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Increasing evidence suggests that urbanization is associated with higher
mutation rates, which can affect the health and evolution of organisms
thatinhabit cities. Elevated pollution levels in urban areas caninduce DNA
damage, leading to de novo mutations. Studies on mutations induced

by urban pollution are most prevalent in humans and microorganismes,
whereas studies of non-human eukaryotes are rare, even though increased
mutation rates have the potential to affect organisms and their populations
in contemporary time. Our Perspective explores how higher mutation rates

inurban environments could impact the fitness, ecology and evolution
of populations. Most mutations will be neutral or deleterious, and higher
mutation rates associated with elevated pollution in urban populations
canincrease the risk of cancer in humans and potentially other species.
We highlight the potential for urban-drivenincreased deleterious
mutational loads in some organisms, which could lead to adeclinein
population growth of awide diversity of organisms. Although beneficial
mutations are expected to be rare, we argue that higher mutationratesin
urban areas could influence adaptive evolution, especially in organisms with
short generation times. Finally, we explore avenues for future research to
better understand the effects of urban-induced mutations on the fitness,
ecology and evolution of city-dwelling organisms.

Mutationis the original source of all genetic variation. Despite itsimpor-
tance, variationin mutation rates is often overlooked or considered of
negligible significance in empirical studies of ecology and evolution,
particularly in eukaryotes'. Mutation rates can be influenced by the
environment*’and can evolve through time*’. Neglecting to consider
mutation may be especially problematic in cities, where emerging
evidence suggests that pollution elevates mutation rates®’.

One of the most consistent differences between urban and
non-urban environments that could influence mutation ratesis chem-
ical pollution. Transportation, industry, wastewater management,

home heating, landfills and pesticide application are all activities in
urban areas commonly associated with elevated air, water and soil
pollution®*°. Although less frequent in urban areas, nuclear plants,
nuclear testing and warfare can also result in highly mutagenic ion-
izing radiation™. Studies on the mutagenic effects of radiation also
provide general insight into how highly mutagenic pollutants can
influence organisms in cities. Although pollution is not unique to
urban areas, the concentration and diversity of pollutants are often
highestin cities, exposing organisms to harmful stressors in unprec-
edented ways®°,
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Table 1| Common urban chemical mutagens and carcinogens

Pollutant Chemical species Sources Medium Refs.
PM PM, 5 Combustion by-products from traffic and Air 8,18
PM,: inorganic ionic compounds, metal oxides, industrial emissions, residential heating
organic and elemental carbon and reactions between pollutants
Volatile organic Aldehydes, ketones, aromatics and alkanes Household products, building materials Air 18132
compounds and combustion sources
PAHs Examples include benzo[a]pyrene, benzol[a] Combustion by-products from industrial, Air/water/soil 33,133-135
anthracene, chrysene, benzo[b]fluoranthene, residential and transport emissions
benzo[k]fluoranthene
Sulfur oxides (SO,) SO,, sulfur trioxide (SO3) Fossil fuel combustion, other industrial Air 8,18
processes
CO - Fossil fuel combustion, transport Air 8,136
emissions
NO, Nitrous oxide (NO), nitrogen dioxide (NO,) Transport and industrial emissions Air 8,137,138
Pesticides Organophosphates, pyrethroids, carbamates, Pesticide use in urban areas Water/soil 139
polychlorinated biphenyls, polybrominated
biphenyls, persistent organic pollutants
Heavy metals Mercury, arsenic, cadmium, chromium and lead Industrial processes, mining Water/soil 9,137
High salt Salt (NaCl) Road salting Soil/water 140

For each pollutant, we indicate the chemical species, the most common anthropogenic sources, the medium in which the pollutant is typically encountered (air, water or soil) and references.

Urban chemical pollutants can cause physiological and genotoxic
stress to organisms that may result in mutations. Such pollution is
known to result in respiratory illnesses in humans®, reduced photo-
synthesis and cell damage in plants”, higher mortality in fishes and
amphibians™, and decreased fledgling success in birds®. Exposure to
some pollutants can damage DNA and induce de novo mutations (here-
after simply called ‘mutations’)'*. Although carcinogenic pollutants
areknown to cause somatic mutations (mutationsin non-reproductive
germ cell tissue), the fitness effects of these mutations and the preva-
lence of pollution-induced germline mutations are poorly understood
outside of laboratory settings. Moreover, whether urban-induced
higher mutation rates lead to an increased number of deleterious
mutations, population decline or accelerated adaptive evolution has
not been previously considered (but see ref. 20).

Our goalisto provide aforward-looking Perspective on the poten-
tial for elevated mutation rates in cities to influence the ecology and
evolution of populations. Studies of the effects of urbanization on evo-
lution have focused on genetic drift, gene flow and natural selection,
and the potential for elevated mutation ratesin cities toinfluence the
ecology and evolution of populationsis largely unexplored and of high
priority for future research?2*. We begin by reviewing urban pollutants
and the damage they cause to DNA. Next, we consider how pollution
affects somatic and germline mutations and the potentialimportance
ofthese mutations forecology and evolution. Although urban pollution
can affect all organisms in cities, most existing examples come from
research on humans. We consider the effects of pollution on humans
and non-human organisms throughout this Perspective, and we use
the extensiveliterature on humans asamodel to understand the wider
ecological and evolutionary impacts for all organisms. Looking beyond
humansisimportant because although cities reduce and homogenize
species diversity, urban habitats still harbour substantial biodiver-
sity> ¥, and many of these species in cities are of conservation concern
or have fundamental ecosystem roles?. We end by discussing existing
knowledge gaps and directions for future research.

Urban pollutants and damage to DNA

Air, water and soil in cities are consistently associated with a diverse
mixture of pollutants (Table 1and Box 1). The sources of most outdoor
air pollutants in cities are combustion by-products from transpor-
tation, power generation, home heating/cooking and industry***°.
These by-products include pollutants such as polycyclic aromatic

hydrocarbons (PAHs), nitrogen oxides (NO,), sulfur dioxide (SO,),
carbon monoxide (CO) and various metal species (for example, Hg,
Cu, Pband Sn). These compounds can bind to particulate matter (PM),
which canthenbe deposited in soil'®*"*, Soil can also become contami-
nated with genotoxicants fromindustrial by-products, manufacturing,
mining and road salting®. Air pollutants, soil leaching, run-off and
sewage all contribute to water pollution®*, which can lead to elevated
levels of pesticides®*®, polychlorinated biphenyls”, pharmaceutical
products®“° and microplastics*****in aquatic habitats.

Pollutionin urban settings varies in both time and space in com-
plex ways. The levels and types of urban pollution have changed
throughout the history of industrial and urban growth. For example,
duringthe past 20 years, the level of PM, s (PM with diameters <2.5 um)
in Shanghai, China, has increased by over 200%, yet it decreased by
nearly 30% in New York, USA, and remained consistently low in Mel-
bourne, Australia (Fig. 1). These changes through time are often influ-
enced by changes in governmental policies (for example, the United
States’ Clean Air Act and the European Union’s Ambient Air Quality
Directive) and technological change, such as conversion fromleaded
to unleaded fuels. Urban pollutants also vary spatially in their con-
centrations and composition (Fig. 1insets). For example, industrial
steel production often leads to some of the highest concentrations
of PAHs*?, whereas high vehicle traffic is typically associated with
higher PM, ozone, CO and NO, (Table 1). Socio-economic variation
among neighbourhoods often covaries with pollution levels, whereby
poorer neighbourhoods are frequently in the most polluted areas,
causing disparity in exposure to potentially harmful genotoxicants***,
Non-urban areas also frequently experience pollution due to anthro-
pogenicactivities, including resource extraction, agriculture, forestry
and nuclear radiation. However, we focus on urban areas because they
arethefastest-growing ecosystemon Earth, and they are consistently
associated with elevated pollution made up of diverse mixtures of
chemicals that potentially harm organisms including causing damage
to DNA (genotoxicants) (Box 1).

The genotoxic effects of pollutants include chemical interac-
tions that form DNA adducts (chemicals that bind to DNA) and reac-
tive oxygen species that damage DNA (Box 1). When such damage is
improperly repaired, it can cause small-scale and large-scale mutations.
Small-scale mutations include single nucleotide substitutions and
smallinsertions/deletions (indels). Large-scale mutationsinvolve large
indels, duplications, translocations, inversions and aneuploidy**™*%.
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BOX1

Genotoxicity of urban
pollutants and induction of
mutations

Chemical pollutants are the primary cause of DNA damage induced
by urban pollution. lonizing radiation is less common but is a more
extreme mechanism of DNA damage in and around cities. When

an organism is exposed to a chemical pollutant, the pollutant can
cause DNA damage and mutation through several steps:

"orreceptor-mediated

(1) Pollutantscanenterthecellviadiffusion
endocytosis™®

(2) Once inside the cell:

(a) Pollutants (for example, PAHs) can form bonds with nitrog-
enous DNA bases, resulting in DNA adducts'™®

(b) Presence and interaction of pollutants with cellular pro-
cesses or proteins causes increases in reactive oxygen
species that can oxidize DNA and proteins'®>'®'

(3) Chemically induced DNA lesions may be subject to error-prone
DNA repair processes that cause mutations, or if the amount
of damage exceeds the cell’s capacity for DNA repair, it can
result in mutations or chromosome damage'®

(4) Air pollutants can also cause oxidative stress via chronic in-
flammation and subsequent formation of reactive oxygen
species”

lonizing radiation and radiomimetic compounds can alter DNA
sequences through a different mechanism:

(1) Radiation directly deposits energy in DNA, causing strand
breaks, or it creates free radicals that damage DNA and
proteinswsmea

(2) Free radical DNA damage includes apurinic/apyrimidinic sites
and deamination of DNA bases (among others), both of which
have unigue mutagenic mechanisms'®

(3) Lack of repair or error-prone repair of this damage can cause
chromosomal aberrations and mutations

DNA replication errors such as unequal crossovers that can result in
gene duplication and deletion are also possible. The location of DNA
damage (coding versus non-coding regions), the molecular function
of damaged DNA (regulatory versus structural) and whether coding
mutations are synonymous or non-synonymous all can influence the
molecular, physiological and fitness consequences of damage. The fit-
ness effects of mutation canin turnimpact the ecology and evolution
of populations* ! (see ‘Ecological and evolutionary consequences’).

The effects of urban-induced mutations may differ between
species because of variation in ploidy, cellular complexity, mutation
rate, reproductive system, population size and generation time. For
example, many animals, higher plants and some eukaryotic micro-
organisms live primarily as diploids or polyploids, which can mask
the fitness effects of recessive mutations at low frequencies®*. Simi-
larly, many multicellular organisms have differentiated germ and
somatic cells, such that pollution-induced mutations in somatic cells
will notgenerally be passed on to subsequent generations. By contrast,
organisms with no distinction between germ and soma, such as some
plants and fungi, may accumulate inherited mutations more rapidly
if mutations arise in the cells that ultimately form gametic tissue**.
Moreover, mutation rates vary by orders of magnitude, with bacteria
and microbial eukaryotes having the lowest rates, vascular plants

and animals having moderate rates, and viruses having the highest
mutation rates**®. Recombination in sexual organisms can allow more
efficient purging of harmful mutations by selection than in asexual
populations™*%, Finally, large populations with rapid generation times
are expected to purge or fix environmentally induced mutations that
affect fitness more rapidly than small long-lived populations®. In the
sections that follow, we expand on how such variation among species
may lead to different ecological and evolutionary consequences of
urban-induced mutations.

Somatic mutations

The primary consequence of genotoxic exposure is the induction of
somatic mutations that can adversely affect molecular, cellular and
tissue function. Somatic mutations are not transmitted to the next
generation unless they occur in germ cell progenitors, such as plant
apical meristems®, so they typically affect only the exposed individual’s
healthand fitness. The causal role of chemically induced mutationsin
cancer developmentis well knownin certain cases, such as lung cancer
dueto tobacco smoke® (Table 2). These examples show that exposure
to genotoxicants can cause mutations in tumour suppressor genes or
proto-oncogenes that can functionas cancer drivers, causing cellular
proliferation, tumour development and genetic instability®”. Moreover,
exposure to mutagens during key life stages, especially embryogenesis
and organogenesis, may increase the probability of clonal expansion of
mutation-bearing cells"***, Data supporting the association between
environmentally induced mutations and non-cancerous diseases are
almost entirely lacking, despite knowledge of mutations across the
genome caused by genotoxicant exposure and agrowing understand-
ing of the role of somatic cell mutagenicity in disease more generally
(forexample, ageing, neurological and cardiac diseases)®**. Thus, there
is currently no knowledge on the rates and functional consequences
of pollution-induced somatic mutations for individuals, populations
and species beyond the established association with cancer.

The study of mutagenesis is challenging because mutations are
rare events at a genomic scale. This difficulty is compounded in the
case of somatic mutations because the occurrence of mutations varies
among tissues withinasingle individual. However, a variety of studies
provide empirical evidence supporting an association between specific
urban pollutants and elevated somatic cell mutation rates. Theinven-
tion of the Salmonella mutation assay, often called the ‘Ames assay’,
hasbeen atransformative toolin the study of environmental mutagen-
esis®”8, In brief, the assay assesses how frequently Salmonella strains
lacking the ability to metabolize histidine—due to engineered base-pair
substitutions or frameshift mutations—exhibit revertant mutations
to restore histidine metabolism when challenged by a toxicant'*".
This simple bacterial assay has revealed that the air, soil and water in
urban environments is replete with mutagens®. Beyond Salmonella,
observational and experimental cytogenetic studies show that numer-
ous chemical pollutants cause chromosomal abnormalities in diverse
organisms, including structural aberrations and aneuploidy'®'*’.
Additionallines of evidence are based on the types and distribution of
mutations (the mutation spectrum) observed inhuman cancers used to
infer mutagenic exposures’ as well as the COSMIC database”. Overall,
laboratory models (for example, Salmonella, mice and plants) exposed
toenvironmental media or extracts demonstrate the widespread muta-
genicity of many chemical pollutantsin urban areas™.

The most extensive evidence of pollution-induced somatic cell
mutagenicity is from studies on combustion-related by-products found
inurban air pollution, contaminated soils and sediments. The weight
of evidence for the mutagenicity of outdoor air pollutionis high, with
many specific agents declared “carcinogenic to humans” by the Inter-
national Agency for Research on Cancer'®, This agency’s monographs
thoroughly describe how these urban pollutants cause mutagenicity
inlaboratory organisms as diverse as bacteria, plants and rodents'®">.
For example, the mutation spectrum observed in lung tumours of
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Fig.1| Global concentrations and composition of mutagenic and
carcinogenic pollutants. Concentrations of PM, s across terrestrial Earthin
2019-2020, withinset panels illustrating that concentrations are frequently
highestin and around cities"**'*>, PM, s concentrations have been changing
through time (top right inset), increasing in some cities (for example, Shanghai,
China) and decreasing in others (for example, New York, USA)**. The stacked
bar charts show how the composition of major carcinogenic pollutants
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(CO, volatile organic compounds (VOCs), SO,, NO, and ozone (O,)) in urban areas
varies among countries>"*°, High concentrations of PM, s outside urban areas
are caused by acombination of anthropogenic sources such as long-distance
dispersal of industrial pollution, burning of crops in agricultural regions, forest
fires and naturally occurring fine dust picked up by strong winds from bare soil,
especially in arid regions (for example, Saharan and sub-Saharan Africa).

non-smokers associated with air pollution is broadly consistent with
exposure to bulky-DNA-adduct-forming chemicals such as benzo[a]
pyrene””*, Additional evidence for the mutagenicity of air pollution
comes from humans exposed to high levels of combustion by-products
inresidential and occupational settings, whereby individuals exhibit
cytogenetic damage to various cell types””®, and the urine from such
individuals is mutagenic to bacterial cells””’®. Moreover, soil and sedi-
ments that contain combustion-related contaminants are mutagenic
toorganisms that frequently come into contact with these substrates,
such as bacteriaand plants”®. Undoubtedly, inhabitants of any urban
ecosystem are exposed to mutagenic particulate pollutants associated
with combustion emissions.

There are many other examples of mutagenic contaminants found
inurban settings, from metals to pesticides, organochlorines and ben-
zene (Table 1). These genotoxicants have the potential to impact the
somatic cell mutation burden, contributing to the decreased health
of individuals and populations'®”®, The vast majority of mutagenicity
testingis conducted inthe laboratory onindividual chemicals at high
doses', leading to a major gap in our understanding of how lifelong,
low-dose exposures to mixtures of mutagens affect mutation rates

and disease outcomes. Moreover, the complex interactions between
sociodemographic factors and mutagenic environmental mixtures
inherent to cities have yet to be explored.

The study of environmentally induced somatic cell mutations
has been considerably hampered by the lack of tools available out-
side of the laboratory. Although single-cell deep-sequencing®® and
error-corrected sequencing®*? methodologies exist, these have mostly
beenappliedinclinical settings and have yet to be extended to studies
onenvironmental exposures in natural populations. The high levels of
pollutioninurbanareas offer an opportunity toaddress these obstacles
using field experiments, in addition to laboratory experiments, that
apply genomic technologies to directly quantify mutation frequency
andspectruminadiverse array of organisms (see ‘Future directions’).

Germline mutations

Unlike somatic mutations, germline mutations areinherited between
generations. For thisreason, itis primarily germline mutations that can
influence the evolution of populations. Although germline mutations
arerareat theindividual level, even the smallest increase in the muta-
tion rate can have large consequences for populations®,
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Table 2 | Cancers associated with urban-induced mutations

Health effect Regionof study Pollutant Description of findings Refs.
Childhood cancers Spain Air pollution Risk of cancer increased with closer proximity to industrial and 141-143
(leukaemia, neuroblastoma, urban areas
renal and bone tumours)
Lung cancer China PM (PM,: SO,) Lung cancer incidence and mortality increased with increased 144
PM,,; SO, also positively correlated with cancer
USA PM (PM,q: SO,, ozone) Lung cancer was most strongly correlated with PM,, exposure, 145
followed by SO, and ozone in male individuals; in female
individuals, lung cancer correlated with SO,, followed by PM,,
Canada Air pollution (PM,5) PM, s associated with increased risk of lung cancer 146,147
Sweden Air pollution (NO,) NO, exposure correlated to increased lung cancer 148
Stomach cancer China Soil pollution (heavy metals; Heavy metals in soils correlated with higher stomach 149
Cd, Cr, Pb, Hg, As) cancer incidence
Breast cancer USA Air pollution (NO,) Increased risk of breast cancer following NO, exposure in women 150
living near major roads
Digestive system cancers China Water pollution Large-scale study identifying covariation between decreasing 151

water quality and increased incidence of digestive cancers

Examples of the most common cancers associated with urban-induced mutations, including changes in rates of cancer in urban and non-urban populations. For each example, we indicate the

study region, the pollutant studied and the main findings.

Laboratory and field studies suggest that exposure to many com-
mon urban pollutants can induce germline mutations. For example,
over 80 chemical agents have been identified as germline mutagens
in laboratory mice'. In humans, the best evidence of the impact of
pollutants on germ cell mutagenesis comes from studies demonstrat-
ing an increased incidence of chromosomal abnormalities in human
sperm". Such abnormalities may explain the significant correlation
between paternal blood dioxin levels due to occupational exposure
and increased mutation rates in their offspring®. When considering
exposure to radiation as an example of extreme exposure to a muta-
gen, children of parents exposed to ionizing radiation following the
Chernobyl nuclear plantaccident exhibited increased rates of tandem
repeat mutations®. Similar inherited mutations have been observed
in plants®® and barn swallows®. However, increases in inherited single
nucleotide variants have yet to be conclusively demonstrated for
humans exposed to radiation®. In non-polluted areas, a recent study
reported a reduced mutation rate in an Amish population, which has
beeninterpreted as traditional rural lifestyles leading to low mutation
rates because of reduced exposure to chemical mutagens®. Very few
studies have examined non-human populations outside of laboratory
conditions, and they show that birds and rodents exhibit increased
heritable mutation rates in repetitive DNA regions when exposed to
ambientindustrial air pollution®”%",

In addition to pollution, urban and rural human populations
diverge in their demographic patterns in ways that are expected to
influence germline mutation rates. In recent decades, there has been
atrend for delayed childbearing in many countries. Inboth developed
and developing nations, this delay is more pronounced in urban set-
tings thaninrural settings®>”*. Studies of human parents and offspring
over the past decade have consistently demonstrated an age-related
increase in mutation rates, especially in fathers®. It is estimated that
fathers transmit -1.2 additional mutations for each year of age, versus
~0.4 new mutations per year of age in the mother. The higher paternal
contribution is partially ascribed to the continuous production of
sperm as men age, whereas nonew oocytes are generated once afemale
individualis born. Surprisingly, the urban-biased shift towards delaying
the age of reproduction is the only clear example of how urban living
isassociated with elevated germline mutation rates, other than urban
pollution inducing mutations in repetitive regions of birds and mice.
The consistency of divergence in parental age between urban and rural
populations in developed and developing nations requires further
investigation, as this major source of increased mutation rates could

alsoresultfromdifferencesin socio-economic factors and cultural dif-
ferences throughout the world. Thereis also evidence that non-human
organisms exhibit demographic shiftsin urban habitats”, but whether
thisisassociated with changes in mutationrates requires investigation.

Despite the circumstantial evidence mentioned above for an effect
ofurban pollutionand demographics onincreased germline mutation
rates, a direct link between urban pollution and mutations has yet
to be definitively demonstrated using modern genome sequencing
techniques. We therefore lack information on how and when urban
pollution increases germline mutation rates, the targets of mutation
and especially their phenotypic and fitness effects.

Ecological and evolutionary consequences
Alterations to the rate and spectrum of both somatic and germline
mutations due to urban pollution could have important ecological and
evolutionary repercussions. Theoretical and empirical studies show
that the majority of new functionally significant mutations are delete-
rious and removed by purifying selection. If deleterious mutations
areelevated in urban settings, either due toahigher rate orasalarger
fraction of deleterious mutations, we expect an increased mutation
load (reduced fitness due to the burden of deleterious mutationsrela-
tive to an unmutated individual) that will decrease population mean
fitness””’, Whether urban species in fact suffer ademographic decline
dependsonseveral factorsincluding the strength of selection, effective
populationsize (N,) and generation time (Fig. 2). Keightley”® estimated
that the decline in human fitness due to mutation could reach 0.01%
per generation, and the decline would change linearly with changes
inmutation rate. This estimate does not include the countering force
of purifying selection. It is therefore likely that organisms with long
generation times will experience little effect on population mean fitness
inthe short term. Conversely, organisms such as microorganisms that
have short generation times may experience changes in fitness over
contemporary timescales.

Although evolutionary responses depend on inherited germline
mutations, somatic mutations also have important consequences
for the health and fitness of individuals that contribute to long-term
population viability. In multicellular organisms, somatic mutations
can create amosaic of cells with slightly different genotypes'®°. These
mutations canlead to developmental instability, which s particularly
detrimental in organisms with strict body plans such as animals'”
(Table2). The genomic diversity withinanindividual can also produce
competition among cell lineages that can be harmful, as in the case
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Fig. 2| The potential for elevated mutation rates in cities to affect the
evolution of a populationrelative to afitness optimum. When a population
starts at a fitness optimum (dashed horizontal black line) inan urban
environment (blue lines), any increase in the mutation rate (Au) can lead to a net
increase in deleterious mutations within a population, moving the population
further from the fitness optimum. If urban pollution elevates mutation rates in
urban areas (thatis, high Ay, indicated by the solid blue line), then we predicta
population will move further from the fitness optimum through time. If Au is low
butstill >0, then this effect can be relatively small. By contrast, when a population
isinitially maladapted to an urban environment (red lines), such that it starts far
away from the fitness optimum, then higher mutation rates in urban areas (solid
red line) canlead to rapid adaptation such that the population quickly evolves
towards the fitness optimum. The rate of this evolution will be slower when Au
islower (red dashed line). Such adaptive evolution could lead to evolutionary
rescue, but such dynamics are only likely over contemporary time when N,

is high and generation times are short (as in viruses, bacteria and eukaryotic
microorganisms). At equilibrium, populations are below the fitness optimum
because elevated mutation rates in urban areas increase a population’s mutation
load. Moreover, populations experiencing higher Au are predicted to have lower
fitness than those with lower Au because most new mutations will be deleterious
when apopulation s close to its fitness optimum. A population may remain
maladapted (scenario not shown) when N, is low and generation times are long,
which could lead to extinctionif population growth rates are negative.

of cancers. There is also clear evidence for intra-organismal selec-
tion for healthy cell lineages that can reduce the overall impact of
deleterious mutations, including in marine tunicates and long-lived
perennial plants'®®'%’, These different phenomena hint at complex
interactions between development, life history and genetic systems
when determining the relative impact of elevated somatic mutation
rates in urban settings. Given the evidence that urban habitats have
elevated concentrations of numerous mutagens (Table 1), the impact
of somatic mutations may become very important to predicting the
sustainability of some urban populations (see ‘Applied impacts’).
Theory generally predicts an advantage for reduced mutation
rates because most non-neutral mutations are deleterious'**'*>, We
might therefore expect that urban populations will be under selec-
tiontoreduce mutationratesin the presence of mutagens. The ability
and time it takes for selection to reduce mutation rates will depend
on numerous factors such as the mating system, N, and target size
(the amount of nucleotide sequence that can reduce mutation rate)
for mutation modifiers'®’. The drift-barrier hypothesis'® predicts
that directional selection will reduce mutation rates until a point
at which the strength of genetic drift (1/V,) overcomes the selec-
tive advantage (s) of smaller improvements in mutation rate (when
N.s <1). This hypothesis is supported by recent comparative genomic
analyses that show that species with higher long-term N, and shorter
generation times tend to have lower mutation rates per generation’.
Thereisanequilibrium point beyond which if mutation rates are suf-
ficiently high, selection to reduce the mutation rate should overcome
drift. Nevertheless, if urban environments reduce an organism’s

N,, resulting in a loss of genetic diversity*?, we may expect a higher
equilibrium mutation rate.

Despite the genetic load created by deleterious mutations,
mutation also provides the raw variation necessary for adaptation.
These contrasting effects of mutation lead to the possibility that
mutation-fuelled adaptation canresultin an “evolutionary rescue”’%'%°
(thatis, anincreasein the population growth rate of small populations
duetoadaptation) of populations subject to environmental challenges
inurbanenvironments (Fig. 2). Forexample, pathogens whose fitnessin
anew hostissolowasto preclude persistence may benefit from higher
mutation rates, where the higher the mutation rate, the larger the
probability of evolutionary rescue'”. However, this situation is highly
context-dependent—once a population approaches its fitness opti-
mum, any new mutations are likely to be deleterious. It is reasonable
to speculate that urban environments will pose such strong selective
pressures that some populations will benefit from elevated mutational
input duringinitial establishment (Fig. 2). The extent to which mutation
will provide variationto tackle new selective challenges will depend on
how elevated the mutation rate is in urban areas, how close a popula-
tionistoafitness optimum, N, and generation time (Fig. 2). If elevated
mutation rates have beneficial implications for species colonizing
urbanenvironments, it may also mean that cities could facilitate rapid
adaptationto pesticides, herbicides and antibiotics or provide the raw
variation needed for pathogens to switch hosts.

Itis plausible that elevated patterns of mutation in cities could
facilitate speciation, especially if mutations induced by urban pollu-
tion cause chromosomal changes that affect mating compatibility,
ecology or physiology. Elevated mutation rates in cities could help to
fuel population divergence among urban and non-urban populations
via local adaptation and accelerate genetic drift due to population
fragmentation'®®. Under these conditions, higher mutation rates in
urbansettings would increase the possibility of generating mutations
that are compatible with population-specific local alleles at other loci
but incompatible with alleles in populations adapted to non-urban
environments. Alleles that are compatible only with the genetic back-
ground in which they arose are called Bateson-Dobzhansky-Muller
incompatibilities and often form the genetic basis of speciation'’.
Such incompatibilities may be particularly likely to occur if urban
pollutants increase the frequency of chromosomal abnormalities or
large structural mutations, including inversions, translocations, poly-
ploidy or elevated activity of transposable elements. It is these types of
large-scale structural mutations that are most commonly associated
with genes thatinfluence reproductive isolation and large changes in
ecology and physiology"’. Even in the absence of reproductive isola-
tion, reduced vigour of urban and non-urban hybrids could alter the
fitness of nearby populations. Overall, because elevated mutation rates
inurban areas have the potential to lead to increased divergence'*®, we
believe that cities offer unique opportunities to study the process of
speciationin real time.

Applied impacts

Giventhat urbanization canincrease mutation rates, we expect numer-
ous applied consequences associated with the health and conserva-
tion of organisms inhabiting cities. The anticipated health effects on
humans and non-human species include cancers and other diseases
linked to somatic and germline mutations. The conservation conse-
quences relate to how elevated mutation rates are expected to influ-
ence the fitness and long-term population growth of urban-dwelling
species (Fig. 2).

Urban pollution causes numerous types of cancer in humans and
other organisms. Contemporary urban pollution elevates lung’,
breast"?and other forms of cancer™® by 10% to 1,000% above baseline
incidencerates (Table 2). The magnitude of these effects variesamong
cities and over time because of variation in the types and concentra-
tions of pollutants (Fig. 1). Admittedly, most research on the health
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Fig.3 | Potential biosentinel species for studying urban-associated
mutations. a-1, Proposed biosentinels include Salmonella enterica (a),
Caenorhabditis elegans (b), Drosophila melanogaster (c), Arabidopsis thaliana
(d), Trifolium repens (e), Flavoparmelia caperata (alichen) (f), Fundulus majalis
(g), Passer domesticus (h), Columba livia (i), Mus musculus (j), Rattus norvegicus
(k) and Canis lupus familiaris (I). Animage of humans (Homo sapiens) is not
shownbutisincluded in the schematics below. These species representa

range of traditional laboratory model organisms used for studying genetic and
evolutionary processes, as well as emerging models for studying ecological

responses to pollution or evolution in urban areas. m,n, Some species offer
acombination of fast generation time and excellent genomic resources for
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mutagenic studies (m), whereas others are more directly relevant to humans
(thatis, with respect to health and well-being) and urbanization (that is, owing
to their relative abundance in urban versus non-urban habitats) given their
commensal status with humans (n). Credits: Phanie - Sipa Press/Alamy Stock
Photo (a), Science Photo Library/Alamy Stock Photo (b), Itsik Marom/Alamy
Stock Photo (c), thrillerfillerspiller/Alamy Stock Photo (d), Nigel Cattlin/Alamy
Stock Photo (e), Clarence Holmes Wildlife/Alamy Stock Photo (f), Robert S.
Michelson/Tom Stack & Assoc./Alamy Stock Photo (g), robertharding/Alamy
Stock Photo (h), M. Johnson (i), Tim Mander/Alamy Stock Photo (j), Dave Bevan/
Alamy Stock Photo (k), K. L. Howard/Alamy Stock Photo (I).

effects of urban pollution has been done on humans and rodents. How
urban pollution affects somatic mutations and cancers in non-model
organisms is poorly understood, especially outside of laboratory
settings, and represents a gap in knowledge™* "' (see ‘Future direc-
tions’). Although heritable germline mutations have the potential to
magnify cancer riskin offspring due to pollution exposure in parents,
thereis currently no evidence outside the laboratory of environmen-
tally induced heritable mutations causing cancer, even for ionizing
radiation'*"”, However, observational studies of birds’ and labora-
tory studies of rodents®” confirm that air pollution from steel mills
can induce heritable germline mutations in repetitive DNA regions,
which suggests that urban-induced mutations in cancer driver genes
could also be inherited. Understanding how, when and where urban
pollution leads to inherited mutations that influence cancer risk is an
important goal for future research (see ‘Future directions’).

Multiple socio-ecological factors associated with urban lifestyles
couldinteract with pollution to elevate mutation rates. The previously
mentioned shift to older parental age among people in urban com-
pared with non-urban communities is the best-known cause of higher
germline mutation rates in urban populations®. Urban mutagenic pol-
lution probably interacts with and amplifies this demographic effect
on mutation rates. Human urban populations also exhibit increased
rates of obesity and associated cancers due to a large proportion of
processed foods in urban diets and relatively sedentary lifestyles™.
Wildlife species also exhibit altered diets in cities that incorporate
more anthropogenicfood sources such as sugar, corn and wheat. Such
diet shifts have been linked to higher body mass and hyperglycaemia
in some species’ . Food additives and contaminants in processed
foods may influence germline mutation rates'?, as could shiftsin urban
gut microbiomes'”, Exposure to environmental pollutants and lack
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of access to high-quality diets may be biased towards certain urban
demographics. Analysing urban mutagenesis and other evolutionary
processes is thus an important step to address concerns about envi-
ronmental justice***'%,

Elevated mutation rates in cities have the potential to influence
the dynamics of urban populations (Fig. 2). Given that most mutations
are neutral or deleterious, it is likely that urban-induced mutations
will frequently negatively affect individual fitness and population
growth rate’”’%, Determining whether such negative demographic
effects will be sufficiently large to outweigh the influence of other
factorsrequires careful quantification and modelling. We expect that
the urban pollution-induced mutational load will be one of many fac-
tors threatening the persistence of populations and may become a
conservation concern for rare or declining native species in cities. By
contrast, we predict that populations of pests and other organisms that
maintain large populations are less likely to be negatively affected by
elevated mutationrates.

Itis unlikely that urban-induced mutations will positively influence
conservation through evolutionary rescue for most species. Only organ-
isms with rapid generation times and high N, are expected to experience
positive long-term fitness effects of elevated mutation rates, and even
then, only when selection is strong (Fig. 2). Such scenarios are most
likely to apply to viruses, bacteria and some eukaryotic microorgan-
isms (for example, yeast and algae), raising the possibility that elevated
mutationratesin cities could promote the spread of pathogenic organ-
isms'”. Field and laboratory experiments that examine how urban-
induced changes in mutation rates affect known and emerging dis-
eases and pests could have important implications for public health.

Futuredirections

Our Perspective illustrates that water, soil and air pollution in urban
areas increases mutation rates, but the magnitude and mutational
spectrum of this increase, as well as its ecological and evolutionary
consequences, remain unresolved. These gaps represent important
problemsrequiring attention, which we outline as research questions
below.

What is the magnitude of increase in somatic and germline
mutation rates, and what are the types of mutations caused by
urban pollution?

Although it is important to refine how somatic mutation rates are
influenced by urban pollution, the greatest need remains establishing
whether and under what circumstances urban pollution causes ger-
mline mutations inwild populations®. Conventional genomic technolo-
giesare poorly suited for quickly surveying the mutagenic properties
of changing environments such as urban areas. New error-corrected
sequencing approaches enable the study of rare mutations within a
heterogenous population of cells**'?, These methods can facilitate
morerapid and definitive tests of how urban pollution affects mutation
rates because they rely on uniquely labelling individual DNA molecules
prior to sequencing, which allows the removal of PCR and sequencing
errorsassociated with standard next-generation sequencing. This ena-
bles, for the first time, the accurate quantification of rare mutations
directly in the exposed organism.

What are the fitness effects of urban-induced mutations,

and how do these influence the ecology and evolution of
populations?

Answering this question will require acombination of laboratory and
field experiments, coupled with genome sequencing. Laboratory
experiments could establish how mutations caused by specific urban
pollutants influence individual fitness, population growth and (mal)
adaptation. Field experiments could follow the fitness of individuals
that exhibit the presence or absence of mutations. Such experiments
could be expanded on by experimentally recreating mutations via

transgenic or CRISPR manipulations. Finally, identification of somatic
and germline mutations from human and wild urban populations of
diverse organisms (Fig. 3) could be used to infer fitness and health
effects on the basis of how the types and locations of mutations are
expected to disrupt homeostasis using deep learning models of DNA

sequence evolution across thousands of species'®.

How do urban-induced mutations vary among species?

There is aneed to expand the investigation of mutations caused by
pollution to a wider diversity of organisms beyond humans given the
indiscriminate threats of urban pollutants to all species. We propose a
global research programme that uses a range of organisms as biosen-
tinels (organisms to assay mutationsinduced by pollution), where the
species chosenwould varyintheir relevance to humans, prevalencein
urbanareas, generation time and genomic resources (Fig. 3). Abiosen-
tinel programme could detect mutagenic effects even when specific
mutagens are difficult to identify’?>*°, Bacteria, plants and human cell
lines have all been proposed as urban biosentinels™'. Salmonella has
been the vanguard biosentinel because it responds readily to both
known and unknown mutagens®®, and we see it as a possible bacterial
model moving forward (Fig. 3). Existing plant (Arabidopsis) and ani-
mal (Drosophila and Caenorhabditis elegans) model organisms offer
arich genomic toolkit, although given their marginal importance to
humans and/or prevalence in urban areas, non-model organisms that
have been the focus of studies inurban areas should also be included,
such as white clover, dogs and various birds. Rodents, particularly
house mouse (Mus musculus) and Norway rat (Rattus norvegicus), are
important pests in urban areas that are commonly used in laborato-
ries, offering abiosentinel model that more closely resembles human
physiology'. The deployment of such biosentinels could provide a
rapid and accurate view of how urban-induced mutations affect the
biology of urban-dwelling species, including humans.

Conclusions

Our Perspective highlights the potential broad-ranging mutagenic
effects of urban pollution onvirtually all life in cities. These mutagenic
effects are expected to influence the fitness, ecology and evolution
of wild populations, but these effects are largely unstudied outside
of laboratory settings, and even there, only a small subset of species
have been studied. Given the many mutagens that are prevalent in
urban areas and their potentially large impacts on human and wildlife
fitness, we argue that the study of urban mutagenesisisinurgent need
of attention and should be prioritized in future research on health,
ecology and evolution.
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