high-quality seed-matches, thereby improving the
accuracy of the final outcomes. See below for detailed analysis.

3.4 Application: Pairwise Sequence Alignment

We use simulations to test the performance of different methods with
varying error rates. We simulate 100 pairs of sequences and report the
average measures (described below). The first sequence in a pair is a
random sequence of length L = 100,000; the second sequence is
obtained by applying an edit, with probability of r equally distributed
to insertion, deletion, and substitution, independently on every position of
the first sequence, where 7 is a parameter specifying the error rate. The
ground-truth alignment is saved for evaluation (see below).

In Fig.3, we present the density of SubseqHash and Minimizers using the
simulated data described above. As expected, for any fixed window size
n, the density of both methods decreases as the seed length & decreases,
but the density of Minimizers decreases much more rapidly than that
of SubseqHash. It should be noted that when repetitions are applied to
SubseqHash, the density and total number of seeds should be multiplied
by the number of repetitions. Furthermore, we provide a comparison of the
running time of different seeding methods in Supplementary Tables 6, 7,
8, 9. Consistent with the theoretical analysis, SubseqHash typically runs
24 to 270 times slower than Minimizers.

We now assess the quality of resulting seed-matches. In either Minimizer
or SubseqHash, a seed-match specifies an alignment among £ identical
characters. We define a seed-match to be true if at least 50% of the k
aligned characters appear in the ground-truth; otherwise it is considered
to be a false seed-match. See Fig. 4 for an example. We do not require
all k aligned characters to agree with the ground-truth to be considered
as a true seed-match as the ground-truth alignment may not reflect the
most parsimonious alignment especially when the mutation rate is high.
Nevertheless, 50% matched characters certainly indicate that the locations
of two seeds are anchored correctly which is adequate for downstream use.

In Fig. 5 and Supplementary Figure 7, we present the relationship between
the number of seed-matches and the ratio of true seed-match ratio (defined

“main” — 2023/10/25 — 16:29 — page 6 — #6

Seeding with Minimized Subsequence

1.0 1.00 A g e e A U o
. it e e N
5 Y
I 3
0.95 1 5
0.8 H .
1’ .
/
i L
: t
«n 0.90 B
GJ B
S L]
S B
2 2 } .
¢ [
2 0.6 T 3
».6 Q
2 3 0.85
é 5 | A @ All kmers
2 i -~ Minimizer 12
E Minimizer 16
0.4 0.80 -~ Minimizer 20
i 7 ..e-- All-kmers Minimizer 24
" A -~ Minimizer 12 —+— SubseqHash 20 1
(Minimizer 16 % SubseqHash 20 10
y |
¥ =~ Minimizer 20 075 —+— SubseqHash 25 1
1
,-’/ Minimizer 24 L} -4 SubseqHash 25 10
0.2 ./'/ —+— SubseqHash 20 1 —+— SubseqHash 30 1
‘_J" +— SubseqHash 25 1 -4+ SubseqHash 30 10
- —+— SubseqHash 30 1 | —+— SubseqHash 35 1
—4+— SubseqHash 35 1 0.70 *-- SubsegHash 35 10
0 20000 40000 60000 80000

10 15 20 25 30 35

K
Fig. 3: The density of different seeding methods on simulated sequences.
In the legend, “all-kmers” means every single kmer is collected as seed,
k = 9,10,---,25. “Minimizer n” means a window size of n; with
increasing density, the list of £ used for each lineis k = 8,9,--- ;n — 1.
“SubseqHash n ¢” means a window size of n and repeating ¢ times. For
n = 20, k is from 14 to 19; for n = 25, k is from 16 to 24; for n = 30, k
is from 18 to 29; for n = 35, k is from 20 to 34. For all methods, points
with varying k but the same n are connected by lines. These parameters
are also used in all experimental studies of Sections 3.4 and 3.5.

(a) ground-truth alignment (b) a seed-match

ATTCCCACGTC ATTCCCACGTC

ficcchdéfoe TS tae

Fig. 4: (a) The ground-truth alignment between two sequences; note that
this alignment is not the most parsimonous (i.e., minimizing edit distance)
alignment. (b) A seed-match where the identical seed is ACCCACGTC.
Among the nine matched chararcters, five of them (55.6%) exist in the
ground-truth alignment. Hence this seed-match is a true one.

as the number of true seed-matches divided by the number of seed-
matches). As explained in Section 3.3, the number of seed-matches has
a strong correlation with the execution time of the post-seeding step,
while the true seed-match ratio reflects the accuracy of seed-matches. By
comparing the y-coordinates of different methods at a fixed z-coordinate,
one can assess their accuracy at the same level of running time. SubseqHash
without repetitions demonstrates a similar performance to Minimizers in
the range of small numbers of seed-matches. SubseqHash with repetitions
achieves a much higher true ratio than all-kmers when the number of
seed-matches falls between approximately 10,000 and 30,000. Beyond
this range, SubseqHash and other methods are not comparable.

Itis more desirable for a seeding method to generate true seed-matches that
span alarger range of the sequence, rather than ones clustered together [37].
‘We say a character in a sequence is covered by a seed-match if it is one of
its k aligned characters. The coverage of true seed-matches (true coverage
for short) is the percentage of characters in both sequences that are covered
by at least one true seed-match; the coverage of false seed-matches (false

number of seed-matches

Fig. 5: The number of seed-matches and the true seed-matches ratios on
simulated sequences with error rate = 15%. Figure is cropped to only
show the portion with high ratio (> 70%); complete results are shown in
Supplementary Tables 2, 3, 4, 5. Results for error rates 5%, 10%, and 20%
are available in Supplementary Figure 7.

coverage for short) is defined in the same way but counting false seed-
matches. Higher true coverage reflects higher sensitivity, and can facilitate
downstream chaining procedure to produce more accurate and faster
sequence alignment. Lower false coverage reduces the likelihood of
producing incorrect alignments. We report the average true/false coverages
of different methods in Fig. 6 and Supplementary Figure 8. A single run
of SubseqHash outperforms (i.e., higher true coverage at the same false
coverage) Minimizer and all-kmers when error rate is 5% or 10%, and
achieves similar performance at 15% and 20% error rates. SubseqHash

1.0
¢+ All-kmers

--=- Minimizer 12
Minimizer 16
-~ Minimizer 20
Minimizer 24
0.84 —— SubseqHash 20 1
--4:- SubsegHash 20 10
—+— SubseqgHash 25 1
--4-- SubsegHash 25 10
—4— SubseqgHash 30 1
--4-- SubsegqHash 30 10
—4— SubseqHash 35 1
--4-- SubseqHash 35 10

o
o

coverage of false seed-matches
o
=

0.2

¢
¢
i

0.0

02 04 056 08
coverage of true seed-matches
Fig. 6: The coverages of true and false seed-matches for different seeding
methods on simulated sequences with error rates = 15%. Results for
different error rates are available in Supplementary Figure 8.

“main” — 2023/10/25 — 16:29 — page 7 — #7

Seeding with Minimized Subsequence

with 10 repetitions outperforms others by a large margin at all error rates:
specifically, the highest true coverage achieved by Minimizer/all-kmers at
a false coverage lower than 5% are 85.1%, 61.4%, 38.9%, and 23.1%,
respectively, for the 4 error rates, while the numbers for SubseqHash are
98.0%, 90.8%, 75.3%, and 55.0%, respectively.

3.5 Application: Read Mapping

We then compare SubseqHash with other seeding methods on mapping
reads to the reference genome. We utilize three real PacBio datasets
from [5] on E. coli (SRX533603), S. cerevisiae (SRX533604),
D. melanogaster (SRX499318). To construct a ground-truth for evaluation,
we align the reads to the corresponding reference genomes using
minimap2 [21] with the default parameters (-cx map-pb). For reads
that have a mapped region of at least 2, 000 bp and a mapping quality of
at least 10, we trim the read to only keep the mapped portion. Reads with
multiple qualified mappings are discarded. This produces the input reads
and their ground-truth alignments. To eliminate the potential biases in
the ground-truth created by minimap2, which internally uses Minimizers
for seeding, we include a simulated dataset obtained with PBSIM2 [31]
using the same statistics as the PacBio D. melanogaster dataset. A total
of 287,648 reads are simulated from the X chromosome, with ground-
truth alignment saved from simulation. We randomly sample 1000 reads
from each of the 4 datasets for this experiment. The same set of seeding
methods (Minimizer, all-kmers, and SubseqHash) is applied to generate
seeds for both reads and the reference genomes. The density of different
methods are illustrated in Supplementary Figures 9, 10, which show very
similar results with Fig. 3.

To assess the quality of seed-matches, the same definitions of true and false
seed-match used for pairwise sequence alignment (Section 3.4) is also used
in this experiment. When calculating the true/false coverages, only the
covered characters on reads are considered (instead of on both the reads
and the reference genomes). Fig. 7 and Supplementary Figure 11 show the
number of seed-matches and the ratio of true seed-matches for different
methods averaged over the 1000 reads. At the same level of seed-matches,

- All kmers
Minimizer 16
0.8 -~ Minimizer 20
Minimizer 24
—+— SubsegqHash 20 1
4 SubseqHash 20 10
0.7 —+— SubseqHash 25 1
4 SubseqHash 25 10
—+— SubsegHash 30 1
4 SubseqHash 30 10
$0.6 g —+— SubseqHash 35 1
S A 4 SubseqHash 35 10
©
£
©
$
© 0.5
o
2
s
2
®
S04 ~
s
o :
0.3 ‘n.
0.2
a
0 20000 40000 60000 80000 100000

number of seed-matches

Fig. 7: The number of seed-matches and the ratio of true seed-matches
for different seeding methods evaluated on D. melanogaster SRX499318
dataset. Figure is cropped to show high ratios (> 15%); complete results
are given in Supplementary Tables 10, 11, 12, 13. Results for other datasets
are shown in Supplementary Figure 11.

SubseqHash with 10 repetitions can achieve much higher ratio of true
seed-matches than all-kmers and Minimizers, verifying the effectiveness
of repetitions for sequence mapping. Fig. 8 and Supplementary Figure 12
compares the true/false coverages of different methods. SubseqHash
(without repeating) can obtain higher true coverage on the same foot of
false coverage than all-kmers and Minimizers. Again SubseqHash with
repeating 10 times outperforms all others substantially. To give some
concrete numbers, the highest true coverage achieved by Minimizer/all-
kmers at a false coverage lower than 10% are 38.2%, 39.0%, 31.4%, and
34.2%, respectively, for the 4 datasets, while the numbers for SubseqHash
are 74.5%, 67.3%, 52.5%, and 57.5%, respectively.

1.0

0.8

0.6

@ All kmers
¢ -=- Minimizer 12
Minimizer 16
-~ Minimizer 20
Minimizer 24
—4— SubseqHash 20 1
4 SubseqHash 20 10
—4— SubseqHash 25 1
4 SubseqHash 25 10
—— SubseqHash 30 1
4 SubseqHash 30 10
—4+— SubseqHash 35 1
0.0 4 SubseqHash 35 10

coverage of false seed-matches

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
coverage of true seed-matches
Fig. 8: The coverages of true and false seed-matches for different seeding
methods on D. melanogaster SRX499318 dataset. Results for other
datasets are available in Supplementary Figure 12.

3.6 Application: Overlap Detection

State-of-the-art methods for genome assembly using long-reads
sequencing data often rely on an accurate overlap graph, in which
vertices are reads and overlapping reads are connected with edges. A
straightforward approach for constructing the overlap graph given a set of
sequences (i.e., long reads) is performing all-versus-all comparisons, but it
certainly does not scale. Seeding methods can be used to detect overlapping
pairs while being able to scale. More specifically, a seeding method first
transforms each sequence into seeds, then reports pairs of sequences
that have at least one seed-match as candidate overlapping pairs. This
is certainly a coarse model as for a real overlap detection tool, one would
usually perform multiple steps of seed-preprocessing such as subsampling
and filtering; then in the detection phase (post-seeding step), different
thresholds for the number of seed-matches and location information of the
seeds can be used; lastly, the candidate overlapping pairs are often verified
with a fine-grained comparison (e.g., a local alignment) before the final
output. All these steps make the overlap results more accurate, but because
they can be applied regardless of the seeding methods used, we opt to omit
them in this experiment so we can focus on a direct comparison of different
seeding methods.

We use the same 4 datasets in Section 3.5 in this experiment. We sample
10,000 reads from each dataset; a pair of reads are considered truly

“main” — 2023/10/25 — 16:29 — page 8§ — #8

Seeding with Minimized Subsequence

overlapping (i.e., ground-truth) if their mapped regions on the reference
genome overlap by at least 15bp. To measure the candidate overlapping
pairs reported by a seeding method, we define sensitivity as the fraction
of ground-truth pairs that are identified by a seeding method; define
precision as the fraction of all reported pairs that are correct according
to the ground-truth.

The precision-sensitivity curves for different methods are shown in Fig. 9
and Supplementary Figure 13. Comparing with seeding for sequence
alignment and read mapping, here we use a larger window size mainly
to reduce false pairs. For each window size n used in Minimizers, six seed
lengths k evenly spaced between 10 and n are included (when k = n,
all kmers are picked as seeds). For each n used in SubseqHash, the seed
lengths k = [0.65n], |0.7n], [0.75n], |0.8n], |0.85n] are tested. We
include the results of SubseqHash without repetition and of 10 repeats for
each of the parameters above. When repetitions apply, the overlapping
pairs are simply the union of all 10 runs. Observe that on all 4 datasets,
SubseqHash without repetition already shows better accuracy (i.e., higher
precision at the same sensitivity level) than Minimizers and all-kmers with
a few exceptions at sensitivity near 1.0. In this region, both methods
suffer from extremely low precision which indicates that refining steps
are necessary and raw seeds comparison at sensitivity close to 1.0 may not
be truly informative. With 10 repetitions, the sensitivity of SubseqHash
is significantly boosted while outperforming Minimizers and all-kmers
substantially. For example, when the sensitivity is set to be at least 80%,
the highest precisions achieved by Minimizer/all kmers for the 4 datasets
are 62.9%, 38.9%. 8.7%, and 11.7%, while the numbers for SubseqHash
are 85.9%, 78.0%, 23.9%, and 41.7%, respectively.

0.40
0.35
0.30
0.25
s SubseqHash 30 1
@ —4— SubseqHash 30 10
20.20
o SubseqHash 40 1
e SubseqHash 40 10
SubseqgHash 50 1
0.15 SubsegHash 50 10
SubseqHash 60 1
—4— SubseqHash 60 10
0.10 Minimizer 15
--#- Minimizer 20
-#- Minimizer 25
0.051 -=- Minimizer 30
-#- Minimizer 35
<k All kmers
0.00
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

sensitivity

Fig. 9: Overlap detection results on reads sampled from D. melanogaster
SRX499318 dataset.
Supplementary Figure 13.

Results for other datasets are available in

4 Discussion

We investigated SubseqHash, a new approach that uses the minimized
subsequence as seed. We figured that the probability of hash collision is
determined by the shared order. We therefore studied this core algorithmic
formulation: seek an order 7 over all strings of length &k such that 7 is
“as random as possible” and that an efficient algorithm that finds the
smallest subsequence (according to) in a string (of length n) can be

designed. We gave a practical solution for this formulation, consisting of
the so-called ABC order together with a dynamic programming algorithm
runs in O(nkd) time to find the minimized subsequence under an ABC
order (where d > 1 can be picked by users). We demonstrated that nearby
strings in an ABC order are distant from each other, a property exhibited
in a fully random order, and that the probability of hash collision with an
ABC order is close to the Jaccard index, achievable when a fully random
order is used.

The superiority of SubseqHash over substring-based methods is in three
folds. First, SubseqHash tolerates errors while substring-based methods
require exact matches. Second, the probability of hash collision of
SubseqHash is higher than that of Minimizer (when extracting seeds
of the same length). Third, the performance of SubseqHash can be
substantially boosted through repetition while for Minimizer this is not
as practical. These merits make SubseqHash a more suitable choice for
seeding sequencing data with high error/mutation rates.

We showed that SubseqHash coupled with the ABC order substantially
outperformed Minimizer in generating high-quality seed-matches for
three applications, sequence alignment, read mapping, and overlap
detection. We emphasize that these experiments were designed for a
direct comparison between different seeding methods, and therefore the
evaluations were conducted at the level of seeds, rather than evaluating
the eventual outcomes (e.g., alignments or the overlap graph). As seeding
is a key step involved in these applications, we expect SubseqHash will
be widely adapted and incorporated to improve their accuracies on the
analysis of third-generation sequencing data.

Our algorithm to find a single seed takes O(nkd) time, which is much
slower than Minimizer that takes amortized O(1) time to find a seed in a
window. We note that the seeding step usually takes less time than the post-
seeding step especially in applications that require all-pairs comparisons,
as seeding scales linearly with respect to the number of sequences. Users
may choose a smaller d, say d = 4 or even d = 1, to gain a speedup
at the cost of slightly decrease of sensitivity. Interesting future directions
include accelerating the current algorithm using techniques such as Ax
heuristic searching [16] and parallel algorithms that have been successfully
used to speed up dynamic programming algorithms. We also believe the
core algorithmic formulation (stated in the first paragraph of this Section),
which we find fascinating, can be further improved in achieving faster
algorithm and/or higher probability of hash collision.

Acknowledgments

This work is supported by the US National Science Foundation
(2019797 and 2145171 to M.S.) and by the US National Institutes of
Health (ROIHGO011065 to M.S.). We thank Paul Medvedev for helpful
discussions.

References

[1]Mohamed Ibrahim Abouelhoda and Enno Ohlebusch.
algorithms for multiple genome comparison. Journal of Discrete
Algorithms, 3(2-4):321-341, 2005.

[2]Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers,
and David J Lipman. Basic local alignment search tool. Journal of
Molecular Biology, 215(3):403-410, 1990.

[3]Stephen F Altschul, Thomas L Madden, Alejandro A Schiffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J Lipman. Gapped
BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Research, 25(17):3389-3402, 1997.

Chaining

“main” — 2023/10/25 — 16:29 — page 9 — #9

Seeding with Minimized Subsequence

[4]Anton Bankevich, Andrey V Bzikadze, Mikhail Kolmogorov, Dmitry
Antipov, and Pavel A Pevzner. Multiplex de bruijn graphs enable
genome assembly from long, high-fidelity reads. Nature Biotechnology,
pages 1-7, 2022.

[S]Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake,
Jane M Landolin, and Adam M Phillippy. Assembling large genomes
with single-molecule sequencing and locality-sensitive hashing. Nature
Biotechnology, 33(6):623-630, 2015.

[6]Antonio Blanca, Robert S Harris, David Koslicki, and Paul Medvedev.
The statistics of k-mers from a sequence undergoing a simple mutation
process without spurious matches. Journal of Computational Biology,
29(2):155-168, 2022.

[7]Andrei Z Broder. On the resemblance and containment of documents.
In Proceedings. Compression and Complexity of SEQUENCES 1997
(Cat. No.97TB100171), pages 21-29, 1997.

[8]Andrea Califano and Isidore Rigoutsos. FLASH: A fast look-up
algorithm for string homology. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’93), pages 353-359.
IEEE, 1993.

[9]Haoyu Cheng, Gregory T Concepcion, Xiaowen Feng, Haowen Zhang,
and Heng Li. Haplotype-resolved de novo assembly using phased
assembly graphs with hifiasm. Nature Methods, 18(2):170-175, 2021.

[10]Rayan Chikhi and Paul Medvedev. Informed and automated k-mer size
selection for genome assembly. Bioinformatics, 30(1):31-37, 2014.

[11]Chen-Shan Chin and Asif Khalak. Human genome assembly in 100
minutes. bioRxiv, page 705616, 2019.

[12]Nan Du, Jiao Chen, and Yanni Sun. Improving the sensitivity of
long read overlap detection using grouped short k-mer matches. BMC
Genomics, 20(2):49-62, 2019.

[13]Robert Edgar. Syncmers are more sensitive than minimizers for
selecting conserved k-mers in biological sequences. PeerJ, 9:¢10805,
2021.

[14]Barig Ekim, Bonnie Berger, and Rayan Chikhi. Minimizer-space de
Bruijn graphs: Whole-genome assembly of long reads in minutes on a
personal computer. Cell Systems, 12(10):958-968, 2021.

[15]Martin Farach-Colton, Gad M Landau, Cenk S Sahinalp, and Dekel
Tsur. Optimal spaced seeds for faster approximate string matching.
Journal of Computer and System Sciences, 73(7):1035-1044, 2007.

[16]Pesho Ivanov, Benjamin Bichsel, and Martin Vechev. Fast and
optimal sequence-to-graph alignment guided by seeds. In Proceedings
of the 26th International Conference on Research in Computational
Molecular Biology (RECOMB’22), pages 306-325. Springer, 2022.

[17]Chirag Jain, Daniel Gibney, and Sharma V Thankachan. Co-linear
chaining with overlaps and gap costs. In Proceedings of the 26th
International Conference on Research in Computational Molecular
Biology (RECOMB’22), pages 246-262. Springer, 2022.

[18]Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand,
Thomas A Sasani, John R Tyson, Andrew D Beggs, Alexander T
Dilthey, Ian T Fiddes, et al. Nanopore sequencing and assembly
of a human genome with ultra-long reads. Nature Biotechnology,
36(4):338-345, 2018.

[19]Sergey Koren, Brian P Walenz, Konstantin Berlin, Jason R Miller,
Nicholas H Bergman, and Adam M Phillippy. Canu: scalable and
accurate long-read assembly via adaptive k-mer weighting and repeat
separation. Genome Research, 27(5):722-736, 2017.

[20]Gregory Kucherov, Laurent Noé, and Mikhail Roytberg. Multiseed
lossless filtration. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2(1):51-61, 2005.

[21]JHeng Li. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34(18):3094-3100, 2018.

[22]Ming Li, Bin Ma, Derek Kisman, and John Tromp. PatternHunter II:
Highly sensitive and fast homology search. Journal of Bioinformatics

and Computational Biology, 2(03):417-439, 2004.

[23]Yu Lin, Jeffrey Yuan, Mikhail Kolmogorov, Max W Shen, Mark
Chaisson, and Pavel A Pevzner. Assembly of long error-prone reads
using de bruijn graphs. Proceedings of the National Academy of
Sciences, 113(52):E8396-E8405, 2016.

[24]Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more
sensitive homology search. Bioinformatics, 18(3):440-445, 2002.

[25]Benjamin Dominik Maier and Kristoffer Sahlin. Entropy predicts
fuzzy-seed sensitivity. bioRxiv, page 2022.10.13.512198, 2022.

[26]Denise Mak, Yevgeniy Gelfand, and Gary Benson. Indel seeds for
homology search. Bioinformatics, 22(14):e341-e349, 07 2006.

[27]Guillaume Margais, Dan DeBlasio, and Carl Kingsford.
Asymptotically optimal minimizers schemes.
34(13):113-i22, 2018.

[28]Guillaume Marcais, Dan DeBlasio, Prashant Pandey, and Carl
Kingsford. Locality-sensitive hashing for the edit distance.
Bioinformatics, 35(14):1127-i135, 2019.

[29]Gene Myers and Webb Miller. Chaining multiple-alignment fragments
in sub-quadratic time. In Proceedings of the 6th ACM-SIAM Symposium
on Discrete Algorithms (SODA’95), volume 95, pages 38—47, 1995.

[30]Sergey Nurk, Brian P Walenz, Arang Rhie, Mitchell R Vollger,
Glennis A Logsdon, Robert Grothe, Karen H Miga, Evan E Eichler,
Adam M Phillippy, and Sergey Koren. HiCanu: accurate assembly of

Bioinformatics,

segmental duplications, satellites, and allelic variants from high-fidelity
long reads. Genome Research, 30(9):1291-1305, 2020.

[31]Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. PBSIM2: a
simulator for long-read sequencers with a novel generative model of
quality scores. Bioinformatics, 37(5):589-595, 09 2020.

[32]Mikko Rautiainen and Tobias Marschall. MBG: Minimizer-based
sparse de Bruijn graph construction. Bioinformatics, 37(16):2476—
2478, 2021.

[33]Anthony Rhoads and Kin Fai Au.
applications. Genomics, Proteomics & Bioinformatics, 13(5):278-289,
2015.

[34]Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and
James A Yorke. Reducing storage requirements for biological sequence
comparison. Bioinformatics, 20(18):3363-3369, 2004.

[35]Michael Roberts, Brian R Hunt, James A Yorke, Randall A Bolanos,
and Arthur L Delcher. A preprocessor for shotgun assembly of large
genomes. Journal of Computational Biology, 11(4):734-752, 2004.

[36]Jue Ruan and Heng Li. Fast and accurate long-read assembly with
wtdbg2. Nature Methods, 17(2):155-158, 2020.

[37]Kristoffer Sahlin. Effective sequence similarity detection with
strobemers. Genome Research, 31(11):2080-2094, 2021.

[38]Kristoffer Sahlin. Strobealign: flexible seed size enables ultra-fast and
accurate read alignment. Genome Biology, 23(1):1-27, 2022.

[39]Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing:
local algorithms for document fingerprinting. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data
(SIGMOD/PODS’03), pages 7685, 2003.

[40]Yan Song, Haixu Tang, Haoyu Zhang, and Qin Zhang. Overlap
detection on long, error-prone sequencing reads via smooth g-gram.
Bioinformatics, 36(19):4838-4845, 2020.

[41]Yanni Sun and Jeremy Buhler. Designing multiple simultaneous
seeds for DNA similarity search. Journal of Computational Biology,
12(6):847-861, 2005.

PacBio sequencing and its

	Introduction
	SubseqHash
	Definitions of SubseqHash
	Probability of Hash Collision
	Algorithmic Framework for Constructing SubseqHash
	The ABC Order
	Algorithm for Computing the Smallest Subsequence with an ABC Order
	Using SubseqHash in Practice

	Results
	Comparison of Orders
	Comparison of Probability of Hash Collision
	Evaluating Seeding Methods
	Application: Pairwise Sequence Alignment
	Application: Read Mapping
	Application: Overlap Detection

	Discussion

