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ABSTRACT

Secure multi-party computation has seen substantial performance
improvements in recent years and is being increasingly used in
commercial products. While a significant amount of work was ded-
icated to improving its efficiency under standard security models,
the threat models do not account for information leakage from
the output of secure function evaluation. Quantifying information
disclosure about private inputs from observing the function out-
come is the subject of this work. Motivated by the City of Boston
gender pay gap studies, in this work we focus on the computation
of the average of salaries and quantify information disclosure about
private inputs of one or more participants (the target) to an adver-
sary via information-theoretic techniques. We study a number of
distributions including log-normal, which is typically used for mod-
eling salaries. We consequently evaluate information disclosure
after repeated evaluation of the average function on overlapping
inputs, as was done in the Boston gender pay study that ran mul-
tiple times, and provide recommendations for using the sum and
average functions in secure computation applications. Our goal is
to develop mechanisms that lower information disclosure about
participants’ inputs to a desired level and provide guidelines for
setting up real-world secure evaluation of this function.
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1 INTRODUCTION

Secure multi-party computation and other forms of computing
on cryptographically protected data (such as homomorphic en-
cryption) open up possibilities for great utilization and analysis of
private data distributed across different domains, which otherwise
might not be feasible due to the sensitive nature of the data. For
example, analysis of health-related records and medical images
distributed across different medical facilities and extracting cues
from them lead to medical advances without the need to see the
records themselves. Today, data analysis practices by researchers
are hindered by laws regulating access to health data in different
countries and analyzing medical data at scale presents challenges.
Similarly, analyzing sensitive data such as salaries to understand
disparities by gender, race, or other types of marginalization can
supply decision makers with important information and empower
them to address the disparities. This was the case with the Boston
area gender pay gap surveys [13, 14, 37-39] that initiated in 2015
and ran through 2017 with more participants and data analysis by
additional categories including race. More broadly, wider adoption
of privacy-preserving technologies, and secure computation in par-
ticular, can lead to higher security standards and practices for a
broad range of different aspects of our society.

Secure computation techniques have seen significant advances
in recent decades in terms of their speed, as well as availability of
implementations and tools to facilitate their use for a variety of
applications. Tech giants such as Google and Apple started using
secure computation techniques in their products [12, 32, 36, 55] and
the number of start-up companies offering related products is grow-
ing (see, e.g., [31, 40, 45, 46]). However, a number of fundamental
questions still need to be addressed by the research community in
order to make secure computing practices common place.

One of the fundamental questions is how much information
about a participant’s private input(s) might be available as a result
of evaluating a desired function on private inputs. Standard security
definitions adopted in the cryptographic community require that
no information about private inputs is disclosed during function
evaluation. That is, given a function f that we evaluate on private
inputs x1, x2, . . . coming from different sources, security is achieved
if a participant does not learn more information than the function
output and any information that can be deduced from the output
and its private input. However, there are no constraints on types
of functions that can be evaluated in this framework, and thus
the information a participant can deduce from the output and its
private input about another participant’s private input is poten-
tially large. This problem is typically handled by assuming that the
function being evaluated is agreed upon by and acceptable to the
data owners as not to reveal too much information about private
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inputs. However, our ability to evaluate functions in this aspect and
determine what functions might be acceptable is currently limited.
This question is the subject of this work.

Intuitively, what we want is to guarantee that the function be-
ing evaluated on private data is non-invertible, i.e., observing the
output does not reveal its private input. Cryptography uses the
notion of one-way functions — and assumes this property for hash
functions - to model non-invertibility. However, what is needed
in this case is to ensure that the possible space for a target private
input is still large after the adversary observes the result of function
evaluation. This notion of non-invertibility was first used in the
context of secure multi-party computation in solutions for business
applications such as supply chain management and component
procurement [24-26] and was formulated as the inability to narrow
down the (private) input of another party to a single value or a
small set of possible values. Consequently, a series of publications
by Ah-Fat and Huth [1-4] put forward formal definitions that use
entropy to measure the amount of uncertainty about one or more
participants’ private inputs after using them in secure multi-party
computation. The definitions are framed from a) an attacker’s per-
spective who aims to maximize information disclosure of a target’s
private input and b) from a target’s perspective who determines the
maximum information disclosure about their inputs when deciding
whether to contribute their inputs to secure evaluation of a particu-
lar function. The above formulations are general and applicable to
any function, while application-specific formulations of what con-
stitutes sufficient input protection and function non-invertibility
also emerged. One example is building machine learning models
resilient to membership inference attacks [50, 53] that guarantee
that it is infeasible to determine whether someone’s data was used
for training the model.

Our contributions. In this work, we use the entropy-based
definitions from [1] as our starting point and analyze a specific
function of significant practical relevance. In particular, we focus on
the case of average salary computation as used in the Boston gender
pay gap study [38]. When the total number of inputs is known
(which is typically the case), the average computation is equivalent
to computing the sum. We intuitively understand that the larger
the number of inputs used in the computation of the average is, the
better protection each individual contributing its input obtains. In
the extreme case of two participants! no protection can be achieved.
This was understood by the designers of the Boston gender pay gap
study who recommended running the computation with at least
5 contributors [39]. However, the information disclosure was not
quantified, which we remedy in this work.

We start by analyzing the function itself and formally show
that the amount of information an attacker learns is independent
of his/her own inputs. This is consistent with our intuition that,
given a sum, one can always remove their contribution to the sum
and analyze the resulting value. Thus, the protection depends on
the number of spectators, i.e., input parties distinct from those
controlled by the adversary and the party or parties being targeted.

We analyze the target’s input entropy remaining after partici-
pating in the computation (and consequently the entropy loss as

'We use the term “participants” to denote parties contributing inputs to the compu-
tation. The computation itself can be performed by a different set of parties, but our
result is independent of the mechanism used to realize secure function evaluation.
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a result of participation) for a number of discrete and continuous
distributions including uniform, Poisson, normal (Gaussian), and
log-normal. Log-normal is typically used for modeling salary data,
but is the least trivial to analyze. An unexpected finding of our
analysis is that for a given distribution, the absolute entropy loss
is normally independent of the distribution parameters and the
absolute entropy loss remains very close for different distributions
as we vary the number of participants/spectators. Quantifying the
information loss allows us to devise a mechanism to lower infor-
mation disclosure to any desired level (e.g., 1% of original entropy,
0.05 bits of entropy, etc.).

We extend our analysis of information loss to the case when the
computation is run more than once (as was the case for the Boston
gender pay gap study) and examine the case with two evaluations.
This corresponds to (i) the target participating in two computations
with the same input where the set of participants differs between
the executions and (ii) the target participating in one computation,
where the other is run without the target’s input. We observe that
information loss increases as a result of multiple computations,
regardless of whether the target participates once or twice. Further-
more, the protection is maximized when one half of the original
contributors are replaced, i.e., 50% of the initial participants re-
main and the other 50% are replaced with new participants. Our
multi-execution analysis is based on the normal distribution, but
we expect the outcome to be similar for other distributions as well.

We provide additional proofs and generalize our analysis to three
and more executions in the full version of the text [8]. An interesting
finding is that the best configuration that minimizes information
loss is determined by pairwise overlaps of participants between the
executions and not by other parameters and sizes. This allows us
to determine optimal setup for a single and repeated execution of
the average function.

We empirically validate our findings throughout this work and
provide recommendations for securely evaluating the average func-
tion in real world applications. In particular, in all of our exper-
iments the cost of participating in the average computation, i.e.,
the difference in the entropy before and after the computation is
a fraction of a bit (for both Shannon entropy used with discrete
distributions and differential entropy used with continuous distri-
butions). This translates to small relative entropy loss in practice.
When modeling salary data using log-normal distribution with the
parameters specifically chosen for salaries [17], the entropy loss
is below 5% with at least 5 non-adversarial participants or specta-
tors and achieving 1% entropy loss requires 24 spectators. These
numbers are also surprisingly similar across different distributions.
Furthermore, when the computation is repeated (we use a normal
distribution to adequately approximate the log-normal setup), en-
gaging in the computation the second time with an overlapping set
of 50% participants whose inputs do not change results in only 30%
entropy loss of the first participation. These and other findings lead
to a number of recommendations for running this computation in
practice, which we provide at the end of this work.

On the choice of metric. Our analysis uses Shannon entropy.
One might argue that this is not the best metric because it does
not distinguish between, e.g, leaking the least significant vs. most
significant bit of one’s salary, while learning the latter is much
more valuable to an adversary than learning the former. However,
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as we show throughout this work, information leakage for this
application is always small regardless of the setup. In particular,
the most favorable for the adversary setup across all distributions
discloses only about 0.7 bits of entropy, i.e., the adversary cannot
learn even a single bit of target’s salary. Furthermore, we derive
effective mechanisms for reducing information loss to a controlled
low level such that the worst case scenario will not realize. We
conduct similar analysis using min-entropy in the full version of
the paper [8] and show that Shannon entropy trends are consistent
with those for min-entropy. A primary advantage of using Shannon
entropy is that we are able to go much further in our analysis
and ultimately derive close-form expressions, which cannot be
accomplished for other metrics.

2 RELATED WORK

In what follows, we review prior literature on information disclo-
sure from function output in the context of computing on private
data and related techniques that limit information disclosure.

2.1 Quantitative Information Flow

The field of quantitative information flow is closely related to our
work. Denning [23] is credited as the first to quantify information
flow as a measure of the interference between variables at two
stages during a program’s execution (typically denoted by “high-”
and “low-security” variables, which equates to the target’s inputs
and output in our setting, respectively). Smith [52] formally es-
tablished the foundations of quantifying the information leakage
under the threat model that an attacker can recover a secret in
one attempt (denoted by the notion of vulnerability). It has been
shown by Massey [42] that the Shannon entropy cannot capture
this information under the guessing assumption, and Smith rec-
ommends min-entropy in its place. Alvim et al. [6] generalized the
min-entropy into the g-leakage to incorporate gain functions to
model the benefit an adversary gains from making guesses about
the secret. Subsequent works encompassed variations on the g-
leakage [5]. Other works in differential privacy feature derivations
of leakage bounds [19], leakage analysis in the case of an adaptive
adversary [34], and knowledge-based approaches for measuring
risk [41, 47].

The fundamental advantage of our Shannon-based approach is
the ability to derive closed-form expressions for the information
leakage of the average salary computation, while other metrics do
not share this characteristic. For example, the chain rule of entropy
(a simple, yet critical component of our analysis) is not satisfied
if min-entropy is used [33, 51] in place of Shannon entropy. Our
reductions would no longer hold, and we would be forced to resort
to complete enumeration or approximation methods to compute
the entropy. However, in the full version we provide supplementary
analysis that demonstrates similarities between Shannon entropy
and min-entropy based analyses. We also remain open to evaluating
other metrics in the future.

An additional distinction between our work and existing litera-
ture on (quantitative) information flow is that we do not consider
possible leakage from intermediate aspects of a computation’s exe-
cution. Whereas other works may examine a program’s loops [41],
side-channel vectors [34], or inter-dependent structures [7], we
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strictly investigate the relationship between the output and target’s
input, since function itself is assumed to be evaluated using secure
multi-party protocols.

2.2 Function Information Disclosure

Existing literature on information leakage from the output of a
secure function evaluation is limited, relative to the rest of the field
of secure computation. Secure multi-party protocols are designed
to guarantee no information is disclosed throughout a computation,
but do not ensure input protection after the output is revealed. The
work of Deshpande et al. [24-26] was pioneering in that respect
and designed secure multi-party protocols for business applications
that ensured that the function being evaluated is non-invertible,
i.e,, no participant can infer other participants’ inputs from the
output. A trivially invertible example is the average salary calcu-
lation between two individuals, since either party can recover the
other’s input exactly. Deshpande et al. [25, 26] first addressed non-
invertibility in the context of secure supply chain processes. The
proposed protocols offered protection from inference of future in-
puts to a repeated calculation after a result is disclosed. A later work
by Deshpande et al. [24] achieved non-invertibility for a framework
designed for secure price masking for outsourcing manufacturing.
The authors argued information leakage was minimal by analyzing
mutual information between correlated normal random variables,
but did not consider other distributions or entropy metrics.

Ah-Fat and Huth [1] provided the first in-depth analysis of in-
formation leakage from the outputs of secure multi-party computa-
tions. The authors formalized two metrics to measure expected
information flow from the attacker’s and target’s perspectives,
namely, the attacker’s weighted average entropy (awae) and tar-
get’s weighted average entropy (twae), respectively. Participants’
inputs are modeled using probability distributions and were speci-
fied to be uniform, but this constraint can be relaxed. The inherent
difficulty of this entropy-based approach is the requirement to enu-
merate every possible input combinations from all parties, which
scales poorly as the input space and number of participants grow.
We utilize their definitions for our analysis and demonstrate their
utility to computation designers to determine potential disclosure
about participants’ inputs

This model was expanded in [2] to encompass the Rényi, min-,
and g-entropy. The extension is presented in combination with a
technique for distorting secure computation outputs to limit infor-
mation disclosure from the output and achieve balance between
accuracy and privacy. This was further developed in [3] with a
fuzzing method based on randomized approximations. A closed-
form expression for the min-entropy of a two- and three-party
auction was derived in [4], alongside a conjecture for the case with
an arbitrary number of parties.

Conceptually, the notion of output privacy is related to our
work. The terminology was introduced in the field of data min-
ing [15, 35, 43, 44, 56], with the goal of designing techniques to
protect inputs from inference attacks on the output model. Informa-
tion about the inputs that can be obtained from the output includes,
but is not limited to, properties which can be uniquely attributed
to a small number of input participants. Conventional approaches
for minimizing disclosure involve applying transformations on the
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result via monotonic functions [15] or even proactive learning [56].
These techniques have little to no impact on the result of the com-
putation. This direction differs from our work since the type of
disclosure they aim to rectify is not quantified.

There is also literature that uses specific formulations to demon-
strate that computation does not disclose sensitive information
about participants. This includes resilience to membership infer-
ence attacks [50, 53] in the context of machine learning training
and differential privacy [27, 28] for statistical databases. In partic-
ular, differential privacy ensures the output of a query is negligi-
bly dependent on a single individual’s record in the database and
resilience to membership inference attacks prevents one from de-
termining whether a specific individual’s data was used for model
training. These concepts have no direct relationship to our work,
aside from designing mechanisms for lower information disclosure
as a result of computation on private data. In this work, we do so by
varying the number of participants in the computation, while other
methods augment the function directly to produce a differentially
private output.

3 PRELIMINARIES

Following [1]’s notation, let P denote the set of all participants in a
computation with |P| = m. All participants P are partitioned into
three groups: parties controlled by an attacker A C P, a group of
parties being targeted T C P \ A, and the remaining participants
called spectators S = P\ (A U T). Let the random variable Xp,
correspond to the input of a single participant P; and xp, denotes a
value that Xp, takes. In addition, the notation ;(p = (Xp,,- .. ,Xpm)
denotes a multidimensional random variable and Xp is a vector of
the individual values of the same size. We also let Xp = }}; Xp,
define a new random variable representing the sum of the partici-
pants’ random variables. The same notation applies to the sets A,
T, and S. Our present analysis is based upon the assumption that
all participants’ inputs are independent and identically distributed,
which we consequently relax.

For discrete distributions, we use Shannon entropy H(X) to
measure the information of a discrete random variable X with mass
function Pr(X = x) defined over domain Dy. Specifically,

HOO == ) Pr(X =x) -logPr(X =),

where all logarithms are to the base 2. If we are dealing with con-
tinuous distributions, we shift to the differential entropy h(X) with
density function f(x) over the support set X, defined as

B0 = = [ 760 log f i

We study information leakage of the computation of the average:

0 = f(Xa, X1, Xs) = % (Zixn +Zj XA, +Zk Xsk),

where o denotes the output of the function. We model the output o
by the random variable O defined over the domain Do, namely

o= % (ZzXT’ +ZjXAj +kask) .

The 1/m factor can be ignored in the final expression since the
number of participants is typically known by all parties and can
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trivially be removed from the output. We omit it throughout the
remainder of the paper.

In this work, we consider distributions where the sum of in-
dependent individual random variables is well studied and their
mass or density functions have closed-forms expressions or can be
reasonably approximated. This includes the following distributions:

o Discrete uniform U (a, b), where a and b are integers corre-
sponding to the minimum and maximum of the range of the
support set {a,a+1,...,b—1,b}.

e Poisson Pois (1), where A € Ry is the shape parameter that
indicates the expected (average) rate of an event occurring
over a given interval.

e Normal (Gaussian) N (;1, 0'2), where ;4 € R and % € Ry
correspond to the mean and squared standard deviation,
respectively.

e Log-normal log N (p, 0?) with parameters y € R and o2 €
R, which correspond to the mean and squared standard
deviation of the random variable’s natural logarithm.

X ~ Dist indicates that random variable X has distribution Dist.

As stated earlier, Ah-Fat and Huth [1] provided multiple information-
theoretic measures to quantify information disclosure after a func-
tion evaluation, which we use here:

DEFINITION 1 ([1]). The joint weighted average entropy (jwae)
of a target T attacked by parties A is defined over all X4 € D and
X1 € DT as

jwae(Ra, %)= > Pr(0=o|Xa =% Xr = %r)

oeDo

“H(X7 | Xa = %4,0 = 0).

This metric measures the information an attacker would learn (on
average) about the target when the input vectors are ¥4 and X7. One
can subsequently define the average of the jwae over all possible
X1 or X4 vectors weighted by their respective prior probabilities.

DEFINITION 2 ([1]). The target’s weighted average entropy (twae)
of a target T attacked by parties A is defined for all X € Dt as

twae(¥7) = ZerDA Pr(Xs = %4) - jwae(%a, ¥1).

The twae informs a target how much information an attacker can
learn about its input when the input is X4.

DEFINITION 3 ([1]). The attacker’s weighted average entropy (awae)
of a target T attacked by parties A is defined for allX4 € Dy as

awae()?A) = ZfTEDT PI'(XT = J?T) . jwae(a?A, J?T)
The awae informs an attacker about how much information it can
learn about the target’s input when the attacker’s input vector is
% 4. The attacker can consequently compute the awae on all values
in D4 to determine which input maximizes the information learned
about the target’s input (and thus what should be entered into the
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Figure 1: The twae(¥r) and awae(X4) using inputs over
U (0,15) with a different number of spectators |S|.

computation). Using the definition of jwae, it follows that:

awae(X4) = Z Pr(Xr = Xr) Z Pr(O = o | X4 = %4, X1 = X7)

XT€DT 0€Do

“H(X7 | X4 =%4,0=0)

= Z}TEDT ZOEDO PI'(O =0 XT =XT | XA = XA)
H()?T | )?A =X4,0=0).

Since )?T is independent of )?A, we derive that awae equals to
conditional entropy:

awae(¥4) = Z Pr(O=o0| X4 =%4) HXr | X4 = %4,0 = 0)
o€eDo

=H(X7 | X4 =%4,0)

where the last equality is due to the definition of conditional entropy.

4 SINGLE EXECUTION

In this section we analyze a single execution of the average function
on private inputs and the associated information disclosure of the
target’s inputs. Recall that the computation is modeled by

0= f(XaXr.Xs)= ) X+ )] Xa,+ ) Xs (1)

and we let n = |S| denote the number of spectators.

As a first step, we plot the values of awae and twae for our
function of interest. Figure 1 illustrates these values with a single
adversarial participant, a single target and a varying number of spec-
tators (1-3). All inputs follow the uniform distribution U (0, 15).
Calculating the twae and awae values using Definitions 2 and 3 re-
quires enumerating all input and output combinations. This quickly
becomes computationally inefficient as the input space grows.

Each participant, acting as a target, can utilize the twae prior to
the computation to determine how much information an attacker
can learn (on average) from the output for a specific input that the
participant enters into the computation. As the figure illustrates, the
target’s remaining average entropy is maximized when the input
is in the middle of the range, indicating that those values have
better protection than inputs near the extrema. As the number of
spectators increases, the curves shift upwards, i.e., the uncertainty
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about the target’s input increases and the gap in the uncertainty
between different input values reduces.

The awae, on the other hand, gives an adversary the ability to
determine which input to enter into the computation that leads to
maximum information disclosure about a target’s input (without
knowing what input the target used). As displayed in the figure,
the adversarial knowledge does not change by varying its inputs
into the computation. This is consistent with our intuition that,
given the output, the adversary can remove their contribution to
the computation and possess information about the sum of the
inputs of the remaining parties. We formalize this as the following
result:

CramM 1. awae(xy) is independent of attacker’s input vector X 4.

ProoF. According to the chain rule of entropy which states that
H(X,Y)=H(X|Y)+H(Y) [22, Chapter 2.5], we have that:

H(Xr | X4=%4,0) = H(X1,0 | Xa = ¥4) —H(O | X4 = %4)
= H(Xr | X = %4) + H(O | X1, X4 = %4)
~H(O | X4 = %a)

— H()_()T)'FH (Zixsi) -H (ZiXTi"'Zj XSj) s

which is independent of x4. o

Using our notation from Section 3, the above expression for awae (x4 )
simplifies to

H(Xr) +H (Xs) — H (X7 +Xs) = H(Xr | X1 +X5).

The next step is to determine which measure (awae or twae)
we should use in our analysis of the average salary computation.
Ah-Fat and Huth [1] argued that the awae served as a more precise
metric for measuring information leakage of a secure function
evaluation than twae for their choice of function and used awae
in their subsequent work [2]. Our perspective also aligns with
that conclusion. In particular, while the twae informs the target
of the amount of information leakage for the input they possess,
the target may not be technically savvy enough to be able to apply
the metric and make an informed decision regarding computation
participation (plus, the choice to participate or not participate can
leak information about their input). Perhaps more importantly, a
function needs to be analyzed by the computation designers in
advance and without access to the inputs of future computation
participants to determine a safe setup for the participants. Thus, the
available mechanism for this purpose is the attacker’s perspective
or awae, and we focus on this metric in the rest of this work.

Based on the above, in what follows we use H()?T | X7+ Xs) to
measure the leakage, and the simplified function is

f&r.Xs) = Xn,+ ), Xs, = Xr +Xs.

This refines the parameters we can vary in our analysis to (1) the
number of participants in the target and spectators groups and (2)
the types of distributions and statistical parameters of the inputs.
Furthermore, the computational difficulty associated with directly
computing the awae is absent when using H()?T | X7+Xs). Instead,
the computation simplifies to calculating the entropy of sums of
random variables. We examine the behavior of the conditional
entropy for several characteristic probability distributions next.
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4.1 Discrete Distributions

We start with discrete input modeled using the uniform and Poisson
distributions. The sum of n identical independent Poisson random
variables X; ~ Pois(A) is equivalent to a single Poisson random
variables X = }}; X; ~ Pois(nd) with the mass function Pr(X =
x) = (n/l)k e_”’l/ (k") . Note that the Poisson distribution is defined
over all non-negative integers, hence the distribution has infinite
support. We choose to halt the calculation of H(X) when Pr(X =
x) < 1077 as the contribution of events beyond this point to the
entropy is infinitesimal.

Conversely, the sum of n identical independent uniform random
variables X; ~ U (0, N — 1) is not immediately obvious. Caiado and
Rathie [16] derived several equivalent expressions for the mass
function of the sum of n uniform random variables, one of which
we use in our analysis and is defined as:

Pr(X = x) = n (ZLx/NJ T (n+x+pN) (1) ,
N» p=0 T(p+1I'(n—-p+ I (x—-pN+1)
where I'(n) = (n — 1)! is the Gamma function. The domain of X is
{0,...,n(N-1)}.
Our analysis of awae for these two distribution is given in Figures
2 and 3, respectively. We compute and display

o the original entropy of target’s inputs prior to the computa-
tion H(Xr) (subfigure a)
o the awae or target’s remaining entropy after the computation
H(Xr | X1 + Xs) (subfigure a)
o their difference of the two that represents the absolute en-
tropy loss H(Xr) — H(Xr | X1 + Xs) (subfigure b) and
o the entropy loss relative to the original entropy prior to the
execution (H(Xr) — H(Xt | X1 +Xs))/H(X7) (subfigure c)
with a single target (|T| = 1), a varying number of spectators, and
varying distribution parameters. Relative entropy loss is included
to demonstrate to potential input contributors, who are likely non-
experts, that information disclosure is small. That is, disclosure of,
e.g., 5% of input’s information is easier to explain to non-experts
than 0.1 bits of entropy. The absolute loss is equivalent to the mutual
information between the target input and the output: I (Xr;0) =
H(Xt) - H(XT | XT + X5).

Figure 2 presents this information for the Poisson distribution
with A € {4,8,...,128}. In Figure 2a, entropy after the execution
converges toward the corresponding entropy prior to the execution
for all values of A as the number of spectators increases. Increasing
A by a factor of two repeatedly yields an upward shift of these
two curves by a constant amount while preserving their respective
shapes. The increase is expected as a result of the inputs having
more entropy as A increases, but the shape of the remaining entropy
is notable, as A does not appear to impact the entropy loss. This
is further confirmed when displaying the absolute entropy loss in
Figure 2b: The resultant curves overlap each other, regardless of A.

The relative entropy loss in Figure 2c, calculated as a percentage
of the target’s initial entropy, demonstrates how many spectators
the computation needs to include to lower the entropy loss to the
desired level. The larger the original entropy is (larger 1), the fewer
spectators will be needed to stay within the desired percentage. For
example, 5 spectators are needed with A = 4 to limit relative loss to
5% (marked by W) and 24 spectators are needed to cap the loss at
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1% (marked by X). When A = 128, the number of spectators reduces
to 3 and 13 to maintain loss tolerances of 5% and 1%, respectively.

The same trends hold for the uniform distribution in Figure 3,
where we use N € {8,16,...,256}, but the values themselves
slightly differ. For example, the absolute entropy loss in Figure 3b
is slightly larger than the loss in Figure 2b when the number of
spectators is small. When N = 8 with 3 bits of original entropy, 5
and 24 spectators are needed to achieve at most 5% and 1% relative
loss, respectively. This is the same as what was observed for Poisson
distribution with 3-bit inputs (4 = 4).

4.2 Continuous Distributions

For continuous distributions, we shift to differential entropy and
analyze normal and log-normal distributions, the latter of which is
typically used to model salaries. While there is no direct relationship
between differential and Shannon entropy (see [22, Chapter 8.3]),
we demonstrate that they exhibit very similar behavior for the
average computation.

The differential entropy of a normal random variable X; ~
N(p, o) is h(X;) = %log (27‘[6‘0’2) [22, Chapter 8.1]. The sum
of n identical normal random variables is also normal, namely
X ~ N (ny, no?). This enables us to directly apply the differential
entropy definition to the sum.

The log-normal distribution is a well-established means of mod-
eling salary data for 99% of the population [20], with the top 1%
modeled by the Pareto distribution [54]. The differential entropy
of a log-normal random variable X; ~ log N'(y, 0?) is h(X;) =

1
log (e"”f V27wz). However, the sum of n log-normal random vari-

ables has no closed form and is an active area of research [9-
11, 21, 30, 48, 49, 57]. We adopt the Fenton-Wilkinson (FW) ap-
proximation ? [21, 30] that specifies a sum of n identical indepen-
dent log-normal random variables X; ~ log N (i, 6%) as another
log-normal random variable X ~ log N (ji, 6%) with parameters

2

6% =In (% + 1), fi=In(n - exp(p)) + % (02 - 52) .
This enables us to compute differential entropy using a closed-form
expression. Unlike prior distributions, we use a single set of y and
0% parameters calculated from real salary data in [17]; namely,
p = 1.6702 and o = 0.145542.

Figures 4 and 5 present experimental evaluation of entropy loss
with a single target and a varying number of spectators for normal
and log-normal distributions, respectively. As before, we report
target’s entropy before and after the execution, the difference of
the two as the absolute entropy loss, and the entropy loss relative
to the entropy before the execution.

In Figure 4 (normal), we set the mean p = 0 for all experiments
(since differential entropy does not depend on ) and vary 2 from
4 to 128. The results are consistent with the discrete counterparts in
terms of the trends, curve shapes, and specific values. The absolute
loss in Figure 4b is once again constant for any o2 and the relative
loss is dictated by the amount of input’s entropy in Figure 4c. When

2QOther approximations for the sum of log-normal random variables are difficult to
translate into an expression for the differential entropy and hence we choose the FW
approximation. Its disadvantage is that that the FW approximation deteriorates for
0% > 4 and small values of x in the density function [10, 57]. Fortunately, our o is
sufficiently small, allowing us to use the FW approximation free of consequence.
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Figure 3: Analysis of target’s entropy loss using the uniform distribution with U (0, N — 1), and varying N with |T| = 1.

0% = 4 and inputs have 3 bits of entropy, the number of spectators
required to maintain at most 5% and 1% entropy loss (5 and 24
spectators, respectively) is the same as for Poisson and uniform
distributions with 3-bit inputs (A = 4 and N = 8, respectively). With
5.5-bit inputs (62 = 128), 3 and 13 spectators are needed to achieve
at most 5% and 1% loss, respectively, which the same as for Poisson
distribution with 5.5-bit inputs (4 = 128).

The results in Figure 5 (log-normal with real salary parameters)
are consistent with both the discrete and continuous distributions.
Surprisingly, we observe the same 5 and 24 spectators achieve at
most 5% and 1% relative loss, as observed with all other distributions
(with input original entropy being slightly over 3 bits).

Before concluding our discussion of continuous distributions, we
are able to show one more result. We experimentally demonstrated
that the amount of absolute entropy loss is parameter-independent
for several distributions, but we can formally prove this for normally
distributed inputs:

Cram 2. If the inputs are modeled by independent identically dis-
tributed normal random variables, the absolute entropy loss h()zT) -
h()_('T | XT + Xs) depends only on the number of target |T| = t and
spectator |S| = n inputs and is % log (% +1).

ProoF. Let |T| = t and |S| = n, such that X7 ~ N (0, tc?) and
Xs ~ N(0,n0?). The absolute entropy loss is therefore

h(Rr) — h(Ry | Xr +Xs) = h(Rp)= (R(Xr)+h (Xs) ~h (X7 + X))
h (Xt +Xs) - h(Xs)

1 1
5 log 2e(t + n)o? — 5 log 2menc?

%log(%+l):®(log(%+l)),

which depends only on n and t. O

4.3 Discrete vs. Continuous Distributions

We next compare the information loss across all four (discrete and
continuous) distributions. We choose parameters to maintain the
initial entropy of an input, H(Xj) or h(X;), to be approximately 3
bits, as to reasonably correspond to the log-normal distribution.
This leads to Pois(4), U (0,7),and N (0, 4). We plot this information
for a single target and a varying number of spectators in Figure 6.

In the figure, all distributions converge with > 4 spectators and
are very close even with 3 spectators. This convergence on large val-
ues is expected as a consequence of the central limit theorem. From
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the four distributions, the closest are the Poisson results with A = 4
(discrete) and the normal distribution N (0, 4) (continuous). Unlike
normal, log-normal, and the single-variate uniform distributions,
an exact expression of the entropy of a Poisson distribution has
not been derived. Instead, when computing the necessary values in

Section 4.1, we directly applied the definition of Shannon entropy.

To draw a parallel between discrete and continuous distributions,
and specifically show a similarity between Poisson and normal
distributions, we turn to an approximation of Poisson distribution’s
entropy computation.

It was conjectured that for sufficiently large 1 (e.g., 4 > 10),
the Poisson distribution’s Shannon entropy can be approximated
by H(X;) = %log(ZneA), which resembles h(X;) = %log(ZmzoZ)
used for normal distributions. Evans and Boersma [29] proposed a
tighter bound (further formalized by Cheraghchi in [18]), to be

1 1 1 19 .
H(Xl) = E IOg(Zﬂ'EA) - m - —24).2 - _36013 +O(A )

and remains close to that of normal distribution with ¢2 = 1.

0-7 = Pois(4)

0.61 . —e— U0,7)
2051 4 N0

= log Niw(1.67,0.15)
2 0.4

=

203

€3]

0.2

01

No. spectators

Figure 6: Comparing target’s absolute entropy loss for dis-
crete H(X7) — H(X1 | XT + X5) and continuous h(X7) — h(Xt |
Xt + Xs) distributions.

One implication of this result for us is that Claim 2, which we
demonstrated for normal distributions, would apply to the approxi-
mation of Poisson distributions as well. As a result, we obtain inde-
pendence of the (absolute) entropy loss of distribution parameters



Understanding Information Disclosure from Secure Computation Output: A Study of Average Salary Computation

for both discrete and continuous distributions and almost identical
behavior across the distributions as a function of the number of
spectators.

Furthermore, our analysis using Shannon/differential entropy
is partially echoed for the min-entropy (demonstrated in the full
version of the text [8]). In particular, we conjecture independence
of the attacker’s input in the min-entropy-based awae and show
that plots for the absolute min-entropy loss closely resemble those
for Shannon entropy for the Poisson distribution.

Up to this point, we have assumed that all participants’ inputs are
sampled from identically distributed random variables. However,
we can relax this assumption and investigate if/how the information
disclosure changes if parties” inputs are non-identically distributed.
For example, employee salaries may differ slightly from company to
company, while still following the same distribution. We can model
this by adjusting the statistical parameters of individual participants.
This poses an interesting problem where there are multiple groups
with different distribution parameters. As such, we are interested in
determining which prior claims are still valid or need to be modified.
Claim 1 (attacker input independence) will hold regardless of how
participants’ inputs are distributed. Conversely, Claim 2 (depen-
dence on the number of targets and participants in the absolute
entropy loss) must be reworked since the claim is formulated under
the assumption that inputs are identically distributed. We investi-
gate this relaxation, as well as conduct additional experiments, in
the full version of the paper [8].

5 TWO EXECUTIONS

A natural generalization of the results of the prior section is to
consider executing the average salary computation more than once.
For example, after running the Boston gender pay gap study once,
the same computation was executed the following year with an ex-
tended set of participants. In this case, if the time interval between
the executions is small enough such that the inputs do not change
between the executions or change minimally, one would expect
that repeated participations would lead to additional information
disclosure compared to a single execution. Thus, in this section
we analyze the case of two executions and demonstrate their im-
pact on the participants. We consider both the cases when a target
contributes its input to both executions and when the target partic-
ipates only in one of the executions and other takes place without
the target, but on related inputs. Both cases result in additional
information disclosure compared to a single execution, which we
quantify in this section.
We partition the set of spectators S into the following subsets:

e spectators present only in the first execution S; C S,
e spectators present only in the second execution Sz C S\ Sy,
e and spectators present in both executions S12 = S\ (51 U S2).

A person participating more than once (target or spectator) enters
the same input into both execution.
When the target participates in both executions, we have:

01 = ZiXTi + ZiESlz Xi+ Ziesl Xi = XT +X512 +X51

Oz = ZiXTi + Zieslg Xl' + ZiESZ X,' = XT +X512 +X52.
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The random variables O; and O3 are not independent, as they both
are comprised of X7 and X ,. We therefore want to compute the
conditional entropy (using differential entropy notation):

h(Xr | O1,02) = h(Xr,01,02) — h(01,02). )

CraM 3. The above conditional entropy can be expressed as

h(Xr|O1,02) = h(XT) + h(Xs,,+Xs,, Xs,,+Xs,) — h(01,02). (3)

The derivation can be found in the full version of the text.

In the special case when no spectators participate in both execu-
tions (i.e., S;2 = 0), the middle term simplifies to h(Xs,) + h(Xs,).

When the target participates only in one of the experiments, we
define executions O; and Oé, which are the same as O; and O,
respectively, except that the target’s inputs are not included. For
instance, O] = Xg,, + X5, . The relevant entropies in that case are
h(Xr|0}, 02) and h(Xr|O1, 0}).

The above requires us to introduce the definition of joint entropy
of correlated random variables. Now, the normal distribution stands
out among those considered in Section 4 as a suitable candidate for
our analysis. The generalized multivariate normal distribution is
well-studied and has a closed-form differential entropy, which we
discuss next.

5.1 Bivariate Normal Distributions

Evaluating Equation 3 requires defining the differential entropy of a
multivariate normal random variable. We then derive the necessary
core parameters for our distributions and use them to compute the
conditional entropy.

Let X; ~ N (u, 0'1.2) be a single normal random variable as de-
fined in Section 3. We define X = (X1,... ,Xk)T to be a general
multivariate normal distribution of a k-dimensional random vec-
tor, with X ~ N(p,X). Here, u € RF is the mean vector specified
asp =E[X] = (E[X1].E[Xo]....E[X, D) = (uoopion o)
and ¥ € RF*F is the k X k covariance matrix with each element
definedas 3; j =E [(X,— - 1) (X - /,tj)] = Cov [X,—,Xj]. The differ-

=

ential entropy of the multivariate normal distribution X is given by
h()z) = % log ((27re)k det Z) , [22, Chapter 8.4] where det X is the
determinant of the covariance matrix. The next step is to character-
ize our multivariate distributions and determine their covariance
matrices. We also derive their mean vectors which are used for
intermediate results.

To compute the second and third terms of Equation 3, we for-
malize the bivariate distributions § = (X5, + Xs,, Xs,, + st)T
and O = (01, Oz)T. We denote pup = }; up, and O'E, =2 0'123‘ as
the sum of the means and standard deviations, respectively, olf all
participants within a group P. Note that the mean is absent from
the formula for the differential entropy, and therefore we can safely
assume all y; = 0. Starting with O, we invoke the linearity of the
expectation for the mean vector:

E [01])

= _ (B [Xr+Xs,,+Xs, | HT+HS S| _ (H1
H6 = \E[02] '

- (E [XT+X512+X52]) - (HT+ﬂslz+usz 2
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For the covariance matrix, using the properties Cov [X, X] = Var [X]
= 0)2( and Cov [X, Y] = Cov [Y, X] yields

S = Cov [01, Ol] Cov [01, Oz] _ Var [O]]
O~ \Cov [Oz, O]] Cov [Oz, Oz] ~ Cov [01, Oz]

2,2 2
(c7T+0'512+0'S1 Cov [01,02]

Cov [Ol s Oz]
Var [O;]

2

Cov[01,02]
Cov [01, 03] 0'%+0'§12+05Z ’

2
= !
(Cov [01,02] o%

The expression for Cov [O1, O3] can be stated as follows:

Cram 4. Cov[01,02] = 0% + oglz if Sy is non-empty, and

Cov[01,02] = 0'% otherwise.

The proof is available in the full version of the text [8]. The final
parameters of the bivariate distribution O are

2 2 2
L 1 5= o1 UT+O'SI2
B = 20 T |62 4+ o2 o2 :
H2 T 195, 2

Repeating this procedure for the spectator joint distribution S yields
a similar set of parameters:

2 2 2
pz= (/"512 + iusl) I ; 9, 5 %51 5
S \psy, +ps,) S 9%, a5, + s,

Equipped with expressions for ¥ = and X 3> we are prepared to begin
our experimental analysis of (Xt | O1, O2).

5.2 Experimental Evaluation

The above allows us to experimentally evaluate the target’s en-
tropy loss for when inputs are normally distributed. We use normal
distribution NV (0, 4) to reasonably approximate the log-normal dis-
tribution with real data. Once again, |T| = 1 for concreteness and
we let |S1| = |S2| in all experiments, i.e., the number of spectators
is the same in both executions.

It is informative to analyze information loss as the fraction of
shared spectators changes and we do so for three different computa-
tion sizes. To be as close to the setup that guarantee 1%-5% entropy
loss for the log-normal distribution (5-24 spectators), we choose
to execute our experiments with 6, 10, and 24 spectators (where
having an even number is beneficial for illustration purposes). This
corresponds to the number of non-adversarial participants when
the target is absent and the number of non-adversarial participants
is one higher when the target is participating.

We display the following information in Figure 7:

o the target’s initial entropy h(Xr),
the target’s entropy after a single execution h()_(} | 01),
the target’s entropy after participating twice h()_f'ﬂOl, 0y),
the target’s entropy after participating in one of the two
executions, i.e., h()_f'T | O1,03) and h()?T | 0}, 02)
and plot the values as a function of the fractional overlap between
two executions for a given number of spectators.

Naturally, the value of h()_f'T | O1) remains constant when the
number of participants is fixed. We observe that when participating
twice, h()_fT | 01,02) converges to h()?T | O1) as the fraction
of shared spectators increases. This is expected because at 100%

overlap, we are functionally calculating h()_fT | 01,07) = h()?T |
0O1). Conversely, increasing the fraction of the overlap has the
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inverse effect for h()?r | Oy, Oé), causing it to trend downward. At
100% overlap, h(;(T | 01,0%) = 0 (point omitted from the plots).
This is a consequence of effectively computing h()_(} | 01,Xs,,):

h(Xr|01,Xs,,) = h(X1, 01,Xs,,)~h(01, Xs,,)
= h(X7)+h(Xs,,)~ (R(XT+Xs,, | Xs,,)+h(Xs,,))
=h(X1)+h(Xs,,)~ (R(X7)+h(Xs,,)) =h(XT)~h(XT).

When |T| = 1, then h()?T) = h(Xt), thus reducing the above equa-
tion to zero. This informs us that the output of the second com-
putation O without any unique spectators reveals the target’s
information entirely. We analytically prove these observations in
the full version of the text by deriving exact expressions for the
absolute entropy loss.

Our next observation pertains to the point of intersection where
h()_(} | 01,02) = h()?T | 01,0;), which occurs when 50% of the
spectators are shared across the computation. This appears for
the special case when the total number of spectators in a single
evaluation is even. Concretely, we compare

h(X7101,02) = h(Xr, 01,02) = h(01,02). @
h(X7|01,0}) = h(Xr,01,04) - h(01,0}).
It can be shown using the procedure outlined in Section 5 that
h()?T, 01,0) = h()_fT, 01, Oé) Therefore, we prove the following:

CramM 5. With normally distributed inputs, the terms h(O1, O2)
and h(01,03) are equal when |S12| = |S1].

Proor. Following the steps used to derive the covariance matrix
of O = (01, 02), the covariance matrix of O’ = (01, 0)) is

2 2 2 2
04+ 0i +o0 o
Y - =( T 5212 Sy Si2 )
o’ o oé +os |’
Si2 Si2 Sz

Recall that the differential entropy of the multivariate normal is
h()z) = % log ((27re)k det Z). The sole object of interest is the det X
term, as the remainder contribute a constant factor. We calculate
(22 2N2 . 2 2N (2 2 \2
det 5= (o7 + g, + 031)(UT +og, + 0'52) (o7 + Uslz)
2, 2 2 2 (2 2 2 2
= O'T(O'S1 + 0'52) +0g, (0'51 + 0'52) +0g, 05, -
Similarly,
(2, 2 2 N2 2\ _ 4
det 5 = (o + o5, + (rsl)(O'S12 + 0'52) s,
_ 2,2 2 2 (.2 2 2 2
= O'T(Uslz + USZ) +05, (cfsl + crsz) +05,05, -

Therefore, the equality h()?T | O1,07) = h()zT | O1,03) is satisfi-
able if and only if O'glz = ogl, which occurs when [S12| = |S1]. O

As computation designers, we can minimize information dis-
closure for all participants by targeting 50% participants’ overlap
between the first and second executions. For the configurations in
Figure 7, at 50% overlap, the percentages of information loss from
the second evaluation relative to the first evaluation are comparable
for the selected number of spectators n (30.18% for n = 6, 31.3% for
n = 10, and 32.45% for n = 24). This corresponds to the intersection
points in Figure 7.
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Figure 7: Target information loss after participating in one or two computations. Omitted: if the target participates in one
experiment and all the shared spectators are reused, then h(Xr | O1,0}) = 0.

Number of evaluations Spectator overlap

the target participates in | 40% 50% 60%
One 18.0% | 31.3% | 52.3%
Two 40.1% | 31.3% | 23.5%

Table 1: Percentage of information loss after two executions
relative to a single execution for n = 10.

As we may be unable to guarantee that exactly 50% of partici-
pants overlap between two executions, we can increase our toler-
ance for entropy loss by inviting more participants and building
a buffer to accommodate overlaps in a range, e.g., 40-60%. Using
data in Figure 7, this information is convenient to gather for n = 10.
That is, if we increase the fraction of overlapping spectators, single-
participation targets are most at risk. The converse is true if the
overlap decreases — the target suffers less exposure from participat-
ing one evaluation. Table 1 summarizes the results. This means that
performing two executions in the worst case costs a participant
entropy loss 1.5 times higher than if only a single computation is
executed. As a result, with the target entropy loss of 5% and 1%, we
need to increase the number of spectators from 5 and 24 to 7 and
33, respectively.

We note that our analysis of repeated executions applies only
when the inputs of the participants in the overlapping set of partic-
ipants do not change. And if the executions are distant enough in
time that the participants’ inputs significantly change, they would
no longer be treated as repeated dependent executions.

In the full version of the text [8] we conduct additional two-
evaluation experiments, such as adjusting the number of shared
spectators while maintaining a fixed number of unique spectators.
Furthermore, we extend our analysis to three or more executions.

6 CONCLUSIONS AND RECOMMENDATIONS

In this work we study information disclosure associated with re-
vealing the output of average salary computation on private inputs.

Using the framework of [1], we analyze the function and derive
several information-theoretic properties associated with the com-
putation. Inputs are modeled using several discrete and continuous
distributions, leading to multiple interesting conclusions about their
entropy loss. We expand the scope to multiple executions on related
inputs and determine the best configurations that minimize infor-
mation disclosure. This leads to the following recommendations
for computation designers:

e The amount of information disclosure about a target is in-
dependent of adversarial inputs. It was also experimentally
shown to be independent of distribution parameters for three
different distributions and analytically shown for normal
distribution. All examined distributions produce nearly iden-
tical entropy loss curves.

e One can reduce the amount of entropy loss to a desired level
by increasing the number of participants. For example, the
computation designer can advertise at most 5% or 1% maxi-
mum entropy loss for the average salary application, which
will require recruiting 6 or 25, respectively, non-adversarial
participants when running only a single evaluation.

o In the presence of repeated computations, information disclo-
sure about inputs continues for both participants who stay
and participants who leave. With two executions, protection
is the largest with 50% overlap in the participants, while
both a small overlap and an overwhelming overlap result in
undesirable information disclosure about different types of
participants (i.e., those who stay vs. those who leave).

e With more executions, pairwise overlaps sizes determine
information disclosure. For 3 and 4 executions, optimal con-
figurations have overlap sizes near 1/3 of the number of
participants.

o Information disclosure about participants’ inputs can still
be kept at a desirable level by enrolling enough participants
and restricting percentage of reused inputs to be in a desired
range. For example, with two executions and following the
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guidelines of the keeping the overlap near 50%, the number
of non-adversarial input contributors needs to be at least 8
to meet the target of 5% information loss.
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