
From Chatbots to Phishbots?: Phishing Scam Generation in
Commercial Large Language Models

Sayak Saha Roy, Poojitha Thota, Krishna Vamsi Naragam, Shirin Nilizadeh
The University of Texas at Arlington

{sayak.saharoy, poojitha.thota, kxn9631}@mavs.uta.edu, shirin.nilizadeh@uta.edu

Abstract—The advanced capabilities of Large Language Mod-
els (LLMs) have made them invaluable across various applica-
tions, from conversational agents and content creation to data
analysis, research, and innovation. However, their effectiveness
and accessibility also render them susceptible to abuse for
generating malicious content, including phishing attacks. This
study explores the potential of using four popular commercially
available LLMs, i.e., ChatGPT (GPT 3.5 Turbo), GPT 4,
Claude, and Bard, to generate functional phishing attacks
using a series of malicious prompts. We discover that these
LLMs can generate both phishing websites and emails that
can convincingly imitate well-known brands and also deploy
a range of evasive tactics that are used to elude detection
mechanisms employed by anti-phishing systems. These attacks
can be generated using unmodified or “vanilla” versions of
these LLMs without requiring any prior adversarial exploits
such as jailbreaking. We evaluate the performance of the LLMs
towards generating these attacks and find that they can also
be utilized to create malicious prompts that, in turn, can
be fed back to the model to generate phishing scams - thus
massively reducing the prompt-engineering effort required by
attackers to scale these threats. As a countermeasure, we build
a BERT-based automated detection tool that can be used for
the early detection of malicious prompts to prevent LLMs from
generating phishing content. Our model is transferable across
all four commercial LLMs, attaining an average accuracy of
96% for phishing website prompts and 94% for phishing email
prompts. We also disclose the vulnerabilities to the concerned
LLMs, with Google acknowledging it as a severe issue. Our
detection model is available for use at Hugging Face, as well
as a ChatGPT Actions plugin.

1. Introduction

In recent years, Large Language Models (LLMs) have
brought a transformative era in natural language processing,
being able to effortlessly generate responses that closely em-
ulate human-like conversation across an increasingly diverse
array of subjects. LLMs have also been utilized for various
applications such as content creation for marketing [1],
troubleshooting in software development [2], and providing
resources for digital learning [3], to name a few. The vast
utility of LLMs has also caught the attention of malicious
actors aiming to exploit their capabilities for social engineer-

ing scams, including phishing attacks [4], [5], [6]. While
these models are designed with safeguards to identify and
reject potentially harmful or misleading prompts [7], [8], at-
tackers can skillfully bypass these protective measures. This
has led to the generation of malicious content, including
deceptive emails [9], [10], [11], fraudulent investment and
romantic schemes [12], and even malware creations [13],
[14]. Moreover, underground hacker forums are rife with
discussions centered around manipulating LLMs for more
advanced malicious endeavors [15], thus further encouraging
newer attackers to adopt LLMs for their purposes.

Although open-source LLMs can be modified to pro-
duce malicious content, deploying local models demands
significant hardware, time, and technical expertise [16].
In contrast, commercially available LLMs like ChatGPT,
Claude, and Bard are readily accessible to the public at no
cost. These models are not only more convenient to access
but are also backed by superior architectures that are pro-
prietary [17] and/or too resource-intensive for an individual
to operate locally at scale. The ease and availability of these
powerful models thus motivate attackers to abuse them to
create social engineering scams such as phishing attacks.
Phish attacks, once created, are disseminated widely through
several online channels, with email being the most common
form of transmission [18]. Attackers craft emails that imitate
a popular organization or familiar personality, with attempts
to incentivize or imitate the potential victim into clicking
on a website link [19], [20], [21]. The link, which is the
phishing website, is used as a medium to collect sensitive
information (such as bank details, account credentials, and
Social Security numbers) from the victim, which is then
transmitted back to the attacker, who then can utilize it for
nefarious purposes [22]. The potential damage of phishing
attacks is enormous, with reported financial losses of $52
million during the last year alone [23]. As a countermeasure,
anti-phishing measures - both commercial solutions [24] and
open-source implementations [25], [26] continuously strive
to take these attacks down quickly [27]. However, attackers
constantly innovate, employing various techniques to evade
detection [27], [28], enabling the attacks to remain active
for a long period of time [29].

Over time, knowledgable users have learned to recognize
telltale signs of fake emails and websites, including gram-
matical errors, poor website design, and execution [30]. In
response, attackers employ phishing kits [31]—automated

https://huggingface.co/phishbot/ScamLLM
https://chat.openai.com/g/g-KU1izdZTw-prompt-defender

tools that craft these malicious attacks with little to no
manual intervention required. Anti-phishing strategies often
focus on identifying these kits since detecting one helps
them identify all attacks that originate from that kit it-
self [32], [33], [34]. However, Large Language Models
(LLMs) present an innovative alternative, leveraging natu-
ral language processing. LLMs have already demonstrated
prowess in generating source code across various program-
ming languages [35], [36]. Thus, attackers could potentially
prompt LLMs to craft phishing websites and emails and then
use this content to orchestrate and unleash their attacks.

Our work aims to explore the extent to which com-
mercially available LLMs can be leveraged for generat-
ing phishing attacks, identifying the effectiveness of these
generated attacks with respect to functionality, and finally,
building an effective countermeasure that can aid in the early
detection of malicious prompts that can be used to generate
such phishing scams. The paper is structured as follows: In
Section 2, we explore the broad applications of Large Lan-
guage Models (LLMs) alongside the challenges posed by
their misuse in generating harmful content. In Section 3, we
determine the general Threat Model that can be utilized to
generate phishing attacks using commercial LLMs, which is
followed by Section 4, where we introduce our methodology
for identifying the feasibility and effectiveness of phishing
scam generation using these commercial LLMs, as well as
developing an ML-based model for the early detection of
such malicious prompts. In Section 5, we focus on the gen-
eration of phishing websites using these commercial LLMs.
Recognizing that these tools are adept at denying prompts
with overt malicious intent, we have crafted a framework
that provides multiple seemingly benign prompt sentences,
either combined as a single prompt or given sequentially.
Together, the final output of these prompts can result in
creating phishing websites. We also test the capabilities of
the LLMs at generating both regular and seven widely recog-
nized evasive phishing attack vectors by manually designing
malicious prompts. We investigate the recursive nature of
LLMs in generating phishing content, illustrating how they
can be repurposed to create an increasing array of phishing
prompts. In a cyclic manner, feeding these prompts back
into the LLM results in generating the source code of the
phishing website. We assess the utility of these automated
prompts in creating convincing phishing websites across all
LLMs, judging them on both appearance and functionality.

We then discuss generating phishing emails using these
LLMs in Section 6. Using the recursive nature of using
LLMs to generate prompts, as mentioned in the previous
paragraph, we generate prompts inspired by live phishing
emails sourced from APWG eCrimeX [37]. In a manner
akin to our analysis of phishing websites, we also compare
the proficiency of the LLMs in generating phishing emails
using several text generation metrics. Finally, in Section 7,
we design a machine learning model that can be used to
detect malicious prompts in real time, thus preventing the
LLMs from generating such phishing content. We primarily
focus on the early detection of the phishing prompts such
that the LLM can prevent the user from providing further

prompts when phishing intention is detected.
The primary contributions of our work are:

1) We evaluate and compare how ChatGPT 3.5 Turbo,
GPT 4, Claude, and Bard can be leveraged to produce
both conventional and evasive phishing website attacks,
as well as phishing emails. Our investigation reveals the
potential for attackers to manipulate prompts, which not
only allows evasion of the content moderation mecha-
nisms of these tools but also enables the LLMs to gen-
erate malicious prompts automatically. These prompts
can then be further exploited to create phishing attacks
that are not only visually and functionally convincing
but also as resistant to anti-phishing detection measures
as those crafted by humans or phishing kits.

2) We curate the first dataset of malicious prompts that can
be used to produce phishing websites and emails using
Large Language Models. This includes 1,255 individual
phishing-related prompts, which cover regular as well
as seven evasive phishing strategies, and 2,109 phishing
email prompts.

3) We design a machine-learning model aimed at early
detection of phishing websites and email prompts to
deter the LLM from generating malicious content. Our
model, trained on ChatGPT and GPT-4 prompts, is
shown to have good performance across Claude and
Bard as well, achieving an average accuracy of 96%
for phishing website prompt detection and 94% for
phishing email detection.

4) We make our model and codebook available at:
https://tinyurl.com/epu6w4cp.

5) Our model can also be tested at Huggingface:
https://huggingface.co/phishbot/ScamLLM, as well as
a ChatGPT actions plugin: https://chat.openai.com/g/g-
KU1izdZTw-prompt-defender.

6) We also disclose the identified vulnerabilities for gen-
erating phishing scams to Google, Anthropic, and Ope-
nAI.

2. Related work

Applications of Commercial LLMs discussed in Re-
search:. LLMs have been widely used across different
disciplines. Several studies have delved into ChatGPT’s
content moderation capabilities, e.g., for subtle hate speech
detection across different languages [38], for discerning
genuine news from misinformation [39] and responding to
common health myths, such as those surrounding vaccina-
tions [40]. In addition to ChatGPT, other commercial LLMs
like Claude [41], LLama [42], and Bard [43] have emerged.
These models were utilized and evaluated for their suitability
across different domains. For example, recent works like
ChatDoctor [44] and PMC-LLaMA [45] used LLaMA for
finetuning with real-world patient-doctor interactions to im-
prove the models’ ability to understand patient inquiries and
providing efficient advice.

Misuse of Large Language Models:. Despite the inno-
vations and benefits of commercial LLMs, there are sig-

https://tinyurl.com/epu6w4cp
https://huggingface.co/phishbot/ScamLLM
https://chat.openai.com/g/g-KU1izdZTw-prompt-defender
https://chat.openai.com/g/g-KU1izdZTw-prompt-defender

Figure 1: Threat model to generate phishing scams using
commercial LLMs

nificant concerns surrounding their misuse. For example,
it has been shown that ChatGPT can be compromised to
produce malicious content using jailbreaking prompt at-
tacks [46] [47], prompt injection [48] and code injection
attacks [49]. Investigations by Gupta et al. [50] and Derner
et al. [51] have unveiled vulnerabilities in ChatGPT that
can be harnessed to generate malware. Work by Angelis et
al. [52] emphasizes ChatGPT’s potential role in propagating
misinformation, leading to the alarming rise of an ”AI-
driven infodemic.” Our work focuses on generating phishing
scams, using not only ChatGPT but also three other popular
commercial LLMs.

Detection of Phishing attacks. Over the years, many re-
searchers have focused on devising effective strategies to
understand and counteract phishing attacks. Initially, tra-
ditional machine learning algorithms laid the groundwork
for detecting these attacks, e.g., by extracting TF-IDF fea-
tures from text and training a random forest classifier [53],
[54]. Recent works treat phishing email and spam detec-
tion as a text classification task and utilize pre-trained
language models, such as BERT [55], to detect phishing
emails [56], [57] and spam [58], [59]. Prior literature has
also shown that BERT and its variants like DistilBERT [60]
and RoBERTa [61] can be fine-tuned with an SMS Spam
dataset and perform well detecting SMS spam. Pre-trained
language models have also been used for detecting phishing
websites based on URL characteristics [62], [63]. However,
our approach focuses on a more preventive strategy. Instead
of concentrating on detecting malicious content after its
generation, our main objective is to prevent the generation of
harmful source code by the LLMs. We thus aim to examine
and filter the prompts by hindering the creation of malicious
content before it starts.

3. Threat model

The threat model for attackers generating phishing scams
using commercial LLMs is illustrated in Figure 1. Attackers
utilize commercially available LLMs by submitting multiple
prompts to craft a comprehensive phishing attack compris-
ing a phishing email and its corresponding website. The
phishing email aims to impersonate a reputable brand or
organization while also devising text that, through prevalent

phishing strategies (such as inducing confusion or urgency),
persuades users to engage with an external link. Concur-
rently, the associated phishing website is conceptualized to
achieve several objectives. Firstly, it aims to closely mimic
the aesthetic and functional elements of a well-recognized
organization’s platform. Secondly, it utilizes regular and
evasive tactics to deceive users into sharing sensitive in-
formation. Lastly, it integrates mechanisms that ensure the
seamless transmission of collected data back to the attacker.
After the LLM generates the phishing content, the attacker
hosts the phishing site on a chosen domain, embeds the
site’s link within the phishing email, and then shares the
deceptive email with their targets. The adoption of LLMs to
create these phishing scams presents attackers with several
advantages. LLMs not only allow for the rapid and large-
scale generation of phishing content, but their user-friendly
nature also ensures accessibility to a wide range of attackers,
irrespective of their technical prowess. This enables even the
less tech-savvy to employ intricate evasion methods, such
as text encoding, browser fingerprinting, and clickjacking.

4. Methodology

Figure 2 illustrates our approach towards exploring the
capabilities of commercial LLMs in creating phishing web-
sites and email scams and devising an effective detection
model that prevents such generation through three pivotal
stages. Our study involves three crucial stages as below:

(1) Prompt design and generating phishing scams:. As
shown in Figure 3, asking commercial LLMs to directly
generate a phishing attack or any similar language indicating
malicious intention triggers a content filter warning. In
this work, we show that the attackers can design prompts
that subtly instruct the model to produce seemingly benign
functional objects containing the source code (HTML, CSS,
JS scripts) for regular and seven evasive phishing attacks.
When assembled, these objects can seamlessly constitute a
phishing attack, concealing the underlying malicious intent.
Manually designing such prompts can be a meticulous and
time-consuming process. These prompts are designed to
guide each of the four commercial LLMs in producing func-
tional phishing websites with their respective attack vectors,
thereby necessitating an investigation into how attackers can
exploit these models to manufacture prompts efficiently. We
also find that manually crafted prompts can subsequently be
fed into the LLM models to create more such prompts auto-
matically. It is a significant concern that LLMs can generate
malicious prompts capable of bypassing their own detec-
tion systems, making it easier for attackers to easily scale
phishing attacks and build sophisticated attack campaigns
at a rapid pace. On the other hand, for phishing emails,
we collect a sample from APWG’s eCrimeX database [37],
asking the models to create prompts that can be utilized
to generate the same emails. Similar to phishing website
prompts, email prompts can also be replicated by the LLMs,
thus similarly allowing attackers to scale email-based scams
as well. Section 5 dives into the details of how we were able

Manually designed
prompts

LLM generated
prompts (phishing

websites)

Check by

Scan using

Human evaluation

Anti-phishing tools

Metrics such BLEU, Rogue
1, Topic Coherence and
Perplexity to compare with
human generated phishing
emails

Comparison of detection
scores with human created
phishing attacks

Appearance

Functionality

LLM generated
prompts (phishing

emails)

Evaluate using

ChatGPT generated
prompts (phishing

websites)
Performance on

ChatGPT test set

Model transferability on
prompts generated

using Claude and Bard
RoBERTa Base

Training set

Evaluating performance

ChatGPT generated
prompts (phishing

emails)

Attacks

Attacks LLM generated
prompts

LLM

LLM

�� Feasibility of generating Phishing Scams

�� Effectiveness of generated Phishing Scams

�� Automatic detection of phishing prompts

Figure 2: Overview of our study

to build the malicious prompts to create phishing websites
using functional objects, and how we further exploited the
models to replicate those prompts automatically. On the
other hand, in Section 6, we design malicious prompts based
on verified phishing emails and similarly make the LLM
models replicate them.

(2) Effectiveness of generated Phishing Scams:. While
manual prompt generation is insightful, the potential for
scalable attacks hinges on automatically created prompts.
We conducted a qualitative evaluation of the quality of
websites produced by such automated prompts. To further
gauge the efficacy of these LLM-generated attacks, we
compared the detection rates of popular anti-phishing block-
lists against LLM-generated phishing attacks versus human-
generated ones. To assess the quality of LLM-generated
phishing emails, we employed four text generation metrics:
BLEU, Rouge, Topic Coherence, and Perplexity. Using these
metrics, we compared the email text generated by each com-
mercial LLM model to the original human-crafted versions.

(3) Automated detection of Phishing prompts:. After
assessing the potential exploitation of commercial LLMs in
generating phishing scams at scale, in Section 7 we designed
a machine learning-based detection model to prevent LLMs
from producing such malicious content. To build our ground
truth, we manually labeled prompts that were generated
using ChatGPT. Due to the availability of an API [64], it was
easier to generate a large sample of prompts for training and
testing our model. To explore the best detection method, we
tested our finetuned model using three different approaches:
a) individual prompt detection, b) entire prompt collection
detection, and c) prompt subsets detection. In all these
approaches, we finetuned a pre-trained RoBERTa [61] model
using our groundtruth dataset with individual prompts and
subsequently tested its capability across individual prompts,
entire collections, and prompt subsets. To identify how the
model works for the other commercial LLM models, we also

Figure 3: Claude refuses to generate output for a prompt
implying phishing intention

Figure 4: Breaking down the prompt into functional objects
to trick LLMs into generating the attack

tested it on a sample of prompts generated by Claude and
Bard. For phishing email detection, we combined malicious
emails from eCrimeX [37] with benign samples from the
Enron dataset [65].

5. Generation of phishing websites

This section focuses on utilizing commercial LLMs for
creating a range of phishing websites, including both regular
and evasive types. The motivation behind this exploration is

TABLE 1: Summary of phishing attack types

No. Attack Type Attack Description
1 Regular phishing attacks Phishing attacks that incorporate login fields directly within the websites to steal users’ credentials. [22], [29], [66], [67].
2 ReCAPTCHA attacks An attack that presents a fake login page with a reCAPTCHA challenge to capture credentials [68], [69], [70], [71],

[72], [73].
3 QR Code attacks An attacker shares a website containing a QR code that leads to a phishing website [74], [75], [76], [77].
4 iFrame injection/Clickjacking Attackers use iFrames to load a malicious website inside a legitimate one [78], [79], [80].
5 Exploiting DOM classifiers Phishing websites designed to avoid detection by specific anti-phishing classifiers [81].
6 Browser-in-the-Browser

attacks
A deceptive pop-up mimics a web browser inside the actual browser to obtain sensitive user data [82].

7 Polymorphic URL Attacks that generate a new URL each time the website is accessed [83], [84].
8 Text encoding exploit Text in the credential fields is encoded such that it is not recognizable from the website’s source code [85], [86].

to provide a comprehensive view of the potential phishing
threats that can be generated by LLMs, which cover a di-
verse array of attack types that include - both client-side and
server-side attacks as well as those designed to obfuscate
content from users and evade detection by automated anti-
phishing crawlers. Table 1 presents a summary of the eight
distinct phishing attack types that have been identified and
analyzed in the existing literature.

5.1. Structure of the prompts:

As illustrated in Figure 3, commercial LLMs refuse to
comply when directly asked to generate a phishing attack
due to its built-in abuse detection model. Our goal is to
identify how an attacker can engineer prompts so that they
do not indicate malicious intention, allowing the LLM to
generate functional components that can be then assembled
to create phishing websites. As is illustrated in an example in
Figure 4, the attacker can design prompts with four primary
functional components: (1) Design object: Firstly, the LLM
was asked to create a design that was inspired by a targeted
organization (instead of imitating it). LLMs can create de-
sign style sheets that are very similar to the target website,
often using external design frameworks to add additional
functionality (such as making the site responsive [87] using
frameworks, such as Bootstrap [88] and Foundation [89]).
Website layout assets, such as icons and images, are also
automatically linked from external resources. (2) Credential-
stealing object: Emulation of the website design can be fol-
lowed by generating relevant credential-taking objects, such
as input fields, login buttons, input forms, etc. (3) Exploit
generation object: The LLM can be asked to implement a
functionality based on the evasive exploit. For example, for
a Text encoding exploit [85], [86], the prompt asks to encode
all readable website code in ASCII. For a reCAPTCHA
code exploit, the prompt can ask to create a multi-stage
attack, where the first page contains the QR Code, which
leads to the second page, which contains credential-taking
objects. (4) Credential transfer object: Finally, the LLM can
be asked to create essential JS functions or PHP scripts to
send the credentials entered on the phishing websites to the
attacker by using email, sending it to an attacker-owned
remote server or storing it in a back-end database.

These functional instructions can be written together as
a single prompt or as a sequence of prompts - one after
the other. Using this method, we show that attackers can

TABLE 2: Average prompts required by the coders to gen-
erate phishing attacks using various commercial LLMs.

Attacks GPT 3.5 GPT 4 Claude Bard
Design 9 8.33 8 9
Credential transfer +2 +1.33 +2 +4
Captcha phishing +3 +2.33 +2 +5
QR Code phishing +3 +2 +3 +6
Browser fingerprinting +2 +1.33 +2 +5
DOM Features +4 +3.33 +4 +7
Clickjacking +5 +4 +5 +8
Browser-in-the-Browser +6 +5.67 +6 +9
Punycode +2 +1.67 +2 +4
Polymorphic URLs +3 +2.33 +3 +5

successfully generate regular and evasive phishing attacks.
The prompts can also be brand-agnostic, i.e., they can be
used to target any brand or organization.

5.2. Constructing the prompts:

To determine the effort required for users to develop ma-
licious prompts that can evade LLM detection and generate
a phishing website and also if creating prompts for some
attacks was harder than others, we examined the number
of iterative prompts required by three independent coders
(two graduate students and one undergraduate student in
Computer Science) to create each of the phishing attacks
described in Table 1 using ChatGPT 3.5T, GPT 4, Claude
and Bard. The coders possessed varying levels of technical
proficiency in Computer Security: Coder 1 specialized in the
field, Coder 2 had a good experience, and Coder 3 had some
familiarity through academic coursework. Table 2 presents
the average number of prompts required by the three coders
to generate the phishing functionality (attacks) across all
four LLM models. Each coder created their own set of
prompts for designing the website layout and for transmit-
ting the stolen credentials back to the attacker, which they
reused for multiple attacks.

5.2.1. Observing prompt generated attacks:. The mod-
els could generate all phishing attacks successfully using
prompts provided by the coders. They were able to suc-
cessfully generate the source code of both the website
design based on the brand mentioned in the prompt, as
well as the source code for the credential stealing object.
For ReCAPTCHA evasive attacks, the models were able
to generate a benign webpage featuring a ReCAPTCHA

Figure 5: Intial landing page generated by Claude, which
contains a QR code created automatically using QRServer
API. Scanning the QR code leads to a different AT&T
phishing page (Also designed by Claude).

challenge that would lead to another regular phishing web-
site. Figure 5 illustrates an example of Claude generating
a QR-code phishing attack. All models generated a QR
code that embedded the URL for a regular phishing attack
via the QRServer API. These attacks pose a challenge for
anti-phishing crawlers since the malicious URL is hidden
within the QR code [74], [75], [76]. On the other hand,
Browser-in-the-Browser attacks (BiTB) could be emulated
by exploiting single sign-on (SSO) systems and creating de-
ceptive pop-ups that mimic genuine web browser windows.
An example of GPT 4 generating a BiTB attack is illustrated
in Figure 6. All models notably struggled with generating
this attack, requiring, on average, seven additional prompts
after the design phase. However, all models ensured that the
iFrame object adhered to the same-origin policy to avoid
triggering anti-cross-site scripting measures. This trend was
further identified for clickjacking attacks as well. The
models had an easier time generating attacks that exploited
Document Object Model (DOM) classifiers, specifically
those that can circumvent features evaluated by Google’s
phishing page filter [81], as well as Polymorphic URLs that
use server-side PHP scripts to append random strings at the
end of the URL. Lastly, we created browser fingerprinting
attacks that only render the phishing page for users visit-
ing through specific agents or IP ranges, thereby evading
detection by anti-phishing bots. Although the capability
of all models to generate such attacks does not directly
speak to the quality of the individual attacks (which we
explore later in Section 5.3.1), it underscores the potential
exploitability of these LLMs in phishing website creation.
We also found that all coders, regardless of their expertise
in Computer Security, demonstrated similar performance
when generating exploit prompts. This observation may
suggest that crafting phishing attacks using ChatGPT does
not necessitate extensive security knowledge, although it is
important to note that all coders were technically proficient.
Since prompt creation can be labor-intensive, we further
explore the feasibility of leveraging the LLM to produce
prompts, aiming to streamline the process autonomously.

Figure 6: An example of a Browser in the Browser attack
generated by GPT 4. Here clicking on the ‘Login with
Amazon’ button leads to the rogue popup imitating the
design and URL of the real Amazon login page.

LLM

Manually designed
prompt

Ask LLM to replicate

prompts

Generates
prompt-sets

Prompt-sets

Generates the attack for each prompt set

Prompt sets individually feed back to the LLM

PS1 PS2 PSn

A1 A2 An

1

2

4

3

(PS)

Attacks

Figure 7: LLMs can generate malicious prompts that can be
provided back to the LLM to generate phishing websites.

5.3. Automating prompt generation:

As evident from Table 2, most of the prompts generated
for a particular attack were dedicated to designing the layout
of the phishing websites. Manually designing these prompts
can be time-consuming. However, as shown in Figure 7,
we found that LLMs could even help attackers automate
the process by inputting their handcrafted prompts into the
LLMs and asking them to generate multiple prompts having
the same functionality, which leads to the LLMs rapidly gen-
erating an extensive array of such prompts. Subsequently,
these prompts, when provided back to the LLM, can produce
the corresponding phishing attack source code.

5.3.1. Evaluation of generated phishing websites:. To
assess the capabilities of the commercial LLMs in creating
phishing websites, we examined the outputs generated when
these models were fed prompts they had produced. Our
method involved three independent coders who scrutinized
each generated phishing attempt based on two principal
criteria. First, the appearance criterion gauged how closely
and convincingly the content resembled the intended target,
both in the phishing website and email. Identifying the ef-
fectiveness of phishing attacks by studying their appearance
and functionality has been found to be effective in prior
literature [90], [91], [92], [93]. This was quantified using
a 5-point Likert scale known as the Website Appearance

TABLE 3: Website Appearance Scale (WAS) Descriptions

WAS Description
1 Hardly resembles the desired appearance. Fundamental ele-

ments like color scheme, layout, and typography are com-
pletely off.

2 Some minor similarities. The basic structure might be present,
but many details are off.

3 Moderate resemblance. Discrepancies in details, alignment, or
consistency.

4 Very close to desired appearance. Minor tweaks are needed.
5 Almost indistinguishable from the desired appearance. Practi-

cally perfect.

0%

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

20%

40%

60%

80%

100%

Average Likert Score

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0%

20%

40%

60%

80%

100% GPT 3.5T
GPT 4
Claude
Bard

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Average WAS score

Figure 8: Cumulative distribution of average Website Ap-
pearance Scale (WAS) for each model (n=80 per model).

Scale (WAS), with each level’s attributes detailed in Ta-
ble 3. Conversely, the Functionality criterion delved into the
LLM’s adeptness at encompassing every functionality that
was provided in the prompt and was calculated by a binary
variable—assigning a score only if the website incorporated
every requested functionality.

In total, the coders reviewed 80 samples for each of the
four LLMs, with ten samples for each type of attack (320
total samples). The final WAS score for each website was the
average of the individual coder scores, and the distribution
of these scores across models is illustrated in Figure 8.
We find that GPT-4 consistently stands out in performance,
producing sites that closely resemble the original. Approx-
imately half of GPT-4’s samples scored above an average
WAS of 4. In contrast, ChatGPT 3.5T and Claude had nearly
90% of their samples to reach this mark, indicating that the
median performance of GPT-4 is significantly higher. Con-
versely, 80% of Bard’s samples scored around 2.8 or lower,
which implies that only its top 20% of outputs achieved
or surpassed this score. Thus, GPT-4 not only excels in
average performance but also has consistently high-quality
results. ChatGPT 3.5T and Claude fall into the middle
range, producing satisfactory phishing websites. However,
Bard predominantly performs at a lower tier, with only a
small portion of its outputs reaching higher score ranges.
All models, when assessed for functional components, as
illustrated in Table 4, excelled in creating standard phishing
attacks. GPT-4 and Claude achieved success in every regular
phishing sample. This trend persisted for ReCAPTCHA
and QR-based attacks, except in the case of Bard, which
managed successful outcomes in only six scenarios for each

TABLE 4: Functionality scores across models and attacks
Attack/Model ChatGPT 3.5 GPT 4 Claude Bard
Regular phishing attack 9/10 10/10 10/10 8/10
ReCAPTCHA attacks 8/10 10/10 9/10 6/10
QR Code attacks 10/10 9/10 9/10 6/10
Exploiting DOM classifiers 7/10 10/10 8/10 4/10
iFrame injection/Clickjacking 6/10 8/10 5/10 4/10
Browser-in-the-Browser attack 6/10 8/10 6/10 2/10
Polymorphic URL 9/10 8/10 8/10 6/10
Text encoding exploit 10/10 9/10 9/10 5/10

type. Bard’s capability was notably limited across all evasive
attacks, particularly evident in the Browser-in-the-Browser
attacks (BitB) category, where it only succeeded with two
samples. Other models also faced hurdles with BitB attacks
but still performed better than Bard. The models found
Clickjacking attacks (Attack 5) challenging as well. Despite
these challenges, GPT-3.5T, GPT-4, and Claude showed
strong performance against various other evasive attacks.
Evaluating under the WAS metric, GPT-4 is shown as the
top performer, closely trailed by GPT-3.5T and Claude. In
contrast, Bard’s difficulties in producing functional compo-
nents and its lower WAS scores indicate that it might not
be the ideal model for designing phishing websites, unlike
its counterparts.

5.3.2. Anti-phishing effectiveness:. To further identify the
effectiveness of LLM-generated phishing attacks, we com-
pared how well anti-phishing tools can detect them when
compared to phishing websites that were created by humans
(or generated using phishing kits). To do so, we used the
320 websites as mentioned in Section 5.3.1 that were created
using LLM-generated prompts. We deployed these websites
on Hostinger [94], a popular website hosting domain. To
ensure these websites posed no harm to users upon hosting
them, we did not capture any data from interactions on
these dummy sites. Moreover, these sites were terminated
after 7 days if not removed by the web domain earlier.
Our methodology of controlling the lifecycle of a dummy
phishing website here is considered to be a common and
safe practice to identify detection gaps in the anti-phishing
ecosystem and phishing training alike [27], [95], [96].

To compare these samples with human-generated phish-
ing websites, we manually extracted the designs of 140
phishing websites that appeared from APWG eCrimeX,
ensuring a balanced representation with 40 samples for all
attacks except Attack 4. Recognizing the elusive nature of
Browser-in-the-Browser attacks and their rare presence in
blocklists, our coders manually constructed 40 of these at-
tacks. This brought our count of human-generated phishing
sites to 320 as well. Like the LLM-produced sites, these
websites were also made harmless, ensuring they could not
collect or forward any data.

After setting up these dummy phishing sites, both
LLM and human-generated, we reported them to APWG
eCrimeX [37], Google Safe Browsing [97], and Phish-
Tank [25]. Many anti-phishing tools depend on these block-
lists to identify emerging phishing threats [27]. Upon re-
porting, we monitored their anti-phishing detection rate by

Regular

Attacks

CAPTCHA

DOM
 fe

atu
re

s

QR C
ode

Clic
kjacking

BiT
B

Polym
orp

hic
Text-e

ncoding

0

2

4

6

8

10

12

14

16

D
et

ec
ti

o
n

 s
co

re

Figure 9: Average detection scores for each attack type,
comparing Human and LLM generated phishing attacks.

periodically scanning the URLs with VirusTotal [98] every
hour. VirusTotal is an online tool aggregating detection
scores from 80 distinct anti-phishing tools. This gave us a
comprehensive view of the breadth of antiphishing detection.
We measured the detection scores of the websites for up to
seven days or until the domain removed them. Figure 9
provides a comparative analysis of the average detection
score for each attack for both LLM and human-generated
sites on a per-model basis.

We find that the detection scores for human-created
phishing attacks versus LLM-generated ones did not vary
significantly on a per-attack basis for all models except
Bard. Additionally, we conducted a paired t-test between
the detection scores between human-generated and LLM-
generated phishing websites and did not find the differ-
ence to be statistically significant, indicating that the LLM-
generated phishing attacks (by GPT 3.5T, GPT 4, and
Clade) were, on average, just (or almost) as resilient as
human-created phishing attacks with respect to anti-phishing
detection. Thus, our findings further confirm the potential
of scaling phishing attacks using the recursive approach of
generating phishing websites from prompts that these LLMs
also generated. On the other hand, evasive attacks generated
by Bard had higher detection rates in comparison to those
created by other models. This can be attributed to Bard’s
tendency to generate websites that had lower scores in both
functionalities and WAS (as illustrated in 5.3.1), suggesting
inferior quality of websites, failing to implement evasive
features, etc., which might have made it easier for anti-
phishing tools to detect them.

6. Phishing email generation

Phishing websites are usually distributed by attackers
using emails [99], and thus we dedicate this section to
studying how an attacker can generate phishing emails
using the commercial LLM models. Our method to generate
these emails is similar to generating phishing attacks using
LLM-generated prompts in Section 5, where we ask GPT-

Figure 10: Example of a prompt generated by GPT 4 to
replicate the phishing email provided in the input. (Email
message is truncated for brevity)

4 to design prompts using some human-created phishing
emails. These prompts are then fed back to the LLMs
to design an email that entices users to sign up for a
service or provide sensitive information. To generate the
email prompts, we collected 2,109 phishing emails from the
APWG eCrimeX feed [37]. This feed combines phishing
emails reported by various brands and cybersecurity spe-
cialists. These emails encompassed several attack vectors,
including banking scams, account credential fraud, fake job
offers, etc. To ensure the quality and authenticity of our
dataset, we randomly selected 100 emails for manual in-
spection. Notably, we found no evidence of misclassification
within this subset. Parallelly, we extracted the same number
of benign emails from the established Enron dataset [65].
The phishing and benign emails were then provided to
GPT-4, which was tasked with formulating prompts needed
for replicating the original emails. To further validate the
accuracy of the generated prompts, we manually assessed
100 phishing prompts alongside 100 benign ones and found
that GPT-4 had a perfect score for generating such prompts.
We then introduced these prompts to different LLMs, GPT-
3.5T, GPT-4, Claude, and Bard, to analyze their respective
outputs. An example of a phishing email generated by
Claude can be viewed in Figure 11.

6.1. Evaluation of LLM-generated emails

The complexity of LLM-generated phishing websites
required manual evaluation (Section 5). On the other hand,
email generation, being a more conventional domain of text
generation tasks, provides the opportunity for algorithmic
evaluation. We compared the phishing emails generated by
the LLMs (using the prompts that they themselves had
generated) with the human-constructed phishing emails from

Figure 11: Email generated by Claude with prompt gener-
ated in Figure 10 as input.

eCrimeX. We employed four popular metrics utilized for
text generation tasks: BLEU [100], Rouge [101], Perplex-
ity [102], and Topic Coherence [103] to measure and com-
pare the performance of the LLMs in generating phishing
email text. A short description of the metrics is provided in
Table 9 in the Appendix.

TABLE 5: Evaluation of LLM-generated emails (n=2,109)

Model BLEU Rouge-1 Perplexity Topic Coherence
GPT 3.5T 0.47 0.60 22 0.63
GPT 4 0.54 0.68 15 0.72
Claude 0.51 0.65 18 0.69
Bard 0.46 0.58 20 0.62

The performance of the LLMs is illustrated in Table 5.
For BLEU, Rouge-1 and Topic Coherence, scores range
from 0 to 1, with higher being better. On the other hand, for
Perplexity ranges from 0 to 100, with lower being better.
We find that GPT-4 outperforms the other models across
all metrics, showcasing the highest BLEU (0.54), Rouge-1
(0.68), and Topic Coherence (0.72) scores, and the lowest
Perplexity (15). Claude closely follows, with competitive
scores in all metrics, demonstrating its effective balance in
generating coherent and contextually appropriate emails. On
the other hand, GPT 3.5T exhibits moderate performance,
with BLEU and Topic Coherence scores lagging behind
GPT-4 and Claude but outdoing Bard. Its Rouge-1 score
is only slightly behind Claude and GPT-4, indicating its
competency in information retention. Bard, presents slightly
lower metrics compared to the rest but still showcases profi-
ciency, unlike its performance towards generating phishing
websites as seen earlier. In summary, all LLMs, despite
exhibiting varying competencies, appear to be proficient in
generating phishing emails.

Individual Prompt
Extractor

Malicious Prompt Collections Benign Prompt Collections

Label
Individual

Prompts using
Codebook

Finetuned
LLM

Predict
Individual
Prompt as

Malicious or
Benign

Test set with
Prompt Subsets

(Labeled using

Heuristic)

Test set with
Whole

Collections

Predict
Prompt

Subset as
Malicious or

Benign

Predict Whole
Collection as
Malicious or

Benign

Ground Truth Creation

Detection Scheme-1 Detection Scheme-2 Detection Scheme-3

Finetuning Pretrained LLM

Test set with
Individual
Prompts

PS2PS1 PSn PS1 PS2 PSn.......

Figure 12: Framework showing three detection schemes

Create a web page layout similar
to Amazon's login page.

Include fields for the user's email
and password. Integrate an Amazon
logo at the top of the page.

Include 'Sign in' and 'Create Your

Amazon Account' buttons below the

password field on the login form.

Attackers provide individual Prompts

Prompt 1

Prompt 2

Prompt 3

Subset 1 = Prompt 1

Predict

If FALSE, Predict

Subset 2 = Prompt 1 + Prompt 2

If FALSE, Predict

Subset 3 = Subset 2 + Prompt 3

Figure 13: Example of how prompt subsets are parsed.

7. Phishing Prompts Detection

Our findings from Section 5 explore how commercial
LLMs can be utilized for generating phishing websites using
malicious prompts generated by themselves. Thus, there is a
need for the proactive detection of these prompts such that
we can prevent the generation of such content. Therefore,
we train a RoBERTA based classifier on malicious and
benign prompts generated by commercial LLM models and
propose a detection framework, as illustrated in Figure 12,
for detecting phishing prompts with three different detection
schemes: We examine the prompts individually, as an entire
prompt collection, and as subset of prompts to accommodate
real-time scenarios. A Prompt collection is a series of two or
more prompts that were generated by the LLM when asked
to perform a task (such as generating phishing content in
our context.) On the other hand, a Prompt collection subset

or simply, Prompt subset is the cumulative combination of
prompts as they are provided by the user. For example, when
the attacker provides a single prompt, it is its own subset,
but upon adding another prompt, the subset becomes the
combination of the two prompts. We dedicate the rest of this
section towards illustrating our approach towards training
and evaluating our prompt detection models on all three
prompt structures.

7.1. Collecting prompts for ground-truth

In Section 5.3 we found that all the commercial LLMs
can be used to automatically generate malicious prompts.
ChatGPT notably simplifies the process for generating
prompts on a large scale by using their developer API. We
used this API to generate the ground-truth (of malicious
and benign prompts) required to train our detection model.
We used both GPT-3.5T [104] and GPT-4 [105] to generate
258 malicious prompt collections (collections which lead
towards creating a phishing website), using GPT 3.5 to gen-
erate 117 such collections, while using GPT 4 to generate
141 prompt collections. These prompt collections included
both regular and evasive phishing attacks, thus enhancing
the model’s capability to efficiently detect prompts related to
any attack type listed in Table 1. Each collection contained
an arbitrary number of individual prompts as generated
by the LLMs. We observed that the average number of
individual prompts generated in each prompt collection is
approximately 9.27. Similarly, we generated 258 legitimate
prompt collections. To ensure that both malicious and legit-
imate prompt collections were brand agnostic, we utilized
OpenPhish’s ‘List of identified brands’ [106] (Brands which
are most targeted by phishing attacks) to randomly assign a
brand when asking the LLM to generate a prompt collection.
Training the model using only a single brand could bias it
towards classifying prompts containing those specific brand
names as phishing. Thus, our approach of using a unique
brand for each of the 258 phishing prompt collections
during training diversified the model’s exposure, potentially
making it less susceptible to such biases. In the proceeding
paragraphs, we discuss how we create our codebook for
labelling our groundtruth.

7.2. Codebook Creation and prompt labeling

To build the groundtruth dataset for training our model,
Coder 1 and Coder 2 utilized an open-coding technique.
They manually labeled individual prompts from the gen-
erated prompt collections as either “Phishing” or “Benign.”
Given the large size of the dataset, Coder 1 took the initiative
by randomly selecting 40 prompts from each of the eight
attack categories. This initiative aimed to discern underlying
themes crucial for developing a detailed codebook. The
codebook then classified elements as “Phishing” or “Be-
nign,” contingent upon the inherent risk and intent related to
phishing activities. Alongside each categorization, the code-
book provides descriptions and examples for clarity. The
codebook can be found in https://tinyurl.com/epu6w4cp. It is

noteworthy that the codebook emphasized several techniques
with a malicious inclination often associated with phishing.
For instance, “Data Redirection” and “URL Randomiza-
tion” were marked as “Phishing,” whereas legitimate web
design elements like “Typography and Font” were labeled
“Benign.”

Both coders utilized this codebook to label the entire
dataset. Initially, Coder 1 identified 29 unique themes. The
first pass on the dataset yielded a Cohen’s Kappa inter-
reliability score of 0.71, signifying a substantial agreement
between the coders. As they tried to resolve their dis-
agreements, six additional themes were identified for the
codebook, expanding the size of the codebook to 35 features.
Disagreements between the coders were addressed. In total,
we had 1,255 phishing and 1,137 benign prompts for our
malicious prompt collection ground truth. All individual
prompts (n=1,986) in our legitimate prompt collection set
were benign in nature.

7.3. Preprocessing labeled prompts

We extracted the prompts from each prompt collection
and stored them in the form of individual prompts. Upon
inspecting these prompts, we frequently observed the pres-
ence of extraneous elements such as bullet points, numer-
ical values, and descriptors like ’step-1’. These phrases,
being irrelevant to the core content of the prompts, were
removed. On the other hand, we stored attributes such as
collection number and prompt number to preserve the order
of prompts.

7.4. Individual Prompt Detection

We start with evaluating several pre-trained language
models towards detecting individual prompts that are gen-
erated by the commercials LLMs.

7.4.1. Groundtruth for Individual Prompt Detection:.
We utilized all individual prompts labeled as phishing from
our malicious prompt set. However, since we had a far
larger number of individual benign prompts when consid-
ering both our malicious and legitimate website prompt
collection sets, we randomly sampled benign prompts from
both our malicious and legitimate prompt collections. Our
final training dataset consisted of 1,255 phishing prompts
and 1,534 benign prompts. We split this dataset into 70%
for training and 30% for testing.

7.4.2. Model Selection and Experiments:. We acknowl-
edge the effectiveness of traditional ML algorithms, such as
Naı̈ve Bayes [107] and SVM [108] for binary classification
domains. However, these algorithms often demand large
datasets with a substantial number of features to perform
optimally. In our case, we are constrained by both limited
data and a lack of extensive features. Therefore, inspired by
literature [109], [110], which have shown the effectiveness
of pre-trained language models in scenarios with limited
datasets, we also use them for building our classifier.

https://tinyurl.com/epu6w4cp

Pre-trained language models like BERT [55],
RoBERTa [61], etc., are trained on vast amounts of
data, facilitating them with a broad understanding of
language, which is crucial in detecting nuanced and
occasionally hidden malicious intent in our prompts.
Moreover, bidirectional models such as BERT utilize
context from both left and right sides of a word when
making predictions. This feature makes them more suitable
for text classification tasks. Based on these advantages,
we experiment with BERT-based models, including
BERT [55], DistilBERT [60], RoBERTa [61], Electra [111],
DeBERTa [112] and XLNET [113].

7.4.3. Training Details:. We used pre-trained versions of all
the models and finetuned them on our groundtruth dataset
for 10 epochs with a batch size of 16. We used AdamW
optimizer, and the learning rates were set to 2e-5. The
maximum sequence length is set to 512. We finetuned these
models using an Nvidia V100 GPU and used the last model
checkpoint for evaluation. For obtaining embeddings for
input sequences, we used their respective tokenizers.

7.4.4. Performance Evaluation:. To select the best model,
we look at metrics such as average F1 score, Accuracy,
Precision, and Recall. Furthermore, we compute the Total
Time for predicting 100 samples and Median Prediction
Time, across 100 samples. Given our objective to deploy
the model in real-world scenarios, where the model needs
to be able to detect prompts with both good performance
and speed to be able to scale, these metrics are necessary
for the evaluation.

Table 6 illustrates the performance of the six pre-trained
language models on our test set for individual prompts. We
observe that RoBERTa shows slightly better performance,
with an average F1 score of 0.94. Although there are
lighter models such as DistilBERT and ELECTRA, which
have slightly lesser median prediction times compared to
RoBERTa, we noticed that their F1 scores are slightly lower,
hovering around 0.93. Considering the trade-off between
performance and prediction time across all the models, as
well as the robustness of the model training approaches, we
chose RoBERTa as our final model for individual prompt
detection.

7.4.5. Challenges with Individual prompt Detection:.
Despite the good performance, we consider a scenario where
individual prompt classification might not be sufficient. For
example, an individual prompt might not provide complete
information about the attacker’s intent. Adaptive attackers
can include prompts that individually appear to be benign,
but when taken together can be used to generate malicious
content. Depending solely on an individual prompt classifier
in such cases might offer a leeway for malicious users to
elude detection. Thus, to prevent this, we proceed to evaluate
two more detection approaches: a) classification on the
entire collection of prompts, and b) Cumultativly building
multiple prompt subsets based on incoming prompts, where
each subset is then predicted by our prediction model. We

dedicate the proceeding paragraphs towards detailing both
these approaches.

7.5. Phishing Collection Detection

The main objective of this detection scheme is to eval-
uate the model’s performance when provided with an entire
collection consisting of multiple prompts. To do so, we em-
ploy two distinct evaluation methods: first involves training
a new model with full phishing and legitimate collections
and then evaluating the performance on collections. The sec-
ond method utilizes the existing classifier that was initially
trained on individual prompts and evaluates its performance
on collections.

7.5.1. Groundtruth for phishing collection detection:.
While for training the first method, we utilized the same
groundtruth as for our individual prompt detection (Sec-
tion 7.4.1, for training the second method we considered
the whole prompt collections from our labeled dataset, con-
taining 258 malicious and 258 legitimate prompt collections.
We also used a 70-30 split for training and testing - resulting
in the training set containing 185 phishing collections and
176 legitimate collections and the testing set consists of 73
phishing and 82 legitimate collections. For evaluating the
model performance, we employ the same testing set for both
methods.

7.5.2. Performance Evaluation:. Table 7 shows the perfor-
mance of the model when trained and tested on collections,
as well as when trained on individual prompts and tested on
collections. We observe that the model trained on collections
achieves 0.92 accuracy, with an average F1 score of 0.92,
and the model trained on individual prompts achieves 0.93
accuracy, with an average F1 score of 0.93. Additionally,
model performance when trained on collections and indi-
vidual prompts, and tested on collections is shown for each
attack in Table 7. Thus, even though the model trained on
individual prompts shows slightly better performance, both
models perform relatively well.

7.5.3. Challenges with Phishing Collection Classifica-
tion:. While being able to evaluate the entire conversation
(i.e. collection of prompts) might provide a more nuanced
understanding of the user’s intent compared to evaluating
individual prompts separately, obtaining and testing an en-
tire prompt collection is counterintuitive to the goal of
proactively preventing the LLM from generating malicious
content. For the model to wait for the entire prompt col-
lection to come through before making a prediction would
not only delay the classification but also allow the attacker
to get access to the majority of the source code generated
by the LLM. Thus, to adapt to real-time scenarios, in the
next section we propose to examine the current prompt
alongside its preceding prompts - by forming prompt subsets
dynamically, to ascertain if the context captured in each step
unveils any malicious activity.

TABLE 6: Performance metrics for different models

Model Accuracy Precision Recall F1 Score Total Time Prediction Time - Median
BERT-base 0.94 0.94 0.94 0.94 86.15s 0.86s
DistilBERT 0.93 0.93 0.93 0.93 43.27s 0.43s
RoBERTa-base 0.94 0.94 0.94 0.94 82.55s 0.82s
DeBERTa 0.93 0.93 0.93 0.93 140.89s 1.40s
XLNET 0.93 0.93 0.93 0.93 120.43s 1.21s
ELECTRA 0.93 0.93 0.93 0.93 16.78s 0.17s

7.6. Phishing Prompt Subset Detection in Real
Time

In this analysis, we aim to observe the evolving intent
of the user as they provide newer prompts to the LLM.
We do so by combining new prompts with their preceding
prompts to form a subset and then ask the model to classify
it. This continues until the model marks a subset as phishing.
This iterative process enables the model to identify patterns
or sequences of prompts that, when viewed together, may
suggest a malicious intent that would not be apparent if
the prompts were evaluated in isolation. For instance, a
single request to design a website inspired by Paypal.com
may seem harmless. Yet, when this is sequentially followed
by a request to incorporate login forms soliciting sensitive
information, along with the addition of the brand’s logo, it
strongly implies a phishing motive. The model is designed
to recognize such sequences and accordingly prevent the
language model from generating content that could facilitate
such intentions. We present a visualization of how this
approach parses the subsets in Figure 13.

7.6.1. Test Set for Prompt Subset Detection:. To evaluate
this approach, we used the model trained on individual
prompts (in Section 7.4). For testing, we initially selected
the test set used for whole prompt collection detection
(Section 7.5 We used the prompt number in each col-
lection to correctly determine the order of prompts and
concatenated them accordingly, followed by storing these
concatenated prompts with a new attribute named ”Prompts-
Concatenated”. Utilizing the labels for individual prompts,
two coders coded these prompt subsets as well, by eval-
uating the subsets at each level and curating a balanced
test set of 597 phishing prompts subsets and 635 benign
prompts subsets for training and evaluation. Additionally,
we also add a new attribute ”Prompt-Subset Label” which
is obtained after concatenating previous prompts with the
current prompt. Once a label for current prompt turns is
determined to be phishing, we label all the subsequent
prompt subset labels to be phishing as well till the end of
the prompt collection.

7.6.2. Performance Evaluation:. During the testing phase,
we introduced different prompt subsets to the fine-tuned
model. We then evaluated the model’s predictions using
the ”Prompt-Subset Label”. This process allowed us to
analyze the model’s performance across specific levels of
the prompt subsets. Finally, the finetuned RoBERTa model,
trained on individual prompts and tested on subsets of

prompts, achieved an accuracy, precision, recall, and F1
score of 0.96. Model performance for each attack is provided
in Table 7. Based on the results, it is evident that the
model trained on individual prompts effectively categorizes
individual, subsets and collections of prompts.

We expanded our experiments by training a classifier
with prompt subsets. This approach allowed us to explore
the capabilities of the model when tested on different
formats including individual prompts, prompt subsets, and
prompt collections, which due to brevity, we do not present
in detail. Overall, upon evaluation, we observed consistent
performance across these different combinations. However
in any combination, to accommodate real-time scenarios,
using the model trained on individual prompts and tested
on prompt subsets, emerges as the best choice for early and
efficient real-time detection.

7.6.3. Interpreting model prediction. We also utilized
LIME (Local Interpretable Model-Agnostic Explanations)
[114]) to identify the specific words or phrases within
prompt texts that influence the model’s predictions. A higher
LIME score signifies a stronger influence on the model’s
decision-making process. Specifically, the score’s magnitude
for a word or phrase signifies its impact level: positive
weights enhance the likelihood of the predicted class, while
negative weights diminish it. For samples in our test set that
were classified as phishing by the model, we closely exam-
ined the phrases that positively influenced this prediction
and checked for similarities with features in our codebook
(Section 7.2). We find that the phrases that contribute to the
model predicting phishing closely align with the features our
coders had identified as well. For clarity, we assign each
phrase to a category found in the code book, Figure 14
illustrates the volume of top-10 phrase categories that con-
tributed positively to a phishing prediction along with their
median LIME score. Thus this alignment validates that our
model effectively focuses on features deemed critical by
human evaluators, further confirming its ability to effectively
identify phishing attempts.

Additionally, our framework is also applicable in scenar-
ios where attackers provide the source code of a benign web-
site as their input prompt, aiming to embed phishing com-
ponents subsequently. Specifically, any attempt to include
phishing components requires the submission of prompts
to the LLM, which are scanned and identified by our
detection model. For example, consider an attack scenario
where the benign login page source code of Amazon.com
is duplicated. Subsequently, the attacker includes a prompt
designed to inject a JavaScript function capable of sending

Volume

(Median LIME scores)

C
at

eg
o

ry

Figure 14: LIME analysis of features contributing to phish-
ing prediction

the entered credentials to an email address or database
controlled by the attacker. At this stage, our detection model
would recognize this activity as phishing, thereby preventing
the language model from producing the modified source
code that facilitates the unauthorized sending of credentials.
On the other hand, an attacker might initially create a
generic or unbranded login page using the LLM, and then
customize it manually by adding specific brand logos or
other identifiers (such as text). This scenario could bypass
our detection framework. However, to make the phishing
website functional, the attacker needs to include at least
a function to transfer the credentials entered into the site
to themselves. Implementing such functionality is arguably
more complicated than inserting brand logo images. Thus,
as mentioned earlier, once the attacker attempts to include
prompts to add the credential transfer component (or any
other evasive functionality), they (the prompts) will get
detected and intercepted by our model.

7.7. Individual and subset prompt detection for
Bard and Claude

We tested our model for both individual and subset of
prompts generated by Google Bard and Claude when asked
to provide instructions for creating the phishing attacks.
Since the prompts generated by the different models can
vary with respect to structure, features, etc., it allows us to
evaluate the transferability of our classifier. Since, during
the time of this study, neither Bard nor Claude provided
developer APIs, we manually generated the prompts by us-
ing their respective web interfaces. We generated 10 prompt
sets for each attack and ran our model on each prompt
of the attack. Then we randomly picked 25 prompts from
each attack (200 total prompts) and manually labeled them
to identify the efficiency of our model. Our findings are
illustrated in Table 8. Overall, Claude had an accuracy and
F1 score of 0.93, while Bard had an accuracy of 0.95, with
an F1-Score of 0.96. The performance of the model on a
per-attack basis is illustrated in Table 7.

We further evaluated our model by testing it on subsets
of prompts generated by both Claude and Bard. In this case,

we randomly select 25 concatenated subset prompts (i.e.
the combination of several prompts together as discussed in
Section 7.6). The results detailed in Table 7, show that the
model achieved an accuracy of 0.96 on prompts generated
by Claude, and 0.95 on those by Bard. Breaking down the
performance of the model on a per-attack basis, as shown in
Table 7, we see that the model performs well for all Claude-
generated prompts except Attack 7, whereas it performs well
for all Bard generated prompts except Attack 4.

We found that the anomaly with Claude in Attack-7 is
linked to the sequential arrangement of website elements
in the prompts. This order obstructs the model’s ability to
identify parts of the prompts as harmful until the entire
sequence of elements is provided. In the case of Bard for
Attack-4, the difficulty revolves around prompts mentioning
a logo. We classify the prompts as phishing if they instruct
placing a logo at the top, mimicking a login page title.
Otherwise, prompts are considered benign, when specific
placement details are not provided, leading our model to
detect prompt subsets as benign. Thus, overall, we find
that our model, trained on ChatGPT-generated prompts,
generalizes well against prompts generated by Claude and
Bard as well.

7.8. Evaluating against malicious LLMs

To further identify the generalizability of both our
prompt generation framework and detection model, we test
on two popular LLMs used for generating phishing attacks
and other malicious content: FraudGPT [115] and Wor-
mGPT [116]. These models also require a prompt to gener-
ate malicious content. We did not have access to their local
versions (which can only be purchased from cybercriminal
forums) and instead utilized their publicly available imple-
mentations on FlowGPT [117]. We generated 240 prompt
collections generated by WormGPT and FraudGPT, which
were then predicted by our detection model. Overall, our
model detected 233 (97%) generated by FraudGPT, and
219 (91%) generated by WormGPT.

7.9. Detecting Phishing email prompts

To automatically detect phishing email generation
prompts, we utilized the RoBERTa architecture and trained it
on the sample of 2,109 phishing prompts that were generated
by GPT-4 from the eCrimeX phishing dataset and 2,109
Benign email prompts generated by the same from the Enron
dataset, partitioning the dataset into a 70:30 Train:Test split.
The model achieved an accuracy, precision, recall, and F-
1 score of 0.94, 0.95, 0.93 and 0.94, respectively. Overall,
these metrics highlight the model’s robust capability in the
early detection of prompts that attempt to generate phishing
emails using LLMs.

Similar to Section 7.7, we also manually generate phish-
ing email prompts using Claude and Bard. For each of the
models, we generate 20 prompts for each of the phishing
email categories for a total of 200 prompts, and 200 prompts
for benign email prompts. Table shows the performance of

TABLE 7: Performance Metrics of Model across individual, collection and subset based approaches. A1 to A7 denote
accuracy across all samples belonging to that specific attack

Trained on Tested on Accuracy Precision Recall F1 Score A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8
Individual Individual 0.94 0.94 0.94 0.94 0.9 0.97 0.96 0.94 0.92 0.93 0.92 0.93
Individual Collections 0.92 0.92 0.92 0.92 1 0.98 0.97 1 0.89 0.92 0.98 0.93
Collections Collections 0.93 0.93 0.93 0.93 1 1 1 1 0.9 0.92 1 1
Individual Subsets 0.96 0.96 0.96 0.96 1 0.98 0.97 1 0.89 0.92 0.98 0.93
Individual Claude-Individual 0.93 0.89 0.96 0.93 0.96 0.84 0.88 0.96 0.92 1 0.96 0.98
Individual Bard-Individual 0.95 0.99 0.92 0.96 0.96 0.92 0.96 0.92 1 0.88 1 0.94
Individual Claude-Subsets 0.96 0.99 0.96 0.97 1 1 1 0.92 1 1 0.80 1
Individual Bard-Subsets 0.95 0.99 0.94 0.97 0.96 0.96 0.92 0.80 1 1 0.96 1

TABLE 8: Performance of our model against individual
phishing email prompts generated by Claude and Bard

Model Accuracy Precision Recall F1 Score
Claude 0.92 0.94 0.96 0.95
Bard 0.96 0.92 0.90 0.91

our model on email prompts generated by both Claude and
Bard. For Claude, we see an accuracy of 0.92 and an F1-
Score of 0.95, whereas for Bard, we see an accuracy of
0.96 and an F1-Score of 0.91. Thus, similar to our phishing
detection model, we see that the performance of our email
detection model is also transferable across the ChatGPT,
Claude and Bard.

8. Discussion

Ethics and Data Disclosure: Since ChatGPT 3.5T
and 4 were used to generate the phishing prompts, we have
reported them to ChatGPT’s developer, OpenAI [64], and
we plan to disclose them after OpenAI’s mandatory 90-day
period of vulnerability disclosure [118]. We also disclose
the vulnerabilities identified in our study to the developers
of Claude and Bard, i.e., Anthropic and Google. Google has
already accepted the vulnerability, assigning it the highest
severity for a fix. We also plan to disclose our prompts
generated using Bard in the near future, after receiving con-
firmation that the vulnerability has been adequately patched.
Our vulnerability report consisted of detailed steps that can
be used to carry out the attack, as well as the aforemen-
tioned prompts, and a link to our model and framework
that could be utilized by the vendors to prevent abuse of
their LLMs. Meanwhile, our trained models can be accessed
on https://tinyurl.com/epu6w4cp, as well as a live demon-
stration on https://huggingface.co/phishbot/ScamLLM and
a ChatGPT Actions plugin at https://chat.openai.com/g/g-
KU1izdZTw-prompt-defender, where users can try out dif-
ferent prompts to check if they have phishing intention
towards creating malicious websites or emails.
Implications for wider LLM abuse: In this work, we
focus on building a detection model to prevent malicious
prompts that can be used to exploit LLMs to generate
phishing content. However, the abuse of these language
models is not confined to the phishing generation alone.
For instance, the Fox8 Botnet [119] exploits ChatGPT to
produce tweets that urge users to visit fraudulent cryptocur-

rency and NFT websites. In a similar vein, DarkBERT [120]
and DarkBARD [121] utilize the Google Bard API to create
adversarial attacks, integrating insights from cybersecurity
forums to design more sophisticated and elusive malware.
This highlights the urgent need for the development of
advanced detection systems capable of identifying and mit-
igating abuse of LLMs of such malicious scams, and we
hope our work encourages the broader research community
to do so.

ChatGPT generated output

Figure 15: Phishing website generated using image-based
prompts in GPT 4.

Image interpretation prompt: As of October 2023,
towards the end of our study, users can now upload images
onto ChatGPT and Bard and use it as a prompt to generate
the desired content. We discovered that providing images of
login forms from major brands can prompt GPT-4 to emulate
these designs- which can result in the generation of phishing
attacks. The format for these prompts can be likened to
our Phishing prompt generation, as illustrated in Figure
4. However, there would be no need to include prompts
related to website design emulation since the design is
inferred directly from the provided screenshot. An instance
of such a potential attack, using a login form screenshot
as a trigger, is depicted in Figure 15. However, while this
approach can be utilized to generate regular credential-based
phishing attacks, the user would still need to include text-
based prompts to emulate the properties of the more evasive
attacks highlighted in our work. Several machine learning
models in existence can determine the intent of a phishing
website from cues like logos [122] or the presence and posi-

https://tinyurl.com/epu6w4cp
https://huggingface.co/phishbot/ScamLLM
https://chat.openai.com/g/g-KU1izdZTw-prompt-defender
https://chat.openai.com/g/g-KU1izdZTw-prompt-defender

tioning of login fields [123]. Integrating our detection model
with one of these models can provide protection against
possible attacks which combine image-based prompts with
text-based prompts to generate evasive phishing attacks.

9. Conclusion

Our research reveals that widely accessible commercial
LLMs can be abused to produce phishing websites and
emails. While these models can be manually prompted to
launch attacks, we have discovered a more sophisticated
method: using LLMs to autonomously craft prompts for
phishing scams. Furthermore, not only do LLM-crafted
prompts excel in creating phishing content, but the resulting
websites prove as evasive to anti-phishing tools as those
manually designed by humans. Similarly, phishing emails
generated through this method can convincingly emulate
the style and content of human-composed phishing emails.
This misuse of commercial LLMs presents severe potential
dangers. Attackers can easily iterate over a handful of
optimized prompts, enabling them to generate a limitless
supply of malicious prompts to amplify their attacks. An
effective countermeasure seems to be the early detection
of these malicious prompts, preventing the LLM from pro-
ducing harmful content. In light of this, we developed a
machine-learning model that performs well in identifying
malicious prompts that can be used to generate phishing
websites and emails. Our model can potentially be integrated
with LLMs as a plugin, necessarily preventing attackers
from utilizing commercial LLMs as a source for generating
phishing scams. Additionally, the dataset used for training
our machine learning model provides a novel source of
annotated phishing prompts that can further drive research
in this space.

10. Acknowledgement

The research presented in this paper has been sup-
ported by the Comcast Innovation Fund and by the Na-
tional Science Foundation, under Grant No. 2239646. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this work are those of the authors and do not
necessarily reflect the views of Comcast or the National
Science Foundation. The authors have carefully considered
the potential for competing interests (as detailed in https:
//www.ieee-security.org/TC/SP2024/financial-con.html) and
declare that, apart from the aforementioned support, there
are no financial or non-financial competing interests related
to the work described in this paper.

References

[1] M. Southern. (2021) Chatgpt examples: 5 ways businesses
are using openai’s language model. [Online]. Available: https:
//www.searchenginejournal.com/chatgpt-examples/474937/

[2] S. Jalil, S. Rafi, T. D. LaToza, K. Moran, and W. Lam, “Chatgpt
and software testing education: Promises & perils,” arXiv preprint
arXiv:2302.03287, 2023.

[3] J. Qadir, “Engineering education in the era of chatgpt: Promise
and pitfalls of generative ai for education,” in 2023 IEEE Global
Engineering Education Conference (EDUCON). IEEE, 2023, pp.
1–9.

[4] “AI like ChatGPT is creating huge increase in malicious phishing
emails.” [Online]. Available: https://www.cnbc.com/2023/11/28/
ai-like-chatgpt-is-creating-huge-increase-in-malicious-phishing-email.
html

[5] “Report links ChatGPT to rise in phishing emails,”
Infosecurity Magazine, 2023. [Online]. Available: https://www.
infosecurity-magazine.com/news/chatgpt-linked-rise-phishing/

[6] “FraudGPT and WormGPT: AI-driven tools that help attackers
conduct phishing campaigns,” SecureOps Managed Security
Support Services Monthly Blog Articles. [Online]. Available:
https://secureops.com/blog/ai-attacks-fraudgpt/

[7] ChatGPT: This content may violate our content
policy. [Online]. Available: https://www.minitool.com/news/
chatgpt-this-content-may-violate-our-content-policy.html

[8] OpenAI, “Openai usage policies,” 2021. [Online]. Available:
https://openai.com/policies/usage-policies/

[9] R. Karanjai, “Targeted phishing campaigns using large scale lan-
guage models,” arXiv preprint arXiv:2301.00665, 2022.

[10] C. Hoffman, “It’s scary easy to use chatgpt to write phishing emails,”
CNET, October 2021. [Online]. Available: https://cnet.co/3J72IPV

[11] E. Kovacs. (2021, September) Malicious prompt engineering
with ChatGPT. SecurityWeek. [Online]. Available: https://www.
securityweek.com/malicious-prompt-engineering-with-chatgpt/

[12] T. Tucker, “A consumer-protection agency warns that scammers
are using ai to make their schemes more convincing and
dangerous,” Business Insider, March 2023. [Online]. Available:
https://bit.ly/3YFu5WN

[13] M. Shkatov. (2018, January) Chatting our way into
creating a polymorphic malware. CyberArk. [Online]. Avail-
able: https://www.cyberark.com/resources/threat-research-blog/
chatting-our-way-into-creating-a-polymorphic-malware

[14] L. Cohen. (2021, June) Chatgpt hack allows chatbot to
generate malware. [Online]. Available: https://www.digitaltrends.
com/computing/chatgpt-hack-allows-chatbot-to-generate-malware/

[15] K. Alper and I. Cohen, “Opwnai: Cybercriminals starting to use gpt
for impersonation and social engineering,” Check Point Research,
March 2023. [Online]. Available: https://research.checkpoint.com/
2023/opwnai-cybercriminals-starting-to-use-chatgpt/

[16] F. Lai, “The carbon footprint of GPT-4,” Towards Data
Science, 2022. [Online]. Available: https://towardsdatascience.com/
the-carbon-footprint-of-gpt-4-d6c676eb21ae

[17] “ChatGPT vs Microsoft Copilot: The ma-
jor differences,” UC Today, 2023. [On-
line]. Available: https://www.uctoday.com/unified-communications/
chatgpt-vs-microsoft-copilot-the-major-differences/

[18] Checkpoint Software, “What is phishing?” 2023.
[Online]. Available: https://www.checkpoint.com/cyber-hub/
threat-prevention/what-is-phishing/

[19] J. S. Downs, M. Holbrook, and L. F. Cranor, “Behavioral response to
phishing risk,” in Proceedings of the anti-phishing working groups
2nd annual eCrime researchers summit, 2007, pp. 37–44.

[20] J. Erkkila, “Why we fall for phishing,” in Proceedings of the SIGCHI
conference on Human Factors in Computing Systems CHI 2011.
ACM, 2011, pp. 7–12.

[21] M. Butavicius, R. Taib, and S. J. Han, “Why people keep falling for
phishing scams: The effects of time pressure and deception cues on
the detection of phishing emails,” Computers & Security, vol. 123,
p. 102937, 2022.

https://www.ieee-security.org/TC/SP2024/financial-con.html
https://www.ieee-security.org/TC/SP2024/financial-con.html
https://www.searchenginejournal.com/chatgpt-examples/474937/
https://www.searchenginejournal.com/chatgpt-examples/474937/
https://www.cnbc.com/2023/11/28/ai-like-chatgpt-is-creating-huge-increase-in-malicious-phishing-email.html
https://www.cnbc.com/2023/11/28/ai-like-chatgpt-is-creating-huge-increase-in-malicious-phishing-email.html
https://www.cnbc.com/2023/11/28/ai-like-chatgpt-is-creating-huge-increase-in-malicious-phishing-email.html
https://www.infosecurity-magazine.com/news/chatgpt-linked-rise-phishing/
https://www.infosecurity-magazine.com/news/chatgpt-linked-rise-phishing/
https://secureops.com/blog/ai-attacks-fraudgpt/
https://www.minitool.com/news/chatgpt-this-content-may-violate-our-content-policy.html
https://www.minitool.com/news/chatgpt-this-content-may-violate-our-content-policy.html
https://openai.com/policies/usage-policies/
https://cnet.co/3J72IPV
https://www.securityweek.com/malicious-prompt-engineering-with-chatgpt/
https://www.securityweek.com/malicious-prompt-engineering-with-chatgpt/
https://bit.ly/3YFu5WN
https://www.cyberark.com/resources/threat-research-blog/chatting-our-way-into-creating-a-polymorphic-malware
https://www.cyberark.com/resources/threat-research-blog/chatting-our-way-into-creating-a-polymorphic-malware
https://www.digitaltrends.com/computing/chatgpt-hack-allows-chatbot-to-generate-malware/
https://www.digitaltrends.com/computing/chatgpt-hack-allows-chatbot-to-generate-malware/
https://research.checkpoint.com/2023/opwnai-cybercriminals-starting-to-use-chatgpt/
https://research.checkpoint.com/2023/opwnai-cybercriminals-starting-to-use-chatgpt/
https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae
https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae
https://www.uctoday.com/unified-communications/chatgpt-vs-microsoft-copilot-the-major-differences/
https://www.uctoday.com/unified-communications/chatgpt-vs-microsoft-copilot-the-major-differences/
https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-phishing/
https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-phishing/

[22] Z. Alkhalil, C. Hewage, L. Nawaf, and I. Khan, “Phishing attacks:
A recent comprehensive study and a new anatomy,” Frontiers in
Computer Science, vol. 3, p. 563060, 2021.

[23] Interisle Consulting Group, “The phishing landscape 2023,”
Tech. Rep., 2023. [Online]. Available: https://interisle.net/
PhishingLandscape2023.pdf

[24] BitDefender Trafficlight, https://www.bitdefender.com/solutions/
trafficlight.html.

[25] “PhishTank,” https://www.phishtank.com/faq.php.

[26] “Openphish,” ”https://openphish.com/faq.html”.

[27] A. Oest, Y. Safaei, P. Zhang, B. Wardman, K. Tyers, Y. Shoshi-
taishvili, and A. Doupé, “Phishtime: Continuous longitudinal mea-
surement of the effectiveness of anti-phishing blacklists,” in 29th
{USENIX} Security Symposium ({USENIX} Security 20), 2020, pp.
379–396.

[28] P. Zhang, A. Oest, H. Cho, Z. Sun, R. Johnson, B. Wardman,
S. Sarker, A. Kapravelos, T. Bao, R. Wang et al., “Crawlphish:
Large-scale analysis of client-side cloaking techniques in phishing,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021, pp. 1109–1124.

[29] A. Oest, P. Zhang, B. Wardman, E. Nunes, J. Burgis, A. Zand,
K. Thomas, A. Doupé, and G.-J. Ahn, “Sunrise to sunset: Analyzing
the end-to-end life cycle and effectiveness of phishing attacks at
scale,” in 29th USENIX Security Symposium (USENIX Security 20),
2020.

[30] D. Akhawe and A. P. Felt, “Alice in warningland: A large-scale
field study of browser security warning effectiveness,” in Presented
as part of the 22nd {USENIX} Security Symposium ({USENIX}
Security 13), 2013, pp. 257–272.

[31] Proofpoint. (2023) Have a money latte? then you too can buy a
phish kit. [Online]. Available: https://www.proofpoint.com/us/blog/
threat-insight/have-money-latte-then-you-too-can-buy-phish-kit

[32] A. Oest, Y. Safei, A. Doupé, G.-J. Ahn, B. Wardman, and G. Warner,
“Inside a phisher’s mind: Understanding the anti-phishing ecosys-
tem through phishing kit analysis,” in 2018 APWG Symposium on
Electronic Crime Research (eCrime). IEEE, 2018, pp. 1–12.

[33] H. Bijmans, T. Booij, A. Schwedersky, A. Nedgabat, and R. van
Wegberg, “Catching phishers by their bait: Investigating the dutch
phishing landscape through phishing kit detection,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 3757–3774.

[34] X. Han, N. Kheir, and D. Balzarotti, “Phisheye: Live monitoring of
sandboxed phishing kits,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.
1402–1413.

[35] L. Zhong and Z. Wang, “A study on robustness and reliabil-
ity of large language model code generation,” arXiv preprint
arXiv:2308.10335, 2023.

[36] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models
for code generation,” arXiv preprint arXiv:2305.01210, 2023.

[37] “APWG eCrimeX,” https://apwg.org/ecx/.

[38] M. Das, S. K. Pandey, and A. Mukherjee, “Evaluating chatgpt’s per-
formance for multilingual and emoji-based hate speech detection,”
arXiv preprint arXiv:2305.13276, 2023.

[39] K. M. Caramancion, “Harnessing the power of chatgpt to decimate
mis/disinformation: Using chatgpt for fake news detection,” in 2023
IEEE World AI IoT Congress (AIIoT). IEEE, 2023, pp. 0042–0046.

[40] G. Deiana, M. Dettori, A. Arghittu, A. Azara, G. Gabutti, and
P. Castiglia, “Artificial intelligence and public health: Evaluating
chatgpt responses to vaccination myths and misconceptions,” Vac-
cines, vol. 11, no. 7, p. 1217, 2023.

[41] “Claude.” [Online]. Available: https://www.anthropic.com/index/
introducing-claude

[42] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar
et al., “Llama: Open and efficient foundation language models,”
arXiv preprint arXiv:2302.13971, 2023. [Online]. Available:
https://arxiv.org/abs/2302.13971

[43] Google, “Bard-google-ai,” 2023. [Online]. Available: https://blog.
google/technology/ai/bard-google-ai-search-updates/

[44] L. Yunxiang, L. Zihan, Z. Kai, D. Ruilong, and Z. You, “Chatdoctor:
A medical chat model fine-tuned on llama model using medical
domain knowledge,” arXiv preprint arXiv:2303.14070, 2023.
[Online]. Available: https://arxiv.org/abs/2303.14070

[45] C. Wu, X. Zhang, Y. Zhang, Y. Wang, and W. Xie, “Pmc-
llama: Further finetuning llama on medical papers,” arXiv
preprint arXiv:2304.14454, 2023. [Online]. Available: https:
//arxiv.org/abs/2304.14454

[46] H. Li, D. Guo, W. Fan, M. Xu, and Y. Song, “Multi-step jailbreaking
privacy attacks on chatgpt,” arXiv preprint arXiv:2304.05197, 2023.
[Online]. Available: https://arxiv.org/abs/2304.05197

[47] X. Shen, Z. Chen, M. Backes, Y. Shen, and Y. Zhang, “” do anything
now”: Characterizing and evaluating in-the-wild jailbreak prompts
on large language models,” arXiv preprint arXiv:2308.03825, 2023.

[48] Y. Liu, G. Deng, Y. Li, K. Wang, T. Zhang, Y. Liu, H. Wang,
Y. Zheng, and Y. Liu, “Prompt injection attack against llm-integrated
applications,” arXiv preprint arXiv:2306.05499, 2023.

[49] D. Kang, X. Li, I. Stoica, C. Guestrin, M. Zaharia, and
T. Hashimoto, “Exploiting programmatic behavior of llms: Dual-use
through standard security attacks,” arXiv preprint arXiv:2302.05733,
2023. [Online]. Available: https://arxiv.org/abs/2302.05733

[50] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, “From
chatgpt to threatgpt: Impact of generative ai in cybersecurity and
privacy,” IEEE Access, 2023.

[51] E. Derner and K. Batistič, “Beyond the safeguards: Exploring the
security risks of chatgpt,” arXiv preprint arXiv:2305.08005, 2023.

[52] L. De Angelis, F. Baglivo, G. Arzilli, G. P. Privitera, P. Ferragina,
A. E. Tozzi, and C. Rizzo, “Chatgpt and the rise of large language
models: the new ai-driven infodemic threat in public health,” Fron-
tiers in Public Health, vol. 11, p. 1166120, 2023.

[53] A. Cidon, L. Gavish, I. Bleier, N. Korshun, M. Schweighauser,
and A. Tsitkin, “High precision detection of business email
compromise,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug.
2019, pp. 1291–1307. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity19/presentation/cidon

[54] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson,
S. Savage, G. M. Voelker, and D. Wagner, “Detecting and
characterizing lateral phishing at scale,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1273–1290. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/ho

[55] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understand-
ing,” arXiv preprint arXiv:1810.04805, 2018.

[56] D. O. Otieno, A. S. Namin, and K. S. Jones, “The application
of the bert transformer model for phishing email classification,”
in 2023 IEEE 47th Annual Computers, Software, and Applications
Conference (COMPSAC). IEEE, 2023, pp. 1303–1310.

[57] B. Karki, F. Abri, A. S. Namin, and K. S. Jones, “Using transformers
for identification of persuasion principles in phishing emails,” in
2022 IEEE International Conference on Big Data (Big Data). IEEE,
2022, pp. 2841–2848.

[58] N. Rifat, M. Ahsan, M. Chowdhury, and R. Gomes, “Bert against
social engineering attack: Phishing text detection,” in 2022 IEEE
International Conference on Electro Information Technology (eIT).
IEEE, 2022, pp. 1–6.

https://interisle.net/PhishingLandscape2023.pdf
https://interisle.net/PhishingLandscape2023.pdf
https://www.bitdefender.com/solutions/trafficlight.html
https://www.bitdefender.com/solutions/trafficlight.html
https://www.phishtank.com/faq.php
"https://openphish.com/faq.html"
https://www.proofpoint.com/us/blog/threat-insight/have-money-latte-then-you-too-can-buy-phish-kit
https://www.proofpoint.com/us/blog/threat-insight/have-money-latte-then-you-too-can-buy-phish-kit
https://apwg.org/ecx/
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://arxiv.org/abs/2302.13971
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://arxiv.org/abs/2303.14070
https://arxiv.org/abs/2304.14454
https://arxiv.org/abs/2304.14454
https://arxiv.org/abs/2304.05197
https://arxiv.org/abs/2302.05733
https://www.usenix.org/conference/usenixsecurity19/presentation/cidon
https://www.usenix.org/conference/usenixsecurity19/presentation/cidon
https://www.usenix.org/conference/usenixsecurity19/presentation/ho

[59] C. Oswald, S. E. Simon, and A. Bhattacharya, “Spotspam: Intention
analysis–driven sms spam detection using bert embeddings,” ACM
Transactions on the Web (TWEB), vol. 16, no. 3, pp. 1–27, 2022.

[60] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[61] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A
robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[62] D. He, X. Lv, S. Zhu, S. Chan, and K.-K. R. Choo, “A method
for detecting phishing websites based on tiny-bert stacking,” IEEE
Internet of Things Journal, 2023.

[63] Y. Wang, W. Zhu, H. Xu, Z. Qin, K. Ren, and W. Ma, “A large-
scale pretrained deep model for phishing url detection,” in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[64] “OpenAI API.” [Online]. Available: https://openai.com/blog/
introducing-chatgpt-and-whisper-apis

[65] B. Klimt and Y. Yang, “The enron corpus: A new dataset for
email classification research,” in European conference on machine
learning. Springer, 2004, pp. 217–226.

[66] R. Alabdan, “Phishing attacks survey: Types, vectors, and technical
approaches,” Future internet, vol. 12, no. 10, p. 168, 2020.

[67] G. Varshney, M. Misra, and P. K. Atrey, “A survey and classification
of web phishing detection schemes,” Security and Communication
Networks, vol. 9, no. 18, pp. 6266–6284, 2016.

[68] L. Kang and J. Xiang, “Captcha phishing: A practical attack on
human interaction proofing,” in Proceedings of the 5th international
conference on Information security and cryptology, 2009, pp. 411–
425.

[69] ——, “Captcha phishing: A practical attack on human interaction
proofing,” in Information Security and Cryptology: 5th International
Conference, Inscrypt 2009, Beijing, China, December 12-15, 2009.
Revised Selected Papers 5. Springer, 2010, pp. 411–425.

[70] Palo Alto Networks Unit 42, “Captcha-protected phishing:
What you need to know,” https://unit42.paloaltonetworks.com/
captcha-protected-phishing/, June 2021, [Accessed: March 9, 2023].

[71] S. Blog, “Dissecting a phishing campaign with a captcha-based url,”
Trustwave, March 2021. [Online]. Available: https://bit.ly/3mDvH6q

[72] A. Odeh, I. Keshta, and E. Abdelfattah, “Machine learningtech-
niquesfor detection of website phishing: A review for promises and
challenges,” in 2021 IEEE 11th Annual Computing and Communi-
cation Workshop and Conference (CCWC). IEEE, 2021, pp. 0813–
0818.

[73] G. Developers, “recaptcha v3: Add the recaptcha script to your html
or php file,” https://developers.google.com/recaptcha/docs/display,
September 2021, [Online; accessed 9-March-2023].

[74] M. Morgan, “Qr code phishing scams target users
and enterprise organizations,” Security Magazine,
October 2021, [Online; accessed 9-March-2023].
[Online]. Available: https://www.securitymagazine.com/articles/
97949-qr-code-phishing-scams-target-users-and-enterprise-organizations

[75] M. Kan, “Fbi: Hackers are compromising legit qr codes to send
you to phishing sites,” PCMag, May 2022, [Online; accessed
9-March-2023]. [Online]. Available: https://www.pcmag.com/news/
fbi-hackers-are-compromising-legit-qr-codes-to-send-you-to-phishing-sites

[76] T. Vidas, E. Owusu, S. Wang, C. Zeng, L. F. Cranor, and N. Christin,
“Qrishing: The susceptibility of smartphone users to qr code phish-
ing attacks,” in Financial Cryptography and Data Security: FC 2013
Workshops, USEC and WAHC 2013, Okinawa, Japan, April 1, 2013,
Revised Selected Papers 17. Springer, 2013, pp. 52–69.

[77] QRCode Monkey, “QR Server,” https://www.qrserver.com/.

[78] S. Team, “iframe injection attacks and mitigation,” SecNHack,
February 2022, [Online; accessed 9-March-2023]. [Online]. Avail-
able: https://secnhack.in/iframe-injection-attacks-and-mitigation/

[79] A. Chiarelli. Preventing clickjacking attacks. [Online]. Available:
https://auth0.com/blog/preventing-clickjacking-attacks/

[80] PortSwigger, “Same-origin policy,” https://portswigger.net/
web-security/cors/same-origin-policy, 2023, [Online; accessed
9-March-2023].

[81] B. Liang, M. Su, W. You, W. Shi, and G. Yang, “Cracking classifiers
for evasion: A case study on the google’s phishing pages filter,” in
Proceedings of the 25th International Conference on World Wide
Web, 2016, pp. 345–356.

[82] mrd0x, “Browser in the Browser: Phishing Attack,” https://mrd0x.
com/browser-in-the-browser-phishing-attack/.

[83] Cofense, “Global polymorphic phishing attack 2022,” https://bit.ly/
3ZVtu4t.

[84] I.-F. Lam, W.-C. Xiao, S.-C. Wang, and K.-T. Chen, “Counteracting
phishing page polymorphism: An image layout analysis approach,”
in Advances in Information Security and Assurance: Third Inter-
national Conference and Workshops, ISA 2009, Seoul, Korea, June
25-27, 2009. Proceedings 3. Springer, 2009, pp. 270–279.

[85] C. Ventures, “Beware of lookalike domains in
punycode phishing attacks,” Cybersecurity Ventures,
2019. [Online]. Available: https://cybersecurityventures.com/
beware-of-lookalike-domains-in-punycode-phishing-attacks/

[86] B. Fouss, D. M. Ross, A. B. Wollaber, and S. R. Gomez, “Punyvis:
A visual analytics approach for identifying homograph phishing at-
tacks,” in 2019 IEEE Symposium on Visualization for Cyber Security
(VizSec). IEEE, 2019, pp. 1–10.

[87] Adobe, “Responsive web design,” https://xd.adobe.com/ideas/
principles/web-design/responsive-web-design-2/.

[88] “Bootstrap,” https://getbootstrap.com/.

[89] “Foundation,” https://get.foundation/.

[90] S. Afroz and R. Greenstadt, “Phishzoo: Detecting phishing websites
by looking at them,” in 2011 IEEE fifth international conference on
semantic computing. IEEE, 2011, pp. 368–375.

[91] B. E. Gavett, R. Zhao, S. E. John, C. A. Bussell, J. R. Roberts, and
C. Yue, “Phishing suspiciousness in older and younger adults: The
role of executive functioning,” Plos one, vol. 12, no. 2, p. e0171620,
2017.

[92] D. Lacey, P. Salmon, and P. Glancy, “Taking the bait: a systems
analysis of phishing attacks,” Procedia Manufacturing, vol. 3, pp.
1109–1116, 2015.

[93] J. Mao, W. Tian, P. Li, T. Wei, and Z. Liang, “Phishing-alarm: robust
and efficient phishing detection via page component similarity,”
IEEE Access, vol. 5, pp. 17 020–17 030, 2017.

[94] “Hostinger,” https://www.hostinger.com/.

[95] D. Jampen, G. Gür, T. Sutter, and B. Tellenbach, “Don’t click:
towards an effective anti-phishing training. a comparative litera-
ture review,” Human-centric Computing and Information Sciences,
vol. 10, no. 1, pp. 1–41, 2020.

[96] A. Oest, Y. Safaei, A. Doupé, G.-J. Ahn, B. Wardman, and K. Tyers,
“Phishfarm: A scalable framework for measuring the effectiveness
of evasion techniques against browser phishing blacklists,” in 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 2019, pp.
1344–1361.

[97] “Google Safebrowsing,” https://safebrowsing.google.com/.

[98] “VirusTotal,” https://www.virustotal.com/gui/home/.

[99] A. K. Jain and B. Gupta, “A survey of phishing attack techniques,
defence mechanisms and open research challenges,” Enterprise In-
formation Systems, vol. 16, no. 4, pp. 527–565, 2022.

https://openai.com/blog/introducing-chatgpt-and-whisper-apis
https://openai.com/blog/introducing-chatgpt-and-whisper-apis
https://unit42.paloaltonetworks.com/captcha-protected-phishing/
https://unit42.paloaltonetworks.com/captcha-protected-phishing/
https://bit.ly/3mDvH6q
https://developers.google.com/recaptcha/docs/display
https://www.securitymagazine.com/articles/97949-qr-code-phishing-scams-target-users-and-enterprise-organizations
https://www.securitymagazine.com/articles/97949-qr-code-phishing-scams-target-users-and-enterprise-organizations
https://www.pcmag.com/news/fbi-hackers-are-compromising-legit-qr-codes-to-send-you-to-phishing-sites
https://www.pcmag.com/news/fbi-hackers-are-compromising-legit-qr-codes-to-send-you-to-phishing-sites
https://www.qrserver.com/
https://secnhack.in/iframe-injection-attacks-and-mitigation/
https://auth0.com/blog/preventing-clickjacking-attacks/
https://portswigger.net/web-security/cors/same-origin-policy
https://portswigger.net/web-security/cors/same-origin-policy
https://mrd0x.com/browser-in-the-browser-phishing-attack/
https://mrd0x.com/browser-in-the-browser-phishing-attack/
https://bit.ly/3ZVtu4t
https://bit.ly/3ZVtu4t
https://cybersecurityventures.com/beware-of-lookalike-domains-in-punycode-phishing-attacks/
https://cybersecurityventures.com/beware-of-lookalike-domains-in-punycode-phishing-attacks/
https://xd.adobe.com/ideas/principles/web-design/responsive-web-design-2/
https://xd.adobe.com/ideas/principles/web-design/responsive-web-design-2/
https://getbootstrap.com/
https://get.foundation/
https://www.hostinger.com/
https://safebrowsing.google.com/
https://www.virustotal.com/gui/home/

[100] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu:
a method for automatic evaluation of machine translation,”
2002. [Online]. Available: https://machinelearningmastery.com/
calculate-bleu-score-for-text-python/

[101] C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Sum-
maries,” 2004. [Online]. Available: https://medium.com/nlplanet/
two-minutes-nlp-learn-the-rouge-metric-by-examples-f179cc285499

[102] P. Dutta, “Perplexity of language models,” Medium,
2021. [Online]. Available: https://medium.com/@priyankads/
perplexity-of-language-models-41160427ed72

[103] F. Rosner, A. Hinneburg, M. Röder, M. Nettling, and A. Both, “Eval-
uating topic coherence measures,” arXiv preprint arXiv:1403.6397,
2014.

[104] OpenAI, “Openai gpt-3.5 models,” 2022. [Online]. Available:
https://platform.openai.com/docs/models/gpt-3-5

[105] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al.,
“Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.

[106] OpenPhish, “Phishing activity tracked by openphish,” 2023.
[Online]. Available: https://openphish.com/phishing activity.html

[107] W. Dai, G.-R. Xue, Q. Yang, and Y. Yu, “Transferring naive bayes
classifiers for text classification,” in AAAI, vol. 7, 2007, pp. 540–545.

[108] Z. Liu, X. Lv, K. Liu, and S. Shi, “Study on svm compared with
the other text classification methods,” in 2010 Second international
workshop on education technology and computer science, vol. 1.
IEEE, 2010, pp. 219–222.

[109] X. Sun, L. Tu, J. Zhang, J. Cai, B. Li, and Y. Wang, “Assbert: Active
and semi-supervised bert for smart contract vulnerability detection,”
Journal of Information Security and Applications, vol. 73, p. 103423,
2023.

[110] M. B. Messaoud, A. Miladi, I. Jenhani, M. W. Mkaouer, and
L. Ghadhab, “Duplicate bug report detection using an attention-
based neural language model,” IEEE Transactions on Reliability,
2022.

[111] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra:
Pre-training text encoders as discriminators rather than generators,”
arXiv preprint arXiv:2003.10555, 2020.

[112] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced
bert with disentangled attention,” arXiv preprint arXiv:2006.03654,
2020.

[113] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for lan-
guage understanding,” Advances in neural information processing
systems, vol. 32, 2019.

[114] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust
you?” explaining the predictions of any classifier,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, 2016, pp. 1135–1144.

[115] A. Security, “Fraudgpt: Malicious generative
ai.” [Online]. Available: https://abnormalsecurity.com/blog/
fraudgpt-malicious-generative-ai

[116] SlashNext, “Wormgpt: The generative ai tool cybercriminals are
using to launch business email compromise attacks.” [Online].
Available: https://tinyurl.com/yn58ms6a

[117] “Flowgpt: Fast free chatgpt prompts, openai, character bots store,”
https://flowgpt.com/.

[118] “Bugcrowd,” https://bugcrowd.com/openai.

[119] K.-C. Yang and F. Menczer, “Anatomy of an ai-powered malicious
social botnet,” arXiv preprint arXiv:2307.16336, 2023.

[120] Y. Jin, E. Jang, J. Cui, J.-W. Chung, Y. Lee, and S. Shin,
“DarkBERT: A language model for the dark side of the Internet,”
in Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), A. Rogers,
J. Boyd-Graber, and N. Okazaki, Eds. Toronto, Canada: Association
for Computational Linguistics, 2023, pp. 7515–7533. [Online].
Available: https://aclanthology.org/2023.acl-long.415

[121] Cupocode, “Dark bard: The sinister side of artifi-
cial intelligence.” [Online]. Available: https://cupocode.com/
dark-bard-the-sinister-side-of-artificial-intelligence

[122] Y. Lin, R. Liu, D. M. Divakaran, J. Y. Ng, Q. Z. Chan, Y. Lu,
Y. Si, F. Zhang, and J. S. Dong, “Phishpedia: A hybrid deep learning
based approach to visually identify phishing webpages.” in USENIX
Security Symposium, 2021, pp. 3793–3810.

[123] R. Liu, Y. Lin, X. Yang, S. H. Ng, D. M. Divakaran, and J. S.
Dong, “Inferring phishing intention via webpage appearance and
dynamics: A deep vision based approach,” in 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2022.

Appendix A.

A.1. Metrics used for evaluating LLM phishing
emails

Table 9 lists the metrics used for evaluating the robust-
ness of phishing emails generated by LLMs.

TABLE 9: Comparison of Text Generation Metrics

Metric Definition Relevance

BLEU Compares generated text
to a human reference,
measuring their similarity.

Indicates the model’s abil-
ity to create contextually
relevant and semantically
accurate emails; a higher
score denotes better simi-
larity to reference text.

Rouge Measures the overlap be-
tween the n-grams in gen-
erated text and reference
text.

Signifies the model’s abil-
ity to retain essential con-
tent; a higher score indi-
cates better retention of
important information es-
sential for meaningful and
informative emails.

Topic
Coherence

Assesses the semantic co-
herence of the generated
text by evaluating the de-
gree of semantic similar-
ity between different seg-
ments.

A higher score implies se-
mantically well-connected
text, crucial for maintain-
ing thematic consistency
and producing compre-
hensible emails.

Perplexity Uses GPT-2 embeddings
to evaluate how well a
model predicts a sam-
ple; a lower score in-
dicates closer alignment
with training data.

A lower score indicates
the model’s proficiency
in crafting coherent and
contextually appropriate
emails.

https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
https://medium.com/nlplanet/two-minutes-nlp-learn-the-rouge-metric-by-examples-f179cc285499
https://medium.com/nlplanet/two-minutes-nlp-learn-the-rouge-metric-by-examples-f179cc285499
https://medium.com/@priyankads/perplexity-of-language-models-41160427ed72
https://medium.com/@priyankads/perplexity-of-language-models-41160427ed72
https://platform.openai.com/docs/models/gpt-3-5
https://openphish.com/phishing_activity.html
https://abnormalsecurity.com/blog/fraudgpt-malicious-generative-ai
https://abnormalsecurity.com/blog/fraudgpt-malicious-generative-ai
https://tinyurl.com/yn58ms6a
https://flowgpt.com/
https://bugcrowd.com/openai
https://aclanthology.org/2023.acl-long.415
https://cupocode.com/dark-bard-the-sinister-side-of-artificial-intelligence
https://cupocode.com/dark-bard-the-sinister-side-of-artificial-intelligence

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the Call for Papers.

B.1. Summary

This paper studies how commercial LLMs can be abused
to generate phishing websites and e-mails. The authors start
by showing that by combining several standalone prompts
corresponding to the functional components of a phishing
page, an LLM can successfully generate the code for a
working attack website without triggering any existing se-
curity filters, generally finding the LLM-generated websites
to be comparable to those created by traditional means,
even if they included advanced evasion/deception features.
Based on their methodology for generating prompts, the
authors propose a machine-learning model for classifying
collections of prompts as phishing or benign, which could
be used as a defense by LLMs. To motivate future research
in this area, this work also contributes a novel dataset of
annotated phishing prompts and discusses opportunities for
more sophisticated detection systems.

B.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Provides a New Data Set For Public Use
• Identifies an Impactful Vulnerability

B.3. Reasons for Acceptance

1) Addresses the important topic of (trying to prevent) the
abuse of LLM-based AI systems for malicious purposes

2) The paper puts impressive efforts into prompt engineer-
ing.

3) The paper demonstrates the generality of the approach
on several popular LLMs: GPT, Claude, and Bard.

4) A promising defense is proposed.

B.4. Noteworthy Concerns

1) There is a limited focus on phishing e-mail/text gener-
ation.

	Introduction
	Related work
	Threat model
	Methodology
	Generation of phishing websites
	Structure of the prompts:
	Constructing the prompts:
	Observing prompt generated attacks:

	Automating prompt generation:
	Evaluation of generated phishing websites:
	Anti-phishing effectiveness:

	Phishing email generation
	Evaluation of LLM-generated emails

	Phishing Prompts Detection
	Collecting prompts for ground-truth
	Codebook Creation and prompt labeling
	Preprocessing labeled prompts
	Individual Prompt Detection
	Groundtruth for Individual Prompt Detection:
	Model Selection and Experiments:
	Training Details:
	Performance Evaluation:
	Challenges with Individual prompt Detection:

	Phishing Collection Detection
	Groundtruth for phishing collection detection:
	Performance Evaluation:
	Challenges with Phishing Collection Classification:

	Phishing Prompt Subset Detection in Real Time
	Test Set for Prompt Subset Detection:
	Performance Evaluation:
	Interpreting model prediction

	Individual and subset prompt detection for Bard and Claude
	Evaluating against malicious LLMs
	Detecting Phishing email prompts

	Discussion
	Conclusion
	Acknowledgement
	References

