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ABSTRACT
Secure multi-party computation has seen substantial performance

improvements in recent years and is being increasingly used in

commercial products. While a significant amount of work was ded-

icated to improving its efficiency under standard security models,

the threat models do not account for information leakage from

the output of secure function evaluation. Quantifying information

disclosure about private inputs from observing the function out-

come is the subject of this work. Motivated by the City of Boston

gender pay gap studies, in this work we focus on the computation

of the average of salaries and quantify information disclosure about

private inputs of one or more participants (the target) to an adver-

sary via information-theoretic techniques. We study a number of

distributions including log-normal, which is typically used for mod-

eling salaries. We consequently evaluate information disclosure

after repeated evaluation of the average function on overlapping

inputs, as was done in the Boston gender pay study that ran mul-

tiple times, and provide recommendations for using the sum and

average functions in secure computation applications. Our goal is

to develop mechanisms that lower information disclosure about

participants’ inputs to a desired level and provide guidelines for

setting up real-world secure evaluation of this function.

CCS CONCEPTS
• Security and privacy → Information-theoretic techniques;
Information flow control; • Mathematics of computing → Infor-
mation theory.
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1 INTRODUCTION
Secure multi-party computation and other forms of computing

on cryptographically protected data (such as homomorphic en-

cryption) open up possibilities for great utilization and analysis of

private data distributed across different domains, which otherwise

might not be feasible due to the sensitive nature of the data. For

example, analysis of health-related records and medical images

distributed across different medical facilities and extracting cues

from them lead to medical advances without the need to see the

records themselves. Today, data analysis practices by researchers

are hindered by laws regulating access to health data in different

countries and analyzing medical data at scale presents challenges.

Similarly, analyzing sensitive data such as salaries to understand

disparities by gender, race, or other types of marginalization can

supply decision makers with important information and empower

them to address the disparities. This was the case with the Boston

area gender pay gap surveys [13, 14, 37–39] that initiated in 2015

and ran through 2017 with more participants and data analysis by

additional categories including race. More broadly, wider adoption

of privacy-preserving technologies, and secure computation in par-

ticular, can lead to higher security standards and practices for a

broad range of different aspects of our society.

Secure computation techniques have seen significant advances

in recent decades in terms of their speed, as well as availability of

implementations and tools to facilitate their use for a variety of

applications. Tech giants such as Google and Apple started using

secure computation techniques in their products [12, 32, 36, 55] and

the number of start-up companies offering related products is grow-

ing (see, e.g., [31, 40, 45, 46]). However, a number of fundamental

questions still need to be addressed by the research community in

order to make secure computing practices common place.

One of the fundamental questions is how much information

about a participant’s private input(s) might be available as a result

of evaluating a desired function on private inputs. Standard security

definitions adopted in the cryptographic community require that

no information about private inputs is disclosed during function

evaluation. That is, given a function 𝑓 that we evaluate on private

inputs 𝑥1, 𝑥2, . . . coming from different sources, security is achieved

if a participant does not learn more information than the function

output and any information that can be deduced from the output

and its private input. However, there are no constraints on types

of functions that can be evaluated in this framework, and thus

the information a participant can deduce from the output and its

private input about another participant’s private input is poten-

tially large. This problem is typically handled by assuming that the

function being evaluated is agreed upon by and acceptable to the

data owners as not to reveal too much information about private
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inputs. However, our ability to evaluate functions in this aspect and

determine what functions might be acceptable is currently limited.

This question is the subject of this work.

Intuitively, what we want is to guarantee that the function be-

ing evaluated on private data is non-invertible, i.e., observing the

output does not reveal its private input. Cryptography uses the

notion of one-way functions – and assumes this property for hash

functions – to model non-invertibility. However, what is needed

in this case is to ensure that the possible space for a target private

input is still large after the adversary observes the result of function

evaluation. This notion of non-invertibility was first used in the

context of secure multi-party computation in solutions for business

applications such as supply chain management and component

procurement [24–26] and was formulated as the inability to narrow

down the (private) input of another party to a single value or a

small set of possible values. Consequently, a series of publications

by Ah-Fat and Huth [1–4] put forward formal definitions that use

entropy to measure the amount of uncertainty about one or more

participants’ private inputs after using them in secure multi-party

computation. The definitions are framed from a) an attacker’s per-

spective who aims to maximize information disclosure of a target’s

private input and b) from a target’s perspective who determines the

maximum information disclosure about their inputs when deciding

whether to contribute their inputs to secure evaluation of a particu-

lar function. The above formulations are general and applicable to

any function, while application-specific formulations of what con-

stitutes sufficient input protection and function non-invertibility

also emerged. One example is building machine learning models

resilient to membership inference attacks [50, 53] that guarantee

that it is infeasible to determine whether someone’s data was used

for training the model.

Our contributions. In this work, we use the entropy-based

definitions from [1] as our starting point and analyze a specific

function of significant practical relevance. In particular, we focus on

the case of average salary computation as used in the Boston gender

pay gap study [38]. When the total number of inputs is known

(which is typically the case), the average computation is equivalent

to computing the sum. We intuitively understand that the larger

the number of inputs used in the computation of the average is, the

better protection each individual contributing its input obtains. In

the extreme case of two participants
1
no protection can be achieved.

This was understood by the designers of the Boston gender pay gap

study who recommended running the computation with at least

5 contributors [39]. However, the information disclosure was not

quantified, which we remedy in this work.

We start by analyzing the function itself and formally show

that the amount of information an attacker learns is independent

of his/her own inputs. This is consistent with our intuition that,

given a sum, one can always remove their contribution to the sum

and analyze the resulting value. Thus, the protection depends on

the number of spectators, i.e., input parties distinct from those

controlled by the adversary and the party or parties being targeted.

We analyze the target’s input entropy remaining after partici-

pating in the computation (and consequently the entropy loss as

1
We use the term “participants” to denote parties contributing inputs to the compu-

tation. The computation itself can be performed by a different set of parties, but our

result is independent of the mechanism used to realize secure function evaluation.

a result of participation) for a number of discrete and continuous

distributions including uniform, Poisson, normal (Gaussian), and

log-normal. Log-normal is typically used for modeling salary data,

but is the least trivial to analyze. An unexpected finding of our

analysis is that for a given distribution, the absolute entropy loss

is normally independent of the distribution parameters and the

absolute entropy loss remains very close for different distributions

as we vary the number of participants/spectators. Quantifying the

information loss allows us to devise a mechanism to lower infor-

mation disclosure to any desired level (e.g., 1% of original entropy,

0.05 bits of entropy, etc.).

We extend our analysis of information loss to the case when the

computation is run more than once (as was the case for the Boston

gender pay gap study) and examine the case with two evaluations.

This corresponds to (i) the target participating in two computations

with the same input where the set of participants differs between

the executions and (ii) the target participating in one computation,

where the other is run without the target’s input. We observe that

information loss increases as a result of multiple computations,

regardless of whether the target participates once or twice. Further-

more, the protection is maximized when one half of the original

contributors are replaced, i.e., 50% of the initial participants re-

main and the other 50% are replaced with new participants. Our

multi-execution analysis is based on the normal distribution, but

we expect the outcome to be similar for other distributions as well.

We provide additional proofs and generalize our analysis to three

andmore executions in the full version of the text [8]. An interesting

finding is that the best configuration that minimizes information

loss is determined by pairwise overlaps of participants between the

executions and not by other parameters and sizes. This allows us

to determine optimal setup for a single and repeated execution of

the average function.

We empirically validate our findings throughout this work and

provide recommendations for securely evaluating the average func-

tion in real world applications. In particular, in all of our exper-

iments the cost of participating in the average computation, i.e.,

the difference in the entropy before and after the computation is

a fraction of a bit (for both Shannon entropy used with discrete

distributions and differential entropy used with continuous distri-

butions). This translates to small relative entropy loss in practice.

When modeling salary data using log-normal distribution with the

parameters specifically chosen for salaries [17], the entropy loss

is below 5% with at least 5 non-adversarial participants or specta-

tors and achieving 1% entropy loss requires 24 spectators. These

numbers are also surprisingly similar across different distributions.

Furthermore, when the computation is repeated (we use a normal

distribution to adequately approximate the log-normal setup), en-

gaging in the computation the second time with an overlapping set

of 50% participants whose inputs do not change results in only 30%

entropy loss of the first participation. These and other findings lead

to a number of recommendations for running this computation in

practice, which we provide at the end of this work.

On the choice of metric. Our analysis uses Shannon entropy.

One might argue that this is not the best metric because it does

not distinguish between, e.g, leaking the least significant vs. most

significant bit of one’s salary, while learning the latter is much

more valuable to an adversary than learning the former. However,
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as we show throughout this work, information leakage for this

application is always small regardless of the setup. In particular,

the most favorable for the adversary setup across all distributions

discloses only about 0.7 bits of entropy, i.e., the adversary cannot

learn even a single bit of target’s salary. Furthermore, we derive

effective mechanisms for reducing information loss to a controlled

low level such that the worst case scenario will not realize. We

conduct similar analysis using min-entropy in the full version of

the paper [8] and show that Shannon entropy trends are consistent

with those for min-entropy. A primary advantage of using Shannon

entropy is that we are able to go much further in our analysis

and ultimately derive close-form expressions, which cannot be

accomplished for other metrics.

2 RELATED WORK
In what follows, we review prior literature on information disclo-

sure from function output in the context of computing on private

data and related techniques that limit information disclosure.

2.1 Quantitative Information Flow
The field of quantitative information flow is closely related to our

work. Denning [23] is credited as the first to quantify information

flow as a measure of the interference between variables at two

stages during a program’s execution (typically denoted by “high-”

and “low-security” variables, which equates to the target’s inputs

and output in our setting, respectively). Smith [52] formally es-

tablished the foundations of quantifying the information leakage

under the threat model that an attacker can recover a secret in

one attempt (denoted by the notion of vulnerability). It has been
shown by Massey [42] that the Shannon entropy cannot capture

this information under the guessing assumption, and Smith rec-

ommends min-entropy in its place. Alvim et al. [6] generalized the

min-entropy into the 𝑔-leakage to incorporate gain functions to

model the benefit an adversary gains from making guesses about

the secret. Subsequent works encompassed variations on the 𝑔-

leakage [5]. Other works in differential privacy feature derivations

of leakage bounds [19], leakage analysis in the case of an adaptive

adversary [34], and knowledge-based approaches for measuring

risk [41, 47].

The fundamental advantage of our Shannon-based approach is

the ability to derive closed-form expressions for the information

leakage of the average salary computation, while other metrics do

not share this characteristic. For example, the chain rule of entropy

(a simple, yet critical component of our analysis) is not satisfied

if min-entropy is used [33, 51] in place of Shannon entropy. Our

reductions would no longer hold, and we would be forced to resort

to complete enumeration or approximation methods to compute

the entropy. However, in the full version we provide supplementary

analysis that demonstrates similarities between Shannon entropy

and min-entropy based analyses. We also remain open to evaluating

other metrics in the future.

An additional distinction between our work and existing litera-

ture on (quantitative) information flow is that we do not consider

possible leakage from intermediate aspects of a computation’s exe-

cution. Whereas other works may examine a program’s loops [41],

side-channel vectors [34], or inter-dependent structures [7], we

strictly investigate the relationship between the output and target’s

input, since function itself is assumed to be evaluated using secure

multi-party protocols.

2.2 Function Information Disclosure
Existing literature on information leakage from the output of a

secure function evaluation is limited, relative to the rest of the field

of secure computation. Secure multi-party protocols are designed

to guarantee no information is disclosed throughout a computation,

but do not ensure input protection after the output is revealed. The

work of Deshpande et al. [24–26] was pioneering in that respect

and designed secure multi-party protocols for business applications

that ensured that the function being evaluated is non-invertible,
i.e., no participant can infer other participants’ inputs from the

output. A trivially invertible example is the average salary calcu-

lation between two individuals, since either party can recover the

other’s input exactly. Deshpande et al. [25, 26] first addressed non-

invertibility in the context of secure supply chain processes. The

proposed protocols offered protection from inference of future in-

puts to a repeated calculation after a result is disclosed. A later work

by Deshpande et al. [24] achieved non-invertibility for a framework

designed for secure price masking for outsourcing manufacturing.

The authors argued information leakage was minimal by analyzing

mutual information between correlated normal random variables,

but did not consider other distributions or entropy metrics.

Ah-Fat and Huth [1] provided the first in-depth analysis of in-

formation leakage from the outputs of secure multi-party computa-

tions. The authors formalized two metrics to measure expected

information flow from the attacker’s and target’s perspectives,

namely, the attacker’s weighted average entropy (awae) and tar-
get’s weighted average entropy (twae), respectively. Participants’

inputs are modeled using probability distributions and were speci-

fied to be uniform, but this constraint can be relaxed. The inherent

difficulty of this entropy-based approach is the requirement to enu-

merate every possible input combinations from all parties, which

scales poorly as the input space and number of participants grow.

We utilize their definitions for our analysis and demonstrate their

utility to computation designers to determine potential disclosure

about participants’ inputs

This model was expanded in [2] to encompass the Rényi, min-,

and 𝑔-entropy. The extension is presented in combination with a

technique for distorting secure computation outputs to limit infor-

mation disclosure from the output and achieve balance between

accuracy and privacy. This was further developed in [3] with a

fuzzing method based on randomized approximations. A closed-

form expression for the min-entropy of a two- and three-party

auction was derived in [4], alongside a conjecture for the case with

an arbitrary number of parties.

Conceptually, the notion of output privacy is related to our

work. The terminology was introduced in the field of data min-

ing [15, 35, 43, 44, 56], with the goal of designing techniques to

protect inputs from inference attacks on the output model. Informa-

tion about the inputs that can be obtained from the output includes,

but is not limited to, properties which can be uniquely attributed

to a small number of input participants. Conventional approaches

for minimizing disclosure involve applying transformations on the
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result via monotonic functions [15] or even proactive learning [56].

These techniques have little to no impact on the result of the com-

putation. This direction differs from our work since the type of

disclosure they aim to rectify is not quantified.

There is also literature that uses specific formulations to demon-

strate that computation does not disclose sensitive information

about participants. This includes resilience to membership infer-
ence attacks [50, 53] in the context of machine learning training

and differential privacy [27, 28] for statistical databases. In partic-

ular, differential privacy ensures the output of a query is negligi-

bly dependent on a single individual’s record in the database and

resilience to membership inference attacks prevents one from de-

termining whether a specific individual’s data was used for model

training. These concepts have no direct relationship to our work,

aside from designing mechanisms for lower information disclosure

as a result of computation on private data. In this work, we do so by

varying the number of participants in the computation, while other

methods augment the function directly to produce a differentially

private output.

3 PRELIMINARIES
Following [1]’s notation, let 𝑃 denote the set of all participants in a

computation with |𝑃 | =𝑚. All participants 𝑃 are partitioned into

three groups: parties controlled by an attacker 𝐴 ⊂ 𝑃 , a group of

parties being targeted 𝑇 ⊆ 𝑃 \ 𝐴, and the remaining participants

called spectators 𝑆 = 𝑃 \ (𝐴 ∪ 𝑇 ). Let the random variable 𝑋𝑃𝑖

correspond to the input of a single participant 𝑃𝑖 and 𝑥𝑃𝑖 denotes a

value that 𝑋𝑃𝑖 takes. In addition, the notation ®𝑋𝑃 =
(
𝑋𝑃1 , . . . , 𝑋𝑃𝑚

)
denotes a multidimensional random variable and ®𝑥𝑃 is a vector of

the individual values of the same size. We also let 𝑋𝑃 =
∑
𝑖 𝑋𝑃𝑖

define a new random variable representing the sum of the partici-

pants’ random variables. The same notation applies to the sets 𝐴,

𝑇 , and 𝑆 . Our present analysis is based upon the assumption that

all participants’ inputs are independent and identically distributed,

which we consequently relax.

For discrete distributions, we use Shannon entropy 𝐻 (𝑋 ) to
measure the information of a discrete random variable 𝑋 with mass

function Pr(𝑋 = 𝑥) defined over domain 𝐷𝑋 . Specifically,

𝐻 (𝑋 ) = −
∑︁

𝑥∈𝐷𝑋

Pr(𝑋 = 𝑥) · log Pr(𝑋 = 𝑥),

where all logarithms are to the base 2. If we are dealing with con-

tinuous distributions, we shift to the differential entropy ℎ(𝑋 ) with
density function 𝑓 (𝑥) over the support set X, defined as

ℎ(𝑋 ) = −
∫
X
𝑓 (𝑥) log 𝑓 (𝑥)𝑑𝑥 .

We study information leakage of the computation of the average:

𝑜 = 𝑓 ( ®𝑥𝐴, ®𝑥𝑇 , ®𝑥𝑆 ) =
1

𝑚

(∑︁
𝑖
𝑥𝑇𝑖 +

∑︁
𝑗
𝑥𝐴 𝑗

+
∑︁

𝑘
𝑥𝑆𝑘

)
,

where 𝑜 denotes the output of the function. We model the output 𝑜

by the random variable 𝑂 defined over the domain 𝐷𝑂 , namely

𝑂 =
1

𝑚

(∑︁
𝑖
𝑋𝑇𝑖 +

∑︁
𝑗
𝑋𝐴 𝑗

+
∑︁

𝑘
𝑋𝑆𝑘

)
.

The 1/𝑚 factor can be ignored in the final expression since the

number of participants is typically known by all parties and can

trivially be removed from the output. We omit it throughout the

remainder of the paper.

In this work, we consider distributions where the sum of in-

dependent individual random variables is well studied and their

mass or density functions have closed-forms expressions or can be

reasonably approximated. This includes the following distributions:

• Discrete uniform U (𝑎, 𝑏), where 𝑎 and 𝑏 are integers corre-

sponding to the minimum and maximum of the range of the

support set {𝑎, 𝑎 + 1, . . . , 𝑏 − 1, 𝑏}.
• Poisson Pois (𝜆), where 𝜆 ∈ R>0 is the shape parameter that

indicates the expected (average) rate of an event occurring

over a given interval.

• Normal (Gaussian) N
(
𝜇, 𝜎2

)
, where 𝜇 ∈ R and 𝜎2 ∈ R>0

correspond to the mean and squared standard deviation,

respectively.

• Log-normal logN
(
𝜇, 𝜎2

)
with parameters 𝜇 ∈ R and 𝜎2 ∈

R>0, which correspond to the mean and squared standard

deviation of the random variable’s natural logarithm.

𝑋 ∼ Dist indicates that random variable 𝑋 has distribution Dist.
As stated earlier, Ah-Fat andHuth [1] providedmultiple information-

theoretic measures to quantify information disclosure after a func-

tion evaluation, which we use here:

Definition 1 ([1]). The joint weighted average entropy ( jwae)
of a target 𝑇 attacked by parties 𝐴 is defined over all ®𝑥𝐴 ∈ 𝐷𝐴 and
®𝑥𝑇 ∈ 𝐷𝑇 as

jwae( ®𝑥𝐴, ®𝑥𝑇 ) =
∑︁

𝑜∈𝐷𝑂

Pr(𝑂 = 𝑜 | ®𝑋𝐴 = ®𝑥𝐴, ®𝑋𝑇 = ®𝑥𝑇 )

· 𝐻 ( ®𝑋𝑇 | ®𝑋𝐴 = ®𝑥𝐴,𝑂 = 𝑜).

This metric measures the information an attacker would learn (on

average) about the target when the input vectors are ®𝑥𝐴 and ®𝑥𝑇 . One
can subsequently define the average of the jwae over all possible

®𝑥𝑇 or ®𝑥𝐴 vectors weighted by their respective prior probabilities.

Definition 2 ([1]). The target’s weighted average entropy ( twae)
of a target 𝑇 attacked by parties 𝐴 is defined for all ®𝑥𝑇 ∈ 𝐷𝑇 as

twae( ®𝑥𝑇 ) =
∑︁

®𝑥𝐴∈𝐷𝐴

Pr( ®𝑋𝐴 = ®𝑥𝐴) · jwae( ®𝑥𝐴, ®𝑥𝑇 ) .

The twae informs a target how much information an attacker can

learn about its input when the input is ®𝑥𝐴 .

Definition 3 ([1]). The attacker’s weighted average entropy (awae)
of a target 𝑇 attacked by parties 𝐴 is defined for all ®𝑥𝐴 ∈ 𝐷𝐴 as

awae( ®𝑥𝐴) =
∑︁

®𝑥𝑇 ∈𝐷𝑇

Pr( ®𝑋𝑇 = ®𝑥𝑇 ) · jwae( ®𝑥𝐴, ®𝑥𝑇 ) .

The awae informs an attacker about how much information it can

learn about the target’s input when the attacker’s input vector is

®𝑥𝐴 . The attacker can consequently compute the awae on all values

in 𝐷𝐴 to determine which input maximizes the information learned

about the target’s input (and thus what should be entered into the
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Figure 1: The twae( ®𝑥𝑇 ) and awae( ®𝑥𝐴) using inputs over
U (0, 15) with a different number of spectators |𝑆 |.

computation). Using the definition of jwae, it follows that:

awae( ®𝑥𝐴) =
∑︁

®𝑥𝑇 ∈𝐷𝑇

Pr( ®𝑋𝑇 = ®𝑥𝑇 )
∑︁

𝑜∈𝐷𝑂

Pr(𝑂 = 𝑜 | ®𝑋𝐴 = ®𝑥𝐴, ®𝑋𝑇 = ®𝑥𝑇 )

· 𝐻 ( ®𝑋𝑇 | ®𝑋𝐴 = ®𝑥𝐴,𝑂 = 𝑜)

=
∑︁

®𝑥𝑇 ∈𝐷𝑇

∑︁
𝑜∈𝐷𝑂

Pr(𝑂 = 𝑜, ®𝑋𝑇 = ®𝑥𝑇 | ®𝑋𝐴 = ®𝑥𝐴)

· 𝐻 ( ®𝑋𝑇 | ®𝑋𝐴 = ®𝑥𝐴,𝑂 = 𝑜).

Since ®𝑋𝑇 is independent of ®𝑋𝐴 , we derive that awae equals to

conditional entropy:

awae( ®𝑥𝐴) =
∑︁

𝑜∈𝐷𝑂

Pr(𝑂 = 𝑜 | ®𝑋𝐴 = ®𝑥𝐴) · 𝐻 ( ®𝑋𝑇 | ®𝑋𝐴 = ®𝑥𝐴,𝑂 = 𝑜)

= 𝐻 ( ®𝑋𝑇 | ®𝑋𝐴 = ®𝑥𝐴,𝑂)
where the last equality is due to the definition of conditional entropy.

4 SINGLE EXECUTION
In this section we analyze a single execution of the average function

on private inputs and the associated information disclosure of the

target’s inputs. Recall that the computation is modeled by

𝑂 = 𝑓 ( ®𝑋𝐴, ®𝑋𝑇 , ®𝑋𝑆 ) =
∑︁

𝑖
𝑋𝑇𝑖 +

∑︁
𝑗
𝑋𝐴 𝑗

+
∑︁

𝑘
𝑋𝑆𝑘 , (1)

and we let 𝑛 = |𝑆 | denote the number of spectators.

As a first step, we plot the values of awae and twae for our

function of interest. Figure 1 illustrates these values with a single

adversarial participant, a single target and a varying number of spec-

tators (1–3). All inputs follow the uniform distribution U (0, 15).
Calculating the twae and awae values using Definitions 2 and 3 re-

quires enumerating all input and output combinations. This quickly

becomes computationally inefficient as the input space grows.

Each participant, acting as a target, can utilize the twae prior to

the computation to determine how much information an attacker

can learn (on average) from the output for a specific input that the

participant enters into the computation. As the figure illustrates, the

target’s remaining average entropy is maximized when the input

is in the middle of the range, indicating that those values have

better protection than inputs near the extrema. As the number of

spectators increases, the curves shift upwards, i.e., the uncertainty

about the target’s input increases and the gap in the uncertainty

between different input values reduces.

The awae, on the other hand, gives an adversary the ability to

determine which input to enter into the computation that leads to

maximum information disclosure about a target’s input (without

knowing what input the target used). As displayed in the figure,

the adversarial knowledge does not change by varying its inputs

into the computation. This is consistent with our intuition that,

given the output, the adversary can remove their contribution to

the computation and possess information about the sum of the

inputs of the remaining parties. We formalize this as the following

result:

Claim 1. awae( ®𝑥𝐴) is independent of attacker’s input vector ®𝑥𝐴 .

Proof. According to the chain rule of entropy which states that

𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋 | 𝑌 ) + 𝐻 (𝑌 ) [22, Chapter 2.5], we have that:
𝐻 ( ®𝑋𝑇 | ®𝑋𝐴=®𝑥𝐴,𝑂) = 𝐻 ( ®𝑋𝑇 ,𝑂 | ®𝑋𝐴 = ®𝑥𝐴) − 𝐻 (𝑂 | ®𝑋𝐴 = ®𝑥𝐴)

= 𝐻 ( ®𝑋𝑇 | ®𝑋𝐴 = ®𝑥𝐴) + 𝐻 (𝑂 | ®𝑋𝑇 , ®𝑋𝐴 = ®𝑥𝐴)

− 𝐻 (𝑂 | ®𝑋𝐴 = ®𝑥𝐴)

= 𝐻 ( ®𝑋𝑇 )+𝐻
(∑︁

𝑖
𝑋𝑆𝑖

)
−𝐻

(∑︁
𝑖
𝑋𝑇𝑖+

∑︁
𝑗
𝑋𝑆 𝑗

)
,

which is independent of ®𝑥𝐴 . □

Using our notation from Section 3, the above expression for awae( ®𝑥𝐴)
simplifies to

𝐻 ( ®𝑋𝑇 ) + 𝐻 (𝑋𝑆 ) − 𝐻 (𝑋𝑇 + 𝑋𝑆 ) = 𝐻 ( ®𝑋𝑇 | 𝑋𝑇 + 𝑋𝑆 ) .
The next step is to determine which measure (awae or twae)

we should use in our analysis of the average salary computation.

Ah-Fat and Huth [1] argued that the awae served as a more precise

metric for measuring information leakage of a secure function

evaluation than twae for their choice of function and used awae

in their subsequent work [2]. Our perspective also aligns with

that conclusion. In particular, while the twae informs the target

of the amount of information leakage for the input they possess,

the target may not be technically savvy enough to be able to apply

the metric and make an informed decision regarding computation

participation (plus, the choice to participate or not participate can

leak information about their input). Perhaps more importantly, a

function needs to be analyzed by the computation designers in

advance and without access to the inputs of future computation

participants to determine a safe setup for the participants. Thus, the

available mechanism for this purpose is the attacker’s perspective

or awae, and we focus on this metric in the rest of this work.

Based on the above, in what follows we use 𝐻 ( ®𝑋𝑇 | 𝑋𝑇 +𝑋𝑆 ) to
measure the leakage, and the simplified function is

𝑓 ( ®𝑋𝑇 , ®𝑋𝑆 ) =
∑︁

𝑖
𝑋𝑇𝑖 +

∑︁
𝑗
𝑋𝑆 𝑗

= 𝑋𝑇 + 𝑋𝑆 .

This refines the parameters we can vary in our analysis to (1) the

number of participants in the target and spectators groups and (2)

the types of distributions and statistical parameters of the inputs.

Furthermore, the computational difficulty associated with directly

computing the awae is absent when using𝐻 ( ®𝑋𝑇 | 𝑋𝑇 +𝑋𝑆 ). Instead,
the computation simplifies to calculating the entropy of sums of

random variables. We examine the behavior of the conditional

entropy for several characteristic probability distributions next.
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4.1 Discrete Distributions
We start with discrete input modeled using the uniform and Poisson

distributions. The sum of 𝑛 identical independent Poisson random

variables 𝑋𝑖 ∼ Pois(𝜆) is equivalent to a single Poisson random

variables 𝑋 =
∑
𝑖 𝑋𝑖 ∼ Pois(𝑛𝜆) with the mass function Pr(𝑋 =

𝑥) = (𝑛𝜆)𝑘 𝑒−𝑛𝜆/(𝑘!) . Note that the Poisson distribution is defined

over all non-negative integers, hence the distribution has infinite

support. We choose to halt the calculation of 𝐻 (𝑋 ) when Pr(𝑋 =

𝑥) < 10
−7

as the contribution of events beyond this point to the

entropy is infinitesimal.

Conversely, the sum of 𝑛 identical independent uniform random

variables𝑋𝑖 ∼ U (0, 𝑁 − 1) is not immediately obvious. Caiado and

Rathie [16] derived several equivalent expressions for the mass

function of the sum of 𝑛 uniform random variables, one of which

we use in our analysis and is defined as:

Pr(𝑋 = 𝑥) = 𝑛

𝑁𝑛

(∑︁⌊𝑥/𝑁 ⌋
𝑝=0

Γ (𝑛 + 𝑥 + 𝑝𝑁 ) (−1)𝑝

Γ(𝑝 + 1)Γ(𝑛 − 𝑝 + 1)Γ(𝑥 − 𝑝𝑁 + 1)

)
,

where Γ(𝑛) = (𝑛 − 1)! is the Gamma function. The domain of 𝑋 is

{0, . . . , 𝑛(𝑁 − 1)}.
Our analysis of awae for these two distribution is given in Figures

2 and 3, respectively. We compute and display

• the original entropy of target’s inputs prior to the computa-

tion 𝐻 ( ®𝑋𝑇 ) (subfigure a)
• the awae or target’s remaining entropy after the computation

𝐻 ( ®𝑋𝑇 | 𝑋𝑇 + 𝑋𝑆 ) (subfigure a)
• their difference of the two that represents the absolute en-

tropy loss 𝐻 ( ®𝑋𝑇 ) − 𝐻 ( ®𝑋𝑇 | 𝑋𝑇 + 𝑋𝑆 ) (subfigure b) and
• the entropy loss relative to the original entropy prior to the

execution (𝐻 ( ®𝑋𝑇 ) −𝐻 ( ®𝑋𝑇 | 𝑋𝑇 +𝑋𝑆 ))/𝐻 ( ®𝑋𝑇 ) (subfigure c)
with a single target (|𝑇 | = 1), a varying number of spectators, and

varying distribution parameters. Relative entropy loss is included

to demonstrate to potential input contributors, who are likely non-

experts, that information disclosure is small. That is, disclosure of,

e.g., 5% of input’s information is easier to explain to non-experts

than 0.1 bits of entropy. The absolute loss is equivalent to themutual

information between the target input and the output: 𝐼 ( ®𝑋𝑇 ;𝑂) =
𝐻 ( ®𝑋𝑇 ) − 𝐻 ( ®𝑋𝑇 | 𝑋𝑇 + 𝑋𝑆 ).

Figure 2 presents this information for the Poisson distribution

with 𝜆 ∈ {4, 8, . . . , 128}. In Figure 2a, entropy after the execution

converges toward the corresponding entropy prior to the execution

for all values of 𝜆 as the number of spectators increases. Increasing

𝜆 by a factor of two repeatedly yields an upward shift of these

two curves by a constant amount while preserving their respective

shapes. The increase is expected as a result of the inputs having

more entropy as 𝜆 increases, but the shape of the remaining entropy

is notable, as 𝜆 does not appear to impact the entropy loss. This

is further confirmed when displaying the absolute entropy loss in

Figure 2b: The resultant curves overlap each other, regardless of 𝜆.

The relative entropy loss in Figure 2c, calculated as a percentage

of the target’s initial entropy, demonstrates how many spectators

the computation needs to include to lower the entropy loss to the

desired level. The larger the original entropy is (larger 𝜆), the fewer

spectators will be needed to stay within the desired percentage. For

example, 5 spectators are needed with 𝜆 = 4 to limit relative loss to

5% (marked by ■) and 24 spectators are needed to cap the loss at

1% (marked by ×). When 𝜆 = 128, the number of spectators reduces

to 3 and 13 to maintain loss tolerances of 5% and 1%, respectively.

The same trends hold for the uniform distribution in Figure 3,

where we use 𝑁 ∈ {8, 16, . . . , 256}, but the values themselves

slightly differ. For example, the absolute entropy loss in Figure 3b

is slightly larger than the loss in Figure 2b when the number of

spectators is small. When 𝑁 = 8 with 3 bits of original entropy, 5

and 24 spectators are needed to achieve at most 5% and 1% relative

loss, respectively. This is the same as what was observed for Poisson

distribution with 3-bit inputs (𝜆 = 4).

4.2 Continuous Distributions
For continuous distributions, we shift to differential entropy and

analyze normal and log-normal distributions, the latter of which is

typically used tomodel salaries.While there is no direct relationship

between differential and Shannon entropy (see [22, Chapter 8.3]),

we demonstrate that they exhibit very similar behavior for the

average computation.

The differential entropy of a normal random variable 𝑋𝑖 ∼
N(𝜇, 𝜎2) is ℎ(𝑋𝑖 ) = 1

2
log

(
2𝜋𝑒𝜎2

)
[22, Chapter 8.1]. The sum

of 𝑛 identical normal random variables is also normal, namely

𝑋 ∼ N(𝑛𝜇, 𝑛𝜎2). This enables us to directly apply the differential

entropy definition to the sum.

The log-normal distribution is a well-established means of mod-

eling salary data for 99% of the population [20], with the top 1%

modeled by the Pareto distribution [54]. The differential entropy

of a log-normal random variable 𝑋𝑖 ∼ logN(𝜇, 𝜎2) is ℎ(𝑋𝑖 ) =

log

(
𝑒𝜇+

1

2

√
2𝜋𝜎2

)
. However, the sum of 𝑛 log-normal random vari-

ables has no closed form and is an active area of research [9–

11, 21, 30, 48, 49, 57]. We adopt the Fenton-Wilkinson (FW) ap-

proximation
2
[21, 30] that specifies a sum of 𝑛 identical indepen-

dent log-normal random variables 𝑋𝑖 ∼ logN(𝜇, 𝜎2) as another
log-normal random variable 𝑋 ∼ logN(𝜇, 𝜎̂2) with parameters

𝜎̂2 = ln

(
exp(𝜎2) − 1

𝑛
+ 1

)
, 𝜇 = ln(𝑛 · exp(𝜇)) + 1

2

(
𝜎2 − 𝜎̂2

)
.

This enables us to compute differential entropy using a closed-form

expression. Unlike prior distributions, we use a single set of 𝜇 and

𝜎2 parameters calculated from real salary data in [17]; namely,

𝜇 = 1.6702 and 𝜎2 = 0.145542.

Figures 4 and 5 present experimental evaluation of entropy loss

with a single target and a varying number of spectators for normal

and log-normal distributions, respectively. As before, we report

target’s entropy before and after the execution, the difference of

the two as the absolute entropy loss, and the entropy loss relative

to the entropy before the execution.

In Figure 4 (normal), we set the mean 𝜇 = 0 for all experiments

(since differential entropy does not depend on 𝜇) and vary 𝜎2 from

4 to 128. The results are consistent with the discrete counterparts in

terms of the trends, curve shapes, and specific values. The absolute

loss in Figure 4b is once again constant for any 𝜎2 and the relative

loss is dictated by the amount of input’s entropy in Figure 4c. When

2
Other approximations for the sum of log-normal random variables are difficult to

translate into an expression for the differential entropy and hence we choose the FW

approximation. Its disadvantage is that that the FW approximation deteriorates for

𝜎2 > 4 and small values of 𝑥 in the density function [10, 57]. Fortunately, our 𝜎2
is

sufficiently small, allowing us to use the FW approximation free of consequence.
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(b) Target’s absolute entropy loss 𝐻 ( ®𝑋𝑇 ) −
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(c) Target’s relative entropy loss
𝐻 ( ®𝑋𝑇 )−𝐻 ( ®𝑋𝑇 |𝑋𝑇 +𝑋𝑆 )
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.

Figure 2: Analysis of target’s entropy loss using the Poisson distribution with Pois(𝜆), and varying 𝜆 with |𝑇 | = 1.
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(a) Target’s entropy before 𝐻 ( ®𝑋𝑇 ) and after
𝐻 ( ®𝑋𝑇 | 𝑋𝑇 +𝑋𝑆 ) the execution.
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(c) Target’s relative entropy loss
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Figure 3: Analysis of target’s entropy loss using the uniform distribution with U (0, 𝑁 − 1), and varying 𝑁 with |𝑇 | = 1.

𝜎2 = 4 and inputs have 3 bits of entropy, the number of spectators

required to maintain at most 5% and 1% entropy loss (5 and 24

spectators, respectively) is the same as for Poisson and uniform

distributions with 3-bit inputs (𝜆 = 4 and 𝑁 = 8, respectively). With

5.5-bit inputs (𝜎2 = 128), 3 and 13 spectators are needed to achieve

at most 5% and 1% loss, respectively, which the same as for Poisson

distribution with 5.5-bit inputs (𝜆 = 128).

The results in Figure 5 (log-normal with real salary parameters)

are consistent with both the discrete and continuous distributions.

Surprisingly, we observe the same 5 and 24 spectators achieve at

most 5% and 1% relative loss, as observed with all other distributions

(with input original entropy being slightly over 3 bits).

Before concluding our discussion of continuous distributions, we

are able to show one more result. We experimentally demonstrated

that the amount of absolute entropy loss is parameter-independent

for several distributions, but we can formally prove this for normally

distributed inputs:

Claim 2. If the inputs are modeled by independent identically dis-
tributed normal random variables, the absolute entropy loss ℎ( ®𝑋𝑇 ) −
ℎ( ®𝑋𝑇 | 𝑋𝑇 + 𝑋𝑆 ) depends only on the number of target |𝑇 | = 𝑡 and
spectator |𝑆 | = 𝑛 inputs and is 1

2
log

(
𝑡
𝑛 + 1

)
.

Proof. Let |𝑇 | = 𝑡 and |𝑆 | = 𝑛, such that 𝑋𝑇 ∼ N(0, 𝑡𝜎2) and
𝑋𝑆 ∼ N(0, 𝑛𝜎2). The absolute entropy loss is therefore

ℎ( ®𝑋𝑇 ) − ℎ( ®𝑋𝑇 | 𝑋𝑇 + 𝑋𝑆 ) = ℎ( ®𝑋𝑇 )−
(
ℎ( ®𝑋𝑇 )+ℎ (𝑋𝑆 ) −ℎ (𝑋𝑇 + 𝑋𝑆 )

)
= ℎ (𝑋𝑇 + 𝑋𝑆 ) − ℎ (𝑋𝑆 )

=
1

2

log 2𝜋𝑒 (𝑡 + 𝑛)𝜎2 − 1

2

log 2𝜋𝑒𝑛𝜎2

=
1

2

log

( 𝑡
𝑛
+ 1

)
= Θ

(
log

( 𝑡
𝑛
+ 1

))
,

which depends only on 𝑛 and 𝑡 . □

4.3 Discrete vs. Continuous Distributions
We next compare the information loss across all four (discrete and

continuous) distributions. We choose parameters to maintain the

initial entropy of an input, 𝐻 (𝑋𝑖 ) or ℎ(𝑋𝑖 ), to be approximately 3

bits, as to reasonably correspond to the log-normal distribution.

This leads to Pois(4),U (0, 7), andN(0, 4). We plot this information

for a single target and a varying number of spectators in Figure 6.

In the figure, all distributions converge with ≥ 4 spectators and

are very close even with 3 spectators. This convergence on large val-

ues is expected as a consequence of the central limit theorem. From
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Figure 4: Analysis of target’s entropy loss using the normal distribution with N(0, 𝜎2), and varying 𝜎2 with |𝑇 | = 1.
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Figure 5: Analysis of target’s entropy loss using the log-normal distribution with logN(1.6702, 0.145542) and |𝑇 | = 1.

the four distributions, the closest are the Poisson results with 𝜆 = 4

(discrete) and the normal distribution N(0, 4) (continuous). Unlike
normal, log-normal, and the single-variate uniform distributions,

an exact expression of the entropy of a Poisson distribution has

not been derived. Instead, when computing the necessary values in

Section 4.1, we directly applied the definition of Shannon entropy.

To draw a parallel between discrete and continuous distributions,

and specifically show a similarity between Poisson and normal

distributions, we turn to an approximation of Poisson distribution’s

entropy computation.

It was conjectured that for sufficiently large 𝜆 (e.g., 𝜆 > 10),

the Poisson distribution’s Shannon entropy can be approximated

by 𝐻 (𝑋𝑖 ) = 1

2
log(2𝜋𝑒𝜆), which resembles ℎ(𝑋𝑖 ) = 1

2
log(2𝜋𝑒𝜎2)

used for normal distributions. Evans and Boersma [29] proposed a

tighter bound (further formalized by Cheraghchi in [18]), to be

𝐻 (𝑋𝑖 ) =
1

2

log(2𝜋𝑒𝜆) − 1

12𝜆
− 1

24𝜆2
− 19

360𝜆3
+𝑂 (𝜆4)

and remains close to that of normal distribution with 𝜎2 = 𝜆.
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Figure 6: Comparing target’s absolute entropy loss for dis-
crete 𝐻 ( ®𝑋𝑇 ) −𝐻 ( ®𝑋𝑇 | 𝑋𝑇 +𝑋𝑆 ) and continuous ℎ( ®𝑋𝑇 ) −ℎ( ®𝑋𝑇 |
𝑋𝑇 + 𝑋𝑆 ) distributions.

One implication of this result for us is that Claim 2, which we

demonstrated for normal distributions, would apply to the approxi-

mation of Poisson distributions as well. As a result, we obtain inde-

pendence of the (absolute) entropy loss of distribution parameters
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for both discrete and continuous distributions and almost identical

behavior across the distributions as a function of the number of

spectators.

Furthermore, our analysis using Shannon/differential entropy

is partially echoed for the min-entropy (demonstrated in the full

version of the text [8]). In particular, we conjecture independence

of the attacker’s input in the min-entropy-based awae and show

that plots for the absolute min-entropy loss closely resemble those

for Shannon entropy for the Poisson distribution.

Up to this point, we have assumed that all participants’ inputs are

sampled from identically distributed random variables. However,

we can relax this assumption and investigate if/how the information

disclosure changes if parties’ inputs are non-identically distributed.

For example, employee salaries may differ slightly from company to

company, while still following the same distribution. We can model

this by adjusting the statistical parameters of individual participants.

This poses an interesting problem where there are multiple groups

with different distribution parameters. As such, we are interested in

determining which prior claims are still valid or need to be modified.

Claim 1 (attacker input independence) will hold regardless of how

participants’ inputs are distributed. Conversely, Claim 2 (depen-

dence on the number of targets and participants in the absolute

entropy loss) must be reworked since the claim is formulated under

the assumption that inputs are identically distributed. We investi-

gate this relaxation, as well as conduct additional experiments, in

the full version of the paper [8].

5 TWO EXECUTIONS
A natural generalization of the results of the prior section is to

consider executing the average salary computation more than once.

For example, after running the Boston gender pay gap study once,

the same computation was executed the following year with an ex-

tended set of participants. In this case, if the time interval between

the executions is small enough such that the inputs do not change

between the executions or change minimally, one would expect

that repeated participations would lead to additional information

disclosure compared to a single execution. Thus, in this section

we analyze the case of two executions and demonstrate their im-

pact on the participants. We consider both the cases when a target

contributes its input to both executions and when the target partic-

ipates only in one of the executions and other takes place without

the target, but on related inputs. Both cases result in additional

information disclosure compared to a single execution, which we

quantify in this section.

We partition the set of spectators 𝑆 into the following subsets:

• spectators present only in the first execution 𝑆1 ⊂ 𝑆 ,

• spectators present only in the second execution 𝑆2 ⊆ 𝑆 \ 𝑆1,
• and spectators present in both executions 𝑆12 = 𝑆 \ (𝑆1 ∪𝑆2).

A person participating more than once (target or spectator) enters

the same input into both execution.

When the target participates in both executions, we have:

𝑂1 =
∑︁

𝑖
𝑋𝑇𝑖 +

∑︁
𝑖∈𝑆12

𝑋𝑖 +
∑︁

𝑖∈𝑆1
𝑋𝑖 = 𝑋𝑇 + 𝑋𝑆12 + 𝑋𝑆1

𝑂2 =
∑︁

𝑖
𝑋𝑇𝑖 +

∑︁
𝑖∈𝑆12

𝑋𝑖 +
∑︁

𝑖∈𝑆2
𝑋𝑖 = 𝑋𝑇 + 𝑋𝑆12 + 𝑋𝑆2 .

The random variables 𝑂1 and 𝑂2 are not independent, as they both

are comprised of 𝑋𝑇 and 𝑋𝑆12 . We therefore want to compute the

conditional entropy (using differential entropy notation):

ℎ( ®𝑋𝑇 | 𝑂1,𝑂2) = ℎ( ®𝑋𝑇 ,𝑂1,𝑂2) − ℎ(𝑂1,𝑂2). (2)

Claim 3. The above conditional entropy can be expressed as

ℎ( ®𝑋𝑇 |𝑂1,𝑂2) = ℎ( ®𝑋𝑇 ) + ℎ(𝑋𝑆12+𝑋𝑆1 , 𝑋𝑆12+𝑋𝑆2 ) − ℎ(𝑂1,𝑂2) . (3)

The derivation can be found in the full version of the text.

In the special case when no spectators participate in both execu-

tions (i.e., 𝑆12 = ∅), the middle term simplifies to ℎ(𝑋𝑆1 ) + ℎ(𝑋𝑆2 ).
When the target participates only in one of the experiments, we

define executions 𝑂 ′
1
and 𝑂 ′

2
, which are the same as 𝑂1 and 𝑂2,

respectively, except that the target’s inputs are not included. For

instance, 𝑂 ′
1
= 𝑋𝑆12 + 𝑋𝑆1 . The relevant entropies in that case are

ℎ( ®𝑋𝑇 |𝑂 ′
1
,𝑂2) and ℎ( ®𝑋𝑇 |𝑂1,𝑂

′
2
).

The above requires us to introduce the definition of joint entropy

of correlated random variables. Now, the normal distribution stands

out among those considered in Section 4 as a suitable candidate for

our analysis. The generalized multivariate normal distribution is

well-studied and has a closed-form differential entropy, which we

discuss next.

5.1 Bivariate Normal Distributions
Evaluating Equation 3 requires defining the differential entropy of a

multivariate normal random variable. We then derive the necessary

core parameters for our distributions and use them to compute the

conditional entropy.

Let 𝑋𝑖 ∼ N(𝜇𝑖 , 𝜎2𝑖 ) be a single normal random variable as de-

fined in Section 3. We define ®𝑋 = (𝑋1, . . . , 𝑋𝑘 )T to be a general

multivariate normal distribution of a 𝑘-dimensional random vec-

tor, with ®𝑋 ∼ N(𝝁, 𝚺). Here, 𝝁 ∈ R𝑘 is the mean vector specified

as 𝝁 = E[ ®𝑋 ] = (E [𝑋1] , E [𝑋2] , . . . , E [𝑋𝑘 ])T = (𝜇1, 𝜇2, . . . , 𝜇𝑘 )T ,
and 𝚺 ∈ R𝑘×𝑘 is the 𝑘 × 𝑘 covariance matrix with each element

defined as Σ𝑖, 𝑗 = E

[
(𝑋𝑖 − 𝜇𝑖 ) (𝑋 𝑗 − 𝜇 𝑗 )

]
= Cov

[
𝑋𝑖 , 𝑋 𝑗

]
. The differ-

ential entropy of the multivariate normal distribution ®𝑋 is given by

ℎ( ®𝑋 ) = 1

2
log

(
(2𝜋𝑒)𝑘 det 𝚺

)
, [22, Chapter 8.4] where det 𝚺 is the

determinant of the covariance matrix. The next step is to character-

ize our multivariate distributions and determine their covariance

matrices. We also derive their mean vectors which are used for

intermediate results.

To compute the second and third terms of Equation 3, we for-

malize the bivariate distributions ®𝑆 = (𝑋𝑆12 + 𝑋𝑆1 , 𝑋𝑆12 + 𝑋𝑆2 )T
and ®𝑂 = (𝑂1,𝑂2)T. We denote 𝜇𝑃 =

∑
𝑖 𝜇𝑃𝑖 and 𝜎2

𝑃
=

∑
𝑖 𝜎

2

𝑃𝑖
as

the sum of the means and standard deviations, respectively, of all

participants within a group 𝑃 . Note that the mean is absent from

the formula for the differential entropy, and therefore we can safely

assume all 𝜇𝑖 = 0. Starting with ®𝑂 , we invoke the linearity of the

expectation for the mean vector:

𝝁 ®𝑂 =

(
E [𝑂1]
E [𝑂2]

)
=

(
E

[
𝑋𝑇 +𝑋𝑆12+𝑋𝑆1

]
E

[
𝑋𝑇 +𝑋𝑆12+𝑋𝑆2

] ) =

(
𝜇𝑇 +𝜇𝑆12+𝜇𝑆1
𝜇𝑇 +𝜇𝑆12+𝜇𝑆2

)
=

(
𝜇1
𝜇2

)
.
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For the covariancematrix, using the properties Cov [𝑋,𝑋 ] = Var [𝑋 ]
= 𝜎2

𝑋
and Cov [𝑋,𝑌 ] = Cov [𝑌,𝑋 ] yields

𝚺 ®𝑂 =

(
Cov [𝑂1,𝑂1] Cov [𝑂1,𝑂2]
Cov [𝑂2,𝑂1] Cov [𝑂2,𝑂2]

)
=

(
Var [𝑂1] Cov [𝑂1,𝑂2]

Cov [𝑂1,𝑂2] Var [𝑂2]

)
=

(
𝜎2
𝑇
+𝜎2

𝑆12
+𝜎2

𝑆1
Cov [𝑂1,𝑂2]

Cov [𝑂1,𝑂2] 𝜎2𝑇 +𝜎
2

𝑆12
+𝜎2

𝑆2

)
=

(
𝜎2
1

Cov[𝑂1,𝑂2]
Cov [𝑂1,𝑂2] 𝜎2

2

)
.

The expression for Cov [𝑂1,𝑂2] can be stated as follows:

Claim 4. Cov [𝑂1,𝑂2] = 𝜎2
𝑇
+ 𝜎2

𝑆12
if 𝑆12 is non-empty, and

Cov [𝑂1,𝑂2] = 𝜎2
𝑇
otherwise.

The proof is available in the full version of the text [8]. The final

parameters of the bivariate distribution ®𝑂 are

𝝁 ®𝑂 =

(
𝜇1
𝜇2

)
, 𝚺 ®𝑂 =

(
𝜎2
1

𝜎2
𝑇
+ 𝜎2

𝑆12
𝜎2
𝑇
+ 𝜎2

𝑆12
𝜎2
2

)
.

Repeating this procedure for the spectator joint distribution ®𝑆 yields
a similar set of parameters:

𝝁 ®𝑆 =

(
𝜇𝑆12 + 𝜇𝑆1
𝜇𝑆12 + 𝜇𝑆2

)
, 𝚺 ®𝑆 =

(
𝜎2
𝑆12

+ 𝜎2
𝑆1

𝜎2
𝑆12

𝜎2
𝑆12

𝜎2
𝑆12

+ 𝜎2
𝑆2

)
.

Equipped with expressions for 𝚺 ®𝑂 and 𝚺 ®𝑆 , we are prepared to begin
our experimental analysis of ℎ(𝑋𝑇 | 𝑂1,𝑂2).

5.2 Experimental Evaluation
The above allows us to experimentally evaluate the target’s en-

tropy loss for when inputs are normally distributed. We use normal

distribution N(0, 4) to reasonably approximate the log-normal dis-

tribution with real data. Once again, |𝑇 | = 1 for concreteness and

we let |𝑆1 | = |𝑆2 | in all experiments, i.e., the number of spectators

is the same in both executions.

It is informative to analyze information loss as the fraction of

shared spectators changes and we do so for three different computa-

tion sizes. To be as close to the setup that guarantee 1%–5% entropy

loss for the log-normal distribution (5–24 spectators), we choose

to execute our experiments with 6, 10, and 24 spectators (where

having an even number is beneficial for illustration purposes). This

corresponds to the number of non-adversarial participants when

the target is absent and the number of non-adversarial participants

is one higher when the target is participating.

We display the following information in Figure 7:

• the target’s initial entropy ℎ( ®𝑋𝑇 ),
• the target’s entropy after a single execution ℎ( ®𝑋𝑇 | 𝑂1),
• the target’s entropy after participating twice ℎ( ®𝑋𝑇 |𝑂1,𝑂2),
• the target’s entropy after participating in one of the two

executions, i.e., ℎ( ®𝑋𝑇 | 𝑂1,𝑂
′
2
) and ℎ( ®𝑋𝑇 | 𝑂 ′

1
,𝑂2)

and plot the values as a function of the fractional overlap between

two executions for a given number of spectators.

Naturally, the value of ℎ( ®𝑋𝑇 | 𝑂1) remains constant when the

number of participants is fixed. We observe that when participating

twice, ℎ( ®𝑋𝑇 | 𝑂1,𝑂2) converges to ℎ( ®𝑋𝑇 | 𝑂1) as the fraction

of shared spectators increases. This is expected because at 100%

overlap, we are functionally calculating ℎ( ®𝑋𝑇 | 𝑂1,𝑂1) = ℎ( ®𝑋𝑇 |
𝑂1). Conversely, increasing the fraction of the overlap has the

inverse effect for ℎ( ®𝑋𝑇 | 𝑂1,𝑂
′
2
), causing it to trend downward. At

100% overlap, ℎ( ®𝑋𝑇 | 𝑂1,𝑂
′
2
) = 0 (point omitted from the plots).

This is a consequence of effectively computing ℎ( ®𝑋𝑇 | 𝑂1, 𝑋𝑆12 ):

ℎ( ®𝑋𝑇 |𝑂1, 𝑋𝑆12 ) = ℎ( ®𝑋𝑇 ,𝑂1, 𝑋𝑆12 )−ℎ(𝑂1, 𝑋𝑆12 )

= ℎ( ®𝑋𝑇 )+ℎ(𝑋𝑆12 )−
(
ℎ(𝑋𝑇 +𝑋𝑆12 | 𝑋𝑆12 )+ℎ(𝑋𝑆12 )

)
=ℎ( ®𝑋𝑇 )+ℎ(𝑋𝑆12 )−

(
ℎ(𝑋𝑇 )+ℎ(𝑋𝑆12 )

)
=ℎ( ®𝑋𝑇 )−ℎ(𝑋𝑇 ) .

When |𝑇 | = 1, then ℎ( ®𝑋𝑇 ) = ℎ(𝑋𝑇 ), thus reducing the above equa-

tion to zero. This informs us that the output of the second com-

putation 𝑂 ′
2
without any unique spectators reveals the target’s

information entirely. We analytically prove these observations in

the full version of the text by deriving exact expressions for the

absolute entropy loss.

Our next observation pertains to the point of intersection where

ℎ( ®𝑋𝑇 | 𝑂1,𝑂2) = ℎ( ®𝑋𝑇 | 𝑂1,𝑂
′
2
), which occurs when 50% of the

spectators are shared across the computation. This appears for

the special case when the total number of spectators in a single

evaluation is even. Concretely, we compare

ℎ( ®𝑋𝑇 |𝑂1,𝑂2) = ℎ( ®𝑋𝑇 ,𝑂1,𝑂2) − ℎ(𝑂1,𝑂2),

ℎ( ®𝑋𝑇 |𝑂1,𝑂
′
2
) = ℎ( ®𝑋𝑇 ,𝑂1,𝑂

′
2
) − ℎ(𝑂1,𝑂

′
2
) .

(4)

It can be shown using the procedure outlined in Section 5 that

ℎ( ®𝑋𝑇 ,𝑂1,𝑂2) = ℎ( ®𝑋𝑇 ,𝑂1,𝑂
′
2
). Therefore, we prove the following:

Claim 5. With normally distributed inputs, the terms ℎ(𝑂1,𝑂2)
and ℎ(𝑂1,𝑂

′
2
) are equal when |𝑆12 | = |𝑆1 |.

Proof. Following the steps used to derive the covariance matrix

of ®𝑂 = (𝑂1,𝑂2), the covariance matrix of ®𝑂 ′ = (𝑂1,𝑂
′
2
) is

𝚺 ®𝑶′ =

(
𝜎2
𝑇
+ 𝜎2

𝑆12
+ 𝜎2

𝑆1
𝜎2
𝑆12

𝜎2
𝑆12

𝜎2
𝑆12

+ 𝜎2
𝑆2

)
.

Recall that the differential entropy of the multivariate normal is

ℎ( ®𝑋 ) = 1

2
log

(
(2𝜋𝑒)𝑘 det 𝚺

)
. The sole object of interest is the det 𝚺

term, as the remainder contribute a constant factor. We calculate

det 𝚺 ®𝑶
= (𝜎2𝑇 + 𝜎2𝑆12

+ 𝜎2𝑆1
) (𝜎2𝑇 + 𝜎2𝑆12

+ 𝜎2𝑆2
) − (𝜎2𝑇 + 𝜎2𝑆12

)2

= 𝜎2𝑇 (𝜎
2

𝑆1
+ 𝜎2𝑆2

) + 𝜎2𝑆12
(𝜎2𝑆1 + 𝜎2𝑆2

) + 𝜎2𝑆1
𝜎2𝑆2

.

Similarly,

det 𝚺 ®𝑶′ = (𝜎2𝑇 + 𝜎2𝑆12
+ 𝜎2𝑆1

) (𝜎2𝑆12 + 𝜎2𝑆2
) − 𝜎4𝑆12

= 𝜎2𝑇 (𝜎
2

𝑆12
+ 𝜎2𝑆2

) + 𝜎2𝑆12
(𝜎2𝑆1 + 𝜎2𝑆2

) + 𝜎2𝑆1
𝜎2𝑆2

.

Therefore, the equality ℎ( ®𝑋𝑇 | 𝑂1,𝑂2) = ℎ( ®𝑋𝑇 | 𝑂1,𝑂
′
2
) is satisfi-

able if and only if 𝜎2
𝑆12

= 𝜎2
𝑆1
, which occurs when |𝑆12 | = |𝑆1 |. □

As computation designers, we can minimize information dis-

closure for all participants by targeting 50% participants’ overlap

between the first and second executions. For the configurations in

Figure 7, at 50% overlap, the percentages of information loss from

the second evaluation relative to the first evaluation are comparable

for the selected number of spectators 𝑛 (30.18% for 𝑛 = 6, 31.3% for

𝑛 = 10, and 32.45% for 𝑛 = 24). This corresponds to the intersection

points in Figure 7.
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(a) 𝑛 = 6 spectators per execution.
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(b) 𝑛 = 10 spectators per execution.
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(c) 𝑛 = 24 spectators per execution.

Initial entropy h( ~XT )

Entropy after participating once h( ~XT | O1)

Entropy after participating twice h( ~XT | O1, O2)

Entropy after participating in the first only

h( ~XT | O1, O
′
2)

Entropy after participating in the second only

h( ~XT | O′1, O2) (equivalent to h( ~XT | O1, O
′
2))

Figure 7: Target information loss after participating in one or two computations. Omitted: if the target participates in one
experiment and all the shared spectators are reused, then ℎ(𝑋𝑇 | 𝑂1,𝑂

′
2
) = 0.

Number of evaluations Spectator overlap

the target participates in 40% 50% 60%

One 18.0% 31.3% 52.3%

Two 40.1% 31.3% 23.5%

Table 1: Percentage of information loss after two executions
relative to a single execution for 𝑛 = 10.

As we may be unable to guarantee that exactly 50% of partici-

pants overlap between two executions, we can increase our toler-

ance for entropy loss by inviting more participants and building

a buffer to accommodate overlaps in a range, e.g., 40–60%. Using

data in Figure 7, this information is convenient to gather for 𝑛 = 10.

That is, if we increase the fraction of overlapping spectators, single-

participation targets are most at risk. The converse is true if the

overlap decreases – the target suffers less exposure from participat-

ing one evaluation. Table 1 summarizes the results. This means that

performing two executions in the worst case costs a participant

entropy loss 1.5 times higher than if only a single computation is

executed. As a result, with the target entropy loss of 5% and 1%, we

need to increase the number of spectators from 5 and 24 to 7 and

33, respectively.

We note that our analysis of repeated executions applies only

when the inputs of the participants in the overlapping set of partic-

ipants do not change. And if the executions are distant enough in

time that the participants’ inputs significantly change, they would

no longer be treated as repeated dependent executions.

In the full version of the text [8] we conduct additional two-

evaluation experiments, such as adjusting the number of shared

spectators while maintaining a fixed number of unique spectators.

Furthermore, we extend our analysis to three or more executions.

6 CONCLUSIONS AND RECOMMENDATIONS
In this work we study information disclosure associated with re-

vealing the output of average salary computation on private inputs.

Using the framework of [1], we analyze the function and derive

several information-theoretic properties associated with the com-

putation. Inputs are modeled using several discrete and continuous

distributions, leading to multiple interesting conclusions about their

entropy loss. We expand the scope to multiple executions on related

inputs and determine the best configurations that minimize infor-

mation disclosure. This leads to the following recommendations

for computation designers:

• The amount of information disclosure about a target is in-

dependent of adversarial inputs. It was also experimentally

shown to be independent of distribution parameters for three

different distributions and analytically shown for normal

distribution. All examined distributions produce nearly iden-

tical entropy loss curves.

• One can reduce the amount of entropy loss to a desired level

by increasing the number of participants. For example, the

computation designer can advertise at most 5% or 1% maxi-

mum entropy loss for the average salary application, which

will require recruiting 6 or 25, respectively, non-adversarial

participants when running only a single evaluation.

• In the presence of repeated computations, information disclo-

sure about inputs continues for both participants who stay

and participants who leave. With two executions, protection

is the largest with 50% overlap in the participants, while

both a small overlap and an overwhelming overlap result in

undesirable information disclosure about different types of

participants (i.e., those who stay vs. those who leave).

• With more executions, pairwise overlaps sizes determine

information disclosure. For 3 and 4 executions, optimal con-

figurations have overlap sizes near 1/3 of the number of

participants.

• Information disclosure about participants’ inputs can still

be kept at a desirable level by enrolling enough participants

and restricting percentage of reused inputs to be in a desired

range. For example, with two executions and following the
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guidelines of the keeping the overlap near 50%, the number

of non-adversarial input contributors needs to be at least 8

to meet the target of 5% information loss.
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