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Abstract—This WIP paper presents new research on
exploratory learning, an educational technique that reverses the
order of standard lecture-based instruction techniques. In
exploratory learning, students are presented with a novel activity
first, followed by instruction. Exploratory learning has been
observed to benefit student learning in foundational math and
science courses such as calculus, physics, and statistics; however,
it has yet to be applied to engineering topics such as programming.
In two studies, we tested the effectiveness of exploratory learning
in the programming unit of a first-year undergraduate
engineering course. We designed a new activity to help students
learn about different python error types, ensuring that it would be
suitable for exploration. Then we implemented two different
orders (the traditional instruct-first versus exploratory learning’s
explore-first) across the six sections of the course. In Study 1
(N=406), we did not detect a difference between the instruct-first
and explore-first conditions. In Study 2 (N=411), we added more
scaffolding to the activity. Students who received the traditional
order of instruction followed by the activity scored significantly
higher on the assessment. These findings contradict the
exploratory learning benefits typically shown, shedding light on
potential boundary conditions to this effect.

Keywords—exploratory  learning, engineering education,
programming.
L INTRODUCTION
Active learning techniques in foundational science,

technology, engineering, and mathematics (STEM) courses have
gained considerable research attention in recent years. Many
studies have suggested that active learning implementation in
classroom settings can improve student engagement and
learning, which can be useful in difficult introductory STEM
courses [1]. One useful active learning technique is exploratory
learning, in which students explore a new topic with an activity
prior to instruction. Even if students are not able to complete the
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activity, their efforts can be considered “productive failure” [2],
because engagement in the activity prior to instruction often
results in increased student conceptual knowledge of the topic
[2]-5]. Exploratory learning benefits have been observed in
undergraduate physics, statistics, psychology, precalculus,
biology, and chemistry courses [6]-[11].

However, positive results are not always found (e.g., [12]-
[14]). Researchers have proposed that there may be boundary
conditions such as cognitive load that may limit the effectiveness
of exploratory learning. In addition, exploratory learning
research is still nascent; many topics, potential moderators and
boundary conditions have not yet been studied. For example,
exploratory learning has not been studied in introductory
programming. More research is needed to help determine when
and why exploratory learning will be beneficial, and when
providing instruction first will lead to higher learning outcomes.

This paper presents two studies that tested exploratory
learning as students learned about python error messages in a
first-year engineering course at the University of Louisville. In
both studies, half of the students received the activity prior to
instruction, while the other half received the content instruction
followed by the same activity. In the first study, the activity was
unstructured. The second study used a more scaffolded activity.

II.  LITERATURE REVIEW

In exploratory learning, students are instructed to engage in
an activity that they have not seen before. Exploration activities
are typically challenging, and students are often unsuccessful.
After the activity is attempted, instructors teach students how to
appropriately complete the activity and other similar problems.
This order of instruction is opposite of traditional lecture-based
learning, where students receive instructions on the topic first,
and then complete the activity afterwards.
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During exploration, students naturally activate their prior
knowledge while searching for a known solution [4]-[6], [15].
They then recognize that there are gaps in their current
knowledge, which prompts them to become more attentive
during the instructional phase with the goal of fulfilling the
knowledge gaps [4], [16]. In addition, students’ work on the
activity allows them to discern important problem features either
during the activity or during the following instruction.

Many studies have indicated that incorporating exploratory
learning in the classroom can increase students’ conceptual
understanding [5], which is an understanding of the
relationships between features (as opposed to stepwise solution
procedures, i.e., procedural knowledge [17]). Conceptual
understanding is a higher level of knowledge that can also lead
to better transfer, or application of knowledge to a new context
or situation [18], [19]. This type of benefit could have many
positive effects for students within STEM programs, as more
advanced courses build on introductory prerequisites.

A majority of the exploratory learning studies have been
conducted in grades K-12 [5], however, studies in higher
education have started to gain popularity. In recent years, several
researchers have implemented exploratory learning in
undergraduate introductory STEM courses [6]-[10]. One such
study was conducted by Weaver and colleagues [8], where
undergraduate physics students learned about electric potential.
Students assigned to explore-first conditions outperformed the
students in the instruct-first conditions. The same outcomes were
observed in another exploratory learning study where a vector
activity was implemented in an online format [9]. In this
engineering mathematics course, students in the explore-first
condition again outperformed the student in the instruct-first
condition.

There are several other studies that found that students in an
explore-first condition scored better than students in a traditional
lecture-first condition, suggesting that the implementation of
exploratory learning as a teaching technique can frequently be
more beneficial to student learning than the instruct-first method
of instruction. But there are not many studies that test
exploration learning in other topic areas. In this current study,
we seek to explore the exploration learning technique in a
different subject area within STEM: programming.

A. Activity Design

Activities used in exploratory learning research have taken
various forms. Some activities include contrasting cases, or
images or diagrams that vary only by critical problem features
[20], [21]. For example, when teaching about the concept of
density, Schwartz and colleagues [21] presented an activity with
2D images of busses and riders. The contrasting cases varied by
size of bus (volume) and number of riders (mass) to try to
encourage students to understand those features and the
relationship between them. Students were told to estimate the
“crowdedness” of the busses, to determine which bus company
was most crowded, and to develop a “crowdedness index” for
estimating the crowdedness of bus lines in general.

Other activities were built around rich datasets, or datasets
with many different points. For example, Kapur [16] presented
data for two basketball players and the number of points they

scored in 20 different games. Students were asked to determine
which player was more “consistent,” and to develop multiple
strategies to estimate consistency mathematically. In rich
datasets, the critical problem features are hidden and not obvious
to participants.

These activity designs vary by the amount of scaffolding, or
support provided for students during exploration. Instructors
often use scaffolding to simplify challenging tasks [22]. A
significant attribute of scaffolding is that it is temporary. As
student learning develops and evolves, the scaffolding would
need to change to match student needs at the time. This idea
comes from Vygotsky’s Zone of Proximal Development theory,
that sought to explain the learning development of students [23].
This theory considers student learning along proximal (i.e.,
potential) levels of development and not based on current
knowledge levels [24]. Vygotsky argued that students were
influenced by their social and cultural environments, and these
influences are manifested through social interactions between
their peers and instructors, which aids in the development of
cognition [24], [25]. The zone of proximal development theory
asserts that students learn best when working through novice to
challenging problems through collaborations amongst their
peers and instructor (expert) assistance [24].

Some studies have compared the effectiveness of different
activity types on student learning from exploration, but results
have been inconclusive. In one case, Bego and colleagues [6]
found that the scaffolding through contrasting cases appeared to
improve learning. In the other case, contrasting cases appeared
to decrease performance in procedural knowledge [12]. More
research is needed that varies activity type to learn best strategies
for learning through exploration.

B. The Current Studies

In the current studies, we incorporated exploratory learning
methods while teaching about python error messages in a first-
year engineering course at the University of Louisville’s J. B.
Speed School of Engineering. These studies further the research
in exploratory learning in two ways, first by incorporating it into
a programming topic, and second to compare results across two
versions of an activity. The research questions were as follows:

RQI1. Does exploratory learning help engineering students
learn an introductory programming concept?

RQ?2. Does scaffolding the exploration activity help students
learn from exploration?

III. METHODOLOGY

A. Participants

Participants were first-year engineering undergraduate
students at the University of Louisville enrolled in Engineering
Methods, Tools, and Practice I in Fall 2021 (Study 1, N = 406)
and Fall 2022 (Study 2, N =411). Participants were included in
the study if they attended class on the day of the experiment and
completed all phases of the experiment. Typically, student
background in computer science varies widely in this course.
Self-report of prior knowledge was surveyed during this study,
but the survey data was not available for this WIP paper, so this
factor is not described here.



Table

1

Experimental condition by course section

Fall 2021 (Study 1) Fall 2022 (Study 2)

1 | Explore-first (Instr. 1) Instruct-first (Instr. 2) Instruct-first (Instr. 2) | 4 Explore-first (Instr. 2)
2 | Instruct-first (Instr. 1) Explore-first (Instr. 2) 2 Explore-first (Instr. 2) Instruct-first (Instr. 2)
3 | Explore-first (Instr. 1) Instruct-first (Instr. 2) Explore-first (Instr. 3) | 6 | Instruct-first (Instr. 3)

B. Procedures

Students were divided into 2 conditions by course section:
the experimental condition (explore-first), and the control
condition (instruct-first; see Table 1). In both studies, there were
six course sections and two instructors; one instructor (Instructor
2) was common in both years (also listed in Table 1).

Students in the instruct-first condition received instruction
on interpreting error messages in Python programs, followed by
an activity, as practice of what they just learned. Students in the
explore-first condition received the same materials in reversed
order. First, they completed the activity, as a novel exploration
activity. Then, they received the instruction. After the instruction
and activity, students in both conditions completed a short
survey, followed by an assessment to evaluate their learning.
The purpose of the survey was to assess student attitudes about
the activity; however, the current paper is focused on learning
outcomes, and will not report the survey results.

Students were allowed to work with peers on the exploration
activity but were instructed to work alone (silently) on the
assessment. Students received participation credit for attempting
the assessment, regardless of their performance, and were told to
do their best. All activities (instruction, exploration activity,
survey, assessment) were completed within one 50-minute class
period. Following the experiment, the assessments were graded
to determine how well students had learned the topic.

C. Materials

The class session focused on three Python language-based
errors: Name Errors, Syntax Errors, and Type Errors.

Instruction. The three most common error types were
described and illustrated with code examples that would
generate these error messages. The composition of the error
message was discussed, including hints about the type and
location of the error in the code. For example, Name errors can
occur when variables are misspelled or when one forgets to add
quotation marks around a string. Syntax errors frequently result
from incorrect punctuation. Type errors indicate an invalid

datatype. Corrections to the code (to fix the errors) were also
discussed as appropriate. The same lecture was provided in both
years/studies and will be made available upon request.

Activity. Students were provided a complete, working
program that asked the user to enter a temperature in degrees
Fahrenheit, converted the temperature to degrees Celsius, and
then displayed a message about the temperature (e.g. “Freezing”
or “Hot”). Students were instructed to “break” the code (by
adding, changing, or deleting text) to generate different error
messages. Students recorded their findings on a team worksheet
identifying the error types and causes. Students worked on the
activity in groups of 2-3 at tables of 4-5 (2 worksheets were
given to each table). In Study 1, the worksheet was simple and
open-ended (see Figure 1). In Study 2, the worksheet was
modified to be scaffolded, such that students were told which
error types they were looking for (Name, Syntax, Type) and
were asked to consider how to use the information provided in
the error message to debug the code (see Figure 1).

Assessment. The assessment included 12 questions. In Study
1, all questions were multiple choice. Given sample code or
scenarios, six questions asked students to select which error type
would be generated. In three additional questions, students were
provided with code as well as the generated error message and
were asked to select the error cause (e.g., missing parenthesis).
Finally, the last 3 questions tested students’ conceptual
understanding, considering plausible explanations for a given
error message, and understanding when and why python
generates an error message. The items were designed to assess
both procedural and conceptual knowledge, but preliminary
analyses showed no differences based on item type, so they were
combined into a total score.

In Study 2, four of the questions from Study 1 were modified
to be open response instead of multiple choice, asking students
to explain why an error message was generated or what was
incorrect in the code to generate the error. Responses were
coded, with 1 point given only to complete and correct responses
(no partial credit), and an average total percentage was
computed for each student.

Figure 1
Activity Worksheets in Study 1 (left) and Study 2 (right).
Error Type Cause

Error Type

(Name, Syntax, Type, etc.)

Causes of Error Debugging

What causes this type of error to be generated? Come up with at least 3 causes | What ather information is included in the
per error type. error message is helpful for identifying
and fixing the error?

Name Error

1) (example) Changing the variable name temp_C on line 3 (tempg o
Temp. G both cause the error).
2)

(example) The variable name is given in
the error message

3)

Syntax Error

Note. The worksheet for Study 2 was more scaffolded, and provided students with clearer goals.



D. Analysis

We assessed learning in each study by conducting a one-way
analysis of covariance (ANCOVA) on overall assessment score
(percent correct) with an independent factor of order (explore-
first, instruct-first) and a covariate of course performance (end
of semester weighted average). This covariate was included to
account for individual performance differences across sections.

IV. RESULTS

In Study 1, the covariate of course performance was
significant, F(1, 405) =42.78, p <.001, but there was no effect
of order, F(1,405) =2.74, p=.099. The average performance of
students in the instruct-first condition (M = 79.6%, SE = 1.2%)
did not significantly differ from the average performance of
students the explore-first condition (M = 76.7%, SE = 1.2%). In
Study 2, the covariate of course performance was again
significant, F(1, 410) =69.98, p <.001, and there was an effect
of order, F(1,410)=5.04, p = .025, n,> = .012. The average
performance of students in the instruct-first condition (M =
73.7%, SE = 1.2%) was higher than the average performance of
students the explore-first condition (M = 69.7%, SE = 1.2%). All
results are illustrated in Figure 2.

Figure 2
Assessment results from Study 1 and Study 2 by condition.
9%
®° *
= 8 p=.025
S g0 T —t— O Instruct
33 T X
% T -First
o 75 -
£ 0 - OExplore
2 + -First
65
60

Study 1 Study 2

V. DISCUSSION

In the current set of experiments, exploratory learning—
engaging in a novel activity followed by instruction—did not
benefit student learning above a traditional instruct-first order.
In fact, in Study 2, students who experienced the traditional
order scored higher on the immediate assessment than students
who explored the activity first. This was the first study to
implement exploratory learning in introductory programming,
which is an important topic for first-year engineering students.
These results are therefore important findings for both
programming instructors and exploratory learning researchers.

These results contradict the majority of exploratory learning
studies [5]. However, they are consistent with some other studies
showing null results or instruct-first benefits (e.g., [12]-[14]).
One possible reason we did not find the explore-first benefit is
that for this topic (error types in python), it may be necessary to
give students an idea of the framework prior to letting them work
on an activity. In Study 2, students were provided the names of
the error types they were looking for, but no context for what
those error types were. Once students have a basic understanding
of the error types, it is likely that they can better relate the
changes in the code to each error. Without this framework,

perhaps, they do not see the relationships between the error
messages and what they have changed in the code.

Another possibility is that the exploration activity was too
complex. By including multiple concepts to learn, the activity
could have been too taxing and increased students’ cognitive
load [6], [7]. This load could have prevented students from
deeply exploring the problem features, or could have caused
students to give up working on the activity. We measured
cognitive load following the experiment, but have not yet
analyzed those results.

Alternatively, it is possible that students received the benefits
of “exploration” even when the activity followed instruction. By
trying new methods to “break” the code after instruction,
students were able to go beyond mere practice after the lesson.
We have records of student work during the activity that may
reveal different levels of engagement for students in different
conditions. More analysis is needed on the activity participation
and output that can be done in future work. For example, we
could look at how many different error type examples were
discovered in each group.

Finally, the benefits of exploration are typically found on
students’ conceptual understanding, rather than learning basic
facts or procedures. It is possible that the target topic was not as
conceptual as we anticipated. Alternatively, our assessment may
not have accurately captured conceptual knowledge. In the
second year, we changed the assessment to be more open-ended
in an attempt to better measure conceptual understanding. This
change also made it more difficult for students to answer the
questions correctly and thus reduced overall scores. In addition,
it appears to have widened the learning gap between students in
the instruct-first and explore first conditions. Therefore, we
believe we assessed knowledge of the topic accurately.

A. Limitations

This is only one topic in one course, using one set of
materials, and should not be interpreted as a rejection of
exploratory learning. However, it is important to measure
student learning and identify where and when educational
strategies are effective. More work is needed to understand
when, how, and for whom exploratory learning works best.

VI. CONCLUSIONS & FUTURE DIRECTIONS

Exploratory learning did not benefit student learning in a
programming topic in a first-year engineering course. In fact,
students in the instruct-first order outperformed students in an
explore-first order. Continued research with new educational
techniques is necessary. Future work includes analyses of
additionally collected data in this experiment, further
experimentation in other programming topics, and further
application of exploratory learning to other engineering topics.
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