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Abstract—This WIP paper presents new research on 

exploratory learning, an educational technique that reverses the 

order of standard lecture-based instruction techniques. In 

exploratory learning, students are presented with a novel activity 

first, followed by instruction. Exploratory learning has been 

observed to benefit student learning in foundational math and 

science courses such as calculus, physics, and statistics; however, 

it has yet to be applied to engineering topics such as programming. 

In two studies, we tested the effectiveness of exploratory learning 

in the programming unit of a first-year undergraduate 

engineering course. We designed a new activity to help students 

learn about different python error types, ensuring that it would be 

suitable for exploration. Then we implemented two different 

orders (the traditional instruct-first versus exploratory learning’s 

explore-first) across the six sections of the course. In Study 1 

(N=406), we did not detect a difference between the instruct-first 

and explore-first conditions. In Study 2 (N=411), we added more 

scaffolding to the activity. Students who received the traditional 

order of instruction followed by the activity scored significantly 

higher on the assessment. These findings contradict the 

exploratory learning benefits typically shown, shedding light on 

potential boundary conditions to this effect.  

Keywords—exploratory learning, engineering education, 

programming. 

I. INTRODUCTION 

Active learning techniques in foundational science, 
technology, engineering, and mathematics (STEM) courses have 
gained considerable research attention in recent years. Many 
studies have suggested that active learning implementation in 
classroom settings can improve student engagement and 
learning, which can be useful in difficult introductory STEM 
courses [1]. One useful active learning technique is exploratory 
learning, in which students explore a new topic with an activity 
prior to instruction. Even if students are not able to complete the 

activity, their efforts can be considered “productive failure” [2], 
because engagement in the activity prior to instruction often 
results in increased student conceptual knowledge of the topic 
[2]–[5]. Exploratory learning benefits have been observed in 
undergraduate physics, statistics, psychology, precalculus, 
biology, and chemistry courses [6]–[11].  

However, positive results are not always found (e.g., [12]–
[14]). Researchers have proposed that there may be boundary 
conditions such as cognitive load that may limit the effectiveness 
of exploratory learning. In addition, exploratory learning 
research is still nascent; many topics, potential moderators and 
boundary conditions have not yet been studied. For example, 
exploratory learning has not been studied in introductory 
programming. More research is needed to help determine when 
and why exploratory learning will be beneficial, and when 
providing instruction first will lead to higher learning outcomes. 

This paper presents two studies that tested exploratory 
learning as students learned about python error messages in a 
first-year engineering course at the University of Louisville. In 
both studies, half of the students received the activity prior to 
instruction, while the other half received the content instruction 
followed by the same activity. In the first study, the activity was 
unstructured. The second study used a more scaffolded activity.  

II. LITERATURE REVIEW 

In exploratory learning, students are instructed to engage in 
an activity that they have not seen before. Exploration activities 
are typically challenging, and students are often unsuccessful. 
After the activity is attempted, instructors teach students how to 
appropriately complete the activity and other similar problems. 
This order of instruction is opposite of traditional lecture-based 
learning, where students receive instructions on the topic first, 
and then complete the activity afterwards. 
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During exploration, students naturally activate their prior 
knowledge while searching for a known solution [4]–[6], [15]. 
They then recognize that there are gaps in their current 
knowledge, which prompts them to become more attentive 
during the instructional phase with the goal of fulfilling the 
knowledge gaps [4], [16]. In addition, students’ work on the 
activity allows them to discern important problem features either 
during the activity or during the following instruction.  

Many studies have indicated that incorporating exploratory 
learning in the classroom can increase students’ conceptual 
understanding [5], which is an understanding of the 
relationships between features (as opposed to stepwise solution 
procedures, i.e., procedural knowledge [17]). Conceptual 
understanding is a higher level of knowledge that can also lead 
to better transfer, or application of knowledge to a new context 
or situation [18], [19]. This type of benefit could have many 
positive effects for students within STEM programs, as more 
advanced courses build on introductory prerequisites.  

A majority of the exploratory learning studies have been 
conducted in grades K-12 [5], however, studies in higher 
education have started to gain popularity. In recent years, several 
researchers have implemented exploratory learning in 
undergraduate introductory STEM courses [6]–[10]. One such 
study was conducted by Weaver and colleagues [8], where 
undergraduate physics students learned about electric potential. 
Students assigned to explore-first conditions outperformed the 
students in the instruct-first conditions. The same outcomes were 
observed in another exploratory learning study where a vector 
activity was implemented in an online format [9]. In this 
engineering mathematics course, students in the explore-first 
condition again outperformed the student in the instruct-first 
condition.  

There are several other studies that found that students in an 
explore-first condition scored better than students in a traditional 
lecture-first condition, suggesting that the implementation of 
exploratory learning as a teaching technique can frequently be 
more beneficial to student learning than the instruct-first method 
of instruction. But there are not many studies that test 
exploration learning in other topic areas. In this current study, 
we seek to explore the exploration learning technique in a 
different subject area within STEM: programming. 

A. Activity Design 

 Activities used in exploratory learning research have taken 
various forms. Some activities include contrasting cases, or 
images or diagrams that vary only by critical problem features 
[20], [21]. For example, when teaching about the concept of 
density, Schwartz and colleagues [21] presented an activity with 
2D images of busses and riders. The contrasting cases varied by 
size of bus (volume) and number of riders (mass) to try to 
encourage students to understand those features and the 
relationship between them. Students were told to estimate the 
“crowdedness” of the busses, to determine which bus company 
was most crowded, and to develop a “crowdedness index” for 
estimating the crowdedness of bus lines in general.  

 Other activities were built around rich datasets, or datasets 
with many different points. For example, Kapur  [16] presented 
data for two basketball players and the number of points they 

scored in 20 different games. Students were asked to determine 
which player was more “consistent,” and to develop multiple 
strategies to estimate consistency mathematically. In rich 
datasets, the critical problem features are hidden and not obvious 
to participants.  

 These activity designs vary by the amount of scaffolding, or 
support provided for students during exploration. Instructors 
often use scaffolding to simplify challenging tasks [22]. A 
significant attribute of scaffolding is that it is temporary. As 
student learning develops and evolves, the scaffolding would 
need to change to match student needs at the time. This idea 
comes from Vygotsky’s Zone of Proximal Development theory, 
that sought to explain the learning development of students [23]. 
This theory considers student learning along proximal (i.e., 
potential) levels of development and not based on current 
knowledge levels [24]. Vygotsky argued that students were 
influenced by their social and cultural environments, and these 
influences are manifested through social interactions between 
their peers and instructors, which aids in the development of 
cognition [24], [25]. The zone of proximal development theory 
asserts that students learn best when working through novice to 
challenging problems through collaborations amongst their 
peers and instructor (expert) assistance [24]. 

 Some studies have compared the effectiveness of different 
activity types on student learning from exploration, but results 
have been inconclusive. In one case, Bego and colleagues [6] 
found that the scaffolding through contrasting cases appeared to 
improve learning. In the other case, contrasting cases appeared 
to decrease performance in procedural knowledge [12]. More 
research is needed that varies activity type to learn best strategies 
for learning through exploration.  

B. The Current Studies  

In the current studies, we incorporated exploratory learning 
methods while teaching about python error messages in a first-
year engineering course at the University of Louisville’s J. B. 
Speed School of Engineering. These studies further the research 
in exploratory learning in two ways, first by incorporating it into 
a programming topic, and second to compare results across two 
versions of an activity. The research questions were as follows:  

RQ1. Does exploratory learning help engineering students 
learn an introductory programming concept?  

RQ2. Does scaffolding the exploration activity help students 
learn from exploration?  

III. METHODOLOGY 

A. Participants 

Participants were first-year engineering undergraduate 
students at the University of Louisville enrolled in Engineering 
Methods, Tools, and Practice I in Fall 2021 (Study 1, N = 406) 
and Fall 2022 (Study 2, N = 411). Participants were included in 
the study if they attended class on the day of the experiment and 
completed all phases of the experiment. Typically, student 
background in computer science varies widely in this course. 
Self-report of prior knowledge was surveyed during this study, 
but the survey data was not available for this WIP paper, so this 
factor is not described here. 



B. Procedures 

Students were divided into 2 conditions by course section: 
the experimental condition (explore-first), and the control 
condition (instruct-first; see Table 1). In both studies, there were 
six course sections and two instructors; one instructor (Instructor 
2) was common in both years (also listed in Table 1). 

Students in the instruct-first condition received instruction 
on interpreting error messages in Python programs, followed by 
an activity, as practice of what they just learned. Students in the 
explore-first condition received the same materials in reversed 
order. First, they completed the activity, as a novel exploration 
activity. Then, they received the instruction. After the instruction 
and activity, students in both conditions completed a short 
survey, followed by an assessment to evaluate their learning. 
The purpose of the survey was to assess student attitudes about 
the activity; however, the current paper is focused on learning 
outcomes, and will not report the survey results. 

Students were allowed to work with peers on the exploration 
activity but were instructed to work alone (silently) on the 
assessment. Students received participation credit for attempting 
the assessment, regardless of their performance, and were told to 
do their best. All activities (instruction, exploration activity, 
survey, assessment) were completed within one 50-minute class 
period. Following the experiment, the assessments were graded 
to determine how well students had learned the topic. 

C. Materials 

The class session focused on three Python language-based 
errors: Name Errors, Syntax Errors, and Type Errors.  

Instruction. The three most common error types were 
described and illustrated with code examples that would 
generate these error messages. The composition of the error 
message was discussed, including hints about the type and 
location of the error in the code. For example, Name errors can 
occur when variables are misspelled or when one forgets to add 
quotation marks around a string. Syntax errors frequently result 
from incorrect punctuation. Type errors indicate an invalid 

datatype. Corrections to the code (to fix the errors) were also 
discussed as appropriate. The same lecture was provided in both 
years/studies and will be made available upon request. 

 Activity. Students were provided a complete, working 
program that asked the user to enter a temperature in degrees 
Fahrenheit, converted the temperature to degrees Celsius, and 
then displayed a message about the temperature (e.g. “Freezing” 
or “Hot”). Students were instructed to “break” the code (by 
adding, changing, or deleting text) to generate different error 
messages. Students recorded their findings on a team worksheet 
identifying the error types and causes. Students worked on the 
activity in groups of 2-3 at tables of 4-5 (2 worksheets were 
given to each table). In Study 1, the worksheet was simple and 
open-ended (see Figure 1). In Study 2, the worksheet was 
modified to be scaffolded, such that students were told which 
error types they were looking for (Name, Syntax, Type) and 
were asked to consider how to use the information provided in 
the error message to debug the code (see Figure 1).  

Assessment. The assessment included 12 questions. In Study 
1, all questions were multiple choice. Given sample code or 
scenarios, six questions asked students to select which error type 
would be generated. In three additional questions, students were 
provided with code as well as the generated error message and 
were asked to select the error cause (e.g., missing parenthesis). 
Finally, the last 3 questions tested students’ conceptual 
understanding, considering plausible explanations for a given 
error message, and understanding when and why python 
generates an error message. The items were designed to assess 
both procedural and conceptual knowledge, but preliminary 
analyses showed no differences based on item type, so they were 
combined into a total score.  

In Study 2, four of the questions from Study 1 were modified 
to be open response instead of multiple choice, asking students 
to explain why an error message was generated or what was 
incorrect in the code to generate the error. Responses were 
coded, with 1 point given only to complete and correct responses 
(no partial credit), and an average total percentage was 
computed for each student.  

Figure 1 

Activity Worksheets in Study 1 (left) and Study 2 (right).  

  
 

Note. The worksheet for Study 2 was more scaffolded, and provided students with clearer goals.  

Table 1 

Experimental condition by course section 

Fall 2021 (Study 1) Fall 2022 (Study 2) 

1 Explore-first (Instr. 1) 4 Instruct-first (Instr. 2) 1 Instruct-first (Instr. 2) 4 Explore-first (Instr. 2) 

2 Instruct-first (Instr. 1) 5 Explore-first (Instr. 2) 2 Explore-first (Instr. 2) 5 Instruct-first (Instr. 2) 

3 Explore-first (Instr. 1) 6 Instruct-first (Instr. 2) 3 Explore-first (Instr. 3) 6 Instruct-first (Instr. 3) 

 

 



D. Analysis 

We assessed learning in each study by conducting a one-way 
analysis of covariance (ANCOVA) on overall assessment score 
(percent correct) with an independent factor of order (explore-
first, instruct-first) and a covariate of course performance (end 
of semester weighted average). This covariate was included to 
account for individual performance differences across sections.  

IV. RESULTS 

 In Study 1, the covariate of course performance was 
significant, F(1, 405) = 42.78, p < .001, but there was no effect 
of order, F(1, 405) = 2.74, p = .099. The average performance of 
students in the instruct-first condition (M = 79.6%, SE = 1.2%) 
did not significantly differ from the average performance of 
students the explore-first condition (M = 76.7%, SE = 1.2%). In 
Study 2, the covariate of course performance was again 
significant, F(1, 410) = 69.98, p < .001, and there was an effect 
of order, F(1, 410) = 5.04, p = .025, ηp² = .012. The average 
performance of students in the instruct-first condition (M = 
73.7%, SE = 1.2%) was higher than the average performance of 
students the explore-first condition (M = 69.7%, SE = 1.2%). All 
results are illustrated in Figure 2.  

Figure 2 

Assessment results from Study 1 and Study 2 by condition.  

 

V. DISCUSSION 

In the current set of experiments, exploratory learning—
engaging in a novel activity followed by instruction—did not 
benefit student learning above a traditional instruct-first order. 
In fact, in Study 2, students who experienced the traditional 
order scored higher on the immediate assessment than students 
who explored the activity first. This was the first study to 
implement exploratory learning in introductory programming, 
which is an important topic for first-year engineering students. 
These results are therefore important findings for both 
programming instructors and exploratory learning researchers. 

These results contradict the majority of exploratory learning 
studies [5]. However, they are consistent with some other studies 
showing null results or instruct-first benefits (e.g., [12]–[14]). 
One possible reason we did not find the explore-first benefit is 
that for this topic (error types in python), it may be necessary to 
give students an idea of the framework prior to letting them work 
on an activity. In Study 2, students were provided the names of 
the error types they were looking for, but no context for what 
those error types were. Once students have a basic understanding 
of the error types, it is likely that they can better relate the 
changes in the code to each error. Without this framework, 

perhaps, they do not see the relationships between the error 
messages and what they have changed in the code.  

Another possibility is that the exploration activity was too 
complex. By including multiple concepts to learn, the activity 
could have been too taxing and increased students’ cognitive 
load [6], [7]. This load could have prevented students from 
deeply exploring the problem features, or could have caused 
students to give up working on the activity. We measured 
cognitive load following the experiment, but have not yet 
analyzed those results.  

Alternatively, it is possible that students received the benefits 
of “exploration” even when the activity followed instruction. By 
trying new methods to “break” the code after instruction, 
students were able to go beyond mere practice after the lesson. 
We have records of student work during the activity that may 
reveal different levels of engagement for students in different 
conditions. More analysis is needed on the activity participation 
and output that can be done in future work. For example, we 
could look at how many different error type examples were 
discovered in each group.  

Finally, the benefits of exploration are typically found on 
students’ conceptual understanding, rather than learning basic 
facts or procedures. It is possible that the target topic was not as 
conceptual as we anticipated. Alternatively, our assessment may 
not have accurately captured conceptual knowledge. In the 
second year, we changed the assessment to be more open-ended 
in an attempt to better measure conceptual understanding. This 
change also made it more difficult for students to answer the 
questions correctly and thus reduced overall scores. In addition, 
it appears to have widened the learning gap between students in 
the instruct-first and explore first conditions. Therefore, we 
believe we assessed knowledge of the topic accurately.  

A. Limitations 

This is only one topic in one course, using one set of 

materials, and should not be interpreted as a rejection of 

exploratory learning. However, it is important to measure 

student learning and identify where and when educational 

strategies are effective. More work is needed to understand 

when, how, and for whom exploratory learning works best.  

VI. CONCLUSIONS & FUTURE DIRECTIONS 

Exploratory learning did not benefit student learning in a 
programming topic in a first-year engineering course. In fact, 
students in the instruct-first order outperformed students in an 
explore-first order. Continued research with new educational 
techniques is necessary. Future work includes analyses of 
additionally collected data in this experiment, further 
experimentation in other programming topics, and further 
application of exploratory learning to other engineering topics.   
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