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ABSTRACT permits detecting misbehavior and terminating the computation,

This work studies compilation of honest-majority semi-honest se-
cure multi-party protocols secure up to additive attacks to mali-
ciously secure computation with abort. Prior work concentrated
on arithmetic circuits composed of addition and multiplication
gates, while many practical protocols rely on additional types of
elementary operations or gates to achieve good performance. In
this work we revisit the notion of security up to additive attacks in
the presence of additional gates such as random element generation
and opening. This requires re-evaluation of functions that can be
securely evaluated, extending the notion of protocols secure up to
additive attacks, and re-visiting the notion of delayed verification
that points to weaknesses in its prior use and designing a mitigation
strategy. We transform the computation using dual execution to
achieve security in the malicious model with abort and experimen-
tally evaluate the difference in performance of semi-honest and
malicious protocols to demonstrate the low cost.
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1 INTRODUCTION

Secure multi-party computation techniques have experienced sig-
nificant performance improvements in recent years and are now
suitable for performing complex computation on large data sets.
Historically, there has been a significant performance gap between
techniques designed for the semi-honest (or passive) setting and
the stronger malicious (or active) setting. A recent line of work [9,
21, 34] capitalizes on the notion of semi-honest protocols for arith-
metic circuits secure up to additive attacks in the malicious model.
Informally, security up to additive attacks means that corrupt par-
ticipants are able to tamper with the computation of a gate only
by adding some value to it. This property was utilized to build effi-
cient protocols for arithmetic circuits in the honest majority setting
secure against malicious adversaries with abort from semi-honest
building blocks secure up to additive attacks. The result is efficient
protocols in the malicious model (with abort) only slower by a small
factor compared to the semi-honest version. Security with abort
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but not recovering from it. Fairness and guaranteed output delivery
were also consequently considered [27, 35].

To this date, this line of work considered arithmetic circuits
based on linear secret sharing. However, in practice many efficient
protocols for implementing common operations such as compar-
isons in this setting are not arithmetic circuits consisting of only
addition and multiplication gates. Instead, they rely on an extended
set of elementary building blocks which, in addition to addition and
multiplication gates, often uses simple operations such as opening
a secret-shared value and generating a secret-shared random ele-
ment. Let us use less-than comparisons as an illustrative example.
All implementations of this operation based on secret sharing we
are aware of in different tools and compilers (e.g., Sharemind [6],
PICCO [40], SPDZ [18], and SCALE-MAMBA [36, 37]) are based
on an extended set of elementary operations. Furthermore, we are
not aware of a way to build an arithmetic circuit for this operation
unless the operands are secret shared one bit at a time or a way
perform bit decomposition to bit-decompose the inputs to compari-
son operations. This leaves us with running the entire computation
on shares of individual bits if the computation includes compar-
isons, which can present significantly larger performance overhead
compared to other known techniques.

As a simple example consider proximity testing which deter-
mines whether a squared Euclidean distance between two two-
dimensional points (x1, y1) and (x2, y2) is above a certain threshold,
ie, (x1 — x2)% + (y1 — y2)? > t. When using an extended set of
elementary operations for the comparison, the above function can
be evaluated using 3¢ interactive operations in 6 rounds, where ¢
is the bitlength of the operands in the comparison [8]. However, if
we are constrained to the use of addition and multiplication gates
and execute the entire computation on bit-decomposed values, the
cost of multiplications becomes quadratic in the bitlength of the
operands and the computation associated with additions and sub-
tractions is no longer local. Furthermore, constant-round protocols
for realizing many operations (such as comparisons, bit-wise addi-
tions or subtractions, etc.) also require tools beyond additions and
multiplications. Thus, by constraining a protocol to arithmetic gates
only we are paying a substantially higher price in terms of both
the number of interactive operations and the number of rounds.

Summary of results. In this work we introduce new fundamental
building blocks to the framework of Genkin et al. [21] that studied
arithmetic circuits composed of addition and multiplication gates
over a finite field F in the honest majority setting. In particular, we
consider five additional protocols and use notation [x] to denote
that x is secret-shared among the participants:
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e x « Open([x]) reconstructs the value of its argument to
the participants;
e [x] « RandFld() generates a secret-shared (pseudo) random
field element;
e [x] « RandlInt(k) generates a secret-shared (pseudo) ran-
dom unsigned integer of at least k bits long;
o z «— MulPub([x], [y]) reconstructs the value of x - y;
o [z] « DotProd({[x1], ..., [x¢]),{[y1],- - ., [yr])) computes
dot product [z] = Zle[xi] - [yil.
If we want to use this extended set of gates, first notice that it is no
longer possible to securely evaluate arbitrary functions f. This is
because two of the elementary gates (namely, Open and MulPub)
disclose intermediate results of the computation. Therefore, our
first step is to determine what functions can be securely evaluated
in this framework by placing constraints on the use of these special
gates. We are not aware of this types of analysis to be conducted
in prior literature for general functions and provide conditions for
when input-dependent values are properly protected to be disclosed
as part of secure evaluation. In particular, input-dependent values
can be protected by means of perfect or statistical hiding and the
computation can also reconstruct values the computation of which
did not involve inputs (e.g., randomly generated elements).

The next step is to show our new building blocks secure up to
additive attacks if we would like to be able to apply the logic of
efficient compilers developed for arithmetic circuits with this prop-
erty. The framework of [21] permits only the entire computation,
consisting of all necessary protocols, to be shown secure up to
additive attacks and not a specific protocol on its own. We thus
extend the framework of [21] to cover additional types of gates. In
doing so, we need to extend the definition of linear-based protocols
and prove its instantiation weakly secure, which according to the
logic in [21] results in security up to additive attacks. A crucial
component of this framework is that the underlying secret sharing
scheme is dense and redundant. This permits extraction of a secret-
shared value from the shares of honest parties in the presence of
honest majority and a consistent view of the honest parties is neces-
sary for showing security. However, this property no longer holds
for semi-honest protocols with share reconstruction such as Open
where an adversary can force the honest parties to reconstruct
different values and diverge their views. Replacing building blocks
that perform reconstruction with maliciously secure variants is also
not permissible because the computation is restricted to a linear
combination of input-dependent messages. As a result, we extend
the set of building blocks secure up to additive attacks with gates
that do not perform reconstruction, namely, randomization gates
and the dot product. The gates that perform reconstruction are later
directly instantiated with maliciously secure variants which have
efficient realizations.

The high-level structure of the conversion from semi-honest
building blocks secure up to additive attacks to maliciously secure
computation (for large fields) follows the idea of dual circuit exe-
cution on the original and randomized inputs and checking them
for consistency as used in [9] and earlier work. That is, the parties
generate a random field element [r], execute the function on the
inputs as before and in parallel execute the function on randomized
values, where for each wire with value [x] in the first circuit, the
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second circuit contains value [r - x]. Then prior to opening the
results of the computation, the parties check the output of each
tamperable gate in the two executions for consistency and abort if
a difference is detected. We note that more recent results such as
[26, 27] permit verification of multiplication gates without having
to execute the computation the second time and thus result in a
more efficient solution. We anticipate that those techniques might
be applicable to our setting as well and leave it as a direction of
future work. Note that the only gates that require verification in
our instantiation are multiplication and dot product gates.

The introduction of reconstruction gates such as Open presents
challenges, one of which is that we cannot disclose the recon-
structed value x together with its randomized version r - x (which
would disclose r) and thus we only reconstruct x (which typically
re-enters the computation as a constant). More fundamentally, the
presence of gates that generate randomness such as RandFld and
RandInt makes it possible to reconstruct a secret-shared value (via
a call to Open) generated according a distribution that spans a
subset of the field F instead of the entire field. For example, the
computation might generate a random bit (which is typically done
by squaring a random element and using its smaller square root
to determine the outcome with 50% probability), XOR it with an
input-dependent bit b to achieve perfect hiding, and reconstruct the
result. While this type of computation complies with the security
requirements in the semi-honest model, it becomes problematic for
any framework that uses delayed verification. That is, if the bit b
is the result of prior computation which is subject to adversarial
tampering, its value may not correspond to a bit and XOR will no
longer protect the value from disclosure. The implication is that
in the presence of an extended set of gates, it is no longer safe to
universally delay verification to the end of the computation.

Our solution is to determine a conservative condition when
it would be safe to proceed with Open without verifying correct
execution of all prior gates and mark all Open gates in a circuit
not compiling with this condition as having to trigger verification
prior to performing the reconstruction. Our condition requires
protecting input-dependent values with a correctly generated (i.e.,
not tamperable) random field element, where the protected value is
also distributed over the entire field (i.e., addition can be used, but
not multiplication). We then design an algorithm for traversing the
circuit and using gate and function information to mark each Open
gate as having to trigger verification prior to the opening or not.

The requirements above inform our transformation from build-
ing blocks secure up to additive attacks to an execution secure in
the malicious model. We start with the structure from [9] that uses a
hybrid model, introduce additional ideal functionalities correspond-
ing to computation of different gates, and provide the compiler
itself. We show security in the large field setting and describe how
to adopt the construction to a smaller field.

We implement the compiler and present experimental results that
show the runtime of semi-honest functionalities and the correspond-
ing maliciously secure variants produced using our framework. Our
empirical evaluation shows that maliciously secure functionalities
are slower by a small multiplicative factor, typically 3-4. We also
show that the presence of the extended set of gates can improve
performance by up to 3 orders of magnitude for some functionali-
ties.
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Our compiler is applicable to any framework that implements
secure multi-party protocols over a finite field in the semi-honest
setting with honest majority and uses the extended set of elemen-
tary operations outlined above. This includes protocols based on
the work of Catrina and de Hoogh [8] and follow-up work, which
were implemented in PICCO [40], in SCALE-MAMBA [37], and
were adopted to the dishonest majority setting in SPDZ implemen-
tation. Furthermore, certain components of this work, namely, the
conditions for when function f can be securely evaluated in the
presence of the extended set of elementary gates, are also applicable
to both honest majority and dishonest majority settings. Lastly, our
next immediate goal is to extend the techniques to computation
over a ring Z,x as well.

To summarize, our contributions are as follows:

e We extend the framework of Genkin et al. [21] of protocols
secure up to additive attacks composed of two types of arith-
metic gates to support fundamentally different types of gates
that permit randomization and opening of protected inter-
mediate results. This involves generalization of the notion
of linear protocols, linear-based protocols, and providing
corresponding rigorous security proofs.

e The presence of open gates has a profound impact on secure
function evaluation of circuits and it is no longer safe to
evaluate arbitrary circuits. Thus, we formulate conditions on
the circuit structure under which it is safe to perform secure
function evaluation.

e To use the extended framework of protocols secure up to
additive attacks, we instantiate all gates with specific proto-
cols and prove that the resulting construction satisfies the
necessary properties.

e To transform protocols secure up to additive attacks to pro-
tocols secure in the malicious model, the notion of delayed
verification is often used. In this work we show that it is
not always safe to delay verification of extended circuits
until the end of the computation (pointing to weakness in
prior implementations), formulate conservative conditions
for when it is safe to do so, and present an algorithm that
analyzes a circuit and triggers verification according to the
circuit structure to preserve security.

e Lastly, we combine all of the above results in a compiler
that transforms a protocol secure up to additive attacks com-
posed of the extended set of gates to a protocol secure in the
malicious model and prove its security. Our compiler is an
extension of the transformation used in [9].

e We implement the protocols for sample functionalities be-
fore and after the transformation and show the the cost of
achieving active security from passively secure protocols is
low. We also draw a comparison with alternative solutions.

Related work. Genkin et al. [21] extend a previous work by
Cramer et al. [12] to protect computation within arithmetic cir-
cuits against attacks by malicious parties which are equivalent to
the addition of a value, predetermined by an adversary, to any
wire within the circuit during protocol execution. This general con-
struction was realized with efficient batched verification in work
by Lindell and Nof [34] along with performance evaluations, and
improved upon by Chida et al. [9]. Additional newer results include
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[7, 25-27] that further lower the cost of verification and achieve
low communication complexity, on par to that in the semi-honest
model. All of them work with arithmetic circuits consisting of two
types of gates. Furukawa and Lindell [20] develop a solution that
assumes a 2/3 honest majority. Genkin et al. [23] developed a frame-
work to extend [21] into the realm of boolean circuits. Hazay et
al. [29] proved the BMR garbling construction in [4] to be secure
up to additive attack, and observed that the parallel functionality
can be optimized in certain cases to be of lower overhead than the
original circuit. They built these observations into a compiler for
boolean circuits which are secure in the 1-bit paradigm. Hazay et al.
produced another work [30] which uses oblivious transfer (OT) or
oblivious linear function evaluation (OLE) in a compiler that works
for boolean or arithmetic circuits, respectively.

Another line of research was initiated by SPDZ [18]. In this
setting, secret shared values are protected via shared MACs. This
framework is aided by somewhat homomorphic encryption and
preprocessing, and is able to tolerate dishonest majority. The work
was consequently extended to support computation over ring Zyx
[10, 14]. That setting is also relevant to our context: while statistical
hiding (and invocation of RandlInt gate) is normally not used with
computation modulo Zk, an unconstrained combination of other
gates can still lead to information disclosure, as we demonstrate
in section 5.1. To that extent, our next immediate goal is to apply
the results of this work to the setting of rings Z,« . That is, Abspoel
et al. [1] is a follow-up work on Chida et al’s compiler that builds
underlying tools for the transformation to support computation
over rings. While that work still only supports pure arithmetic
circuits, we can use it as the basis for expanding supported circuits
with additional types of gates.

Escudero et al. [19] provide efficient generation of shares of
random bits over Zy and their corresponding integer value in a
larger field or ring for use in mixed boolean-arithmetic circuits. The
technique, edaBits, instructs a party to enter related inputs into the
computation and correctness in the malicious setting is achieved
using a new variant of a cut-and-choose technique. The techniques
reduce the cost of random bit generation and use in non-linear
operations, but does not treat the topic of delayed verification in
the presence of calls to open as we do. We comment on relative
performance of the techniques in section 6. Lastly, Dalskov et al. [13]
provide a dot product protocol in the malicious model similar to
the treatment of our dot product gate; however, we were unable
to find its (security) analysis. Our similarity to Chida et al. [9] (on
which we build) is limited to section 5.2, where our Construction 2
extends their transformation with four new types of gates, has a
modified verification phase, and requires separate security analysis.

2 SETUP

Secret sharing is a fundamental technique that allows a dealer to
produce n shares of a secret so that any < ¢ shares reveal no infor-
mation about the secret, while any subset that contains ¢+ 1 or more
shares allows for efficient reconstruction of the secret. We refer
to t as the threshold and in this work we assume the setting with
honest majority, namely, that ¢ < n/2. Of particular importance for
secure multi-party computation are linear secret-sharing schemes,
which enable local computation of a linear combination of secret



Proceedings on Privacy Enhancing Technologies YYYY(X)

shared values. Throughout this work we assume that secret sharing
is set up over a finite field F.

We use the notation [x] to represent a secret-shared x using a
linear secret sharing scheme, where [x]; corresponds to the share
of x held by party i. We require that the (n, t) secret sharing scheme
we employ over FF supports the following functions:

e share(x): On input private x € F, this function generates n
shares {[x]1, [x]2, ..., [x]n}, where [x]; denotes the share
intended for party P;.

e share(x, [x]y): Given a subset J of the parties of size |J| < t,
this function takes as input | J| shares, [x]; € FU!and private
x € F and generates the remaining shares according to the
input. Note that when |J| = ¢, [x]; uniquely determines the
output shares.

e reconstruct([x]y): Given exactly |J| = t + 1 shares [x], this
function reconstructs the secret and outputs x.

The functions above are algorithms that specify how to create
shares of a secret and reconstruct a secret from its shares. They are
not intended to be resilient to malicious behavior and additional
mechanisms are needed to strengthen them for achieving equivalent
functionalities in the presence of malicious players.

Our main construction in Section 5 that transforms computa-
tion with building blocks secure up to additive attacks to secure
computation with abort in the presence of malicious adversaries
can be instantiated using any suitable secret sharing scheme over
finite field F such as Shamir secret sharing [39] or replicated secret
sharing [32], as long as the expectations for the sub-functionalities
are met. The instantiation of the sub-functionalities that we provide
in this work in Section 4 is based on Shamir secret sharing (and
some components of the protocols make use of replicated secret
sharing for performance reasons). Therefore, notation [x] refers to
the main secret sharing scheme, which in Section 4 is instantiated
with Shamir secret sharing.

To permit non-interactive share generation, e.g., generation of
a random field element by RandFld, we utilize replicated secret
sharing (RSS) [32] with the same access structure and threshold
t. It is an additive secret sharing scheme with each party holding
multiple shares and we denote x secret-shared using RSS by [x].
Our use of RSS is limited to the following high-level idea: the parties
hold [key], use shares of key as seeds into a pseudo-random gener-
ator (PRG) to non-interactively obtain shares of a pseudo-random
element, and locally convert their computed shares into Shamir
shares of the desired value. This approach is used to realize gates
RandFld, RandInt(k), and generation of fresh Shamir shares of 0
with threshold 2t. We consequently denote Shamir shares of x with
threshold 2t by (x). With (n, t) Shamir secret sharing, a secret x
is represented by a random polynomial of degree ¢ with the free
coefficient set to x. Each party’s share corresponds to evaluation
of the polynomial on a unique non-zero point and, given ¢ + 1 or
more shares, a secret is reconstructed via Lagrange interpolation.

Let T be an access structure which in our context permits access
for any subset of ¢t + 1 or more parties and let 7~ be the union of
all maximal unqualified set of T, i.e., subsets of parties of size t.
Then party P; holds RSS shares x7 € [x]; foreach T € 7~ such that
P; ¢ T. At the setup time, the parties generate [key]. We use PRG
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FPRG that outputs field elements and PRG ZPRGy. that outputs k-
bit integers. When we make a call to a PRG in a protocol, it should
be understood that it returns the next element in the sequence.
Notation [a, b] defines the range a, . .., b.

3 FUNCTION REQUIREMENTS

Before we can present our compiler from building blocks secure
up to additive attacks to function evaluation secure in the pres-
ence of malicious participants with abort, we must determine what
constraints should be placed on functions we are evaluating. The
rationale is that in the presence of Open (and MulPub) gates a func-
tion can disclose private data during the computation and we would
like to eliminate from consideration functions that leak information.

Opening (randomly generated or properly protected) interme-
diate results is common in protocols for specific operations and
does not compromise security guarantees. For example, the use of
Open appeared in 1989 for secure computation of the inverse of a
field element and unbounded fan-in multiplication [2], is widely
used in multiplication protocols based on triple generation starting
from [3], is common in more complex protocols, e.g., in [8, 15] and
others. MulPub was introduced as an optimization that combines
multiplication followed by Open (used in [8] and after) and is ex-
tensively used in many protocols such as random bit generation, all
types of comparisons, etc. While each individual protocol among
these examples that reconstructs an intermediate result (by means
of Open or MulPub) can be shown to be secure, we are not aware
of any general analysis of requirements which function f must
satisfy in the presence of Open gates to be able to maintain the
expected level of security. Our analysis led us to formulating the
requirements that a function f that uses share reconstruction prior
to the output recovery must satisfy to meet the requirement of no
information leakage in the way specified below. Throughout this
work, we let M denote the number of inputs into function f, each
represented as an element of field F, and use notation v; to denote
the ith input. Each party contributing input into the computation
can supply multiple elements v;.

Definition 3.1. Function f being evaluated must satisfy the re-
quirements that for any variable opened during the computation
one of the following conditions hold:

(1) the variable has a known distribution over a known subset
B C F independent of all inputs vy,...,vy, ie., perfect
secrecy is achieved, or

(2) the distribution of the variable is statistically close to the
distribution of a random variable with a known distribu-
tion over known subset B C F independent of all inputs

v1,...,Up, L€, statistical secrecy is achieved, or
(3) the variable was not computed as a function of any of the
inputs v1, ..., vpr and has an arbitrary distribution over a

known subset B C F.

This definition states that if a value was produced without using
any of the private inputs or any information derived from the in-
puts (condition 3), disclosing the value does not reveal any sensitive
information and therefore is safe. It is also safe to disclose a value if
it was computed using one or more inputs or information derived
from them, but input-dependent information is perfectly protected
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(condition 1) or statistically protected (condition 2). Computation-
ally secure protection mechanisms are not useful as elementary
building blocks for protocol design and do not apply when the
field size is not sufficiently large (which is the case for information-
theoretic techniques).

This definition suggests that if a value is generated without
using any inputs or intermediate results that depend on the inputs,
it can be from any subset of F and any distribution we can sample
from. For instance, the computation can generate a random bit and
consequently open it. If the value being opened was computed as
a function of the inputs, there are two common ways to protect a
private intermediate result in F: by multiplication or by addition
with a random element. In particular, if r is an element drawn
uniformly at random from F and a is input dependent, it is safe
to open r + a (i.e., both result in uniform distributions). We could
also achieve statistical security by opening r + a if a is an input-
dependent value of bitlength k and r is a value drawn uniformly
at random from the set of integers of bitlength k + k (or larger
space), with k being a statistical security parameter. In addition, if
a is input-dependent non-zero element of the field and r is drawn
uniformly at random from F (or FF \ {0}), it is safe to open r - a.

The above implies that, if f uses any MulPub gates, either both
inputs to that gate must be computed without using f’s inputs (and
in that case MulPub’s inputs can be sampled from any space) or
one of the MulPub inputs is not a function of f’s inputs and is
sampled uniformly at random from the entire field and the other
MulPub’s input is guaranteed to be non-zero. Also, if a randomly
sampled value was opened once as part of f, it cannot be used
for protection of input-dependent variables again because input-
independent distribution is not achievable.

We would like to use sample functionalities RandBit and Trunc to
illustrate how the constraints of definition 3.1 are satisfied in typical
protocol designs. The goal of RandBit is to let the participants
generate a private random bit on no input. Its realization from [8]
starts by generating a private random field element ¢ € Z, (where p
is prime such that p mod 4 = 3), squaring it, and reconstructing the
square. This behavior falls into the third category of definition 3.1:
the disclosed value is not a function of private inputs and subset B
consists of quadratic residues modulo ¢ and 0.

Another example is truncation Trunc and various forms of com-
parisons, which start by generating a private random integer at
least x bits longer than their private input, where « is a statistical
security parameter, adding the input to the generated integer, and
disclosing the sum to the participants. This falls in category 2 of
definition 3.1, where once again B is known and determined by the
algorithm and the distribution is uniform.

To prove evaluation of functions specified in Definition 3.1 se-
cure, we would need that for each opened variable distributed over
some B C F, an element of B is efficiently (probabilistic polyno-
mial time in a security parameter) sampleable according to the
distribution used in f. This is straightforward to do for all cases of
Definition 3.1 because sampling for all (PPT) functions f can be
achieved by simply performing the computation the way f does
(recall that the distributions are required to be input independent).
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4 TOWARD FUNCTION EVALUATION
SECURE UP TO ADDITIVE ATTACKS

To be able to build our compiler, we first need to demonstrate
security up to additive attacks of secure function evaluation using
our building blocks. The framework of Genkin et al. [21, 22] states
that if a linear-based protocol (as defined in [22]) is weakly private
against active adversary A controlling at most ¢ computational
parties, it is actively secure up to additive attacks. This means that
showing security up to additive attacks is performed by showing
that a linear-based protocol is weakly private.

4.1 Extended Linear-Based Protocols

Upon closer examination, we determined that prior to using this
logic to demonstrate security up to additive attacks we need to
revisit the notion of linear-based protocols. In particular, a linear-
based protocol was defined in [22] for a redundant dense linear
secret sharing scheme (e.g., Shamir secret sharing) characterized
by share and reconstruct functions as consisting of a setup, ran-
domness generation, input sharing, circuit evaluation, and output
recovery phases. The important component is that each gate com-
puted as part of circuit evaluation must correspond to a linear
protocol. Informally, each participant in a linear protocol is permit-
ted to locally compute any function of its inputs and send messages
to other participants, but once messages from other participants are
received, the output can only be computed as a linear combination
of the incoming messages [22].

Because we are expanding the set of gates that secure function
evaluation executes, in our context it is necessary to expand the def-
inition of a linear-based protocol with new types of gates, namely
opening, randomness generation, opened multiplication, and dot
product. In doing so, we first re-structure the definition of a linear
protocol and consequently use it in defining a linear-based pro-
tocol. Specifically, circuit evaluation in Genkin et al’s framework
involved only one type of non-trivial gate (i.e., multiplication) and
any input-independent pre-computation associated with evaluation
of that gate (e.g., triple or randomness generation) was incorpo-
rated into the setup phase. In our context, different gates may rely
on different types of pre-computation and, instead of executing
each pre-computation a necessary number of times in the setup
phase, we permit the gate evaluation itself to be split into input-
independent pre-computation and the main computation, while
preserving the same restrictions as before. This allows for added
flexibility without changing the essence of the definition. We obtain
the following definition of a linear protocol:

Definition 4.1 (Linear protocol). An n-party protocol IT is a linear
protocol over some finite field F if it is specified as follows:

(1) Input. The input of every party P; consists of values dis-
tributed at the setup phase (of arbitrary type) and inputs into
the protocols specified as a vector of elements from F. The
former are called setup-based inputs and the latter are main
inputs.

(2) Pre-computation. The parties engage in a linear protocol
Tprecomp Using setup-based inputs as the main inputs (and
no other inputs). The result consists of each party obtaining
a vector of field elements, which are called auxiliary inputs.
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(3) Messages. Every message in Il is a vector of field elements. A
message m sent by some party P; (possibly to itself) belongs
to one of the two categories:

(a) m is some fixed arbitrary function of P;’s main inputs
(and is independent of its auxiliary inputs). We refer to
this as a Type A message.

(b) every element of 77 is generated as some fixed linear com-
bination of P;’s auxiliary inputs and elements of previous
messages received by P; (including of Type A above). We
refer to this as a Type B message.

(4) Output. The output of every party P; is a linear function of
its incoming messages.

We can now formulate an extended linear-based protocol. Following
prior work, it is formulated as n-party computation with the inputs
provided by m clients (i.e., the inputs can come from participants
other than the computational parties) and a single output.

Using the current framework, we were unable to prove a semi-
honest version of Open to be secure up to additive attacks because
the honest parties are not guaranteed to possess the same opened
value at the end of Open due to the adversary’s ability to com-
municate inconsistent values to other parties. On the other hand,
a malicious version of Open where honest parties perform cross-
checking to validate the result would not comply with with the
definition of a linear protocol above. For that reason, we exclude
gates that perform reconstruction from shares from our formula-
tion of extended linear-based protocol and will directly utilize a
maliciously secure realization of Open in our final solution.

Throughout this work, we formulate RandInt gate as, on input
k, drawing an integer from the range 0-c2X, where ¢ > 1is a
fixed constant. This formulation preserves the necessary security
properties while supporting efficient realizations of this gate.

Definition 4.2 (Extended linear-based protocol). Let SS = (share,
recover) be a redundant dense linear secret sharing scheme. An
n-party m-client protocol IT for computing a single-output function
fiFlx .. xFIm — FOU with n = 2t + 1 is linear-based with
respect to SS if IT has the following structure:

(1) Setup phase. The computational parties perform ssetyp, a
one-time setup protocol (such as key distribution) based on
the properties of the computation.

(2) Input sharing phase. P; shares its input v; using the share()
functionality of SS.

(3) Circuit evaluation phase. I computes the circuit by eval-
uating each gate in some topological order. After honest
execution of gate i that produces shares, the parties hold
shares of the gate’s output a distribution induced by share.
The evaluation of each gate is performed as follows:

(a) For any addition (or subtraction) gate i with inputs from
gates j and k, IT evaluates gate i by having each party add
(resp., subtract) its shares corresponding to the outputs of
gates j and k.

(b) For any gate i that performs multiplication of one input
from gate j and a constant field element, IT evaluates gate
i by having each party multiply its share of gate j’s output
by the specified constant.

(c) For any multiplication gate i with inputs from gates j and
k, II evaluates gate i using some n-party linear protocol
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Tmults Where each party uses its shares of gates j and k’s
outputs as the inputs to 7 s-

(d) For any dot product gate i with inputs from gates j1, . . ., j¢
and ki, ..., kg, IT evaluates gate i using some n-party lin-
ear protocol Zgotprod, Where each party uses its shares cor-
responding to the outputs of gates ji, . . ., jeand k1, . .., k¢
as the inputs to mgotprod-

(e) For any random field generation gate i, IT evaluates gate
i using some n-party linear protocol 7,,,4f14 that does not
take inputs from any other gate.

(f) For any random integer generation gate i, IT evaluates
gate i using some n-party linear protocol 7, dint that does
not take inputs from any other gate.

(4) Output recovery phase. During output recovery of II, the
first t + 1 parties send their shares of each output gate to the
output recipient, who consequently recovers each output
using recover.

Given a specification of a linear-based protocol, security of a spe-
cific instantiation of that protocol interface up to additive attacks
is shown in two steps, using the notion of so-called weakly-private
protocols. In particular, the notion of weak privacy considers a
truncated protocol view, without the last communication round in
which outputs are disclosed, and is defined below. Then a specific
instance of a protocol for circuit evaluation first needs to be shown
to be linear-based and weakly-private. Second, it needs to be shown
that a protocol which is both weakly-private and linear-based is
a protocol secure up to additive attacks in the presence of active
adversaries. The latter was shown in [22] for a formulation of a
linear-based protocol evaluating an arithmetic circuit consisting
of two types of gates, while we prove the same property for our
formulation of an extended linear-based protocol evaluating a cir-
cuit consisting of an extended set of gates in Appendix E. Thus,
the next step will be to instantiate all components of our extended
linear-based protocol with concrete sub-protocols and show that the
resulting construction is linear-based and achieves weak privacy.

4.2 Weakly-Private Protocols
We start by defining the notion of weakly-private protocols:

Definition 4.3 (Weakly-private protocol; adopted from [22]). Let
7 be an n-party protocol for computing functionality f : Flt x
-+ x Flm — FO and let A be an adversary controlling at most
t computational parties. Also let view;rimmC (%)
of adversary A excluding the last communication round during a
real execution of protocol 7 on inputs ¥. We say that 7 is weakly-
private against A if there exists a simulator S such that for every
input X the real and simulated views are indistinguishable, i.e.,

view; " (%) = S(¥c).

denote the view

As before, the function f being evaluated needs to comply with
the requirements of Definition 3.1. The computation and the corre-
sponding protocols are specified as Construction 1.

Recall that the computation in RandFld and RandInt uses RSS
with a previously set up secret [key] and consecutive share conver-
sion to Shamir secret sharing. For a secret-shared [x], let notation
xQ represent a share given to all parties in Q,i.e., P; € Q = [1,n]\T
foreach T € 7, and let Q be the set of all Qs, i.e., Q is all subsets
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of [1, n] of size n — t. RandFld and RandInt from [11, 17] then use
unique polynomials ¢ of degree ¢ for each Q such that 15(0) = 1
and Ag(i) =0 forall P; ¢ Q.

We present two multiplication protocols: one is based on GRR
multiplication [24] with changes from [5] to reduce communication
and the second is based on DN multiplication [16] with communi-
cation reduction from [5]. We refer to the former as a single-round
and to the latter as a linear-communication protocol. The former is
beneficial for the common case of three parties (lower communica-
tion and rounds), while the latter lowers communication when the
number of computational parties grows and uses two rounds. As a
result, we obtain low communication of 1 field element per party
in the three-party setting (single round) and < 2 field elements per
party on average with larger n (two rounds). This communication
matches the state of the art semi-honest communication of mul-
tiplication in [25] which continues the line of work on compiling
semi-honest arithmetic circuits into maliciously secure protocols.

The linear-communication multiplication relies on
non-interactive generation of pseudo-random sharing of zero (PRZS)
(0) from [11]. PRZS computation is input-independent. Because
arbitrary computation is permitted in the pre-computation phase
of a linear protocol, the details of PRZS are not essential and can
be found in [11]. We denote this protocol by PRZS. DN multiplica-
tion [16] dedicates one party as the king and uses a fixed (constant)
representation of a sharing of 1, [1].

The single-round multiplication uses interpolation constants «;
for party P; as defined in [24]. In addition, party P; shares a key
for pseudo-random number generation with each of other ¢ parties.
For simplicity and without loss of generality, we use a symmetric
setup in which P; shares individual keys k; ; with parties P; for
j=(@+1)modn,...,(i+t+1) mod n. This establishes PRG keys
between each pair of parties P; and P;.

CoNsTRUCTION 1. Building Blocks Secure Up to Additive Attacks.

(1) Input sharing: Each input owner calls share(x) on its input x
and sends share [x]; to party P;.

(2) Function evaluation: Evaluate each gate in the given topologi-
cal order as follows:
(a) RandFId gate: Each party P;, i € [1,n], calculates:

[x]; = ZQGQ,ieQ FPRG (key) - Ao (i)
(b) RandlInt gate: On input k, each P; calculates:

[x]; = dea,ieg ZPRGi (key) - 4, (i)

(c) Addition gate: On input [x] and [y], each P; calculates
[z]i = [x]; + [y]i-

(d) Multiplication by a known field element: On input [x] and
y € F, each P; calculates [z]; = [x]; - y.

(e) Multiplication gate (linear comm.): Pre-computation: Ex-
ecute (0) « PRZS() and [w] « RandFId() and each P;
computes (uy; = [w]; - [1]; + (0);.

Input-dependent computation:

(i) On input [x] and [y], each P; computes{z); = [x]; - [y];,
(v); = (z); + (u); and sends (v); to the king.

(ii) The king reconstructsv from 2t +1 shares(v;) and sends
it to each party.

(iii) Each P; computes [z]; = v — [w];.
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(f) Multiplication gate (single round):
Pre-computation: Each P; sets [d;]; = FPRG(k;j,;) forj =
1+ (imodn),...,1+ ((i +t) mod n).
Input-dependent computation:
(i) On input [x] and [y], each P; computes (z); = [x]; - [y]i
and sets [di]o = (2)i.
(ii) Each P; reconstructs polynomial fi,y, fromt + 1 [d;];s.
(iit) Each P; evaluates and sends [d;]j = fi5),(j) to P; for
j=1+((i+t+1) modn),...,1+ ((i+n—2) modn).
(iv) Each P; computes [z]; = er'lzl ajld;j];.
(g) Dot product gate: The computation is the same as in one
of the multiplication gates above except that the inputs are
([x1], [x2]. - - .. [x¢]) and ([y1]. [yz]. - . .. [ye]) and each P;
computes (z); as (2)i = 34, [x7; - [yl-
Here, RandInt from [11] produces an integer from the range 0-
V2k, where v is the number of shares. As discussed before, this
is suitable for its use in protocols with statistical hiding. This is
reflected in our analysis and the corresponding ideal functionality.
All of these building blocks either follow from the properties of
the secret sharing scheme (i.e., addition and multiplication by a
known field element) or were presented and analyzed in prior work
(i.e., RandFld and RandInt from [11], multiplication protocols from
[5], and the dot product follows from the properties of the secret
sharing scheme and multiplication protocols). For that reason, their
correctness and security (in the semi-honest model) follow from
prior work, but for completeness we examine correctness in more
detail in Appendix A. These building blocks (or their older variants)
have also been used in general-purpose (secret sharing based) secure
multi-party computation compilers such as PICCO [40] and SCALE-
MAMBA [37]. In this work, we take one step further: we prove
stronger security properties which permit their use in an efficient
transformation to a maliciously secure protocol.
To achieve our goal, we first need to show that Construction 1
achieves weak privacy, which we state as follows:

THEOREM 4.4. Construction 1 for evaluating a function f satisfy-
ing the constraints in Definition 3.1 is weakly-private in the presence
of an active adversary A controlling at most t computational parties.

The proof that constructs a simulator and shows indistinguisha-
bility is given in Appendix A. Throughout the rest of this work,
we let C denote the set of corrupt parties, H be the set of honest
parties, and [x]¢ and [x]y represent the union of shares held by
the corrupt and honest parties, respectively.

To show the computation in Construction 1 secure up to additive
attacks, what is remaining to demonstrate that the building blocks
are linear protocols according to Definition 4.1. This, together with
the logic described above (and information provided in Appendix E)
will give us the following result:

LEmMA 4.5. Construction 1 is secure up to additive attacks.

The proof which primarily shows compliance with Definition 4.1
is provided in Appendix A.

Before we continue, we would like to discuss the difference
between Open protocols (not included in the specification of a
linear-based protocol) and DN-style linear multiplication which
internally reconstructs a secret-shared value, similar to the com-
putation an Open protocol would. The difference comes from the
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input-output interface of Open (and the requirement for it to be
a linear protocol). In particular, showing that a construction is a
linear-based protocol requires that each sub-protocol (such as mul-
tiplication) produces a value that a simulator can extract from the
outputs of honest parties (see Appendix E for more detail). In the
case of sub-protocols that generate a shared value, we discard out-
puts of malicious parties and can reconstruct a field element from
the shares of the honest parties, which is always possible because
the secret sharing scheme is dense and redundant. This also means
that shares across all parties can be inconsistent, but this does not
prevent the logic of the proof from proceeding. However, in the
case of Open, a malicious participant can cause the honest parties
to produce different outputs. In that case, it is not possible for the
simulator to use a single value as the output of that sub-protocol.
Furthermore, if we strengthen our realization of Open to perform
verification and eliminate inconsistencies, the computation is no
longer linear.

However, because a malicious adversary is permitted to deviate
from the protocol in an arbitrary way, a malicious king can, for
example, send 2v instead of v in the multiplication protocol. This
would result in the parties computing 2v — w = 2a - b + w. Because
additive attacks introduce errors independent of the wires, this
would be treated as going beyond additive attacks. However, the
fact that DN multiplication was shown to be secure up to additive
attacks as part of a larger construction in [22] points out to an
inconsistency in prior work and the need to treat Open operations
with care.

5 MAIN CONSTRUCTION

Having developed the necessary building blocks secure up to ad-
ditive attacks, we next build a compiler for producing execution
resilient to active attacks. Note that we incorporate an Open gate
directly instantiated with a maliciously secure protocol, which can
be efficiently realized in the same way as in prior work, e.g., [9]. In
particular, to reconstruct an element from shares, the parties com-
municate their own share to all other participants and reconstruct
from all subsets of t + 1 shares checking for consistency. Adding a
MulPub gate will also require a maliciously secure version, which
unlike the semi-honest setting does not lead to efficiency improve-
ments of combining multiplication and Open into a single gate. For
that reason, we do not include an explicit MulPub gate.

Before we proceeding with the compiler, we need to analyze the
impact of delayed verification on security in the presence of Open
and randomization gates and show in what circumstances it is safe
to delay verification and when opening a potentially tampered value
can lead to information disclosure. In our attacks we conservatively
assume that only multiplication (or dot product) gates can be tam-
pered with. This is because instantiations of several building blocks
in Construction 1 are non-interactive and therefore are resilient
to malicious behavior. In particular, all of addition, multiplication
by a known element, generation of a random field element and a
random integer are non-interactive. An instantiation of Open will
also have resilience to malicious behavior. This means that if de-
layed verification is not safe by tampering with only multiplication
(or dot product) gates, a modification to the strategy of delaying
verification until the end of the computation is necessary.
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5.1 On Delayed Verification

Delayed verification is a common mechanism for achieving security
in the presence of active adversaries including SPDZ [18] and its
follow-up work with dishonest majority and more recent solutions
[9, 34] that assume honest majority. These solutions treat computa-
tion expressed as an arithmetic circuit and delay verification of the
computation until the end, i.e., right before disclosing the output.
In this work we find that the ability to reconstruct values during
function evaluation introduces a possibility to learn information
about private inputs if verification is performed at the end of the
computation, which might require changes to prior solutions. It is
informative to consider reconstruction of different types of values.

SPDZ [18] (which is not constrained to additive attacks) uses
calls to Open during evaluation of multiplication gates. In partic-
ular, to multiply [x] and [y], the parties utilize a pre-generated
multiplication triple ([a], [b], [c = ab]) and open x —aandy — b
(in F). In this case, because a and b are random field elements and
because the triple is verified to be well formed, the opened values
information-theoretically protect x and y regardless of what values
x and y might take.

However, if we look at other uses of Open operation in typical
protocols, the situation changes. For example, as previously men-
tioned, truncation and comparison protocols use statistical hiding
and execute computation of the form

¢ « Open([x] + [r]);

where r is a random integer at least x bits longer than the value
x it protects and, as before, k is a statistical security parameter.
For the sake of this example, let x be a k-bit integer when the
computation is performed correctly, which means that r is at least
K + k bits long. Now notice that x here can be a result of prior
computation that includes multiplication operations susceptible
to additive attacks. For example, if x was computed using two
multiplications, e.g., as x = abc using private a, b, and c, it is easy
for the adversary to make x exceed k-bit length through additive
attacks and lead to information disclosure about a private value.
That is, after multiplication a - b we can have ab + §, which results
in x being computed as abc + dc. If the value of § is large enough,
i.e., exceeds k bits, it is possible for x to become longer than r and
the value of ¢ be disclosed without protection.

Operations that use the above statistical protection mechanism
were implemented as part of SCALE-MAMBA [36] using SPDZ-
style computation. Keller et al. [33] report performance of these
and other operations in the malicious model with dishonest major-
ity using SPDZ family of protocols, but we were unable to find a
separate security analysis of these operations. Note that it is easy
to mount additive attacks within SPDZ framework at any point of
the computation, i.e., not necessarily during a multiplication, due
to the use of additive secret sharing.

As another example, consider generation of a random bit r, using
it to protect a private bit b via XOR, and opening r @ b during the
computation. This protection mechanism achieves perfect secrecy
and the disclosure is permitted falling into the first category of
functions in Definition 3.1. Using a typical mechanism for random
bit generation [8], this computation will result in the following
sequence of steps:
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(1) [x] « RandFId();

(2) ¢ « Open([x] - [x]); (if ¢ = 0, restart)

(3) compute e, the smaller square root of ¢, and its inverse e L

(@) [] < (et + 1278

(5) y < Open([r] + [b] = 2[r] - [P]);

The first 4 lines above compute a random bit [r] and the last line
computes and opens r @ b. Similar to the statistical hiding example
above, b can be a result of prior computation and be of the form
borig + &, where byyig is the true bit value. Then executing line 5
discloses the value of bit byyig to the adversary. In particular, the
possibilities for the observed y when bgig = 0 differ from those
when borig = 1regardless of private bit 7 when § > 0. The adversary
is also able to mount an additive attack on multiplication on line
2, where the resulting value c can still be a square and thus the
computation continues, but the computed r is no longer a bit.

The logic of random bit generation above (i.e., the first 4 lines),
modified to work in a ring Z,«, was shown to be secure in the
context of SPDZ,x in [14]. Opening of a tampered value on line 2
does not lead to information disclosure because no private inputs
are used. However, opening of a private bit protected by a random
bit r @ b as in the above example is common and thus delaying
verification until the end of the evaluation can lead to unintended
information disclosure. What is important is that computation over
Z, is also vulnerable and attacks are not limited to statistically
protected data.

We believe that our analysis has implications on existing imple-
mentations and in particular on those that use SPDZ-style delayed
verification. Furthermore, this indicates that it may be problematic
to separately consider security of building blocks and expect that
their composition will remain secure in the presence of delayed
verification and calls to Open.

Before we proceed further, we formulate a conservative condition
when it is safe to delay verification prior to evaluating an Open
gate, which we will use to mark gates which need verification in
a preprocessing step. Succinctly, we do not mark gates as needing
verification only if they are guaranteed to not reveal any input-
dependent information.

Definition 5.1. We refer to any gate, evaluation of which is not
secure in the malicious model, as an attackable gate. We say that a
value is well-formed if its computation used no attackable gates.

In the context of this work and based on protocol instantiations in
Construction 1, only multiplication and dot product gates are attack-
able. Based on our analysis, we obtain the following formulation of
conditions for delayed verification:

Definition 5.2. An Open gate is guaranteed to be safe without
verification of prior computation if (1) the input into the gate is
not a function of inputs into the computation f or (2) an input-
dependent value is protected via addition with a uniformly random
well-formed (per Definition 5.1) field element right before opening.

Clearly, any computation that does not use input-dependent
values cannot lead to information leakage (until the computation
merges with input-dependent values), which corresponds to case 1.
In addition, statistical or perfectly secret protection mechanisms
with a one-time pad (i.e. encryption key) drawn from B C F were
shown to be vulnerable to leakage attacks as demonstrated above.
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For that reason, we can only consider protection mechanisms with
perfect secrecy and B = F as not being vulnerable. Furthermore,
achieving perfect secrecy with ciphertext space C = F when the
message being protected is potentially tampered and is not guar-
anteed to be contained in a subspace of F imposes uniformly dis-
tributed keys with key space K = F and addition in F as the
encryption operation. Furthermore, we must require that the one-
time key is generated according to the specification (i.e., attackable
gates were not used) as otherwise it is not guaranteed to be from
the desired distribution.

We note that the conditions in Definition 5.2 are sufficient for a
safe delay of verification at the time of Open, but they do not neces-
sarily correspond to necessary conditions. In particular, the ability
to leak information is influenced by the presence of attackable gates
such as multiplications in computing the intermediate result we
want to protect as demonstrated in our attacks. This means that
attacks are easier for certain types of computation. We leave the
question of determining precise bounds as an open problem.

With this in mind, we present Algorithm 1 which marks each
open gate with a boolean value V which is 1 if and only if the value
to be opened needs verification per Definition 5.2. This algorithm is
based on breadth first search and as such has complexity O(|V|+|E|)
where the vertex set and edge set correspond to the gates and wires
respectively. Given a circuit graph G, we let each gate g store the
following attributes, where the first four are based on G and the
gate type, while the last two are computed by the algorithm:

(1) Gate in-degree D.

(2) If g is an open gate, output set B C F (as per Definition 3.1,
and based on function f being computed).

(3) Binary value A, which denotes attackability, as per Defini-
tion 5.1.

(4) Binary value R, which is 1 if and only if the gate introduces
value into the circuit which is not any parties’ protected
input (i.e., RandFld, RandInt, or constant gates).

(5) Binary value I, which is 1 if and only if the gate takes input
which is dependent on some parties’ input.

(6) Binary value V, which denotes whether or not verification
needs to take place upon opening.

(7) Each wire w in G will also have a value V, which will match
the value g.V associated to the gate for which w is an output
wire (this will aid efficiency of Algorithm 1).

Treating the computation circuit G as a directed acyclic graph,
this algorithm is comprised of two sequential partial breadth first
searches (BFS), which cover G and are mainly disjoint (and hence
taken together require only slightly more work than one BFS on G).
Thus, the complexity is linear in the number of nodes (gates) and
edges. Given that each gate has the fan-out of 1, the complexity is
linear in the number of inputs and gates.

The first BFS (lines 2-5) starts at the computation inputs and
marks all downstream gates as input-dependent (I = 1) and poten-
tially requiring verification (V = 1). Then the second BFS (lines
7-20) starts disjoint from the first with gates that contribute input-
independent values, i.e., R = 1. It runs until any gate marked in
the first BFS is encountered, with the goal of identifying input-
dependent open gates which use well-formed randomness for pro-
tection and re-setting V = 0 in such cases.
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Algorithm 1 Open Gate Categorization Algorithm

Input: Graph representation of circuit G with gates as vertices and
wires as edges, with associated values D, A, B, and R.

Output: Binary value V for each open gate g that denotes whether
verification needs to take place prior to opening.

Protocol steps:
1: For each gate g and wire w, set 9.V =0and w.V =0

: Create dummy gate go that outputs to each input wire in G

: Run a BFS starting at go

: where

When visiting gate g via wire w, set g.I = g.V = w.V :=1

: Set O; = {}and O, = {}

: Create dummy gate g, that outputs to each gate g with g.R = 1

: Run a BFS starting at g,

: where for each gate g, discovered via wire wj,,

10: if g is an addition gate, not marked as finished, with input
wires wg and wy, and g.I = 1 then

11: if g outputs via wire w, into open gate h then

12 Add (wg, wp, g, e, h) to O;

13: else

14: if g is an open gate with g.I = 0 then

15: Add g to O,

16: Set g.V = (¢.V or g.A or wj,.V)

17: Decrement g.D

18: if (9.D = 0) or (9.V = 1) then

19: Set wout.V = ¢.V for all wout which are (directly con-
nected to) output of g

20: Mark g as finished, set g.D = 0, and if g.I = 0, then
process its downstream neighbors

G W

o o N

21: for each (wq, wp, g, we, h) € O; do

?
22: h.V := (wg.V and wp,.V) or (h.B # F)
23: for each g € O, do
24: g.V:=0

During the second BFS, whenever an input-dependent addition
gate is found to output into an open gate, the pair of gates is added
along with wires as an atomic unit to a list O; (lines 10-12). This is a
list of potential input-dependent open gates which are safe to open,
per condition (2) of Definition 5.2. We create the list O; in order to
defer evaluation until all upstream gates have been considered.

Any open gate not downstream of input is added to another list
O; (lines 14-15), which maintains the list of all input-independent
open gates. The gates in this category do not require verification
(per condition (1) of Definition 5.2), but may be temporarily marked
by the algorithm as needing verification in order to correctly process
condition 2, i.e., determine if a random pad using such value is well-
formed. The need-to-verify property of each gate is assigned on
line 16, inclusive of g’s attackability, as well as all upstream and
local need-to-verify properties. Consequently, the assignment on
line 19 propagates this flag downstream.

In the final step, this flag is cleared (i.e., set V = 0) for all input-
independent open gates in O, (lines 23-24), as well as any-input
dependent open gate in O; which has been padded by a well-formed
uniform random element of F immediately prior to opening (lines

10
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21-22). The former corresponds to condition (1) of Definition 5.2
and the latter corresponds to condition (2).
Lemma 5.3 states correctness, with the proof in Appendix B.

LEMMA 5.3. For a given circuit G and open gate h, Algorithm 1
labels h as safe to open without verification if and only if it conforms
to Definition 5.2.

5.2 From Security up to Additive Attacks to
Security with Abort

Following [9], our transformation of building blocks secure up to
additive attacks into an actively secure construction is given in the
hybrid model. For that reason we need to define a number of ideal
functionalities (and have protocols that realize the ideal functional-
ities). A number of them, Fiyyt, Fdotprod> Frandfld: Frandint (k), and
Fopen, correspond to sub-protocols for different types of gates, with
the adversary being able to introduce an additive error in 1y and
Fdotprod and others being resilient to malicious behavior. There are
also functionalities for entering input into the computation, Finput,
and delivering output to a party, Foutput, together with two supple-
mental functionalities Frandfidpub and Frerocheck modeled similar
to [9]. Frandfidpub generates a publicly known random field element
and is instantiated by calling Franana and Fopen; and Frerocheck
checks whether a private value equals to 0 and is instantiated by
randomizing the argument (calling Fr.nda4 and Frult), opening it
(using Fopen) and comparing the opened value to 0. The details of
the ideal functionalities are given in Appendix C.

Our main compiler that converts components secure up to ad-
ditive attacks into a construction secure in the presence of active
adversaries is Construction 2. The computation is carried out by n
participants, and as before there are m inputs for any m. It assumes
a large field, i.e., |F| is on the order of 2* for a security parameter
k. (The solution can be generalized to work with smaller fields as
shown later.) With sufficiently large fields, there are two parallel
branches of computation: (1) the regular computation and (2) a ran-
domized computation, where all values are multiplied by a random
field element r not known to the parties during the computation.
When the current gate prescribes opening, we open the value only
in the regular (non-randomized) branch. When a gate generates
random value [z], we create the corresponding value [r - z] for the
second execution. Every time verification is triggered (prior to an
opening marked as requiring verification or prior to reconstructing
the output), we verify consistent execution of all attackable gates
(multiplication and dot product) since the last verification operation.
If verification succeeds, the parties continue.

Additionally, when opening values which are not a function
of any parties’ input on some proper subset B C F, we allow for
parties to perform checking that the opened value is in B and abort
if necessary, provided an efficient checking algorithm is known
to the parties. This is not necessary to uphold security since no
sensitive data was leaked and the adversary has not obtained any
more information relative to the honest parties’ view than they
would when tampering an unopened shared value. Moreover it does
not guarantee that there is no tampering since there is always a
chance an additive attack maps to another value in B. Nevertheless,
this can with some likelihood provide a relatively efficient way to
detect misbehavior prior to scheduled verification.
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CONSTRUCTION 2. Secure Function Evaluation Over Large Fields.
If any participant receives L from any sub-functionality throughout
the protocol execution (e.g., Finputs Fmult» €tc.), it sends L to all other
parties, outputs L, and terminates.

(1) Input sharing: Each input owner sends its input v to Finput,
which results in party P; learning its share [v];.

(2) Generation of circuit randomization: The parties call Fyandad
and receive [r]. Each party initializes a verification buffer to
hold values for Step 4h.

(3) Randomization of inputs: For each input [v], the parties call
Fmult on inputs [r] and [v] and obtain [rv]. The parties store
([v], [rv]) and add the tuple to the verification buffer.

(4) Function evaluation: The parties are given the function as a
sequence of gates in a predetermined topological order and
evaluate it as follows based on the type of the gate:

(a) Addition: on input ([x], [rx]) and ([y], [ry]), each partic-
ipant locally computes [z] = [x + y], [rz] = [rx] + [ry]
using its shares and stores ([z], [rz]).

(b) Multiplication by a known field element: on input
([x], [rx]) and y € F, each party locally computes [z] =
y - [x] = [xy], [rz] =y - [rx] = [rxy] using its shares and
stores ([z], [rz]).

(c) Multiplication: on input ([x], [rx]) and ([y], [ry]), the par-
ties call Fpulr on [x] and [y] to obtain [z] = [xy] and on
[rx] and [y] to obtain [rz] = [rxy]. They store ([z], [rz])
and add the tuple to the verification buffer.

(d) Dot product: on input {([x;], [rxi])}f:1 and
{([yi], [ryi])}le, the parties call Faotproa on {[xi]} and

{[yi]} to obtain [z] = Y ;[xiyi] and also on {[rx;]} and
{lyi]} to obtain [rz] = };[rxiyi]. The parties store
([z], [rz]) and add the tuple to the verification buffer.

(e) RandFld gate: the parties call Fyangfiq to obtain [w], then
call Fouie on [r] and [w] to obtain [rw], store ([w], [rw]),
and add the tuple to the verification buffer.

(f) Randint gate: the parties call Frandint to obtain [w], then
call Fouie on [r] and [w] to obtain [rw], store ([w], [rw]),
and add the tuple to the verification buffer.

(g) Opening: if the gate is marked by Algorithm 1 as needing
verification, the parties proceed to verification in Step 4h. If
the verification did not abort or if the gate is not marked as
needing verification, the parties use input ([x], [rx]) and call
Fopen on [x] to receive x. If efficient testing of membership
in B exists and the parties find that x ¢ B, the parties abort.
If no abort has occurred, the parties store x.

(h) Verification of evaluation: Let pairs ([x;], [rx,-])%1 denote
values currently stored in the verification buffer. Verification
proceeds as follows:

(i) If M > 1, the participants call Franandpub o generate a
random seed s and make M calls to FPRG(s) to determine
pseudo-random a, . . ., apg. Otherwise, set a = 1.

(ii) Each party locally computes on its shares [u1] = Z?il ai-

[rxi] and [uz] = 2 o - [xi]

(iii) The parties call Fpyy; to obtain [r] - [uz] and compute
(T] = [w1] = [r] - [u2].

(iv) The participants call Fyerocheck oM [T1; if Frerocheck
outputs reject, the parties output 1 and terminate (and
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otherwise Fyerocheck OUtputs accept and the parties con-
tinue).
(v) If no abort occurred, the parties flush the verification
buffer.
(5) Output reconstruction: The parties run one final round of ver-
ification as per Step 4h. If no abort occurred, the parties call
%utput to reconstruct each outputs x to the party receiving it.

To demonstrate security, as the first step we prove that if an
adversary misbehaves during the computation of any multiplication
or dot product, then the probability that the verification step does
not detect this is negligible in the security parameter.

THEOREM 5.4. If during a call to any Fruir or Faotprod in Con-
struction 2 the adversary introduces additive error d # 0, then T
equals 0 with probability less than 2/|F|.

The proof is deferred to Appendix C. Now, we state overall security
of Construction 2 as follows:

THEOREM 5.5. Let F be a large finite field such that 1/|F| is neg-

ligible in statistical security parameter k. Then for any function f
over F complying with Definition 3.1, Construction 2 securely eval-
uates f with abort in the presence of malicious adversaries con-
trolling at most t < n/2 participants in the (Finput> Foutput> Fopen,
Frandfld> Frandints ﬁandﬂdpub’ Fmult> ﬁotprodv Frerocheck)
-hybrid model. In the absence of malicious behavior the computation
always produces the correct result, while in the case of tampering
with the computation, if the computation successfully terminates, the
output is incorrect with at most negligible probability in k.

The proof is provided in Appendix C. We also discuss modifying
the solution to work with smaller fields (by performing a number
of randomized executions) in Appendix D.

6 PERFORMANCE

We implemented our protocols' and evaluate their performance in
a three-party setting. All experiments use identical 2.4GHz virtual
machines with 26GB of RAM. They were connected via 10Gbps
Ethernet links, which we throttled to 1Gbps using the tc command.
Two-way latency was measured to be 0.106 ms. All experiments
are single threaded.

We evaluate performance of different functionalities in both semi-
honest and malicious models. We are not aware of prior work along
this line of research drawing an empirical comparison between semi-
honest and transformed malicious variants. Inevitably, the added
cost of maliciously secure protocols would differ depending on the
function being evaluated because of additional work associated
with each input and the gates of the computation themselves.

We run both micro-benchmarks with individual operations as
well as offer evaluation of a more complex function, namely over-
the-threshold Euclidean distance, as listed in Table 1.

Micro-benchmarks include addition Add (which is a special case
and the reason for its inclusion is discussed later), multiplication
Mult, equality EQ as specified in [8], and less than LT, also from [8].
As we strive to measure the difference in performance when we
enhance security from the semi-honest to the malicious model, we

The implementation is available at https://github.com/applied- crypto-lab/mal-ext-
circuits.


https://github.com/applied-crypto-lab/mal-ext-circuits
https://github.com/applied-crypto-lab/mal-ext-circuits
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Protocol Setu Field Runtime of different batch sizes (in ms) Communication
Pl size 1 [ 10 [ 107 [ 10° [ 10% [ 10° | per party (in elem)
SH 32 0.001 | 0.001 | 0.004 | 0.041 | 0.371 3.35 0
Add M 48 0.000 0.01 0.008 | 0.088 | 0.859 8.14 0
vC 0% 0% 0% 0% 0% 0%
SH 32 0.069 | 0.074 | 0.186 1.32 10.8 104 1 per op.
Mult M 48 0.264 | 0.943 1.22 4.28 32.98 335 2 perop. +6
\Y© 75.9% | 89.8% | 73.6% | 37.2% | 19.6% | 17.7%
SH 80 0.515 2.78 21.8 226 2,292 | 23,014 220 per op.
LT M 80 3.95 17.7 143 1,349 | 13,418 N/A 536 per op. + 18
vC 533% | 27.0% | 14.7% | 12.6% | 12.2% N/A
SH 80 0.444 1.80 13.6 125 1,283 | 12,867 100 per op.
EQ M 80 3.11 11.2 69.7 694 6,576 | 65,165 249 per op. + 12
vC 59.3% | 28.8% | 14.8% | 12.3% | 11.4% | 11.3%
Over-the-thres- SH 80 1.03 1.08 1.10 1.22 1.73 10.8 221
hold Euclidean M 30 3.98 | 4.00 | 4.01 | 4.57 6.16 23.4 554
distance vC 52.1% | 52.2% | 52.1% | 50.2% | 36.6% | 10.0%

Table 1: Performance of different functionalities implemented as extended circuits.

implemented the computation in both models using PICCO [40]
that implements multiplication [5] that Construction 1 uses.

In Table 1, notation SH stands for “semi-honest,” M for “mali-
cious,” and VC for “verification cost” as a percentage of execution
time in the malicious model. All functionalities use 32-bit inte-
ger inputs. Field size denotes the bitlength of each field element
throughout the computation. Certain operations such as compar-
isons involve statistical hiding and increase the bitlength of field
elements by a statistical parameter. We set all statistical security
parameters to 48. Computation size in individual operations de-
notes how many operations were executed at the same time in a
single batch, while it means the size of the input for more involved
functions. In addition, we report the fraction of the time spent on
verification in maliciously secure protocols. Input randomization
in the malicious model is excluded as it is a one-time cost and has
small impact on individual operations. Communication is measured
as the number of field elements sent by each party. For example, the
cost of performing 10° multiplications in Table 1 is 1,000 elements
or 4,000B per party in the semi-honest setting and 2,006 elements
or 12,036B per party in the malicious model.

Overall, the runtime of malicious experiments for our compu-
tation is often 3-4 times slower compared to the corresponding
experiment in the semi-honest model. The difference is higher for a
single operation, where the added round complexity of verification
dominates the cost and decreases as the computation size increases.
The main factor that introduces the extra cost in the malicious
experiments for non-tiny computations is the randomized branch,
which doubles communication and computation. Communication
can increase beyond the factor of two because some gates (e.g.,
RandFld) are local prior to transformation, but their output needs
to be randomized, which uses communication. The time can also
increase for functionalities that move to a larger field size after the
transformation.

An invocation of the verification procedure in the malicious
experiments normally involves three rounds of communication. It
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is invoked (according to Algorithm 1) once in Mult experiments,
twice in EQ experiments, and three times in LT experiments. (“VC”
corresponds to the aggregate time of all calls.)

It is also informative to compare the cost of semi-honest to
malicious security transformation to that in other publications.
While the differences in the hardware and implementation choices
prevent a direct comparison of previously published runtimes, we
examine communication cost. In [19], Escudero et al. implement an
edaBit-based LT solution, which in a comparable setting uses 1.4Kb
per operation in the semi-honest model, which rises to 19.9Kb in
the malicious setting. Our implementation starts with 17.8Kb in
the semi-honest model and rises to 45.4Kb in the malicious model.
This points to the opportunity of the two works to complement
each other: our work can benefit from integration of more efficient
random bit generation, while [19] and other publications that rely
on delayed verification to achieve malicious security can use our
work to determine when it is safe to open intermediate results in a
protocol without triggering verification.

To develop a better understanding of the benefits of using ex-
tended circuits compared to pure arithmetic circuits composed of
addition and multiplication gates, we also implement a semi-honest
and its transformed malicious protocol composed of strictly arith-
metic gates on the example of the over-the-threshold Euclidean
distance (as described in the beginning of this work). This compu-
tation uses additions and multiplications followed by a comparison
operation. As discussed in the beginning of the paper, the presence
of non-arithmetic operations such as equality and greater-than
comparisons requires the entire computation to be carried out in
the bit-decomposed form on Boolean values when the circuit is
composed of two types of arithmetic gates (and significantly in-
creases the cost of integer additions and multiplications). Thus, we
implement Add, Mult, EQ, LT, and the entire over-the-threshold Eu-
clidean distance on bit-decomposed (binary) values using Boolean
gates and report performance on 32-bit inputs in Table 2.
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Mult. gates Field | Runtime of dif. batch sizes (in ms) | Communication
Protocol Setup | " o 3 .
per op. size 1 [ 10 [ 10 [ 10 per party (in elem)
SH 3 0.556 2.90 23.4 267 192 per op.
Add 192 M 48 1.78 8.17 58.1 661 384 perop. + 6
\Y® 50.9% | 26.6% | 18.4% 15.5%
SH 3 7.04 50.3 555 5,429 3695 per op.
Mult 3695 M 48 16.4 123 1,321 13,245 7390 per op. + 6
\Y® 19.8% | 16.0% | 15.0% 13.7%
SH 3 0.471 1.64 12.2 128 94 per op.
LT 94 M 48 1.47 4.74 32.7 324 188 per op. + 6
\Y® 57.9% | 31.9% | 18.3% 15.2%
SH 3 0.435 1.29 8.77 84.8 63 per op.
EQ 63 M 48 1.40 3.58 23.1 228 126 per op. + 6
vC 61.3% | 33.9% | 19.7% 14.6%
Over-the-thres- SH 3 8.52 59.9 623 6,315 4270¢ — 98
hold Euclidean | 4270¢ — 98 M 48 19.5 153 1,524 15,299 85400 — 92
distance vC 17.0% | 15.4% | 15.0% 13.5%

Table 2: Performance of different functionalities implemented using strict arithmetic circuits (bitwise computation). £ denotes
the size of the input sequences in the case of over-the-threshold Euclidean distance.

We used optimized implementations of integer operations over
field F = Zs in the semi-honest model.? The bitwise (binary) circuits
for addition, EQ, and LT have logarithmic in the length of the
arguments number of communication rounds, comparisons (LT
and EQ) have linear complexity, while addition has complexity
O(klogk). The bitwise addition and LT protocols can be found
n [38]. For 32-bit operands, a logarithmic number of rounds is
comparable to the number of rounds in constant-round comparison
protocols.

We also implemented efficient bitwise multiplication and sum-
mation which each call this optimized bitwise addition in a number
of rounds logarithmic in the argument bit length. Both algorithms
fan in as many pairs as possible each round while maximizing
the number of values which can be passed though on each round
(i.e., minimizing the operand length). We note that overall these
algorithms have log squared round complexity in the length of the
arguments. Bitwise multiplication is used for the Mult experiments
as well as the batch multiplication as part of the over-the-threshold
Euclidean distance in Table 2, while the bitwise summation is used
to sum over the resulting products in the latter computation.

If we look at individual operations, bitwise comparisons in Ta-
ble 2 are faster than comparisons in Table 1, while bitwise addition
and multiplication in Table 2 are, as expected, substantially slower
than the corresponding operations in Table 1 that do not require
computation in a bit-decomposed form. (Local) addition Add was
added to Table 1 to show the difference in performance between
the two variants (note that because Add experiments in Table 1 do
not include any attackable gates, verification is not used).

When we combine the building blocks to implement the over-
the-threshold Euclidean distance, we observe that bitwise variants
(strict arithmetic circuit) are one or more orders of magnitude
slower than the variants that use the extended set of gates. A similar

2The secret sharing scheme requires that the field contains at least n + 1 elements,
which prevents the use of Z;.
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performance difference is expected for certain types of popular
computations such as privacy-preserving neural network inference
that makes a heavy use of multiplications and comparisons.

7 CONCLUSIONS

In this work we study extending the notion of semi-honest pro-
tocols secure up to additive attacks to cover an extended set of
elementary gates beyond conventional arithmetic circuits com-
posed of additions and multiplications. The extended set includes
randomization and reconstruction gates which create challenges
when working on this problem. We first define constraints on func-
tions, evaluation of which can be simulated in the presence of open
gates. We then proceed with extending the notion of security up
to additive attacks to cover the additional gates which, according
to the requirements of the framework, cannot contain open gates.
Our consequent analysis shows that delayed verification is not al-
ways safe in the presence of open gates and devise an algorithm for
triggering verification early when opening a potentially tampered
value is not considered safe. Our final result is transformation to
achieve security in the malicious model with abort and empirically
demonstrate that the difference in performance of semi-honest and
malicious variants is low. Furthermore, for certain functions the
computation is significantly more efficient than using conventional
arithmetic circuits.
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A  WEAKLY PRIVATE BUILDING BLOCKS

LEMMA A.1. The protocol instantiations for each gate in Construc-
tion 1 correctly realize the corresponding functionalities.

Proor. We examine each gate in turn:

e RandFld gate: During evaluation of this gate, each party P;,
i € [1,n], locally computes:

()i = Do equico FPRG(keyg) - Ag (i) 8

Recall that for each maximal unqualified set T of the thresh-
old access structure (|T| = t), Q = [1,n] \ T and the corre-
sponding share of x, xg, is given to each party in Q. Also
recall that Ap was defined as a unique polynomial of degree
t such that Ao (0) = 1 and Ag(i) = 0 for each P; ¢ Q. This
means that shares of all parties not in Q in equation 1 will
be equal to 0 and cannot contribute. As explained in [11], we
can express the result of this operation as

x = Z IFPRG(keyQ),
Qc(1,nl1Ql=n-t
which is a pseudo-random element of the field. Then the
polynomial
f= > FPRF (key ) - 10 (i)
Qc(1,n),1Ql=n~-t
has degree t, f(0) = x, and f (i) = [x]; as desired.


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.393&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.393&rep=rep1&type=pdf
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e RandInt gate: During evaluation of this gate on parameter k, a polynomial of degree 2t. The rest of the computation is
the computation performed by party P;, i € [1,n], is defined unchanged and correctness follows.
as:
[m]

[¥)i = D peqieq FPRG(keyg) - Ag (i)

Similar to the case of RandFld gate, secret shared x now
corresponds to the sum of pseudo-random integers

Proor oF THEOREM 4.4. Given simulator S and adversary A
which controls the set of corrupt parties C, the construction is
simulated as described next. Since there is no cause for honest
x = Z ZPRGk(keyQ), parties to abort during the course of Construction 1, we do not

oclL,n],10|=n—¢ need S to maintain a complete view of computation, and instead

but unlike RandFId, the sum combines k-bit integers and the will focus only on protocols where communication would occur.

result is k + log(v) bits long, where v = (’t’) is the number (1) Input secret sharing: S calls share(0) for each element of P;’s
of shares. input x;, where P; € H, and distributes them according to

o Addition gate: Correctness of local addition of shares follows the construction. It also receives shares received from the
from the linear property of the secret sharing scheme. malicious parties.

e Multiplication by a known field element gate: Correctness (2) Function evaluation: For each gate g of the following type, in
of a local multiplication of shares by a known field element the given topological order,
follows from the linear property of the secret sharing scheme. * Multiplication gate (linear communication):

e Multiplication gate (linear communication): During the pro- (a) For each honest party P; € H, S defines a sharing [r]
tocol, the parties first compute (v) and open the value. The by generating random shares using RSS, and similarly
result is consequently set to [z] = v — [w] and we want to generates a fresh (0).
show that z = a - b. (b) For each honest party P; € H, S computes (u); =
The rationale behind the protocol is that computing the ()i - [1]i +€0)s.
product locally using shares raises the polynomial degree (c) For each honest party P; € H, S computes (D); =
and degree reduction is performed via generating a pair [x]i - [y]i + (R)is
[w], (u) that correspond to the same value (w = u), but are (d) If the king is honest:
encoded as degree-t and degree-2t polynomials, respectively. (i) Actingas theking, S receives (D); from each corrupt
Thus, the parties compute (v) as a sum of a pseudo-random w party Pj.
and the product a - b, represented as a polynomial of degree (i) Acting as the king, S reconstructs D and sends D
2t. Thus, after reconstructing v, we obtain z = v —w = to the corrupted parties.
w4a-b—w=a-bas desired. Otherwise, if the king is corrupt:

e Multiplication gate (single round): As in the case of the pre- (i) For each honest party P; € H, S sends (D); to the
vious multiplication protocol, each party locally computes corrupt king;

(z)i = [a]i[b];, but the degree reduction, or re-sharing, mech- (i) For each honest party P; € H, S receives D from
anism to obtain [z] is different. Each P; re-shares its (z); as a the corrupt king;

degree t and polynomial interpolation constants ;s are used * Multiplication gate (single round):

to combine the shares and obtain degree-t shares of z. The (a) For each honest party P; € H and for each j = 1+
constants ;s are designed in [24] to reconstruct the shares (imodn),...,1+ ((i +t) mod n), S computes [d;]; =
of the productz = a-bas [z]; = Z;’Zl aj[dj]i, where [d}]; de- FPRG(kj, ).

notes party P;’s share of (z);. This is the same reconstruction (b) For each honest party P; € H, S computes (z); =

as what our protocol uses. [x]i - [y]: and sets [di]o = (2)i.
c) For each honest party P; € H, S reconstructs the
party

polynomial f;y, from the ¢ + 1 shares.

(d) For each honest party P; € H, S evaluates and sends
[dilj = fiz), () to Pj for P; € C such that j = 1+ ((i +
t+1) modn),...,1+ ((i+n—-2) mod n)

e Dot product gate: For each honest party P; € H, S com-
putes (c); = Zle[xj] - [y;] and either

However, instead of setting the coefficients of the polynomial
f that represents secret sharing of (z);, denoted as fi),,
at random (with the requirement that f,y,(0) = (2);), P;
uses t pseudo-random values from which the polynomial
is reconstructed (together with the value fiy, (0) = (2);) as
originally described in [5]. This does not change the fact that
ftzy, corresponds to a valid representation of sharing of (z);,

but only lowers communication overhead that reduces the — Stores (z); = (c); and proceeds with single round mul-

number of shares that need to be communicated to other tiplication in Step 2c using this value.

parties from n — 1 to n — t — 1. Thus, this does not impact - Stores [x]; - [y]; = {c); and depending on the honesty

correctness. of the king, proceeds with linear communication multi-
e Dot product gate: The reasoning behind the dot product plication in Step 2(d)i of the relevant branch using this

protocols is similar to that of multiplication gates above. value.

The only difference is that instead of computing (degree-2t) Next, we prove the indistinguishability of the real and simulated

shares of the product (z); = [x];[y];, each party P; computes views. Note that the only difference between a real-world execution

share (z); = Zle [xj]i - [yj]i, which also corresponds to and a simulation is that we let S take zeros as honest parties’ input.

15
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But due to the properties of the underlying secret sharing scheme, a
dishonest minority cannot learn any information about input values
shared by any party or intermediate shares that depend on those
values. This is independent of the party performing the sharing,
including any simulator on behalf of honest parties.

Now we consider building blocks that involve interactive oper-
ations. For these, A can tamper with operations by engaging in
different types of misbehavior. These include

e Modifying intermediate results (which can influence the
values sent to honest parties).

o Create shared values using an incorrect threshold (i.e., create
polynomials of a wrong degree).

o Sending different values to different honest parties when the
protocol calls for broadcasting the same value of a number
of participants.

The first place that A can tamper with is input sharing phase,
where the corrupt parties may send shares with wrong degree
to S. We argue that incorrect degree sharing can only affect the
correctness, and not privacy. To that end, note that because inputs
have to go though some arithmetic gates before being opened, if
inputs are shared by some corrupt parties with degree lower than ¢,
then the degree will become ¢ in the next arithmetic gate that the
shares combine with any other inputs or randomness. If instead
some corrupt parties share input with degree greater than ¢, then
the degree will become t in the next multiplication gate. Hence,
there will be no distinguishable difference between the real and
simulated views if A improperly shares values.

In the simulation of the single round multiplication gate, only
simulation step 2d involves interactive operations. A may tamper
with this protocol by sending honest parties incorrect shares. Note
that the above discussion on incorrect degree applies to this situ-
ation. Otherwise, sending incorrect shares of correct degree can
only affect output correctness, and not privacy. Hence, the real and
simulated views remain indistinguishable.

In the simulation of the linear communication multiplication
gate, we consider two cases. If the king is honest, then A may send
wrong shares to S in step 2(d)i. As previously noted, this manner
of misbehavior will not cause a distinguishable difference between
the real and simulated views. If instead the king is corrupt, A may
broadcast an incorrect value D or inconsistent values to different
honest parties in step 2(d)ii. Again, in both cases only share value
correctness may be affected and real and simulated views remain
indistinguishable.

Finally, in the simulation of the dot product gate, we note that
interaction only occurs exactly as it would during the degree rec-
onciliation phase of either type of multiplication gate. But this is
precisely where (and only where) interaction occurs in those gates.
Thus, indistinguishability between the real and simulated views of
dot product gates follows from the preceding arguments for single
round multiplication and linear communication multiplication.

Thus, the simulated view of Construction 1 is indistinguishable
from real execution to A. O

PRroOF oF LEMMA 4.5. Recall that to prove this, we need to show
that extended linear-based protocols which are weakly private are
secure up to additive attack (i.e. that the validity of this fact for
(non-extended) linear based protocols, proved in [22], holds in light
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of these modifications). These details are treated in Appendix E.
In order for this to be meaningful, we first need to show that the
interactive building blocks we use in Construction 1 are linear as per
Definition 4.1. To that end, note that each of the following protocols
take setup based input in the form of any necessary encryption
keys and randomness seeds. Moreover, the output of any of these
building blocks is a linear combination of incoming messages, and
thus by definition, constitutes a message of Type B in accordance
with Definition 4.1. Otherwise, consider the following:

e share([x]): given that we instantiate secret sharing in this
section with Shamir secret sharing, note that
pre-computation involves sampling ¢ random polynomial
coeflicients. Let P; be the sharing party. P; uses these to
set vector R = (r1,r2,...,r+). P; then sends the matrix
J =, .. ,j")1<j<n together with their main input
value x to themselves as a Type A message as described
in Definition 4.1. Next, P; computes [x]; = RT . J[] for
1 < j < n. Note that these values each conform to the def-
inition of a Type B message as described in Definition 4.1.
Moreover, this shows that when holding a polynomial coef-
ficient vector with element-0 as private input and all other
elements as auxiliary input, parties can execute polynomial
evaluation at any fixed point to obtain a Type B message.
Finally, P; sends [x]; to each party P; (including themselves).
Each party takes this vector to be their share and outputs it
(which is trivially linear).

reconstruct([x]): as described in Section 2, assumes a quali-
fied subset J of parties (i.e. where |J| > t +1). A party P; € |
in the Shamir setting, cooperating to reconstruct [x], pro-
ceeds as follows: P; sends [x]; to each other P; € J. Given
that all intervening computation from initial share() to this
point has involved either local operations or one of the inter-
active sub-protocols discussed below (which we show to be
linear), it follows inductively that [x]; is a linear combination
of previous messages, and hence sending this constitutes a
Type B message. P; then computes (as all others in J do sim-

ilarly) x = ¥ ey [x]j - a7 (j) where a;(j) = HIk(E] kL—j’ and
#Jj

outputs x, which as required is a linear combination of their
incoming messages.

RandFld gate: Pre-computation for party P; involves using
setup based inputs to generate

{]FPRG(keyQ)}QEQ’ ic0- An (input-independent) linear com-
bination of these values constitute share [x];, which is P;’s
output.

e RandInt gate: Pre-computation for party P; involves using
setup based inputs to generate

{ZPRG(key)}0eq, ico- An (input-independent) linear com-
bination of these values constitute share [x];, which is P;’s
output.

Addition gate: On input [x] and [y];, P; sends to themselves
as a Type A message, the shares [x]; and [y]; and output the
linear combination [z]; = [x]; + [y];.

Multiplication by a known field element: On input [x] and
y € F, P; sends to themselves as a Type A message the share
[x];. P; then outputs linear combination [z]; = y - [x];.
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e Multiplication gate (linear communication): As noted in Con-
struction 1, pre-computation for party P; involves using
setup based inputs to generate (0); and [w];. Next on input
[x] and [y];, P; sends to themselves, as a Type A message,
the value (z); = [x]; - [y]; together with the constant share
[1];. Next, P; sends (v); = (z); + (u); to the king. Note that
this is a linear combination of the previous message and
auxiliary input, forming a Type B message. After the king
(linearly) reconstructs v and broadcasts this value as a Type
B message, P; outputs [z]; = v — [w];, which as required is
a linear combination of their incoming messages.

e Multiplication gate (single round): For party P;, let J = {j :
imodn < j—1 < (i+¢) mod n}. As noted in Construction 1,
pre-computation for party P; involves using setup based
inputs to generate ([d;]j)jeJ, jzi- Next on input [x] and [y];,
P; sends to themselves, as a Type A message, the value (z); =
[x]; - [y]i, which they define as [d;]o. P; then reconstructs
polynomial f;,y, from any t+1 [d;] s (a linear combination of
previous messages) and evaluates f;,), for each j € J, which
as we showed above results in a Type B message. Each such
[di]} is sent as such a message to each respective P; € J.
Finally, P; outputs [z]; = Z_;l=1 @;j[d;]i, which as required is
a linear combination of their incoming messages.

e Dot product gate: The only difference between dot product
and either respective above multiplication is that the Type
A message from each party to themselves includes (z); =
Zle[xj]i - [yj]i rather than (z); = [x]; - [y];. This is still
a valid function of primary inputs for such a message, and
further analysis proceeds as in the respective multiplication
gate.

B DELAYED VERIFICATION

ProoF oF LEMMA 5.3. First notice that any gate which is down-
stream in G of some parties’ input will be initially marked as need-
ing verification during the first BFS (Line 3). Such gates are not
reconsidered until Line 22, and hence this property holds at least
until then. Moreover, any gate which is not downstream of any
parties’ input, but which is downstream of an attackable gate will
be marked as needing verification in Line 16. Since this inclusive-or
statement iteratively evaluates all incoming wires to a gate until
either the needs-verification bit is set, or all incoming wires have
been evaluated (per Line 18), then this property also holds until at
least Line 22.

This shows that until Line 22, needing verification is a down-
stream monotone property within G whenever the value to be
opened is a function of some parties’ input, or is downstream of
some attackable gate. Meanwhile, Line 22 is executed for each el-
ement of O;, which contains an input-dependent addition gate
followed by an open gate (together with input and output wires),
as per Line 12.

Since the second BFS begins connected to all gates g where
g.R = 1 and terminates propagation whenever it encounters a gate
marked in the first BFS (in Line 20), then Line 22 only evaluates
open gates with input values which are a function of some parties’
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input and have immediately preceding had added some random
value which is not a function of any parties’ input.

Notice that the last element in any tuple in O; is an open gate,
h where h.I = 1. Then the tuple contains all wires and gates asso-
ciated with an additive random pad of some parties input. And if
either input into the included addition gate is marked as not need-
ing verification, and the range associated to h is F, then Line 22
will mark the open gate as not needing verification. Note that by
the invariance of marking input-dependent values as needing ver-
ification, the wire marked safe must be the random additive pad,
and was marked safe precisely because it is well formed as per
Definition 5.1 and meets the requirements of Definition 5.2.

Otherwise, all tuples in O, contain only open gates h where
h.I = 0, and these are reset to h.V = 0 in Line 24, as Definition 5.2
requires. m]

C SUPPLEMENTAL INFORMATION FOR THE
MAIN CONSTRUCTION

The ideal functionalities used in Construction 2 are given in Fig-
ures 1 and 2. A number of these functionalities (e.g., Finput> Fmult>
Frandfids and Frerocheck) are modeled similar to their formulation
in [9], and we introduce additional similarly formulated functionali-
ties (e.8., Fdotprod> Frandint) to support the extended set of operations
in this work. Note that i,y and Fyorprod permit the adversary to
introduce an additive error into the computation, while compu-
tation associated with other gates such as Frandfids Frandint and
Fopen is not attackable. We also note that in our instantiation of

Frandint> s given in Construction 1, v = (") and the element is

t
drawn from the distribution corresponding to the sum of v identi-
cal uniform variables over Z,, i.e., the Irwin-Hall or uniform sum

distribution [28, 31].

Proor or THEOREM 5.4. These two types of gates are attackable
and the adversary can submit errors to each gate (as per Defini-
tion 5.1 and the corresponding ideal functionalities). If such an
attack occurs, then since such gates compute either a multipli-
cation of single shares or a dot product of shares, we can say
[2i] = di+ 72 ([x]- [y 1), where (1} jeqr..a,0 and {1y 1} ef..n,)
are the input shares, [z;] the output, and d; the value the adversary
adds to gate i. Note that there is a distinct vector size h; for each
gate i, and in particular, multiplication of single shares is a special
case of dot product. That is, if gate i is multiplication of individual
shares, then h; = 1 and {xj};je[1..p,] = {xi} and {yj}je(1..n) = {yi}-
In any event, only one d; is added because all such protocols involve
a single round of interaction. Similarly, on the randomized branch of
the circuit, we have output share [r-z;] = f; +Z§Z1 [(r-xj+ej)]-[y;].
Here, the errors {ej};c[1..5,] are accumulated from previous calls
to and attacks on attackable gates, and f; is the error added by the
adversary to the output of gate i on the randomized branch. Again,
while there may be multiple upstream errors ej, there is only a
single attack f; possible for gate i. We additionally denote additive
attack error on the randomized input into the circuit by r - [v;] + gi,
and the additive attack error on the multiplication gate during the
verification phase by [r] - [u2] + k. We use L to denote the number
of inputs, and say i is the first gate the adversary tampers with. In
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Functionality Finput

Functionality Fopen

(1) Finput receives input v € F from the party who owns that
input and also receives from the adversary shares [v]c of
the corrupted parties.

(2) Finput computes all shares of v as ([v]1,...,[v]n) =
share(v, [v]¢) and sends to each party P;, i € [1,n], its
output share [v];.

Functionality F;andfid

(1) Frandfid receives shares [s]¢ from the adversary.

(2) Frandfig chooses a random element w € F, lets [w]; =
[s]; for each p; € C, and executes ([w]i,...,[w]n) =
share(w, [w]c¢).

(3) Frandfid sends to each honest party P; its share [w];.

(1) Fopen collects shares [x]; from each party.

(2) Fopen calls reconstruct([x];) on each unique set of ¢t + 1
shares [x];.

(3) If all reconstructions produce the same value x, then Fopen
broadcasts x to all parties. Otherwise, Fopen signals abort.

Functionality Foutput

(1) Foutput collects shares [x]; from each party.

(2) Foutput calls reconstruct([x]7) on each unique set of ¢ + 1
shares [x];.

(3) If all reconstructions produce the same value x, then Foutput
sends x to party P;. Otherwise Foutput signals abort.

Functionality Frandint (k)

(1) Frandint receives shares [s]¢ from the adversary.

(2) Frandint chooses random w € Z,,,, where v and the dis-
tribution to draw w from depend on the protocol instan-
tiation, lets [w]; = [s]; for each p; € C, and executes
([wli ... [wln) = share(w, [w]c).

(3) Frandint sends to each honest party p; its share [w];.

Functionality it

(1) Fmule receives shares [x]g and [y]g from the honest
parties and computes x = reconstruct([x]yg) and y =
reconstruct([y]g).

(2) Fmult computes the corrupt parties shares [x]¢ and [y]c and
communicates them to the adversary.

(3) Upon receipt of value d and corrupt parties’ shares [z]¢
from the adversary, 1+ defines z = xy + d and computes
([z]1, . .., [z]n) = share(z, [z]c).

(4) Fmult sends [z]; to each honest party P;.

Functionality Fgotprod

(1) Fmult receives shares {[xi]H}f:1 and {[yi]H}f;1 from the
honest parties and computes x; = reconstruct([x;]y) and
y; = reconstruct([y;]g) fori € [1,£].

(2) Fmuie computes the corrupt parties shares [x;]c and [y;i]c
for i € [1,{] and communicates them to the adversary.

(3) Upon receipt of value d and corrupt parties’ shares [z]¢ from
the adversary, ¥y defines z = d + Zle x;y; and computes
([z]1, . . .. [z]n) = share(z, [z]c).

(4) Fruie sends [z]; to each honest party P;.

Figure 1: Ideal functionalities.

sum, we have:

[wl= > arlroitgl+y ai~(ﬁ+2j’; [(r-x,~+e,~)~yj])

[uz] = Zf:l ai - [vi] + Z?iL+1 o (di * Z;lil[xj ’ yj])

Functionality Frandfidpub

(1) Frandfidpub receives shares [s]c from the adversary.
(2) Frandfia chooses a random element w € F and sends it to all
parties.

Functionality Ferocheck

rocheck receives shares [v]g from the honest parties an
1) Frerochec i h from the h t parti d
computes v = reconstruct([v]g).
v = 0, the adversary is given the opportunity to sen
2) If 0, the ad y is gi the opportunity t d
accept or reject, which Fjerocheck cOnveys to the honest
parties.
v#0, sends accept to the honest parties wi
3) If v # 0, Frerocheck send pt to the honest parties with
probability ﬁ and reject with probability 1 — ﬁ

Figure 2: Ideal functionalities (continued).

and further:
[T] =k +[u1] = [r] - [u2]
:k+Zf=1a’ ’]+Zz 11 % (f’ " d’+z lej - yf)

@)

o Case 1: the adversary first cheats during input randomization
and does not cheat in the verification phase. Suppose g, is
the first error added in the inputs. Then if [T] = 0, we have

L
Gio " %ip = _Zi:ioﬂ a’”gi_Zz L1 ? (ﬁ " dl+z ej.yj)

Given the uniform distribution and independence of «;,, the
probability of choosing the appropriate g;, in this case is
1/|F).

o Case 2: the adversary first cheats in an attackable gate and
does not cheat in the verification phase. Let the first errors
be d;, and/or f;,. Note that in this case, e; = 0 for all i < ip
since this is the first error be introduced and thus no error is
accumulated from previous gates. So [T] = 0 holds only if

iy - (fig — 7 diy) = Z, 1 @ (ﬁ r- dl+z ¢ y])

We first note that Pr[f;, = r - d;,] = 1/|F|. This is because
the value of r is uniformly random in F and unknown to
the adversary during the computation phase. If instead f;, #
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r - dj, (which happens with probability 1 — 1/[F]|), then the
probability that Equation 3 holds is similarly 1/|F|, since a;,
is randomly chosen over F independent of all other values,
and also unknown to the adversary at runtime. In sum, the
probability that Equation 3 holds is bounded above by

Pr(fi, = r - di,] + Pr[(fi, # r-di,) A ((3) holds)]

1 1 1 2
- (1o =) <=
IF|  [F| [F|/ [F|
Note that this bound is proper since the event { f;) —r-d;, = 0}
contains cases where Equation 3 does not hold.
Also note that although not provided a separate case, we can
treat additive attacks on the randomizing step for RandFld
and RandlInt here as well. Note that this is similar to the
attack on input randomization in case 1 (as these values con-
ceptually are a different form of input), but can come after
tampering with other gates, and in a non-predictable way
with respect to timing and circuit topology. To do so, we note
that if the initial randomization of a random share [w;,] by
multiplication with [r] marks the first misbehavior by the
adversary, then we can fix y;, = 1 on both branches of com-
putation for this gate, and the only difference in Equation 3
above is that d;, = 0, while f;, represents the additive attack
on the randomized branch. In this case, the probability of
successful tampering is 1/|F| by an identical argument to
case 1.
Case 3: the adversary cheats during multiplication in the
verification phase. Then if [T] = 0, we have

L M hi
k:_Zi:Iai 'g"_Zi:LHa’”(ﬁ_r'di+zj:16j'yj)

In this case, the adversary has the knowledge of all ran-
domness (i.e., a1, ..., apr) and all previous errors. How-
ever, [r] is uniformly random in F and unknown to the ad-
versary throughout the computation. Concretely, let ¢; =

y h;
- Zle aj-gi,andcy = — Zg“l aj- (ﬁ +Zj:1 ej 'yj), and

let ez = Z?’:ILH a; - di. Then we have

k=rC3+Cl+Cz

Thus, the probability of an adversary choosing the appro-
priate k to satisfy this equation while in possession of c1, 2,
and c3, is 1/|F|.

In all cases, the probability that adversary submits errors during a
call to any Fp,1¢ and go undetected is at most 2/|F| as required. O

ProoOF oF THEOREM 5.5. Given simulator S, adversary A which
controls the set of corrupt parties C, and trusted party 7p com-
puting function f, the protocols are simulated in the following
manner:

(1) Input sharing: S collects from A each input v; owned by
a corrupt party, along with the corrupt parties’ shares on
these inputs. Then for each honest parties’ input, S calcu-
lates ([vil1, . .., [viln) = share(0, [v;]¢) and sends to A the
shares of corrupt parties [v;]¢ on all honest parties’ inputs.
S stores all values.
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(2) Generation of randomization: S collects from A the corrupt

=

=

parties’ shares, [r]c. Then S generates a random r € F
and computes the shares share(r, [r]c) = ([r]1,....[r]n).- S
stores all values.

Randomization of inputs: S simulates the ideal function-

ality Fue in the multiplication of [r] by input [v;] for

i =1,...,M. For each input [v;], S gives shares [v;]¢ and

[r]c to A. Next, A communicates to S the corrupt parties’

shares of the product [z;] ¢ and the additive value g;. S stores

all the values it received from A.

Function evaluation: For each gate g of the following type, in

the given topological order,

(a) Addition: S computes the sum of the shares correspond-
ing to each corrupt party p; € C as in the protocol and
stores the results.

(b) Multiplication by a known field element: For given con-
stant ¢ € F, S multiplies the share of each corrupt party
pj € Cby c and stores the result.

(c) Multiplication: S simulates two invocations of F ;- S
gives A the corrupt parties’ shares on the input wires
and consequently receives from A the corrupted parties
output shares along with additive values di. and f; on the
non-randomized and randomized circuits, respectively. S
stores these values.

(d) Dot product: S simulates two invocations of Fyotprod- S
gives A the corrupt parties’ shares on the input wires
and consequently receives from A the corrupted parties
output shares along with additive values di. and f; on the
non-randomized and randomized circuits, respectively. S
stores these values.

(e) RandFld gate: S collects the shares from A for g. S then
samples a random value w according to B and the dis-
tribution for g. Finally, S calculates ([w;]1, ..., [wiln) =
share(w, [w;]c) and stores all values.

(f) RandlInt gate: S collects the shares from A for g. S then
samples a random value w according to B and the dis-
tribution for g. Finally, S calculates ([w;]1, ..., [wiln) =
share(w, [w;]¢) and stores all values.

(g) Opening: If g is marked by Algorithm 1 as needing ver-
ification, then S proceeds to simulate Step 4h. Provided
verification was successful, or if g is not marked as need-
ing verification, S simulates Fopen based on the values it
has stored thus far, to receive value c. If S finds inconsis-
tencies between values which would be opened, or if an
efficient membership testing exists for B and S finds that
¢ ¢ B, then S signals abort to 7p on behalf of all trusted
parties. Otherwise, S announces the value of ¢ to A.

(h) Verification of evaluation: S chooses random a1, . . ., apr
and communicates these values to A. Then S plays the
role of the honest parties in simulating %, to A and
receives from A the corrupted parties output shares along
with additive values dj. and f; on the non-randomized
and randomized circuits, respectively. Next, S simulates
Frerocheck- If any non-zero dy., or fi was provided to Fuit
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by A in the simulation, then S simulates Fe;ocheck Send-
ing reject, and then all honest parties sending L, and sig-
nals abort to 7p on behalf of all trusted parties. Otherwise,
S proceeds to output reconstruction.

(5) Output reconstruction: S simulates one round of verification
as per Step 4h. Provided no abort occurred, S sends to 7p
the input v; it received from A in Step 1. S then receives
from 7p the output values for each corrupt party. Using
these values, S simulates the honest parties participation in
Foutput for all parties. If in this stage S receives values from
A which, based on the information it holds from the previous
steps, and the output values received from 7p, S finds are
incorrect, then for all honest P; which would receive such
value(s), S signals abort to 7p on behalf of P}, (and in such
a case P; does not receive output). Otherwise, 7p will send
output to all parties not signaling abort.

We will show that the view of the adversary is the same in
the actual protocol execution as it is in the simulation, up to a
probability of at most 3/|F|.

We first consider the case where some open (or output) gate g is
marked by Algorithm 1 as needing verification. Note that in order
for there to be any deviation between real and ideal execution, then
at least one dj or fi is nonzero. Given this, S will, in simulation of
Frerochecks always reject. However, during execution of the actual
protocol, Ferocheck Mmay accept if either

e T =0, with probability at most 2/|F|, as in Theorem 5.4.
o T # 0 but Ferocheck accepts, with probability 1/|F|, as per
the definition of the functionality.

The probability with which this happens is bounded above by
Pr[T = 0] + Pr[(T # 0)A(Frerocheck accepts)]

2 1 2 3
<z (- =)<
[Fl  |FI [F|/  |F|

Note that even if successful tampering in one round of verifica-
tion implied success in future rounds, which is not at all clear, this
still would not increase the overall likelihood of successful tamper-
ing for A since verification rounds are atomic and sequential.

Then provided verification is successful with no abort being
triggered, any tampering must solely be the result of A sending
incorrect shares to S during simulation of Fopen. Because any ¢ + 1
shares uniquely identifies all shares and the shared value and since
this is the first tampering, the set of shares S computes on behalf of
the honest parties will be sufficient for S to discover tampering with
certainty, and in that case trigger abort. Note that this is identically
distributed to what A would expect to see in real execution.

Next we consider any (open or output) g that is not marked
as needing verification by Algorithm 1. Note that in this case, if
A sends incorrect shares to S during Fopen, then as above they
would trigger abort with certainty as would be expected in real
computation. If not, then as shown in Lemma 5.3, this means that
the value to be opened either

e is not a function of any parties main input
e or has been padded by an untamperable uniform random
value drawn from F just prior to opening
In both above cases, note that A is aware of the function f being
computed and the subset B assigned to the open gate.
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In the former case, note that S will select some uniform random
value from F in the randomness gate which was used (immediately
prior) to additively pad the sensitive value. This will cause the
opened value to also be uniformly distributed on F, which is the
expectation for such a gate in real execution.

In the latter case, notwithstanding incorrect shares, the only
other avenue for skewed view distribution would be when testing
membership in B, if one is being used. To that end, note that S
sampled all randomized values used in calculating the value at g
according to their associated subset B and distribution. And by
design of the function f being computed, and the fact that local
computation of randomness (as in Construction 2) is untamperable
on an per-gate basis, then the value opened in simulation will match
without error the subset and distribution prescribed for g, and A’s
view will identically distributed in simulation as it would be in
real execution. Thus, open or output gates not marked as needing
verification cannot skew the view distribution of A.

In total, the statistical difference between the distributions of
A’s view in the real and simulated executions is negligibleinx. O

D EXTENSION TO SMALL FIELDS

As alluded to earlier, the construction for large fields can be viewed
as a special case of the more general construction as seen in [9]. In
the case of large (enough) fields, the probability of successful cheat-
ing is ensured to be negligible in x by requiring that |F| > 3 - (2%).
In principle, and extension to smaller fields can be achieved by
requiring that [F| - 2% > 3. (2%), where § concurrent and inde-
pendently randomized branches of computation are executed (and
where § = 1 corresponds to the case of Construction 2). Then in
the verification stage, if 7,erocheck rejects for any of the § branches,
then the protocol is aborted. The probability of successful adver-
sarial behavior is bound on each branch in the same manner as
above, and due to the independence of all randomly drawn values,
the overall probability of such success is bounded by the product
of these bounds, thus providing probability of successful cheating
negligible in k.

In order to realize this generalization, the necessary changes to
Construction 2 include:

(1) In Step 2, shares [r;] are generated for 1 < i < §.

(2) In Step 3 and every sub-step of Step 4, the parties compute
and store tuples ([z], [r1z], ..., [rsz])-

(3) In Step 4h, the parties run § branches of verification, includ-
ing:

(a) In Step 4(h)i, rather than obtaining public values «;, f;,
and y; via calls to Fapdfidpub and FPRG, the parties obtain
sets of shares
{l@i1], - [, 511, via calls to Frandqd-

(b) Then, for each of the § branches, Step 4(h)ii computation
of linear combinations is achieved via Fotprod in place of
local multiplication, followed by a call to Fp,,1¢ to calculate
[T] and executing Ferocheck for that branch.

Regarding changes to Steps 4(h)i and 4(h)ii, the authors of [9]
point out that when § > 2, generalizing the simulation strategy used
in the proof of Theorem 5.5 will not suffice to prove the protocol
secure. This is because if these random verification tokens were to
be revealed, then any distinguisher with access to real execution
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inputs would be able to determine precisely for which values i it
holds that T; # 0. Since this simulator would be unable to do this,
the tokens are instead kept as secret shares.

E EXTENDED LINEAR-BASED PROTOCOLS

Integral to the work of Genkin et al. [22] is the concept of a linear
protocol (see Definition 4.1), where the output of each party is
necessarily a linear combination of their incoming messages to the
protocol, and the concept of a linear-based protocol, which compiles
sub-protocols which are themselves linear into a larger framework
under certain organizational constraints. We extend the definition
of linear-based protocol to capture the additional protocols that
we want to support to obtain Definition 4.2 (extended linear-based
protocol), but the essence of the definition remains unchanged
from that in [22]. In particular, instead of requiring that input-
independent computation (e.g., triple or randomness generation
for multiplication gates) takes place during the setup phase, we
allow this pre-computation to be part of each linear protocol, as
long as the input-independent pre-computation complies with the
definition of the linear protocol itself. Excepting these changes,
Definition 4.2 is a superset of linear-based protocol.

Genkin et al. define the output function a linear function (as per
Definition 4.1), as follows:

Definition E.1 (Output function of a linear protocol). Let r be a
linear protocol for computing a functionality f and let T be a set of
parties. Let x be a main input to x, let § be an auxiliary input to
and let m;pp, T be the messages of type a in Definition 4.1 sent by
the parties in T to themselves during an honest execution of 7 on
(%, 7). In addition, let mz 1 be the messages of type b sent by the

parties in T to the parties in T during an honest execution of 7. We
say that a function out7 is the output function of T in 7 if for any
main input ¥ and auxiliary input 7 it holds that

outr (Minp, 7. 4. mz 1) = fr(%.§)
where fr is the restriction of f to the outputs of the parties in T.

They also hold that the output function of a linear protocol as
defined above is a linear function in the following sense: For any
mi,y, ma, mi, Y, mé, it holds that

outy(my +mi,y+y’, my +mj)
= outy(my,y, my) + outy(my,y’, my)

Genkin et al. prove security of their linear-based construction
by presenting a simulator (Construction 5.2 in [22]), which they
show to be secure against a malicious adversary controlling exactly
t servers (i.e. a maximal adversary in the honest-majority case, in
their Lemma 5.3). In a separate proof they show (their Lemma 5.2)
that more generally, any protocol secure against such a maximal
adversary is also secure against an adversary controlling at most ¢
servers. By combining these two proofs, they obtain a construction
which is secure against any malicious adversary in the honest-
majority case. This is their Theorem 5.2, and we state it here for
reference:

THEOREM E.2. ([22], Theorem 5.2) Let I1 be a protocol computing
a (possibly randomized) m-client circuit G : Fli x ... xFlm - FO1
using n = 2t + 1 servers that is linear-based with respect to some
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redundant and dense linear secret sharing scheme and is weakly-
private against active adversaries controlling at most t servers and
an arbitrary number of clients. Then, II is a t-secure protocol for
computing fc, the additively corruptible version of G (as defined
below).

where the function fC is the one computed by a circuit which is
subject to additive attack, defined as follows:

Definition E.3. ([22], Definition 5.1 - additively corruptible ver-
sion of a circuit) Let G : Flt x - . . xFIm — FO1 be an n-party circuit
containing w wires. We define the additively corruptible version
of G to be the n-party functionality fc (F x o x Flm — FO1
that takes additional input from the adversary which indicates an
additive corruption for every wire of G. For all (x, A), fc(x, A)
outputs the result of the additively corrupted G as specified by the
additive attack A (A is the simulators attack on G) when invoked
on the inputs x.

Rather than state the simulator and proof in their entirety, we
will treat only those sections which we modify or introduce (as per
Definition 4.2) into the framework. As these changes only impact
their Claim 5.4, that will be our focus. In particular, input sharing
and output recovery remain unchanged, so we do not discuss these
sections of Theorem 5.2. Let S be a simulator interacting with
adversary A. We use the following conventions:

(1) Probabilistic random variables appear in this script: Z.

(2) Variables which represent specific instances taken from the

support of random variables appear in normal math lower-
case script, e.g. z.

(3) Variables which represent real-world computation are pre-
fixed with R, e.g. wire-value Rz.

(4) Variables which represent ideal-world computation are pre-
fixed with J, e.g. message Jm.

(5) Variables which represent the result of honest computation
(i.e. as part of output from some ideal functionality 7¢, )
are prefixed with JH, e.g. message Hm.

We now proceed to describe the simulator which will be featured

in the proof of Lemma E.5 below, which is our extended version of
Claim 5.4 in [22]:

(1) Setup phase. Note that 7setyp gets no auxiliary inputs.

. revd, ¢
(a) S receives from A the messages f]mﬂ_)H

adversary to the honest servers during the execution of

sent by the

Tlsetup-
(b) S simulates the behavior of the corrupt servers given
their truncated view 7 u and computes the messages

sim,c
}CmﬂHH

to the honest servers during the execution of 7setup. In
addition, for every corrupt P; € A and every gate ¢, S
computes the vector U{g?'m’c that is a part of the output
of P; after an honest execution of 7setup-

(c) S computes

that should have been sent by the corrupt servers

revd, ¢ ¢,sim
(ﬁIC-I) — OUtH’ Tlsetup (0’ J" jmﬂﬂH - g{mﬂﬁH)

(2) Pre-computation. Note that mprecomp gets no auxiliary in-
puts.



Proceedings on Privacy Enhancing Technologies YYYY(X)

(a) S receives from A the messages (jm;{vi’;()mcslm sent
by the adversary to the honest servers during the execu-
tion of 7precomp across all gates c.

(b) S simulates the behavior of the corrupt servers given
their truncated view 7 u and computes the messages
H m;lm’ CH that should have been sent by the corrupt servers

to the honest servers during the execution of 7precomp- In

addition, for every corrupt P; € A and every gate ¢, S

computes the vector %gs'm € that is a part of the output
of P; after an honest execution of mprecomp-

(c) S computes (y7)1<c<|C| < OULH, mrecomp ((BEp)> Lo
er;(vi;—ﬂ-( &, sim - Note that it is implicit that ﬂ'Cgs'm €=
yf; =L for non- 1nteract1ve gates c.

(3) Multiplication by a known field element. Note that in
this case no communication takes place. Thus, on main input
[Jx]{ and public constant value y, S computes [Jz]{ =y -
[Ix]¢ for P; € A, and saves {[Jz]{}p,e.n for later use.

(4) Dot product gate:

(a) S obtains from A the messages Jm 4", sent by the
adversary to the honest servers durmg the execution of
Tdotprod-

(b) S simulates the behavior of the corrupt servers on main

revd, ¢

inputs

{[92;1¢ [Jz]] }P, e, je[1, ¢]> auxiliary inputs gcﬂ, and from
the truncated view J u, incoming messages ﬂ{ms'm ¢ 7 from
the honest servers. S then computes the messages

H m;[m CH that should have been sent by the corrupt servers
to the honest servers during the execution of 7gotprod- In

addition, S computes the shares {[}Cz]‘?m’ ‘) P;eA thatrep-
resent the output of corrupt P; after an honest execution
of Tldotprod-

(c) S computes

cvd, ¢ sim, ¢
O, < outH, (0, Y erﬂv_)H mey[l—>H) where yj;
are the part of yy corresponding to the gate c.

(d) Since SS is dense and redundant, S computes a¢ «
rec(dy;, H), for every gate d connected to ¢, sets A. g «
a®, and computes the shares {]}p,cn for the corrupt

servers that are compatible with J7,.

(e) S computes [Jz]{ « [%z]?'m’c + 6f for P; € A, and
saves {[Jz]{}p, e # for later use.

(5) RandFld gate:

(a) S receives from A the messages f]mm/d IC-I sent by the
adversary to the honest servers durmg the execution of
Trandfld-

(b) S simulates the behavior of the corrupt servers on auxil-
iary inputs gfﬂ, and from the truncated view 7 u, incoming

S]m c
messages Hm; =", from the honest servers. S then com-

S[I‘n c
putes the messages j'fmﬂ

by the corrupt servers to the honest servers during the
execution of 7,,n4fld- In addition, S computes the shares

that should have been sent

{[U{Z]S:im’C }p; s that represent the output of corrupt P;
after an honest execution of 7,,,4fld-
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(c) S computes 05, < outm, x,,.4aq (0, yﬁI,erCVd’c

A—-H
_j{msj‘{m CH) where yj; are the part of yg corresponding

to the gate c.

(d) Since df, forms a valid sharing of some value, S com-
putes a® « rec(df;, H) and for every gate d connected
toc,sets Ag g < . Since SS is redundant, S is able to
compute the shares {0} }p,c # for the corrupt servers that
are compatible with J7,.

(e) S computes [Jz]{ « [f}fz]?im’c + 6f for P; € A, and
saves {[Jz]{}p, e n for later use.

(6) RandlInt gate:

(a) S receives from A the messages Jmm/d IC—I sent by the
adversary to the honest servers durlng the execution of
Trandint-

(b) S simulates the behavior of the corrupt servers on auxil-

iary inputs g;I, and from the truncated view 7 u, incoming

Slm [

messages Hm ;=" from the honest servers. S then com-

putes the messages U{mi'zlm °  that should have been sent

by the corrupt servers to the honest servers during the
execution of 7,,ndint- In addition, S computes the shares
{[}Cz]?im’c }p; s that represent the output of corrupt P;
after an honest execution of 7, ndint-

(c) S computes
Ofy € OUtH, g (0 Y, Im ;Vilci—i}f sim, ¢ ) Where v,
are the part of yy corresponding to the gate c.

(d) Since 65, forms a valid sharing of some value, S com-
putes a® « rec(df;, H) and for every gate d connected
toc, sets A, g < €. Since SS is redundant, S is able to
compute the shares {0 }p, e # for the corrupt servers that
are compatible with d7,.

(e) S computes [Jz]{ « [fJ-Cz]iim’C + 65 for P; € A, and
saves {[Jz]¢}p,e.n for later use.

The following claim appears and is proved in [22], and we state
it here for reference. It proves that any adversarial misbehavior in
the setup phase induces an additive attack into the computation.

LemMmA E.4. ([22], Claim 5.2) For any truncated view Ru in the
support of RU 4, it holds that :RG;{,R = J{G; ®u tVE

The following lemma appears for (non-extended) linear-based
protocols as Claim 5.4 in [22]. This claim asserts that the honest
shares held by servers at the end of protocol execution and before
reconstruction, correspond to a simulatable additive attack on the
set of wires in the corresponding computation circuit. Afterwards,
we prove that the claim still holds given the added functionality we
have introduced under Definition 4.2. Recall that since the input
sharing and output reconstruction is identical here, proof of this
extended version of this claim suffices for proof of security of the
extensions pursuant to Theorem 5.2 in [22]. Also note that in order
to simplify notation, whenever the associated ideal functionality is
understood (e.g. outpy, Totproduct ()and IM4, Totproduct ()), it is omitted.

LEmMA E.5. For any truncated view Ru in the support of RU 4, it
holds that (Z}, + AL.....ZI' + AIC")= (recpua((RZ1}. [92]]

L)
recpua((Rz1)!, [921'5))).
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Proor. Fix a truncated view Ru from the support of RU #. We
now proceed to analyze the input sharing and circuit evaluation
phases of S conditioned on RU # = Ru. The proof is by induction
on the structure of circuit C starting from the input gated and
proceeding to the output gates.

Basis. If an input gate ¢ belongs to a honest server then the claim
is immediate since we have additive attack A = 0. Similarly, if
input gate ¢ belongs to a corrupted server P;, let x¢ be the input of
P; to gate c. By construction of A€, we have that

recgua ([Rolfy, [Tv]) = x° + Aj, = Zj, + A,

For a RandFld or RandInt gate c, the intuition is that A can only
tamper in the pre-computation phase, which necessarily constitutes
an additive attack. More concretely, (using RandFld as a basis, with
RandInt similar):

recyy ([R2]5;. [921%) = recer (outy (0, RgH’R"’jm;‘VE:ﬁI))
= recy (outH (0 Rgu,Ru + Vi ~ Vi

sim, ¢ revd, ¢ sim, ¢
Ky + Imig gy = Hm™ )

= recy (outH (O, R9H, Ru = Vi Hm s;(rlil))

+ recy (outH (0, Yﬁpjm;\/i’lc{ Hm ?;{m—fH)) @)

= recy (outH (O, Hou, Ru> Hms&;la{)) +05 (5)
=75 + A

where §€ are the value(s) computed in simulator Steps 5¢ and 5d,
and 0y, and 8¢, the restrictions of §¢ to, respectively, the honest and
corrupt servers. Note that the transition in Equation 4 follows from
the linearity of out, 7,andfld, and SS, and Equation 5 follows from
Lemma E.4 and Step 5c of the simulator. Denote by [Hz] f,,iz(m’c the
shares obtained during simulator Step 5b. Notice that these shares
are completely determined by the truncated view Ru and A, and

sim, ¢

that by construction of [Hz] ;" we have

reCHUA ([332]% . [Hz ]s'm C) = recy ([iRz]f{ - 5;1) =7ZC.

Since we also have that [ﬂfz]f;(m’c + 50 [f]z] , then by the

linearity of SS we obtain

recua ([R5, [921%)

= recpua ([Rel§y, [921 ) reciuz (6°) + recgua (5¢)
:recHUﬂ( sz]ﬂ—5C )+recHU5{ (59

= recyu ([Rz (325" + recua (59)

=75 + A

Induction hypothesis. Assume that for any 1 < ¢ < |C] it
holdsthat (Z}, + AL,....Z&™ + AG™) = (recyua ([RZ1Y [92]1),

- recgua(IRZIG, [92151).

Induction step. Let ¢ be a gate inside C with inputs a and
b such that ¢ > a and ¢ > b. Assume without loss of general-
ity that b > a and fix values ([fRZ]}_I, - [iRz]?I) from the sup-
port of ([RZ]};.....[RZ]%), and (2!,
1., Zb). We now claim that conditioned on the above selection

it holds that Z, + Af, = recgua ([RZ]§, [Jz];[).

,z?) from the support of
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From the induction hypothesis we have that,

zy + Ap = recgua([Rz]f, [T2]1%)
and
2h + Al = recyua([R21ly, 921%)

Notice that the random variable Z¢, conditioned on the above selec-
tion of ([iRz]llLI, ..oy [R2] ?I) and (z}{, s zz) is uniquely determined
by the fixed z& + A% and zb + AD.

Handling dot product gates. If ¢ is a dot product gate, then

notice that by the definition of fc, by the linearity of S8, and by
the induction hypothesis it holds that

4
Z = (20 + AD) - (25 + A8) = > @0 + AT + AL
i=1

14
= Z(recHuﬂ( [R2]f;, [921%)) (recrua((R213y. 1921 %))
i=1

Next, denote by JMrCVd ¢ the messages obtained by S in simulator
Step 4a and denote by (RM y the messages obtained by the
honest servers Corresponding to the output of gate ¢ during a real
execution of the protocol. Since we have that JU # = RU 4, it holds
that (U7, IM' %) = (RU A, RMS,_,)-

Notice that the truncated view Ru and A completely determine
both JM;{Vd IC{ and RM€ “a_p as well as the messages ﬂ{m;[m_fH
obtained by the simulator in simulator Step 4b. Thus, denote by
(RUDMGEE the value of both IM'S'® ¢ and RME
mined by fRu

For any set of servers T denote by IMT, Totprod (x1) the nonde-
terministic functionality that computes the values of the input-
dependent messages that the servers in T send to all the servers
given their deterministic inputs x7 and using fresh randomness.

By Lemma E.4 we have that RGZ’,R HGE Thus it
holds that

A S deter-

~Yh = H,Ru

recy (outH (lMy( (Zle[ﬂlz]?_[, e, [Rz]?{) ,
RGY; gy~ Vi Hmgy) (6)
recy (outH (IM;[ (Z., [.’RZ]H,Zle[iRz]?I) s

HG;—I Ru’ FHm s&?—fH))

(recrrua (IR2]E, [H21%)) (recrua(R2)Y, [3z1%))

D~ I~

1l
—

(28 + A%)(Zh + AL) = Z¢
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Second, notice that
c\ _ ¢ a ¢ b
recy ([ZRZ]H) =recy (outH (IMﬂ (Zizl[Rz]H,Z. [RZ]H) s
R, Rus (RU Dm0 )
=recy (outH (IMy{ (Zizl[iRz]H,Zi:l[iRz]H) ,
92gH,JQu + )/IC:I - }’Iijg{m}i[nch
+ (fR U j)erVd ¢ _Im sim, ¢ ))

A—-H May
=recy (outH (lMﬂ (Zle[fRz]H,z: [fRz]?{)
Rgp, wu — Vip Hm'g ) (7)
+recy (outH (0 Vi (RU J) m’d C - Hm ;I'“_)CH))
=75+ A 3)

where the transition in Equation 7 follows the linearity of out,
Tdotprods and SS, and Equation 8 follows from Equation 6 and the
construction of A. Thus, we have proved that recy ([RZ];I) =
Z5, + A, Denote by [Hz] ;{m’ ¢ the shares obtained during simulator
Step 4b. Notice that these shares are completely determined by the
truncated view u and A. In addition, let §¢ be the values computed
in simulator Steps 4c and 4d, and 67, and 6, the restrictions of §¢
to, respectively, the honest and corrupt servers. Notice that these
values are also completely determined by Ru and A. Notice that
by construction we have that recyy# (6¢) = Af,, and thus by the
linearity of SS§ it holds that

recys ([RZ§; - 8F;) = Z§,
Next, notice that since recyy# ([ z]4, 192, ) #1 and

reCHUA ([RZ]Z, [7z]® ) #., then by the construction of [Hz] "
we have that

reCcquA ([RZ]% - (SIC:I’ [ﬂ-(‘z];i[m,c) = recy ([:RZ]C _5¢ ) = chl

Finally, since by construction we have that [fH?.]S'm’C + 5;[ =
[Jz]%, then by the linearity of SS we obtain

recua ([RZ];, [921%)

sim, c

= recyuA ([RZ i [Jz ) recgua (6€) + recgua (6°)
= recrpua ([RZ)G - Uz]ﬂ 8%) + recgua (59

= recguA ([RZ .’Hz]s'm c) +recguaz (69)

=78+ AS

Thus we have proved that
recua ([RZ15), [921%) = recq ([RZ1§;) = Z§, + A,
Therefore, for any 1 < ¢ < |C|, it holds that

(2}, + A, ... ZG + AY)
= (recrua((RZ}y. 921 g). .. recrrua ((RZfy. [921))

and the claim follows. O
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