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1. ABSTRACT

Multi-subject fMRI data is instrumental in understanding the
brain function and studying different brain disorders. It is
desirable to analyze fMRI datasets jointly to leverage the
cross information that exists across multiple datasets. Inde-
pendent Vector Analysis (IVA) is a powerful solution that can
effectively leverage statistical dependence across multiple
datasets, and is an attractive solution for fMRI data analysis.
However, the computational costs of IVA can be intractable
when dealing with a large number of datasets. In this paper,
we propose an efficient method for large-scale fMRI analysis
with the assistance of multilinear regression. As we demon-
strate with results from resting state fMRI data, the proposed
method achieves similar estimation performance to IVA on all
available datasets, but with significantly improved efficiency
and reliable performance.

2. INTRODUCTION

Functional magnetic resonance imaging (fMRI), reflect-
ing neural activity changes in the brain by measuring the
blood-oxygenation-level-dependent (BOLD) signal, has been
widely used for understanding brain function and studying
different brain disorders. Joint analysis of data from a large
number of subjects provides a more complete picture of un-
derstanding subjects across different diseases and groups.
Joint blind source separation (JBSS) is able to leverage sta-
tistical dependencies across the datasets, which makes it a
powerful tool for jointly extracting interpretable sources from
multiple datasets [1–5]. Among the JBSS methods, indepen-
dent vector analysis (IVA) has been an attractive solution for
multi-subject analyses [6].

IVA generalizes independent component analysis (ICA)
to multiple datasets by defining multidimensional sources,
each called a source component vector (SCV): a group of
statistically dependent sources composed of one source from
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each dataset. IVA has been demonstrated effective at preserv-
ing subject variability [2, 7–9], identifying biomarkers [2],
and identifying homogeneous subgroups [5, 10]. Despite the
many strengths of IVA, its high computational cost makes it
infeasible for a large number of datasets [11]. In such situa-
tions, practical methods such as group-ICA [12] become the
primary alternative to overcoming complexity issues. Group-
ICA operates by reducing all datasets to “shared dimensions”
via a two-step principal component analysis on the concatena-
tion of datasets, and then estimating components from an ICA
on these shared dimensions. However, because group-ICA’s
approach necessarily assumes all sources are shared across
the datasets, it may have a limited ability to preserve subject
(dataset) variability compared to IVA. Thus, there exists a
need for methods better exploiting potential variability in the
data like IVA, while also being computationally tractable like
group-ICA.

To provide a practical solution to these challenges, we
propose a computationally efficient, multilinear regression-
assisted approach to IVA. Under the assumption that a base
model, a representative subset of the datasets, can capture the
variability across all datasets, sources can be estimated by us-
ing sources from a base model as regressors for the remaining
datasets. This enables regression IVA (regIVA) to efficiently
estimate sources from additional datasets that are consistent
with the base model. To enable all datasets to fully inter-
act post-regression, the output from regression IVA is used as
initialization for IVA, which we call regression-assisted IVA
(RegAssist-IVA). The regression strategy utilized in our pro-
posed approach leverages linear dependence, specifically cor-
relation between source estimates, thereby, providing an ex-
tension of IVA with an assumed multivariate Gaussian distri-
bution (IVA-G) [3].

To assess the performance of the proposed approach,
we employ regression-assisted IVAG (RegAssist-IVAG) and
IVA-G on a cohort of 98 individuals, comprising 49 healthy
controls (HC) and 49 schizophrenia patients (SZ), sourced
from the Baltimore site of B-SNIP data [13]. The evaluation
encompasses three key aspects: spatial maps of resting-state



networks (RSNs), power ratio, and cross-joint-ISI. The find-
ings indicate that RegAssist-IVAG demonstrates comparable
performance to IVA-G in terms of RSNs and power ratios of
the estimated components while exhibiting enhanced repro-
ducibility compared to IVA-G. Notably, there is a significant
improvement in CPU time with RegAssist-IVAG compared
to the standard IVA-G.

The rest of this paper is organized as follows: the back-
ground for IVA is presented in Section 3. The details of the
proposed method RegAssist-IVA are in Section 4. Experi-
mental data and results are introduced in Section 5 followed
by the discussion in Section 6.

3. INDEPENDENT VECTOR ANALYSIS

For a given K datasets (subjects), IVA models each dataset as
a mixture of N independent sources. The generative model
of IVA of the kth dataset can be written as:

x[k](v) = A[k] s[k](v) , 1 ≤ k ≤ K, (1)

where x[k](v) = [x
[k]
1 (v), . . . , x

[k]
N (v)]⊤ represents an ob-

servation vector at sample index v (superscript ⊤ represents
transpose); s[k](v) = [s

[k]
1 (v), . . . , s

[k]
N (v)]⊤ comprises N

statistically independent, zero mean, and unit variance la-
tent sources, while A ∈ RN×N is an unknown invertible
mixing matrix. The goal of IVA is to estimate demixing
matrices W[k] ∈ RN×N such that the estimates y[k](v) =

[y
[k]
1 (v), . . . , y

[k]
N (v)]⊤, where y[k](v) = W[k]x[k](v), are

maximally independent within a dataset. Simultaneously,
IVA maximizes dependency across datasets through the defi-
nition of source component vector (SCV), which is denoted as
sn(v) = [s

[1]
n (v), . . . , s

[K]
n (v)]⊤ ∈ RK , 1 ≤ n ≤ N , which

includes the nth source component s[k]n (v) from each of the
K datasets. The estimation of the nth SCV can be expressed
as yn(v) = [y

[1]
n (v), . . . , y

[K]
n (v)]⊤. For simplicity, we drop

the sample index v for the remainder of the paper.
Estimates of K demixing matrices can be achieved by

minimizing the mutual information among the SCVs, which
can be written as the following cost function

J IVA (W) =
N∑

n=1

H(yn)−
K∑

k=1

log | det(W[k])|, (2)

where W = {W[1],W[2], . . . ,W[K]} represents the K
demixing matrices for K datasets, yn is the estimated SCV,
and H(yn) = −E

{
log pn(yn)

}
denotes the (differential) en-

tropy of yn and pn(·) is the multivariate probability density
function (pdf) of the nth SCV. Note that the mutual infor-
mation within a SCV can be written as I = {yn} =

∑K
k=1

H{y[k]n } - H{yn}, based on which (2) can be rewritten as

BJ IVA (W) =
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})
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) ∣∣∣, (3)

which shows that minimizing J IVA (W) is equivalent to min-
imizing individual source entropies H{y[k]n } while simultane-
ously maximizing the mutual information within each SCV
Iyn. Therefore, (3) illustrates that IVA maximizes indepen-
dence across SCVs and maximizes dependence within SCVs
simultaneously.

IVA with multivariate Gaussian distribution (IVA-G) [3]
modeled that the sources in an SCV are multivariate Gaus-
sian distribution with i.i.d samples. Substituting into (2) the
entropy of a K-dimensional multivariate Gaussian vector, the
cost function of IVA-G can be written as

J IVA-G (W) =
NK log(2πe)

2
+

1

2
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(
Σ̂n
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−
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(
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) ∣∣∣∣ (4)

where Σ̂n ∈ RK×K is the sample covariance of the nth SCV,
yn. Similar to (3), minimizing (4) is equivalent to minimizing
correlations across N SCVs while simultaneously maximiz-
ing correlations within each SCV. A similar strategy is applied
to formulate the cost function of regressing a new dataset onto
a previously learned IVA-G model.

4. REGRESSION ASSISTED-IVA

4.1. Multilinear Regression Formulation

For a IVA-G model derived from Kb datasets, the learned
SCVs can be written as Yn = [y

[1]
n ,y

[2]
n , . . . ,y

[K]
n ]⊤ ∈

RK×V , where Y[k] = W[k]X[k], with Y[k],X[k] ∈ RN×V

denote the estimated sources and observed samples, respec-
tively. For a new dataset, X[i], the corresponding N estimates
can be achieved by making it maximally correlated to its
corresponding SCV, while also maximally uncorrelated to the
N − 1 other SCVs [14]. The process of regressing a IVA
model to a new dataset is referred as regression IVA. The cost
function of regression IVA can be expressed as

J regIVA (ŵ[i]
n ) = ŵ[i]

n
⊤

 R̂[i]
n −
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m
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n
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n
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2
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(5)

where w
[i]
n is the demixing vector estimating the nth source

for the provided dataset X[i], and R̂
[i]
n = ( 1

T−1 )
2 X[i] Y⊤

n Yn

X[i]⊤ ∈ RN×N .
The solution that maximizes the quadratic form

[
R̂
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m

]
∈ RN×N also maximizes (5), leading to the an-

alytical solution obtained by the eigenvector corresponding to



Fig. 1: Flowchart of IVA and regression assisted-IVA. (a): Apply IVA to fMRI data where each row of the estimated source
matrix (SM) corresponds to a functional network and each column of the mixing matrix is the corresponding time courses (TC).
(b): In the case of RegAssist-IVA, the standard IVA (referred to as IVA-G in this context) is initially applied to the base model,
followed by a multilinear regression process applied to the remaining datasets. The outcomes of this regression step serve as an
initialization for a standard IVA run on the entire dataset, enabling comprehensive interaction among datasets.

the largest eigenvalue of the quadratic form. The aforemen-
tioned process can be repeated for every source in a given ad-
ditional dataset, facilitating IVA-G model to be easily scaled
to any arbitrarily large number of datasets.

4.2. Regression Assisted-IVA
Multilinear regression process provides an efficient and
closed-form source separation solution for a given dataset.
However, due to the limitation of regression, the newly ar-
rived dataset is not able to interact with the existing dataset.
This may cast a shadow on using IVA which allows datasets
to fully interact with each other. To enable all datasets to
fully interact post-regression, the output from regression
IVA is used as initialization for IVA, providing a good start
point for the algorithm, which we call regression-assisted
IVA (RegAssist-IVA). The outline of performing regression-
assisted IVA-G on K datasets can be summarized as:

1. With K total datasets X[k], divide the datasets into
two groups: Kb datasets of the “base model” estimated
by IVA-G, and Ka additional datasets that will be
regressed onto the base model, with K = Kb +Ka.

2. Perform IVA-G on the Kb datasets of the base model,
estimating demixing matrices W[k] for these datasets.
Use these W[k] to obtain source estimates for each
dataset Y[k], and from these obtain the N SCVs of the
base model Yn.

3. For each source of the Ka additional datasets X[i],
estimate the source’s corresponding demixing vector

w
[i]
n by the principal eigenvector of the correspond-

ing quadratic form
[
R̂

[i]
n −

∑N
m=1
m ̸=n

R̂
[i]
m

]
. As done by

IVA-G, this regression step estimates sources that are
maximally correlated with one SCV, while maximally
uncorrelated to all other SCVs.

4. Initialize IVA-G on K datasets with W[k], k = 1, 2,
. . . ,K achieved by step 3. This initialization allows the
base model to fully interact with the regressed datasets.

5. EXPERIMENTAL RESULT

The proposed method, RegAssist-IVAG, is applied to 98 sub-
jects, including 49 healthy control (HC) and 49 schizophre-
nia patients (SZ), from the Baltimore site of B-SNIP [13].
All subjects underwent a single 5-minute run of resting-state
fMRI on a 3-T scanner. Subjects were instructed to keep their
eyes open, focus on a crosshair displayed on a monitor, and
remain still during the entire scan. We removed the first three
time points and performed head motion correction followed
by the slice-timing correction. The corrected fMRI data were
then warped into the standard Montreal Neurological Insti-
tute (MNI) space through an echo-planar imaging template
and then were resampled to 3 × 3 × 3 mm3 isotropic vox-
els. The resampled fMRI data were further smoothed using a
Gaussian kernel with a full width at half maximum (FWHM)
equal to 6 mm.

The base model of RegAssist-IVAG comprises a selection
of 30 subjects (15 HC and 15 SZ) chosen randomly. For com-
parison, IVA-G on the full dataset and on the base model with



Fig. 2: Experimental results. (a): Spatial maps of resting state functional networks. The results from RegAssist-IVA and
IVA-G are very close to each other. Five resting state functional networks are displayed, including visual network (VIS),
default-mode network (DMN), cerebellar network (CB), auditory network (AUD), sensorimotor network (MOT). (b): Power
ratio comparison. A higher power ratio usually indicates BOLD-related activity. Both IVA-G and RegAssist-IVAG show a
similar range of power ratios, but the results from RegAssist-IVAG have a higher median value. (c): Cross-joint-ISI comparison.
Results are generated from 50 runs with random initialization for IVA-G and the base model of RegAssist-IVAG. The RegAssist-
IVAG provides more consistent results i,e, lower cross-joint-ISI, across runs than IVA-G.

random initialization are implemented for 50 different runs,
and the best run, i.e., the most consistent run, is selected using
cross-joint inter-symbol-interference (cross-joint-ISI) [15].
The performance of IVA-G and RegAssist-IVAG are eval-
uated from three aspects: spatial maps of resting-state net-
works (RSNs), power ratio, and cross-joint-ISI. The assess-
ment of RSN spatial maps visulizes the performance of the
source separation algorithms, with a focus on the focal na-
ture and strength of activation areas. Another metric useful
for assessing the quality of fMRI component estimation is
the power spectra of RSN time courses, including the power
ratio between low-frequency (< 0.1,Hz) and high-frequency
(> 0.15,Hz) bands. Given that neural-activity-related BOLD
signals typically operate below 0.15 Hz, low power ratio
values are generally associated with cardiac and respiratory
noise, while high values suggest BOLD activity [16].

RegAssist-IVAG requires a CPU time of 1.91h, compared
to 119.29h for IVA-G with 50 runs to achieve comparable
performance. In Figure 2 (a), the spatial maps from 6 resting-
state functional networks RSNs generated from the two al-
gorithms are displayed. The similarity in RSN spatial maps
from both methods suggests that RegAssist-IVAG can per-

form comparably to IVA-G’s decomposition in a fraction of
the time. The comparison of the power ratio between the
two algorithms is included in Figure 2 (b), revealing a sim-
ilar range of power ratios for IVA-G and RegAssist-IVAG.
Figure 2 (c) demonstrates that RegAssist-IVAG yields lower
cross-joint-ISI, indicating more consistent results across runs
compared to IVA-G.

6. CONCLUSION

We proposed a regression assisted-IVA framework tailored
for large-scale data analysis. This method leverages multi-
linear regression to scale IVA for extensive datasets with-
out compromising performance. Our results illustrate that
RegAssist-IVA produces fully interpretable network esti-
mates and provides more consistent performance than stan-
dard IVA. The proposed method demonstrates significantly
enhanced computational efficiency compared with standard
IVA. Acknowledging the influence of the base model on
RegAssist-IVA’s performance, future endeavors will focus
on optimizing base model selection and generalizing the
methodology.
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